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The invasive Melanaphis sorghi (Theobald; =Melanaphis sacchari Zehntner) is 

a serious pest of sorghum production in the southern USA. Demonstration of 

technologies that provide effective control is key to management of this pest. 

Here, we  investigated the effect of host plant resistance (resistant cultivar: 

DKS37-07 and susceptible cultivar: DKS53-53) and a single foliar insecticide 

(flupyradifurone: Sivanto Prime) application on M. sorghi infestations and the 

role of natural enemy populations in grain sorghum production across five 

locations in four states in southeastern USA. Foliar insecticide application 

significantly suppressed M. sorghi infestations on both the resistant and 

susceptible sorghum cultivars across all locations. Planting the host plant 

resistant cultivar (DKS37-07) significantly reduced aphid infestation across all 

locations. Plant damage ratings did not vary widely, but there was generally 

a positive association between aphid counts and observed plant damage, 

suggesting that increasing aphid numbers resulted in corresponding increase 

in plant damage. Planting a host plant resistant cultivar and foliar insecticide 

application generally preserved grain yield. Both sorghum hybrids supported 

an array of different life stages of natural enemies (predators [lady beetle larvae 

and adults; hoverfly larvae and lacewing larvae] and parasitoids [a braconid 

and aphelinid]) for both the sprayed and non-sprayed treatments. We found a 

strong and significant positive relationship between the natural enemies and 

the M. sorghi infestation. Results suggest that planting a host plant resistant 
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cultivar and the integration of natural enemies with insecticide control 

methods in the management of M. sorghi is central to the development of an 

effective pest management strategy against this invasive pest.

KEYWORDS

invasive species, aphid, insect pest management, insecticide application, natural 
enemy

Introduction

Melanaphis sorghi (Theobald) which was until recently known 
as Melanaphis sacchari Zehntner in previous literature (Nibouche 
et al., 2021), is an invasive multivoltine piercing and sucking pest 
of sugarcane, Saccharum officinarum (L.), and sorghum, Sorghum 
bicolor (L.) in Asia, Africa, Oceania, Central, South and North 
America (Sharma and Nwanze, 1997; Singh et  al., 2004). 
Melanaphis sorgi was first detected on the Florida peninsula on the 
southeastern coast of the United States in 1977 and consequently 
only achieved a minor pest status in sugarcane production 
(Denmark, 1988; Mondor et al., 2006). Following the detection of 
a new haplotype of M. sorghi in Texas and Louisiana in 2013 
(Harris-Shultz et al., 2017; Medina et al., 2017; Nibouche et al., 
2018), the pest became a significant economic pest of sorghum 
(Bowling et al., 2016) and has since spread to 25 states in the 
southern United States, thus infesting all sorghum-production 
regions (Peterson et al., 2018; EDDMapS, 2020). As of the time, 
this aphid was originally misidentified as the sugarcane aphid, 
Melanaphis sacchari, until a recent study (Nibouche et al., 2021) 
based on morphological and molecular evidence revised its name 
to M. sorghi.

The rapid invasion success of M. sorghi may be partly due to 
its narrow host range (Armstrong et al., 2015;Haar et al., 2019; 
Harris-Shultz and Ni, 2021), capacity for dispersal (Bowling et al., 
2016) and its potential to occupy a wide range of climatic 
conditions and ecosystems (Singh et al., 2004; Bowling et al., 2016; 
Souza and Davis, 2020), including disturbed ecosystems and 
agroecosystems where the preferred hosts are abundant (Singh 
et al., 2004; Bowling et al., 2016; Haar et al., 2019; Gordy et al., 
2021; Harris-Shultz and Ni, 2021). Melanaphis sorghi can survive 
low temperatures (around 0°C) but does not undergo diapause, 
nor sexual reproduction in the United States (Bowling et al., 2016; 
Michaud et al., 2016). Populations overwinter on Johnson grass, 
Sorghum halepense (L.) and giant miscanthus, Miscanthus sinensis 
× Miscanthus sacchariflorus Greef & Deuter ex Hodkinson & 
Renvoize, in southern Alabama and Georgia (Haar et al., 2019; 
Harris-Shultz and Ni, 2021). Hot and dry weather conditions 
promote rapid population increases (Bowling et al., 2016) and hot 
weather events may further reduce the current doubling time of 
4–13 days (Singh et al., 2004; Bayoumy et al., 2016; Brewer et al., 
2017; Gordy et al., 2021). This may consequently lead to range 
expansion and rapid population increases that can limit grain 

yield in susceptible sorghum varieties and other economically 
important host crops.

