
 Open access Journal Article DOI:10.1109/SURV.2010.042710.00114

Host-to-Host Congestion Control for TCP — Source link

Alexander Afanasyev, Neil Tilley, Peter Reiher, Leonard Kleinrock

Institutions: University of California, Los Angeles

Published on: 01 Jul 2010 - IEEE Communications Surveys and Tutorials (IEEE)

Topics: TCP Friendly Rate Control, TCP tuning, Network congestion, TCP acceleration and TCP global synchronization

Related papers:

 CUBIC: a new TCP-friendly high-speed TCP variant

 HighSpeed TCP for Large Congestion Windows

 Binary increase congestion control (BIC) for fast long-distance networks

 Congestion avoidance and control

 A Compound TCP Approach for High-Speed and Long Distance Networks

Share this paper:

View more about this paper here: https://typeset.io/papers/host-to-host-congestion-control-for-tcp-
4vvdz89iwo

https://typeset.io/
https://www.doi.org/10.1109/SURV.2010.042710.00114
https://typeset.io/papers/host-to-host-congestion-control-for-tcp-4vvdz89iwo
https://typeset.io/authors/alexander-afanasyev-4d5cjduwl1
https://typeset.io/authors/neil-tilley-grxpmthh40
https://typeset.io/authors/peter-reiher-rln1tt236a
https://typeset.io/authors/leonard-kleinrock-4r6h19hsmy
https://typeset.io/institutions/university-of-california-los-angeles-3qypghuz
https://typeset.io/journals/ieee-communications-surveys-and-tutorials-3lzcg96e
https://typeset.io/topics/tcp-friendly-rate-control-2hanpetf
https://typeset.io/topics/tcp-tuning-mzeyt3gc
https://typeset.io/topics/network-congestion-jhxdm5tx
https://typeset.io/topics/tcp-acceleration-1li04gre
https://typeset.io/topics/tcp-global-synchronization-1e6vi69f
https://typeset.io/papers/cubic-a-new-tcp-friendly-high-speed-tcp-variant-1q6viqr7sh
https://typeset.io/papers/highspeed-tcp-for-large-congestion-windows-5goa24zmpb
https://typeset.io/papers/binary-increase-congestion-control-bic-for-fast-long-eozmxpgzpe
https://typeset.io/papers/congestion-avoidance-and-control-5b0pxljiwg
https://typeset.io/papers/a-compound-tcp-approach-for-high-speed-and-long-distance-4lnhm0dp16
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/host-to-host-congestion-control-for-tcp-4vvdz89iwo
https://twitter.com/intent/tweet?text=Host-to-Host%20Congestion%20Control%20for%20TCP&url=https://typeset.io/papers/host-to-host-congestion-control-for-tcp-4vvdz89iwo
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/host-to-host-congestion-control-for-tcp-4vvdz89iwo
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/host-to-host-congestion-control-for-tcp-4vvdz89iwo
https://typeset.io/papers/host-to-host-congestion-control-for-tcp-4vvdz89iwo

304 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

Host-to-Host Congestion Control for TCP
Alexander Afanasyev, Neil Tilley, Peter Reiher, and Leonard Kleinrock

Abstract—The Transmission Control Protocol (TCP) carries
most Internet traffic, so performance of the Internet depends to a
great extent on how well TCP works. Performance characteristics
of a particular version of TCP are defined by the congestion
control algorithm it employs. This paper presents a survey of
various congestion control proposals that preserve the original
host-to-host idea of TCP—namely, that neither sender nor
receiver relies on any explicit notification from the network. The
proposed solutions focus on a variety of problems, starting with
the basic problem of eliminating the phenomenon of congestion
collapse, and also include the problems of effectively using the
available network resources in different types of environments
(wired, wireless, high-speed, long-delay, etc.). In a shared, highly
distributed, and heterogeneous environment such as the Internet,
effective network use depends not only on how well a single TCP-
based application can utilize the network capacity, but also on
how well it cooperates with other applications transmitting data
through the same network. Our survey shows that over the last
20 years many host-to-host techniques have been developed that
address several problems with different levels of reliability and
precision. There have been enhancements allowing senders to
detect fast packet losses and route changes. Other techniques
have the ability to estimate the loss rate, the bottleneck buffer
size, and level of congestion. The survey describes each congestion
control alternative, its strengths and its weaknesses. Additionally,
techniques that are in common use or available for testing are
described.

Index Terms—TCP, congestion control, congestion collapse,
packet reordering in TCP, wireless TCP, high-speed TCP

I. INTRODUCTION

MOST CURRENT Internet applications rely on the

Transmission Control Protocol (TCP) [1] to deliver

data reliably across the network. Although it was not part of its

initial design, the most essential element of TCP is congestion

control; it defines TCP’s performance characteristics. In this

paper we present a survey of the congestion control proposals

for TCP that preserve its fundamental host-to-host principle,

meaning they do not rely on any kind of explicit signaling

from the network.1 The proposed algorithms introduce a wide

variety of techniques that allow senders to detect loss events,

congestion state, and route changes, as well as measure the

loss rate, the RTT, the RTT variation, bottleneck buffer sizes,

and congestion level with different levels of reliability and

precision.

The key feature of TCP is its ability to provide a reliable,

bi-directional, virtual channel between any two hosts on the

Internet. Since the protocol works over the IP network [3],

which provides only best-effort service for delivering packets

Manuscript received 15 December 2009; revised 15 March 2010.
The authors are with the University of California, Los Angeles (e-mail:

{afanasev,tilleyns,reiher, lk}@cs.ucla.edu).
Digital Object Identifier 10.1109/SURV.2010.042710.00114
1Lochert et al. [2] have presented a thorough survey on the congestion

control approaches which rely on explicit network signaling.

Transmitted packets

(the window)

Packets prepared for

transmission

Acknowledged packets

Inital transmission

After receipt of

acknowledgements

Sender’s output buffer

Fig. 1. Sliding window concept: the window “slides” along the sender’s
output buffer as soon as the receiver acknowledges delivery of at least one
packet

across the network, the TCP standard [1] specifies a sliding

window based flow control. This flow control has several

mechanisms. First, the sender buffers all data before the

transmission, assigning a sequence number to each buffered

byte. Continuous blocks of the buffered data are packetized

into TCP packets that include a sequence number of the

first data byte in the packet. Second, a portion (window)

of the prepared packets is transmitted to the receiver using

the IP protocol. As soon as the sender receives delivery

confirmation for at least one data packet, it transmits a new

portion of packets (the window “slides” along the sender’s

buffer, Figure 1). Finally, the sender holds responsibility for

a data block until the receiver explicitly confirms delivery of

the block. As a result, the sender may eventually decide that a

particular unacknowledged data block has been lost and start

recovery procedures (e.g., retransmit one or several packets).

To acknowledge data delivery, the receiver forms an ACK

packet that carries one sequence number and (optionally)

several pairs of sequence numbers. The former, a cumulative

ACK, indicates that all data blocks having smaller sequence

numbers have already been delivered. The latter, a selective

ACK (Section II-E—a TCP extension standardized 15 years

after the introduction of TCP itself), explicitly indicates the

ranges of sequence numbers of delivered data packets. To be

more precise, TCP does not have a separate ACK packet, but

rather uses flags and option fields in the common TCP header

for acknowledgment purposes. (A TCP packet can be both a

data packet and an ACK packet at the same time.) However,

without loss of generality, we will discuss a notion of ACK

packets as a separate entity.

Although a sliding window based flow control is relatively

simple, it has several conflicting objectives. For example, on

the one hand, throughput of a TCP flow should be maximized.

This essentially requires that the size of a sliding window

also be maximized. (It can be shown that the maximum

1553-877X/10/$25.00 c© 2010 IEEE

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 305

Sender’s output buffer Receiver’s input buffer

8 free spaces (rwnd)

5 new data packets (wnd)

rwnd=3

wnd=3

rwnd=1

Receiver processed packet and slot

in the input buffer become available

Fig. 2. Receiver’s window concept: receiver reports a size of the available
input buffer (receiver’s window, rwnd) and sender sends a portion (window,
wnd) of data packets that does not exceed rwnd

throughput of a TCP flow depends directly on the sliding

window size and inversely on the round-trip time of the

network path.) On the other hand, if the sliding window is

too large, there is a high probability of packet loss because

the network and the receiver have resource limitations. Thus,

minimization of packet losses requires minimizing the sliding

window. Therefore, the problem is finding an optimal value

for the sliding window (which is usually referred to as the

congestion window) that provides good throughput, yet does

not overwhelm the network and the receiver.

Additionally, TCP should be able to recover from packet

losses in a timely fashion. This means that the shorter the

interval between packet transmission and loss detection, the

faster TCP can recover. However, this interval cannot be too

short, or otherwise the sender may detect a loss prematurely

and retransmit the corresponding packet unnecessarily. This

overreaction simply wastes network resources and may induce

high congestion in the network. In other words, when and how

a sender detects packet losses is another hard problem for TCP.

The initial TCP specification [1] is designed to guard only

against overflowing the input buffers at the receiver end. The

incorporated mechanism is based on the receiver’s window

concept, which is essentially a way for the receiver to share the

information about the available input buffer with the sender.

Figure 2 illustrates this concept in schematic fashion. When

establishing a connection, the receiver informs the sender

about the available buffer size for incoming packets (in the

example shown, the receiver’s window reported initially is

8). The sender transmits a portion (window) of prepared data

packets. This portion must not exceed the receiver’s window

and may be smaller if the sender is not willing (or ready)

to send a larger portion. In the case where the receiver is

unable to process data as fast as the sender generates it, the

receiver reports decreasing values of the window (3 and 1 in

the example). This induces the sender to shrink the sliding

window. As a result, the whole transmission will eventually

synchronize with the receiver’s processing rate.

Unfortunately, protocol standards that remain unaware of

the network resources have created various unexpected ef-

fects on the Internet, including the appearance of congestion

collapse (see Section II). The problem of congestion control,

meaning intelligent (i.e., network resource-aware) and yet ef-

fective use of resources available in packet-switched networks,

is not a trivial problem, but the efficient solution to it is

highly desirable. As a result, congestion control is one of the

extensively studied areas in the Internet research conducted

over the last 20 years, and a number of proposals aimed at

improving various aspects of the congestion-responsive data

flows is very large. Several groups of these proposals have

been studied by Hanbali et al. [4] (congestion control in

ad hoc networks), Lochert et al. [2] (congestion control for

mobile ad hoc networks), Widmer et al. [5] (congestion control

for non-TCP protocols), Balakrishnan et al. [6] (congestion

control for wireless networks), Leung at al. [7] (congestion

control for networks with high levels of packet reordering),

Low et al. [8] (current up to 2002 TCP variants and their

analytical models), Hasegawa and Murata [9] (fairness issues

in congestion control), and others researchers. Unlike previous

studies, in this survey we tried to collect, classify, and analyze

major congestion control algorithms that optimize various pa-

rameters of TCP data transfer without relying on any explicit

notifications from the network. In other words, they preserve

the host-to-host principle of TCP, whereby the network is seen

as a black box.

Section II is devoted to congestion control proposals that

build a foundation for all currently known host-to-host al-

gorithms. This foundation includes 1) the basic principle

of probing the available network resources, 2) loss-based

and delay-based techniques to estimate the congestion state

in the network, and 3) techniques to detect packet losses

quickly. However, the techniques that are developed are not

universal. For example, Tahoe’s initial assumption that pack-

ets are not generally reordered during transmission may be

wrong in some environments. As a result, the performance

of Tahoe flows in these environments will prove inadequate

(Section II-A). In Section III we discuss congestion control

proposals that modify previously developed algorithms to

tolerate various levels of packet reordering.

As data transfer technologies and the Internet itself have

evolved, the research focus for congestion control algorithms

has been changing from basic congestion to more sophisticated

problems. In Section IV we review the network resource

optimization problem. In particular, we discuss two algorithms

which discover the ability of a TCP congestion control to

provide traffic prioritization in a pure host-to-host fashion.

In Section V we discuss congestion control algorithm

proposals which try to improve the performance of TCP

flows running in wireless networks, where it is common to

have high packet losses (e.g., random losses due to wireless

interference).

In Section VI we review several proposed solutions that

have attracted the most research interest over the recent past.

These proposals aim to solve the problem of poor utilization of

high-speed and long-delay network channels by standard TCP

flows. They introduce several direct and indirect approaches

to more aggressive network probing. The indirect approaches

combine various loss-based and delay-based ideas to create

congestion control approaches that try to be aggressive enough

when there are enough network resources, yet remain gentle

when all resources are utilized.

306 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

Offered load

E
ff
e
c
ti
ve

 l
o
a

d

Capacity

Fig. 3. Effective TCP load versus offered load from TCP senders

Router

75% of packets rejected on both

input and output paths

400%A B

400%

Fig. 4. Congestion collapse rationale. 75% of data packets dropped on
forward path and 75% of ACKs dropped on reverse: only 6.25% of packets
are acknowledged

Finally, we present opportunities for the future research in

Section VII and conclude our survey in Section VIII.

II. CONGESTION COLLAPSE

The initial TCP standard has a serious drawback: it lacks

any means to adjust the transmission rate to the state of

the network. When there are many users and user demands

for shared network resources, the aggregate rate of all TCP

senders sharing the same network can easily exceed (and

in practice do exceed) the capacity of the network. It is

commonly known in the flow-control world that if the offered

load in an uncontrolled distributed sharing system (e.g., road

traffic) exceeds the total system capacity, the effective load

will go to zero (collapses) as load increases [10] (Figure 3).

With regard to TCP, the origins of this effect, known as

a congestion collapse [11]–[13], can be illustrated using a

simple example. Let us consider a router placed somewhere

between networks A and B which generate excessive amounts

of TCP traffic (Figure 4). Clearly, if the path from A to B is

congested by 400% (4 times more than the router can deliver),

at least 75% of all packets from network A will be dropped

and at most 25% of data packets may result in ACKs. If the

reverse path from B to A is also congested (also by 400%,

for example), the chance that ACK packets get through is

also 25%. In other words, only 25% of 25% (i.e., 6.25%)

of the data packets sent from A to B will be acknowledged

successfully. If we assume that each data packet requires its

own acknowledgement (not a requirement for TCP, but serves

to illustrate the point), then a 75% loss in each direction

causes a 93.75% drop in throughput (goodput) of the TCP-

like flow. Implementing cumulative ACKs help shift the bend

of the curve in Figure 3, but cumulative ACK are not able to

eliminate the sharp downward bend.