In many states in southern United  States, M. sorghi has 
become an important economic pest, causing significant yield loss 
in grain sorghum (Bowling et al., 2016; Peña-Martinez et al., 2016; 
Brewer et al., 2017; Szczepaniec, 2018; Lahiri et al., 2021), which 
translates into severe economic losses for farmers (Bowling et al., 
2016). For example, the Louisiana sorghum industry suffered 
losses of approximately $7.7 million in 2013 due to M. sorghi 
(Kerns et al., 2015), while Georgia growers decreased the area 
planted to grain sorghum by nearly 60% from 2015 to 2017 due to 
severe infestations (Bostick et  al., 2020). In Texas, annual 
economy-wide losses totaled $169.83 million in economic output 
including a direct loss of $78.57 million to farms and farm related 
industries (Zapata et  al., 2018). At high densities, feeding by 
nymphs and adults of M. sorghi cause physiological stress in grain 
sorghum which causes chlorosis, leaf wilt and necrosis (Singh 
et al., 2004; Bowling et al., 2016). Feeding by M. sorghi also results 
in the production of copious amounts of honeydew, which 
promotes the growth of sooty mold on leaves, impeding 
photosynthesis of affected sorghum plants (Singh et  al., 2004; 
Bowling et al., 2016). Further, sooty mold accumulation can clog 
grain sorghum harvest equipment (Singh et al., 2004; Bowling 
et al., 2016). Damage caused by M. sorghi decreases or stops grain 
sorghum growth, reducing crop yield by more than 50% and can 
kill susceptible grain sorghum plants (Bowling et al., 2016; Brewer 
et al., 2017; Gordy et al., 2019; Haar et al., 2019; Wilson et al., 2020; 
Lahiri et al., 2021).

Recent efforts focused on the development of economic 
thresholds (ET) as an integral tool to limit M. sorghi 
population growth provide decision support on insecticide 
timing within the framework of integrated pest management 
(IPM; Knutson et al., 2016; Gordy et al., 2019). Gordy et al. 
(2019) identified a range of 19–132 aphids per leaf as 
estimated ETs and suggested that a 40 aphid per leaf threshold 
across the range of cultivar., environmental, and market 
conditions in their study, however, this threshold needs 
revision for use on resistant sorghum cultivars. Previous 
studies demonstrate that knowledge of economic thresholds 
coupled with the use of aphid resistant sorghum varieties, 
insecticidal seed treatments, in-furrow or foliar insecticide 
sprays coupled with manipulation of planting date and 
nitrogen levels provide the basis for a comprehensive IPM 
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program to manage M. sorghi in grain sorghum (Sharma 
et  al., 2013; Armstrong et  al., 2015; Etheridge et  al., 2018; 
Szczepaniec, 2018; Haar et  al., 2019; Paudyal et  al., 2019; 
Seiter et al., 2019; Wilson et al., 2020; Lahiri et al., 2021; Lytle 
and Huseth, 2021; Pekarcik and Jacobson, 2021). Further 
evaluation of factors including insecticide application and 
host plant resistance influencing M. sorghi infestations and 
resulting yield losses is necessary to improve IPM strategies. 
The use of resistant cultivars provides a baseline of protection 
against M. sorghi by suppressing population growth rates, 
limiting injury and improving grain yield, however, the 
performance of these varieties is geographically variable 
(Lahiri et al., 2021; Pekarcik and Jacobson, 2021). Application 
of foliar insecticides such as flupyradifurone (Sivanto Prime, 
Bayer CropScience, Research Triangle Park, NC, 
United States) clearly suppress M. sorghi populations (Lahiri 
et al., 2021; Pekarcik and Jacobson, 2021), but the efficacy of 
foliar application may vary by weather conditions or 
geographic locations (Lahiri et al., 2021). Hence, continuous 
studies on the influence of host plant resistance and foliar 
insecticide application across locations are needed. These 
studies could potentially show how to improve the efficacy of 
natural enemies of M. sorghi in the management of this pest.

Knowledge of the non-target impacts of insecticides used 
for M. sorghi can enable growers to make informed decisions 
about insecticide selection that decrease aphid infestation 
while preserving the abundance and activities of natural 
enemies. Several studies have recorded a multiplicity of 
predators and parasitoids in sorghum production systems in 
southern United States suggesting that natural enemies may 
play a role in suppressing M. sorghi population, especially at 
low densities (Singh et al., 2004; Hewlett et al., 2019; Maxson 
et  al., 2019; Lytle and Huseth, 2021). Despite the fact that 
previous studies documented more than 47 arthropod species 
feeding on M. sorghi (Singh et al., 2004; Lytle and Huseth, 
2021), not much is known about the role of natural enemies 
on M. sorghi in grain sorghum systems in the southeastern 
USA due to prolific aphid reproduction rate, and low natural 
enemies in the sorghum field at the initial aphid infestation 
(but see Lytle and Huseth, 2021). Understanding the role of 
insect natural enemies in grain sorghum systems that 
incorporate foliar insecticide sprays and host plant resistance 
across multiple locations in the United  States is crucial to 
refining our IPM strategies in managing this pest. The 
objective of this study was to investigate the efficacy of 
combining host plant resistance and foliar insecticidal 
application using two commercial grain sorghum cultivars 
(susceptible cultivar: DKS53-53 and resistant cultivar: 
DKS37-07) across five locations, in four southeastern states 
in the United States. A second objective of this study was to 
determine if predators and parasitoids play some role in 
managing M. sorghi populations in grain sorghum systems 
that combine host plant resistance and foliar insecticide 
application within the context of IPM.

Materials and methods

Study locations and agronomic practices

Between April and August 2018, large plot field experiments 
utilizing grain sorghum were conducted at Tift Co., Georgia 
(31.5120° N, −83.6434° W), Pike Co., Georgia (33.1779° N, 
−84.4090° W), Moore Co., NC (35.1840° N, −79.6779° W), 
Barbour Co., Alabama (32.4224° N, −85.8907° W), and Darlington 
Co., South Carolina (34.3650° N, −80.0088° W). At each trial 
location, cooperators followed state Cooperative Extension 
recommended agronomic practices to achieve a 5,406 kg/ha yield 
goal. After spreading the recommended amounts of dry fertilizer, 
the fertilizer was incorporated using a field cultivator and then 
seedbed preparation was accomplished with a one-pass ripper 
bedder with the subsoil shank set to a depth of 50.8 cm for 
breaking the hardpan under the rows. A total of eight adjacent 
plots (11 m by 30.5 m per plot) were delineated and planted using 
a vacuum planter in early to mid-May. Plots were laid out on 0.9 m 
row centers at a planting density of 247,105 seeds per ha and a 
depth of 3.8-cm. A total of four plots received an M. sorghi 
susceptible grain sorghum cultivar., DKS53-53 (DeKalb®, 
Monsanto Company, St. Louis, MO, United  States), while the 
remaining four plots received an M. sorghi resistant cultivar., 
DKS37-07. Sorghum seeds were treated with fluxofenin (Concep 
III, Syngenta Crop Protection, Greensboro, NC) to permit 
application of S-metolachlor (Dual Magnum, Syngenta Crop 
Protection) at 1.17 L/ha behind the planter for enhanced weed 
control. One month after planting, all plots received atrazine 
(AAtrex 4 l, Syngenta Crop Protection) at 2.63 L/ha to provide 
additional weed suppression.

Insecticide treatment

Mean number of M. sorghi across all plots were summarized 
weekly. When the aphid population across the entire trial reached 
50 aphids per bottom leaf, a rescue insecticide treatment was 
initiated in two plots planted with resistant cultivar and two plots 
planted with susceptible cultivar. Those plots received a one-time 
application of flupyradifurone (Sivanto Prime, Bayer CropScience, 
Rhein, Germany) at 0.36 L/ha, administered using a self-propelled 
sprayer equipped with hollow cone nozzles (model TXVS-8, 
TeeJet Technologies, Spraying Systems Co., Glendale Heights, IL). 
Applications were delivered in a spray volume of 93.5 L/ha.

Insect sampling and plant health 
assessment

Melanaphis sorghi abundance and plant condition were 
assessed weekly. Weekly assessments started 4 weeks after planting 
and continued until the grain reached the hard dough stage in 
mid-August of 2018 at all locations for up to 8 weeks. Melanaphis 
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sorghi (regardless of age) and natural enemies were sampled from 
a single lower and upper leaf from six randomly selected plants per 
plot. To avoid edge effects, plants were sampled from the center two 
rows. All nymphs, alate, and apterous adult aphids were aggregated 
into a single count per leaf. Exact aphid numbers were counted 
when the density was below 50, and when densities were above 50, 
the number of aphids were estimated. We recorded the presence 
and number of beneficial insects spanning 11 taxa that are known 
predators of M. sorghi (Singh et al., 2004; Bowling et al., 2016; Lytle 
and Huseth, 2021). We identified parasitoid wasps [Lysiphlebus 
testaceipes (Cresson; Hymenoptera: Braconidae) and Aphelinus sp. 
(Hymenoptera: Aphelinidae)] by characterizing aphid mummies.