To resolve the congestion collapse problem, a number of

solutions have been proposed. All of them share the same

RFC 793

Tahoe

Reno

DUAL

VegasFACK NewReno

Vegas+

Veno

Vegas A

Proactive

(delay-based)

Reactive

(loss-based)

Fig. 5. Evolutionary graph of TCP variants that solve the congestion collapse
problem

idea, namely of introducing a network-aware rate limiting

mechanism alongside the receiver-driven flow control. For

this purpose the congestion window concept was introduced:

a TCP sender’s estimate of the number of data packets the

network can accept for delivery without becoming congested.

In the special case where the flow control limit (the so-

called receiver window) is less than the congestion control

limit (i.e., the congestion window), the former is considered

a real bound for outstanding data packets. Although this is a

formal definition of the real TCP rate bound, we will only

consider the congestion window as a rate limiting factor,

assuming that in most cases the processing rate of end-hosts

is several orders of magnitude higher than the data transfer

rate that the network can potentially offer. Additionally, we

will compare different algorithms, focusing on the congestion

window dynamics as a measure of the particular congestion

control algorithm effectiveness.

In the next section we will discuss basic congestion control

algorithms that have been proposed to extend the TCP spec-

ification. As we shall see, these algorithms not only preserve

the idea of treating the network as a black box but also

provide a good precision level to detect congestion and prevent

collapse. Table I gives a summary of features of the various

algorithms. Additionally, Figure 5 shows the evolutionary

graph of these algorithms. However, solving the congestion

problem introduces new problems that lead to network channel

underutilization. Here we focus primarily on the congestion

problem itself and basic approaches to improve data transfer

effectiveness. In the following sections other problems and

solutions will be discussed.

A. TCP Tahoe

One of the earliest host-to-host solutions to solve the con-

gestion problem in TCP flows has been proposed by Jacobson

[14]. The solution is based on the original TCP specification

(RFC 793 [1]) and includes a number of algorithms that can be

divided into three groups. The first group tackles the problem

of an erroneous retransmission timeout estimate (RTO). If

this value is overestimated, the TCP packet loss detection

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 307

TABLE I
FEATURES OF TCP VARIANTS THAT SOLVE THE CONGESTION COLLAPSE PROBLEM

TCP Variant Section Year Base Added/Changed Modes or Features Mod1 Status
Implementation

BSD2 Linux Win Mac

TCP Tahoe

[14]
II-A 1988 RFC793 Slow Start, Congestion Avoidance, Fast

Retransmit
S Obsolete

Standard
>4.3 1.0

TCP-DUAL
[15]

II-B 1992 Tahoe Queuing delay as a supplemental congestion
prediction parameter for Congestion Avoidance

S Experimental

TCP Reno
[16], [17]

II-C 1990 Tahoe Fast Recovery S Standard >4.3
>F2.2

>
1.3.90

>95/NT

TCP NewReno

[18], [19]
II-D 1999 Reno Fast Recovery resistant to multiple losses S Standard >F4 >

2.1.36
>10.4.6
(opt)

TCP SACK

[20]
II-E 1996 RFC793 Extended information in feedback messages P+S+R Standard >S2.6,

>N1.1,
>F2.1R

>
2.1.90

> 98 >
10.4.6

TCP FACK
[21]

II-F 1996 Reno,
SACK

SACK-based loss recovery algorithm S Experimental >N1.1 >2.1.92

TCP-Vegas

[22]
II-G 1995 Reno Bottleneck buffer utilization as a primary

feedback for the Congestion Avoidance and
secondary for the Slow Start

S Experimental >
2.2.10

TCP-Vegas+
[23]

II-H 2000 NewReno,
Vegas

Reno/Vegas Congestion Avoidance mode
switching based of RTT dynamics

S Experimental

TCP-Veno
[24]

II-I 2002 NewReno,
Vegas

Reno-type Congestion Avoidance and Fast
Recovery increase/decrease coefficient
adaptation based on bottleneck buffer state
estimation

S Experimental >
2.6.18

TCP-Vegas A
[25]

II-J 2005 Vegas Adaptive bottleneck buffer state aware
Congestion Avoidance

S Experimental

1 TCP specification modification: S = the sender reactions, R = the receiver reactions, P = the protocol specification
2 S for Sun, F for FreeBSD, N for NetBSD

mechanism becomes very conservative, and performance of

individual flows may severely degrade. In the opposite case,

when the value of the RTO is underestimated, the error de-

tection mechanism may perform unnecessary retransmissions,

wasting shared network resources and worsening the overall

congestion in the network. Since it is practically impossible

to distinguish between an ACK for an original and a retrans-

mitted packet, RTO calculation is further complicated.

The round-trip variance estimation (rttvar) algorithm tries
to mitigate the overestimation problem. Instead of a linear

relationship between the RTO and estimated round-trip time

(RTT) value (β · SRTT , in which β is a constant in range

from 1.3 to 2 [1] and SRTT is an exponentially averaged RTT
value), the algorithm calculates an RTT variation estimate to

establish a fine-grained upper bound for the RTO (SRTT +
4 · rttvar).

The exponential retransmit timer backoff algorithm solves

the underestimation problem by doubling the RTO value

on each retransmission event. In other words, during severe

congestion, detection of subsequent packet losses results in ex-

ponential RTO growth, significantly reducing the total number

of retransmissions and helping stabilize the network state.

The ACK ambiguity problem is resolved by Karn’s clamped

retransmit backoff algorithm [26]. Importantly, the RTT of

a data packet that has been retransmitted is not used in

calculation for the average RTT and RTT variance, and thus

it has no impact on the RTO estimate.

The second group of algorithms enhances the detection of

packet losses. The original TCP specification defines the RTO

as the only loss detection mechanism. Although it is sufficient

to reliably detect all losses, this detection is not fast enough.

Clearly, the minimum time when loss can be detected is the

RTT—i.e., if the receiver is able to instantly detect and report a

loss to the sender, the report will reach the sender exactly one

RTT after sending the lost packet. The RTO, by definition, is

greater than RTT. If we require that TCP receivers immediately

reply to all out-of-order data packets with reports of the last in-

order packet (a duplicate ACK) [27], the loss can be detected

by the Fast Retransmit algorithm [28], almost within the RTT

interval. In other words, assuming the probability of packet

reordering and duplication in the network is negligible, the

duplicate ACKs can be considered a reliable loss indicator.

Having this new indicator, the sender can retransmit lost data

without waiting for the corresponding RTO event.

The third and most important group includes the Slow Start

and Congestion Avoidance algorithms. These provide two

slightly different distributed host-to-host mechanisms which

allow a TCP sender to detect available network resources and

adjust the transmission rate of the TCP flow to the detected

limits. Assuming the probability of random packet corruption

during transmission is negligible (≪ 1%), the sender can
treat all detected packet losses as congestion indicators. In

addition, the reception of any ACK packet is an indication

that the network can accept and deliver at least one new packet

(i.e., the ACKed packet has left and a new one can enter the

network). Thus the sender, reasonably sure it will not cause

congestion, can send at least the amount of data that has just

been acknowledged. This in-out packet balancing is called the

packet conservation principle and is a core element, both of

Slow Start and of Congestion Avoidance.

In the Slow Start algorithm, reception of an ACK packet

is considered an invitation to send double the amount of data

that has been acknowledged by the ACK packet (multiplicative

increase policy). In other words, instead of a step-like growth

(Figure 6) in the number of outstanding packets (as given

in the original specification [1]), this growth follows an

308 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

Receiver limit (window)

M
a

x
 #

 o
f

o
u

ts
ta

n
d

in
g

p
a

c
k
e

ts

TimeTransmission

start up

Maximum data transfer

(same for similar graphs

throughout paper)

Fig. 6. Outstanding data packets allowance dynamics as defined in RFC793
(network limits are not considered)

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

Receiver limit

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

Receiver limit

Network limit

 Detected packet loss

Network limit

Fig. 7. Congestion window dynamics and effectiveness of Slow-Start if limit
is imposed by legacy flow control (left) and network (right)

exponential function on an RTT-defined scale (Figure 7). The

word “slow” in the algorithm name makes reference to this

difference. If a packet loss is detected (i.e., the network is ex-

periencing congestion because all network resources have been

utilized), the congestion window is reset to the initial value

(e.g., one) to ensure release of network resources. Graphs on

Figure 7 show two cases of the congestion window dynamics:

the left graph represents the case when the receiver cannot

process at the receiving rate (i.e., the original assumption

of TCP), and the right graph shows the congestion window

dynamics when the network cannot deliver everything at the

transmitted rate.

We can define algorithm effectiveness as the ratio of the area

below the congestion window graph (e.g., Figure 7, hatched

area) to the area below the limit line (Figure 7, under “Network

limit” line). It is clear (observing the right graph in Figure 7)

that where the available network resources are lower than

limits imposed by the receiver, the effectiveness, in the long

term, of the Slow Start algorithm is very low.

The other algorithm of the third group is Congestion

Avoidance. It is aimed at improving TCP effectiveness in

networks with limited resources, i.e., where the network is

a real transmission bottleneck. In comparison to the Slow

Start, this algorithm is much more conservative in response

to received ACK packets and to detection of packet losses.

As opposed to doubling, the congestion window increases by

one only if all data packets have been successfully delivered

during the last RTT (additive increase policy). And in contrast

to restarting at one after a loss, the congestion window is

merely halved (multiplicative decrease policy). Jacobson’s

analysis [14] has shown that to achieve network decongestion,

Network limit

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

Loss detection

Fig. 8. Congestion window dynamics and effectiveness of Congestion
Avoidance

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

ssthresh

SS CASS SS

Loss detection

Network limit

Fig. 9. Congestion window dynamics of combined Slow-Start (SS) Conges-
tion Avoidance (CA)

exponentially reducing network resource utilization by each

individual flow is sufficient. The multiplicative decrease policy

mimics such exponential behavior when several packets in

succession are determined as lost (e.g., during the persistent

congestion state). As can be seen in Figure 8, the Congestion

Avoidance algorithm is quite effective in the long term. The

tradeoff is a slow discovery of available network resources

due to the conservative rate of the additive phase.

The implementation of TCP Tahoe includes both Slow

Start and Congestion Avoidance algorithms as distinct opera-

tional phases. This combines fast network resource discovery

and long-term efficiency. For phase-switching purposes, a

threshold parameter (ssthresh) is introduced. This threshold
determines the maximum size of the congestion window in

the Slow Start phase, and any detected packet loss adjusts

the threshold to half of the current congestion window. The

congestion window itself, as in the Slow Start algorithm, is

always reset to a minimum value upon loss detection. As

long as the value of the congestion window is lower than the

threshold parameter, the Slow Start phase is used. Once the

window is greater than the threshold, Congestion Avoidance is

used. This is known as the Slow Start-Congestion Avoidance

phase cycle (Figure 9).

Effectiveness is not the only important parameter of con-

gestion control algorithms. Due to the resource-sharing nature

of IP networks, TCP algorithms should enforce fair resource

sharing. Chiu and Jain [29] developed a fairness measure F
(the so-called Jain’s fairness index) as a function of network

resources consumed by each user sharing the same path:

F =

(
n

∑

i

fi)
2

n ·
n

∑

i

f2
i

where n is the number of users sharing the path and fi is the

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 309

Network Share (flow1)

E
qu

al
 (f

ai
r)
 s
ha

re

N
e

tw
o

rk
 S

h
a

re
 (

fl
o

w
2

)

Network Limit

Packet
losses

x0

x1

x3

x2

Fig. 10. Slow-Start Algorithm

x0−x1, . . . , xn−xn+1 multiplicative increase (both flows have the
same increase rate of their congestion windows)
x1 − x2 equalization of the congestion window sizes

network share of ith user. If we assume that each user has
only one TCP connection per particular network path, then

Jain’s index can be considered a fairness measure for TCP

flows. This index ranges from 0 to 1, where 1 is achieved if

and only if each flow has an equal (fair) share (fi = fj ∀i, j)
and tends to zero if a single flow usurps all network resources

(limn→∞F = 0).

Slow Start and Congestion Avoidance exhibit good fairness

(F → 1) under certain network conditions as follows. Let us
consider two flows competing with each other on the same

network path and with no other flows present. If we assume

that (a) the network share for each flow is directly proportional

to its congestion window size, (b) both flows have equal RTT

values, and (c) we can simultaneously detect packet losses (a

so-called synchronized loss environment), then the network

share dynamics for each algorithm can be represented by

the convergence diagrams in Figures 10 and 11. The equal

share line represents states when network resources are fairly

distributed between flows and the network limit line when

all network resources are consumed (either by one or both

flows). These diagrams show how network resource propor-

tions would change (paths x0 − x1, x1 − x2, . . . , xn−1 − xn)

if two TCP flows started competing with each other from an

initial state x0 under the ideal network conditions.

In Figure 10 the aggressive (multiplicative) congestion

window increase in Slow Start favors the flow having a larger

network share. More precisely, the slope of x0 − x1 segment

is proportional to the ratio between each flow’s share in state

x0. After detection of a packet loss, both flows reset their

congestion windows (x1 − x2). Obviously, reseting of the

congestion window equalizes the network share of the flows

that provides fairness of the network resource distribution in

the future (the flows become locked-in between the states x2

and x3).

Congestion Avoidance ensures a uniform congestion win-

dow increase by each flow from any initial state (45◦ slope of

x1−x2 and xn −xn+1 segments in Figure 11). This property

eliminates the necessity of the congestion window equaliza-

tion. Instead, to provide fair network usage between flows, it is

enough that the flow having a larger network share decreases

by a greater amount. In fact, the multiplicative decrease (i.e.,

congestion window halving) as a reaction to a packet loss in

Network Share (flow1)

E
qu

al
 (f

ai
r)
 s
ha

re

N
e

tw
o

rk
 S

h
a

re
 (

fl
o

w
2

)

Network Limit

Packet
losses

x0

x1

x2

xn

xn+1

Fig. 11. Congestion avoidance (AIMD)

x0−x1, . . . , xn−xn+1 additive increase (both flows have the same
increase rate of their congestion windows)
x1−x2, . . . , xn−1−xn multiplicative decrease (a flow with the larger
congestion window decreases more than a flow with the smaller)

Congestion Avoidance guarantees share equalization (fairness)

in a finite number of steps.

A convergence diagram of TCP Tahoe can be represented as

a combination of the Slow Start and Congestion Avoidance di-

agrams. Depending on the values of the Slow Start thresholds,

the initial dynamics can follow the Slow Start path (x0 − x1

in Figure 10) or the Congestion Avoidance path (x0 − x1 in

Figure 11), or be a combination of both algorithms. Because

the reaction to a packet loss in TCP Tahoe is the same as in

Slow Start (i.e., congestion window reset), exactly one loss

event is enough to equalize shares (similar to path x1 − x2 in

Figure 10).