To simultaneously account for aphid abundance and duration 
of infestations, aphid counts were converted to cumulative insect 
days (CID) on a per plot basis following the methods of Ruppel 
(1983). Briefly, aphid days were calculated for each sampling 
interval as the mean density of two consecutive sample dates 
multiplied by the length of the interval between the dates in days. 
These values accumulated over the entire sampling period in each 
year, providing a cumulative estimate of aphid infestation intensity 
for each plot. On a per plot basis, plant condition (or aphid 
damage) of six randomly selected plants was characterized on a 
scale of 1–9 following the methods of Sharma et al. (2013). Briefly, 
this scale provides a standardized method to describe M. sorghi 
infestations based on the number of leaves showing damage 
symptoms and honeydew/sooty mold accumulation.

Harvest

When the grain dried in the field to a moisture content of 15% 
or less, the center two rows from each plot were harvested using a 
self-propelled combine. Depending on location, harvest generally 
commenced in late August to early October. Grain yield in each 
location and moisture content were measured on the combine. For 
comparison purposes, all plots were adjusted to a common 14% 
moisture content and extrapolated to kg of grain per ha.

Data analysis

At each location, experiments were organized in a factorial 
arrangement of treatments nested in a randomized complete block 
design. Treatments were cultivar (DKS53-53 vs. DKS37-07) and 
insecticide application (sprayed vs. unsprayed). The experimental 
unit receiving treatments (cultivar and insecticide treatment) was 
an individual grain sorghum plot measuring 11 m by 30.5 m. 
Responses averaged across individual plots included aphid counts 
per leaf, cumulative insect days (CID)—an index of crop 
protection which simultaneously account for the severity and 
duration of aphid infestation as described by Ruppel (1983), 
counts of natural enemies on each of 6 random plants per plot, 
and plant damage estimates. Plant damage ratings at Barbour Co. 
were not recorded. Following square root transformation of CID 

and damage rating data, the effects of sorghum hybrids and foliar 
insecticide application on CID and damage rating was analyzed 
using a Generalized Linear Model (GLZ; assuming normal 
distribution with an identity link function). When the overall 
results were significant in the GLZ analysis, the difference among 
the treatments was compared using the sequential Bonferroni test. 
The effect of sorghum cultivar (DKS37-07 vs. DKS53-53) and 
insecticide application on sorghum yield was evaluated using 
univariate General Linear Model analysis of variance (GLM 
ANOVA). When the overall results were significant in a two-way 
analysis, the differences among the treatments were compared 
using the Tukey’s Honest Significant Difference (HSD) test. 
We pooled yield data across all four locations and analyzed the 
overall effect of cultivar and insecticide treatment on grain 
sorghum yield, using GLM ANOVA. Regression analysis between 
number of M. sorghi and plant damage rating was only performed 
for the sprayed and non-sprayed susceptible sorghum cultivar 
(DKS53-53), because M. sorghi numbers and damage rating on the 
resistant hybrid was very low. Natural enemy counts were mostly 
zeros across locations, hence we pooled the data across all study 
locations and represented it as pie charts according to sorghum 
cultivar and insecticide application. Irrespective of sorghum 
cultivar and insecticide application, we  combined all-natural 
enemy data (extremely very low) and performed regression 
analysis on the relationship between the number of M. sorghi and 
natural enemy’s abundance. Except for the regression analyses that 
were performed using Microsoft Excel and GENSTAT 9.0 (VSN 
International, Hemel Hempstead, United  Kingdom), all other 
analyses were performed using IBM SPSS Statistical software 
version 20.0 (SPSS, Chicago, IL, United States).