B. TCP DUAL

TCP Tahoe (Section II-A) has rendered a great service to

the Internet community by solving the congestion collapse

problem. However, this solution has an unpleasant drawback

of straining the network with high-amplitude periodic phases.

This behavior induces significant periodic changes in sending

rate, round-trip time, and network buffer utilization, leading

to variability in packet losses.

Wang and Crowcroft [15] presented TCP DUAL, which

refines the Congestion Avoidance algorithm. DUAL tries to

mitigate the oscillatory patterns in network dynamics by

using a proactive congestion detection mechanism coupled

with softer reactions to detected events. More specifically, it

introduces the queuing delay as a prediction parameter of the

network congestion state.

Let us assume that routes do not change during the trans-

mission and that the receiver acknowledges each data packet

immediately. Then we can consider the minimal RTT value

observed by the sender (RTTmin) as a good indication that the

path is in a congestion-free state (left diagram in Figure 12). If

we make one more assumption that an increase of the RTT can

only occur due to increasing buffer utilization, the difference

between the measured and the minimal RTT value (queuing

delay Q = RTT −RTTmin) can be viewed as an indicator of

the congestion level in the path (right diagram in Figure 12).

To quantify the congestion level, DUAL additionally main-

tains a maximum RTT value observed during the transmission

(RTTmax). The difference between maximum and minimum

310 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

D
ata

A
C
K

Time

D
ata

A
C
K

TCP Sender

TCP Receiver

RTTmin RTTmin + Q

Queuing due to

congestion (Q)

Congestion -free Congested

Fig. 12. Correlation between RTT dynamics and congestion situation

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

sshthresh

Reaching queuing delay

threshold

Network limit

Loss detection

...

SS CASS

Fig. 13. Congestion window dynamics of TCP DUAL

(SS: the Slow Start phase, CA: the Congestion Avoidance phase)

RTT values is considered a measure of the maximum con-

gestion level (i.e., the maximum queuing delay Qmax =
RTTmax − RTTmin). Finally, a fraction of the maximum

queuing delay (Qthresh = α ·Qmax, where 0 < α < 1) serves
as a threshold, which, when exceeded, indicates the congested

network state.

In the proposal [15], the delay threshold in DUAL is

selected as half the maximum queuing delay (Qthresh =
Qmax/2), and the congestion estimation is performed once per
RTT period based on the average RTT value (Q = RTTavg −
RTTmin). If this threshold is exceeded (Q > Qthresh), the

congestion window decreases by 1/8th (i.e., applied multi-

plicative decrease policy). As we can see from theoretical

congestion window dynamics of TCP DUAL (Figure 13),

the effectiveness is greatly improved compared to Tahoe

(i.e., graphically, the hatched area is proportionately larger).

However, there are a number of trade-offs.

If the network saturation point is estimated incorrectly, the

flow cannot utilize the available network resources fairly and

effectively. On the one side, in the case where the threshold

is underestimated (e.g., observed RTTmax is not the real

maximum) network resources will be underutilized. On the

other side, threshold overestimation can potentially cause an

unfair resource distribution between different TCP DUAL

flows. For example, if a DUAL flow is already transmitting

data when a new DUAL flow appears, the new flow will

observe a higher RTTmin value and overestimate the queuing

delay threshold. The flow with the lower queuing threshold

(the old flow) has a higher probability of predicting the

congestion state and trigger congestion window reduction,

while the other flow will continue congestion window growth

without noticing anything abnormal. Thus, the new flow can

potentially capture a larger share of the network resources.

C. TCP Reno

Reducing the congestion window to one packet as a reaction

to packet loss, as occurs with TCP Tahoe (Section II-A), is

rather draconian and can, in some cases, lead to significant

throughput degradation. For example, a 1% packet loss rate

can cause up to a 75% throughput degradation of a TCP flow

running the Tahoe algorithm [16]. To resolve this problem,

Jacobson [16] revised the original composition of Slow Start

and Congestion Avoidance by introducing the concept of

differentiating between major and minor congestion events.

A loss detection through the retransmission timeout indi-

cates that for a certain time interval (as an example, RTO
minus RTT) some major congestion event has prevented
delivery of any data packets on the network. Therefore, the

sender should apply the conservative policy of resetting the

congestion window to a minimal value.

Quite a different state can be inferred from a loss detected

by duplicate ACKs. Suppose the sender has received four

ACKs, where the first one acknowledges some new data and

the rest are the exact copies of the first one (usually referred

to as three duplicate ACKs). The duplicate ACKs indicate

that the some packets have failed to arrive. Nonetheless,

presence of each ACK—including the duplicates—indicates

the successful delivery of a data packet. The sender, in addition

to detecting the lost packet, is also observing the ability of the

network to deliver some data. Thus, the network state can be

considered to be lightly congested, and the reaction to the loss

event can be more optimistic. In TCP Reno, the optimistic

reaction is to use the Fast Recovery algorithm [17].

The intention of Fast Recovery is to halve a flow’s network

share (i.e., to halve the congestion window) and to taper back

network resource probing (holding all growth in the congestion

window) until the error is recovered. In other words, the

sender stays in Fast Recovery until it receives a non-duplicate

acknowledgment. The algorithm phases are illustrated in Fig-

ure 14, where congestion window sizes (cwnd) in various

states are denoted as the line segments above the State lines,

and the arrows indicate the effective congestion window size—

the amount of packets in transit.

The transition from State 1 to State 2 shows the core concept

of optimistic network share reduction, using the multiplica-

tive decrease policy. After the reduction (i.e., from cwnd
to cwnd/2), the algorithm not only retransmits the oldest

unacknowledged data packet (i.e., applies the Fast Retransmit

algorithm), but also inflates the congestion window by the

number of duplicate packets (see transition from State 2 to

State 3 in Figure 14). As we already know, an ACK indicates

delivery of at least one data packet. Thus, if we want to

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 311

Sent data,

waiting for ACK

cwnd

Buffered

data

ACKed

data

State 1

State 2

cwnd/2

cwnd/2+#dup

cwnd/2

cwnd/2+#dup

State 3

State 4

State 5

Just before the loss

detection

Just after the loss

detection

“Inflating” cwnd by the

number of dup ACKs

Additional dup ACKs lead to

additional cwnd “inflation”

After the successful

recovery (cwnd “deflation”)

Outstanding data which is not allowed to be retransmitted

Amount of new data allowed to be sent by “deflated” congestion window

Amount of successful delivered

data inferred from dup ACKs

Amount of packets in transit

The congestion window size is a

sum of these two elements

Fig. 14. Characteristic states of TCP Reno’s Fast Recovery

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

ssthresh

Loss detection

Network limit

SS CAFR

Fig. 15. Congestion window dynamics of TCP Reno
(SS: the Slow Start phase, CA: the Congestion Avoidance phase,
FR: the Fast Recovery phase)

maintain a constant number of packets in transit, we have

to inflate our congestion window to open a slot for sending

new data (State 4 in Figure 14). Without this increase, new

packets cannot be sent before the error is recovered, and the

amount of packets in transit can decrease more than expected.

In the final stage (State 5), when a non-duplicate ACK

is received, we want to resume Congestion Avoidance with

half of the original congestion window. With high proba-

bility, the non-duplicate ACK will acknowledge delivery of

all data packets previously inferred by the duplicate ACKs

previously received. At this point, congestion window deflation

to cwnd/2 (to the value just after entering recovery, State 2
in Figure 14) is a simple and reliable way to ensure the target

exit state from Fast Recovery.