Results

Cumulative insect days

Melanaphis sorghi infestation as indicated by CID was 
significantly influenced by sorghum cultivar and foliar insecticide 
application across study locations. Specifically, there were 
differences at Tift Co., GA (sorghum cultivar: χ2 = 228.35, p = 0.001; 
insecticide application: χ2 = 220.86, p = 0.001; interaction: χ2 = 95.72, 
p = 0.001), Pike Co., GA (sorghum cultivar: χ2 = 12.59, p = 0.001; 
insecticide application: χ2 = 470.31, p = 0.001; interaction: χ2 = 6.82, 
p = 0.009) and Moore Co., NC (sorghum hybrid: χ2 = 28.75, 
p = 0.001; insecticide application: χ2 = 131.22, p < 0.001; interaction: 
χ2 = 38.44, p = 0.001; Figures  1A–C). In Tift Co., M. sorghi 
infestation was 2-fold and 3-fold higher for non-sprayed (relative 
to sprayed) resistant cultivar (DKS37-07) and susceptible cultivar 
(DKS53-53), respectively (Figure 1A). In Pike Co., CID values was 
20- and 13-fold higher for non-sprayed (relative to sprayed) 
resistant cultivar (DKS37-07) and susceptible cultivar (DKS53-53), 
respectively (Figure 1B). At Moore Co., CID was 2- and 10-fold 
higher for non-sprayed resistant cultivar (DKS37-07) and 
susceptible cultivar (DKS53-53), respectively (Figure  1C). 
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Irrespective of foliar insecticide application, the resistant cultivar 
(DKS37-07) significantly reduced M. sorghi infestation compared 
to the susceptible cultivar (DK53-53) in Tift, Pike, and Moore 

Counties (Figures  1A–C). Cumulative insect days was not 
significantly influenced by sorghum cultivar but differed according 
to foliar insecticide application in Barbour Co., AL (sorghum 
cultivar: χ2 = 0.002, p = 0.965; insecticide application: χ2 = 169.62, 
p = 0.001; interaction: χ2 = 0.626, p = 0.429; Figure 1D); where CID 
was higher on non-sprayed plots for both sorghum cultivars. 
Finally, CID was significantly higher in non-sprayed sorghum plots 
and on susceptible sorghum cultivar in Darlington Co., SC 
(sorghum cultivar: χ2 = 57.32, p = 0.001; insecticide application: 
χ2 = 142.86, p = 0.001; interaction: χ2 = 12.042, p = 0.001; Figure 1E).

Plant damage rating

In Tift Co., a significant difference in plant damage rating was 
detected between sorghum hybrids and there was always more 
damage to the susceptible cultivar compared to the resistant cultivar 
(χ2 = 9.05, p = 0.003), but damage did not differ as a function of foliar 
insecticide application (χ2 = 0.853, p = 0.356; Figure 2A). There was 
no significant interaction between sorghum cultivar and insecticide 

A

B

C

D

E

FIGURE 1

Mean (±SE) cumulative insect days (CID) in flupyradifurone sprayed 
and non-sprayed grain sorghum cultivars planted at Tift and Pike 
Co. GA, Moore Co. NC, Barbour Co. AL and Darlington Co., SC in 
2018. Means capped with different letters are significantly different 
(sequential Bonferroni test, p < 0.05) among all four treatments. 
Note that y-axis scales are different on each figure.

A

B

C

FIGURE 2

Mean (±SE) plant damage rating in flupyradifurone sprayed and 
non-sprayed grain sorghum cultivars planted at Tift and Pike Co. 
GA and Moore Co. NC. Means capped with different letters are 
significantly different (sequential Bonferroni test, p < 0.05) among 
all four treatments.
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A

B

C

FIGURE 3

Relationship between mean weekly Melanaphis sorghi counts and corresponding plant damage rating in flupyradifurone sprayed and non-sprayed 
susceptible sorghum cultivar (DKS53-53) at Tift Co. (A), Pike Co. GA (B), and Moore Co. NC (C) in 2018.

application (χ2 = 0.924, p = 0.336). Plant damage rating did not vary 
as a function of sorghum cultivar (χ2 = 1.882, p = 0.170) but was 
greater on the non-sprayed (compare to sprayed) susceptible and 
resistant sorghum cultivars (χ2 = 3.850, p = 0.05) in Pike Co. 
(Figure 2B). There was no significant interaction between sorghum 
cultivar and insecticide application (χ2 = 0.002, p = 0.965). In Moore 
Co., there was no significant effect of sorghum cultivar (χ2 = 0.384, 
p = 0.536), foliar insecticide application (χ2 = 2.676, p = 0.102) or 

interaction between sorghum cultivar and insecticide application 
(χ2 = 0.763, p = 0.382) on plant damage rating (Figure 2C).

In Tift Co., irrespective of foliar insecticide application, linear 
regression analysis showed positive relationships between the 
number of M. sorghi and the resulting plant damage ratings, 
however, only the non-sprayed treatment showed a significant 
association (Figure 3A). In Pike Co., a non-significant negative 
relationship between the number of M. sorghi and plant damage 
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rating was evident on the sprayed susceptible sorghum cultivar 
while the non-sprayed susceptible sorghum cultivar had a 
significant strong linear relationship between the number of 
M. sorghi and plant damage rating (Figure 3B). Finally, in Moore 
Co., a non-significant weak relationship between the number of 
M. sorghi and plant damage rating was evident in the sprayed 
susceptible sorghum cultivar while the non-sprayed susceptible 
sorghum cultivar had a significant positive linear relationship 
between the number of M. sorghi and plant damage rating 
(Figure 3C).