The resulting theoretical congestion window dynamics in

TCP Reno are presented in Figure 15. Compared to the

dynamics of TCP Tahoe (Figure 9), the overall effectiveness

in the steady state is considerably improved by replacing Slow

Start phases after each loss detection by typically shorter Fast

Retransmit phases.

In fact, recovering from a single loss would usually occur

within one RTT. However, efficiency is improved not only

by shortening the recovery period, but also by allowing data

transfers during the recovery. Having substantial performance

Network Share (Tahoe)

E
qu

al
 (f

ai
r)
 s
ha

re

N
e

tw
o

rk
 S

h
a

re
 (

R
e

n
o

)

Network Limit

Packet
losses

x0

x1

xn

xn+1

Fig. 16. Convergence diagram when Reno flow is competing with Tahoe

flow

x0−x1, . . . , xn−xn+1 additive increase (both flows have the same
increase rate of their congestion windows)
x1−x2, . . . , xn−1−xn Tahoe flow reset its congestion window but
Reno flow only halves it

improvement compared to Tahoe, TCP Reno remains fair to

other TCP Reno flows (in terms defined in Section II-A). If

we try to build a convergence diagram, it would match the

diagram for the Congestion Avoidance algorithm in Figure 11

exactly. However, a slightly worse situation can be observed

when a TCP Reno flow competes with a Tahoe flow. Un-

equal reactions to packet loss detection lead to shifting the

distribution of network resources to the Reno side. This can

be demonstrated using the convergence diagram in Figure 16.

With a finite number of steps, the system reaches a steady

state in which the Reno flow has a larger share of network

resources. To quantify fairness in this case, one can easily

calculate the Jain’s fairness index (see Section II-A). In

Figure 16, this value equals 0.9 (after the convergence—state
xn+1—network shares are distributed as 2:1 in favor of a

Reno flow). This can be considered an acceptable level for

the transition period when the congestion control algorithm is

changed from Tahoe to Reno at all network hosts.

A comparison to TCP DUAL shows that, in an ideal

network environment with only one TCP flow present, the

312 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

DUAL algorithm will normally outperform Reno. But DUAL

has several important drawbacks. First, the delay characteristic

is not always a true congestion indicator, which can lead

to network resource underutilization or unfair distribution of

network resources. Second, there is an open question about

how well the DUAL algorithm performs in less ideal environ-

ments and when DUAL flows compete with other DUAL or

Tahoe flows. Clearly, in a situation of higher packet losses, the

performance of DUAL and Tahoe would be about the same,

and as a result, Reno could outperform the both of them.

Additionally, doubts about DUAL’s fairness to other DUAL

flows, as discussed in Section II-B, tend to give further favor

to TCP Reno.

Because of its simplicity and performance characteristics,

Reno is generally the congestion control standard for TCP. At

the same time, there are a wide range of network environments

where Reno has inadequate performance. For example, it has

severe performance degradation in the presence of consecutive

packet losses, random packet losses, and reordering of packets.

It is also unfair if competing flows have different RTTs, and

it does not utilize high-speed/long-delay network channels

efficiently.

In the remainder of this paper we will discuss a num-

ber of the most important TCP proposals which ad-

dress these issues without deviating from the original

host-to-host principle of TCP.

D. TCP NewReno

One of the vulnerabilities of TCP Reno’s Fast Recovery

algorithm manifests itself when multiple packet losses occur as

part of a single congestion event. This significantly decreases

Reno’s performance in heavy load environments. This problem

is demonstrated in Figure 17, where a single congestion event

(e.g., a short burst of cross traffic) causes the loss of several

data packets (indicated by x). As we can see, the desired opti-

mistic reaction of Fast Recovery (i.e., the congestion window

halving) suddenly transforms into a conservative exponential

congestion window decrease. That is, the first loss causes entry

into the recovery phase and the halving of the congestion

window. The reception of any non-duplicate ACK would finish

the recovery. However, the subsequent loss detections cause

the congestion window to decrease further, using the same

mechanisms of entering and exiting the recovery state.

In one sense, this exponential reaction to multiple losses is

expected from the congestion control algorithm, the purpose

of which is to reduce consumption of network resources in

complex congestion situations. But this expectation rests on

the assumption that congestion states, as deduced from each

detected loss, are independent, and in the example above

this does not hold true. All packet losses from the original

data bundle (i.e., from those data packets outstanding at the

moment of loss detection) have a high probability of being

caused by a single congestion event. Thus, the second and

third losses from the example above should be treated only as

requests to retransmit data and not as congestion indicators.

Moreover, reducing the congestion window does not guarantee

the instant release of network resources. All packets sent

before the congestion window reduction are still in transit.

Before the new congestion window size becomes effective,

we should not apply any additional rate reduction policies.

This can be interpreted as reducing the congestion window

no more often than once per one-way propagation delay or

approximately RTT/2.
Floyd et al. [18], [19] introduce a simple refinement of

Reno’s Fast Recovery. It solves the ambiguity of congestion

events by restricting the exit from the recovery phase until all

data packets from the initial congestion window are acknowl-

edged. More formally, the NewReno algorithm adds a special

state variable to remember the sequence number of the last

data packet sent before entering the Fast Recovery state. This

value helps distinguish between partial and new data ACKs.

The reception of a new data ACK means that all packets sent

before the error detection were successfully delivered and any

new loss would reflect a new congestion event. A partial ACK

confirms the recovery from only the first error and indicates

more losses in the original bundle of packets.

Figure 18 illustrates the differences between Reno and

NewReno. Similar to the original Reno algorithm, reception

of any duplicate ACKs triggers only the inflation of the

congestion window (States 3, 4, 6). A partial ACK provides

the exact information about some part of the delivered data.

Therefore, reaction to partial ACK is only a deflation of the

congestion window (State 4) and a retransmission of the next

unacknowledged data packet (State 5). Finally, exit from the

NewReno’s Fast Recovery can proceed only when the sender

receives a new data ACK, which is accompanied by the full

congestion window deflation (State 7 in Figure 18).

Notice that during the recovery phase, duplicate acknowl-

edgments transfer their role as error indicators to the partial

ACKs. Retransmission of the first lost packet and reception

of the corresponding ACK will take exactly one RTT, and

the sender therefore can be absolutely sure that during this

interval all previously sent data will be either delivered or lost.

That is, this data no longer consumes the network resources.

Partial ACKs can be sent by the receiver only if more than one

packet is lost from the original packet bundle. Thus there is

no reason for the sender to wait for additional signals before

retransmitting the lost packet inferred from the partial ACK.

Remembering the sequence number of the last data packet

sent before entering the Fast Recovery phase and using this to

distinguish between partial and new data ACKs, is the solution

to most of the cases of unnecessary congestion window

reduction. However, in some cases, particularly when the

retransmission timeout is triggered during the Fast Retransmit

phase, unnecessary congestion window reduction still may

occur [30]. The solution (“bugfix” in terms of [30]) is to

remember the highest sequence number transmitted so far

after each triggering of the retransmission timeout, and to

ignore all duplicate ACKs that acknowledge lower sequence

numbers. This solution optimistically resolves the ambiguity

of duplicate ACKs that can indicate either lost or duplicate

packets.