Sorghum yield

Overall, grain sorghum yield was not significantly influenced 
by sorghum cultivar and foliar insecticide application when data 
from all four locations where pooled (cultivar: F1,61 = 1.31; 
p = 0.257; insecticide application: F1,61 = 3.38; p = 0.071; 
interaction: F1,61 = 0.68; p = 0.415), however, differences were 
detected in individual locations. In Tift Co., the resistant cultivar 
out yielded the susceptible cultivar (F1,20 = 581.60; p = 0.001), but 
did not differ as a function of foliar insecticide application 
(F1,20 = 0.616, p = 0.442; Figure  4A). There was no significant 
interaction between sorghum cultivar and insecticide application 
(F1,20 = 0.624, p = 0.446). Sorghum yield did not vary as a function 
of sorghum cultivar (F1,4 = 3.73, p = 0.126) but was significantly 
influenced by foliar insecticide application (F1,4 = 27.48, 
p = 0.006); with the sprayed treatment demonstrating evidently 
higher yield compared to non-sprayed for both sorghum 
cultivars in Pike Co. (Figure  4B). There was no significant 
interaction between sorghum hybrid and insecticide application 
nor the interaction of both factors (F1,4 = 1.12, p = 0.352). In 
Moore Co., there was a significant effect of sorghum cultivar 
(F1,20 = 10.37, p = 0.004) on sorghum yield with the susceptible 
hybrid producing higher yield compared to the resistant hybrid 
(Figure 4C). There was no effect of foliar insecticide application 
(F1,20 = 3.27, p = 0.088) on sorghum yield, but there was a 
significant interaction between sorghum cultivar and insecticide 
application (F1,20 = 7.76, p = 0.011). In Barbour Co., sorghum 
productivity did not vary as a function of sorghum cultivar 
(F1,4 = 0.61, p = 0.479) but was significantly influenced by foliar 
insecticide application (F1,4 = 33.19, p = 0.004); with the sprayed 
treatment demonstrating evidently higher yield compared to 
non-sprayed for both sorghum cultivars (Figure 4D). There was 
no significant interaction between sorghum cultivar and 
insecticide application (F1,4 = 1.04, p = 0.313).

Natural enemy abundance and 
association

The two sorghum cultivars (DKS37-07 and DKS53-53) 
supported an array of different predator and parasitoid life stages 
(larvae and adults) in both the sprayed and non-sprayed 

treatments (Figures 5, 6). Seven species of adult and larvae of 
lady beetles [Coccinella septempunctata (L.), Hippodamia 
convergens (Guérin-Méneville), Hippodamia sinuate (Mulsant), 
Coleomegilla maculata (DeGeer), Scymnus loewii (Mulsant), 
Cycloneda sanguinea (L.)] and Harmonia axyridis (Pallas; 
Coleoptera: Coccinellidae), four species of lacewing larvae 
[Hemerobius sp. (Neuroptera: Hemerobiidae), Ceraeochrysa 
valida (Banks), Chrysopa quadripunctata Burmeister, and 
Chrysoperla plorabunda (Fitch; Neuroptera: Chrysopidae)], and 
two parasitoid taxa [Lysiphlebus testaceipes (Cresson; 
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FIGURE 4

Mean (±SE) grain yield (kg/ha) as a function of sorghum cultivar 
and flupyradifurone foliar application at Tift Co., Pike Co. GA, 
Moore Co. NC and Barbour Co. AL. Means capped with different 
letters are significantly different (p < 0.05; Turkey’s test) among all 
four treatments. Note that y-axis scales are different on each 
figure.
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FIGURE 5

Percentage of natural enemies observed on resistant sorghum cultivar (DKS37-07) that was flupyradifurone sprayed (A) or non-sprayed (B) using 
the pooled data from all locations.