NewReno modifies only the Fast Recovery algorithm by

improving its response in the event of multiple losses. Mean-

while, in the steady state performance and fairness character-

istics are similar to the ones shown in Section II-C. A slightly

more aggressive recovery procedure would allow a NewReno

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 313

Sent data,

waiting for ACK

cwnd

Buffered

data

ACKed

data

State 1 Just before 1st loss detection

Packet retransmission

Packet losses due to the minor congestion event

cwnd/2
State 2

cwnd/22

State 3

Detected packet loss (e.g., 3 dup ACKs)

cwnd/23

State 4

After exit from the recovery and

just before 2
nd

loss detection

After exit from the recovery and

just before 3
rd

loss detection

After exit from the last recovery

phase

Fig. 17. The performance problem in Reno’s Fast Recovery

Sent data,
waiting for ACK

cwnd

Buffered
data

ACKed
data

State 1
Initial congestion window before

loss detection

Packet retransmission

Packet losses due to the minor congestion event

Detected packet loss (e.g., 3 dup ACKs)

#dup+cwnd/2
State 3

State 5

State 6

cwnd/2
State 7

Retransmission of the lost packet.

Each dup ACK “inflates” the cwnd

Retransmission of the lost packet ().

The cwnd remains unchanged

#dup+cwnd/2-ACK
State 4

Partial ACK “deflates” the cwnd, packets

before are received

Non-duplicate ACK

#dup+cwnd/2-ACK

#dup+cwnd/2-ACK All dup ACKs only “inflates”

the cwnd

Exit recovery and deflate cwnd when

non-duplicate ACK is received

Amount of successful delivered

data inferred from dup ACKs

State 2
cwnd/2 Just after the loss

detection

Amount of packets in transit

The congestion window size is a

sum of these two elements

Fig. 18. Characteristic states of TCP NewReno’s Fast Recovery

flow in some cases to obtain more network resources than

a competing Reno flow. But generally, this imbalance only

happens due to the inability of Reno itself to utilize the

network resources under those network conditions effectively.

For this reason, we consider NewReno to have the same

fairness characteristics as Reno.

E. TCP SACK

The problem with Reno’s Fast Recovery algorithm dis-

cussed in the Section II-D arises solely because the receiver

can report limited information to the sender. The TCP speci-

fication [1] defines that the only feedback message be in the

form of cumulative ACKs, i.e., acknowledgments of only the

last in-order delivered data packet. This property limits the

ability of the sender to detect more than one packet loss per

RTT. For example, if a second and a third data packet from

some continuous TCP stream are lost, the receiver, according

to the cumulative ACK policy, would reply to fourth and

consecutive packets with duplicate acknowledgments of the

first packet (Figure 19). Clearly, the loss can be detected no

sooner than after one RTT. Moreover, because Fast Recovery

assumes loss of only one data packet—i.e., only one packet

will be retransmitted after a loss detection—loss of the third

data packet will be detected after another RTT at best. Thus,

a duration of the recovery in Reno is directly proportional to

the number of packet losses and RTT.

NewReno resolves Reno’s problem of excessive rate reduc-

ing in the presence of multiple losses, but it does not solve

the fundamental problem of prolonged recovery. The recovery

process can be sped up if the sender retransmits several packets

instead of a single one upon error detection. However, this

technique assumes certain patterns of packet losses and may

just waste network resources if actual losses deviate from these

patterns.

If a receiver can provide information about several packet

losses within a single feedback message, the sender would

be able to implement a simple algorithm to resolve the long

recovery problem. Moreover, Reno’s problem discussed in

Section II-D can be solved by restricting the congestion win-

dow reduction to no more than once per RTT period, instead of

314 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

RTT

1 2 3 4 5

Data packets

1 1 1

ACK packets

...

...

duplicates

TCP Sender TCP Receiver

Fig. 19. Duplicate ACKs allow loss detection no sooner than after one RTT

1 st data packet
1
st A

C
K Time

TCP Sender

TCP Receiver RTT

last data

packet
la
st
 A

C
K

2 RTTs

Fig. 20. The interval between the first and last data packets sent before
reception of any ACK is 2×RTT in the worst case

implementing the NewReno algorithm. The rationale behind

this solution is that in the worst case, the interval between

the first and last data packets sent before reception of any

ACK is exactly one RTT (Figure 20). All loses, if any, will be

reported to the sender within the next RTT. Thus, if we apply

the mechanism of limiting the congestion window reduction to

no more than once per RTT period to the problem illustrated in

Figure 17, the first error detection should cause retransmission

and shrink the congestion window. The rest of the losses in

the original packet bundle would be reported within one RTT,

and thus will cause only retransmission of the lost packets,

preserving the value of the congestion window.

Mathis et al. [20] address the problem of limited infor-

mation available in a cumulative ACK. As a solution, they

propose extending the TCP protocol by standardizing the se-

lective acknowledgment (SACK) option. This option provides

the ability for the receiver to report blocks of successfully

delivered data packets. Using this information, TCP senders

can easily calculate blocks of lost packets (gaps in sequence

numbers) and quickly retransmit them (Figure 21).

Unfortunately the SACK mechanism has serious limitations

in its current form. The TCP specification restricts the length

of the option field to 40 bytes. A simple calculation reveals

that the SACK option can contain at most four blocks of

data packets received in order (2 bytes to identify option

and specify option length, and up to four pairs of 4-byte

sequence numbers [20]). The situation becomes aggravated

if we want to use additional TCP options, which decrease the

space for the sequence number pairs being included in SACK.

For example, the Timestamp option [31] reduces the available

space in the TCP header by 8 bytes, which decreases SACK

space to only 3 gaps of lost packets. In some environments,

the pattern of packet losses may easily exceed this SACK

limit. In the worst case, when every other packet is lost, this

limit is exceeded just after the first 4 packets are received

(thus, 4 packets being lost). The inability of the receiver to

Left edge of 1
st
 block

Right edge of 1
st
 block

Left edge of n
th
 block

Right edge of n
th
 block

...

Fig. 21. SACK option

Left edge – the first sequence number of the block,
Right edge – the sequence number immediately following the last
sequence number of the block

quickly indicate all detected losses returns us to the original

problem. Although this worst-case situation is unlikely to

happen in wired networks (since during congestion events

consecutive packets are usually dropped), random losses in

wireless networks can show patterns approximating the worst

case. This observation shows that SACK is not a universal

solution to the multiple loss problem.

F. TCP FACK

Although SACK (Section II-E) provides the receiver with

extended reporting capabilities, it does not define any partic-

ular congestion control algorithms. We have informally dis-

cussed one possible extension of the Reno algorithm utilizing

SACK information, whereby the congestion window is not

multiplicatively reduced more than once per RTT. Another ap-

proach is the FACK (Forward Acknowledgments) congestion

control algorithm [21]. It defines recovery procedures which,

unlike the Fast Recovery algorithm of standard TCP (TCP

Reno), use additional information available in SACK to handle

error recovery (flow control) and the number of outstanding

packets (rate control) in two separate mechanisms.

The flow control part of the FACK algorithm uses se-

lective ACKs to indicate losses. It provides a means for

timely retransmission of lost data packets, as well. Because

retransmitted data packets are reported as lost for at least

one RTT and a loss cannot be instantly recovered, the FACK

sender is required to retain information about retransmitted

data. This information should at least include the time of the

last retransmission in order to detect a loss using the legacy

timeout method (RTO).