Hymenoptera: Braconidae) and Aphelinus sp] were recorded for 
both sprayed and non-sprayed plots of both cultivars (Figures 5, 
6). In the foliar insecticide sprayed resistant sorghum hybrid, 
parasitoids accounted for 45% of the total natural enemy number 
while lady beetle larvae and Allograpta obliqua larvae represented 
14% each of the total natural enemies found (Figure 5A). Lady 
beetle larvae (32%) and parasitoids (25%) were more abundant 
on the non-sprayed resistant sorghum cultivar (Figure 5B). In 
the sprayed susceptible sorghum cultivar., parasitoids accounted 

for 87% of the total natural enemy composition while lady beetle 
larvae represented 5% of the total natural enemies found 
(Figure 6A). Lady beetle larvae (56%) and parasitoids (20%) 
were more abundant on the non-sprayed susceptible sorghum 
cultivar (Figure 6B).

Linear regression analysis showed a significant positive 
relationship between the number of M. sorghi and number of adult 
predators in Tift, Pike and Moore Counties (Figures 7A–D) except 
for Barbour, Co., AL. Similarly, a significant positive relationship 
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between the number of M. sorghi and number of larval predators 
was evident in all four study locations (Figures 7E–H). Finally, 
there was a significant positive relationship between the number 
of M. sorghi and parasitoids numbers and mummified aphids 
(Figures 8A–D).

Discussion

We documented the benefits of combining aphid resistant 
sorghum cultivar and a single foliar insecticide application of 
flupyradifurone to suppress M. sorghi infestation and reduce yield 
loss in four locations in southeastern United States. Although 
within-season plant damage ratings did not vary widely, planting 
resistant cultivar and foliar application preserved grain yield 
across locations except under extreme aphid pressure at the Tift 
Co. study location. Our study also documented a positive 
association between aphid infestations and the number of natural 
enemies suggesting that natural enemies do play a role in the 

integrated pest management of M. sorghi. This finding is important 
because it shows that even a highly efficacious insecticide 
application may not preserve yield; an integrated approach 
is necessary.

Identification of environmental factors that drive infestation 
intensity on a spatio-temporal scale across the invasive range of 
the pest is key to advancing our understanding of the population 
ecology of this invasive pest and such studies should be the focus 
of future research. The mean CID were significantly lower in the 
insecticide sprayed plots, and on the resistant cultivar (DK37-07) 
across all locations except Barbour Co., AL where relatively light 
aphid pressure was observed. The suppression of M. sorghi 
population in this study confirms the reliability of the use of host 
pant resistance and flupyradifurone application to manage 
M. sorghi across a wide geographic area in the invasive range of 
the pest in the United  States (Szczepaniec, 2018; Lahiri et  al., 
2021). Tift Co., GA and Moore Co., NC had higher infestations 
compared to other locations. Changes in weather conditions such 
as temperature and frequency of rainfall events as well as the 
presence or absence of natural enemies may influence the severity 
of M. sorghi infestation across spatial scales (Szczepaniec, 2018; 
Seiter et al., 2019; Souza and Davis, 2020; Wilson et al., 2020). As 
has been demonstrated by a previous study (Lahiri et al., 2021), 
differences in CID between sorghum cultivars were most evident 
when CID was very high compared to locations where CID was 
low. In southeastern USA grain sorghum, M. sorghi infestation 
intensity often varies among locations and years (Haar et al., 2019; 
Lahiri et al., 2021).

Across study locations, host plant resistance and the 
application of flupyradifurone did not significantly influence plant 
injury except in Tift Co. where the resistant cultivar (DKS37-07) 
suffered considerably less damage compared to the susceptible 
cultivar (DKS53-53). Although plant damage ratings did not vary 
widely in the study, there was generally a positive association 
between aphids counts and observed plant damage suggesting that 
increasing aphid numbers resulted in corresponding increase in 
plant damage.

The lack of significant differences between grain sorghum 
cultivars and between insecticide treatments, in the overall grain 
yield (when data from all locations were pooled) shows the 
importance of location variation in these kinds of experiments 
(e.g., Lahiri et  al., 2021), and further buttress the need for an 
areawide approach in integrated pest management in sorghum. 
However, grain sorghum data from individual locations differed 
either according to sorghum cultivar or insecticide application. 
Preserved grain yield in plots treated with flupyradifurone 
application across all locations (except Tift Co.) confirm the 
findings of previous authors who worked on M. sorghi in 
southeastern United States (e.g., Haar et al., 2019; Lahiri et al., 
2021; Pekarcik and Jacobson, 2021). Yields were significantly 
greater in Moore Co., NC compared to the other study sites. 
We reason that this difference may be due to a multiplicity of 
factors including but not limited to rainfall, soil type, weather 
conditions and other environmental conditions that could 
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FIGURE 6

Percentage of natural enemies observed on susceptible sorghum 
cultivar (DKS53-53) that was flupyradifurone sprayed (A) or non-
sprayed (B) using the pooled data from all locations.
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FIGURE 7

Relationships between mean (±SE) weekly Melanaphis sorghi counts and adult (A–D) or larval (E–H) predators across cultivars, insecticide 
treatment and locations.

influence M. sorghi infestation intensity. Host plant resistance had 
a positive effect on grain yield in Tift and Moore Counties; in 
Moore Co., no foliar application was required to achieve greater 
than 500 kg/ha yield in the resistant cultivar (DKS37-07). Yield 
loss is the cumulative effect of all stresses during the growing year. 
Aphids represent a major source of stress and can explain some 
yield results, but other factors such as plant disease, water stress 

and even bird damage prior to harvest could have suppressed yield 
potential. In Tift Co., complete yield loss was recorded in 
experimental plots planted with the susceptible grain sorghum 
cultivar (DKS53-53) irrespective of insecticide treatment. Studies 
reporting 100% yield loss in susceptible grain sorghum cultivars 
grown under intense pressure are not uncommon in the literature 
(see Brewer et al., 2017; Lahiri et al., 2021).
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In addition to using host plant resistance and foliar insecticide 
application as an effective management tool in M. sorghi 
infestation as described in this current study, we also found that 
the two sorghum cultivars (DKS37-07 and DKS53-53) supported 
an array of different life stages of natural enemies (predators and 
parasitoids) for both the sprayed and non-sprayed treatments. 
Studies suggest that natural enemies maybe utilized in the 
M. sorghi and grain sorghum system to reduce pest damage and 
yield loss (Szczepaniec, 2018; Lahiri et al., 2021). Our findings 
suggest that predators may be more abundant in resistant sorghum 
(DKS37-07) compared to the susceptible cultivar (DKS53-53). 
Predators of M. sorghi reported in this current study 

(C. septempunctata, H. convergens, H. sinuate, C. maculata, 
S. loewii, C. sanguinea, and H. axyridis; Hemerobius sp., C. valida, 
C. quadripunctata, and C. plorabunda; A. obliqua, P. clavatus, and 
E. americanus) have been reported from the invasive range of 
M. sorghi in southeastern United States (Szczepaniec, 2018; Lytle 
and Huseth, 2021). For both resistant and susceptible cultivars, 
parasitoids (L. testaceipes and Aphelinus sp.) were more abundant 
in the sprayed treatments suggesting that foliar insecticide 
applications may not have any serious negative effects on the 
populations of the parasitoids encountered in this study. 
We hypothesized that the changes in natural enemy populations 
between sprayed and unsprayed could be a simple reflection of 
fewer aphids resulting in fewer natural enemies. Differences in 
predators and parasitoids species abundance or composition are 
not uncommon because factors including but not limited to 
weather conditions and prey or host availability can cause their 
population to spatio-temporally vary (Varenhorst and O’Neal, 
2012; Whalen et al., 2016; Lytle and Huseth, 2021).

The strong and significant positive relationship between the 
natural enemies (larval predators, adults predators and parasitoids 
numbers) and M. sorghi infestation suggests that flupyradifurone 
application may not have significant negative effects on natural 
enemy populations. Lytle and Huseth (2021), who studied the 
impact of insecticide sprays on M. sorghi and natural enemy 
populations in grain sorghum system in North Carolina, also 
reported that foliar insecticidal treatments did not negatively 
impact natural enemy populations. The authors showed that by 22 
and 29 days after spraying, there were no differences in natural 
enemy abundance in any treatments including the untreated control.

These findings suggest that the combination of host plant 
resistance and foliar insecticide application and the presence of 
natural enemies significantly suppressed M. sorghi population and 
in parts increased yield in grain sorghum. The integration of 
natural enemies with other conventional control methods in the 
management of M. sorghi comprise an effective integrated pest 
management strategy against this invasive pest. Our results provide 
some new insights into the role of natural enemies and other 
conventional control methods that can enable more informed 
decisions for growers that are concerned with the balance between 
insecticide application and biological control for lasting and 
sustained pest suppression in the M. sorghi and grain sorghum 
system. Given the importance of sorghum and the expansion of 
sorghum planted areas, in the United  States [United States 
Department of National Agricultural Statistics Services (USDA-
NASS), 2017], studies that integrate planting dates with the use of 
natural enemies and other conventional control approaches could 
further identify or refine strategies that limit this pest.

Data availability statement
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FIGURE 8

Relationship between mean weekly Melanaphis sorghi and 
parasitoids observed across hybrids, insecticide treatment, and 
locations.
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