The rate control part, unlike Reno’s and NewReno’s Fast

Recovery algorithms, has a direct means to calculate the num-

ber of outstanding data packets using information extracted

from SACKs. Instead of the congestion window inflation

technique, the FACK maintains three special state variables

(Figure 22): (1) H , the highest sequence number of all sent
data packets—all data packets with sequence number less than

H have been sent at least once; (2) F , the forward-most
sequence number of all acknowledged data packets—no data

packets with sequence number above F have been delivered

(acknowledged); and (3) R, the number of retransmitted
packets.

The simple relation H −F +R provides a reliable estimate

(in the sense of robustness to ACK losses) of outstanding data

packets in the network. This estimate can be utilized by the

sender to decide whether or not to send a new portion of

data. More formally, data can be sent when the calculated

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 315

Send

buffer

Retransmitted (R)

Highest sent (H)

Forward-most received (F)

Acknowledged data packets

Lost data packets

Sent and not yet ACKed data packets

Fig. 22. Special state variables in the FACK algorithm

number of outstanding data packets is under an allowed limit

(the congestion window).

Simulation results [21] confirm that FACK has a much faster

recovery time from errors than Reno or NewReno. In fact,

advantages of FACK have long been widely recognized and

FACK has been an embedded part of the Linux kernel since

the 2.1.92 version. Because FACK modifies only reactions in

the recovery phase, the steady-state characteristics of effec-

tiveness and fairness are exactly the same as for Reno (see

Section II-C).

G. TCP Vegas

The approaches discussed in Sections II-C, II-D, and II-F

improve various aspects of Tahoe, Reno and NewReno con-

gestion controls. However, all of them share the same reactive

method of rate adaptation. That is, each of them detects

that the network is congested only if some packets are lost.

Moreover, these variants of TCP bring about packet losses

because their algorithms can grow packet transmission rates

to the point of network congestion. Therefore, the problem

discussed in Section II-B (i.e., induced periodic changes in

sending rate, round-trip time, network buffer utilization, packet

losses, etc.), also applies to Reno, NewReno, and FACK

congestion control algorithms.

TCP DUAL (Section II-B) makes an attempt to provide a

proactive method of quantifying the congestion level before an

actual congestion event occurs using an estimate of queuing

delay. But the solution only mitigates the oscillatory patterns

of network parameters (RTT, buffer utilization, etc.) and never

fully eliminates them. Moreover, as mentioned in Section II-B,

fairness of the DUAL algorithm is questionable.

Brakmo and Peterson [22] proposed the Vegas algorithm

as another proactive method to replace the reactive Con-

gestion Avoidance algorithm. The key component is making

an estimate of the used buffer size at the bottleneck router.

Similar to the DUAL algorithm, this estimate is based on

RTT measurements. The minimal RTT value observed during

the connection lifetime is considered a baseline measurement

indicating a congestion-free network state (analogous to Fig-

ure 12). In other words, a larger RTT is due to increased

queuing in the transmission path. Unlike DUAL, Vegas tries

to quantify, not a relative, but an absolute number of packets

enqueued at the bottleneck router as a function of the expected

and actual transmission rate (Figure 23).

The expected rate (dashed line in Figure 23) is a theoretical

rate of a TCP flow in a congestion-free network state. This

rate can occur if all transmitted data packets are successfully

acknowledged within the minimal RTT (i.e., no loss, no

Congestion window

T
ra

n
s
m

is
s
io

n
 r

a
te

Rate when RTT is min

cwnd0 cwnd

1/RTTmin

cwnd/RTTmin – expected rate

cwnd/RTT – actual rate
Network limit

(RTT grows as cwnd grows)

/ RTTmin

Fig. 23. TCP Vegas—the utilized buffer size ∆ as function of expected and
actual rate

congestion). Assuming that RTTmin is constant, the expected

rate is directly proportional to the size of the congestion

window with a proportionality coefficient of 1/RTTmin.

The actual rate (bold solid line in Figure 23) can be

expressed as the ratio between the current congestion win-

dow and the current RTT value. However, due to the finite

capacity of the path, we can always find a point cwnd0 on

the graph when the actual rate is numerically equal to the

expected rate, and all attempts to send at a faster rates (i.e.,

> cwnd0/RTTmin) will fail. Clearly, the number of packets

enqueued during the last RTT is the difference ∆ between

the current congestion window and the inflection point in our

graph; thus we have ∆ = cwnd − cwnd0. According to our

assumptions, this excess of data packets is the only cause of

a corresponding RTT increase. Thus, ∆ can be expressed as a

function of the congestion window size, RTT and RTTmin:

∆ = cwnd × RTT − RTTmin

RTT

Vegas incorporates this ∆ measure into the Congestion

Avoidance phase to control the sender’s window of allowed

outstanding data packets (see beneath “Congestion Avoid-

ance,” Figure 24). In other words, once every RTT Vegas

checks the difference ∆ between the expected rate (small cir-

cles in Figure 24) and the actual rate (solid line in Figure 24).

If∆ is more than the predefined threshold β (e.g., according to
Linux implementation, more than 4), the congestion window is

decreased by one; otherwise, it is increased by one. However,

to mitigate the effects of network parameter fluctuations and to

provide system stabilization, the proposed algorithm defines a

control dead-zone (hatched area in Figure 24) using additional

threshold α. That is, the congestion window increase is

allowed only if ∆ is strictly less than α (e.g., less than 2).

If ∆ is between α and β, the system is considered to be in

a steady state and no modifications to the congestion window

are applied.

If no packets are dropped in the network, Vegas controls

the congestion window using an additive increase and additive

decrease (AIAD) policy. Reactions to packet losses are defined

by any of the standard congestion control algorithms (either

Reno, NewReno, or FACK).

Additionally, Vegas revises the Slow Start algorithm by

slowing-down the opportunistic network resource probing.

In particular, the updated algorithm restricts the congestion

window to increase every other RTT (see beneath “Slow-

Start,” Figure 24). This period is required in order to employ

the bottleneck buffer estimation technique. As soon as Vegas

316 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

C
o
n
g
e
s
ti
o
n
 w

in
d
o
w

Time

Zone of zero

buffering

Slow-Start Congestion Avoidance

Expected rate calculations

(in Slow-Start every other RTT, in Congestion Avoidance every RTT)

Control dead-zone

(lower and upper

 thresholds)

Fig. 24. TCP Vegas – congestion window dynamics and corresponding
estimates of bottleneck buffer size ∆

detects increasing queues in bottleneck routers (i.e., ∆ be-

comes larger than α), the Slow Start algorithm terminates and

transfers control to the Vegas Congestion Avoidance algorithm.

Although the Slow Start modification was designed to

reduce network stress, experimental results [22] show al-

most no measurable impact. The main reason for this is the

negligible working time of the Slow Start phase compared

to the Congestion Avoidance phase. In practice, available

Linux implementations do not perform any changes to the

original Slow Start algorithm and implement only the modified

Congestion Avoidance phase.

As we can see from Figure 24, TCP Vegas has the amazing

property of rate stabilization in a steady state, which can

significantly improve the overall throughput of a TCP flow.

Unfortunately, despite this and other advantages, later research

[23], [25], [32] discovered a number of issues, including

the inability of Vegas to get a fair share when competing

with aggressive TCP Reno-style flows (a reactive approach

is always more aggressive). It also underestimates available

network resources in some environments (e.g., in the case

of multipath routing) and has a bias to new streams (i.e.,

newcomers get a bigger share) due to inaccurate RTTmin

estimates.

H. TCP Vegas+

Hasegawa et al. [23] have recognized a serious problem in

TCP Vegas which prevents any attempts to deploy it. The

Vegas proactive congestion-prevention mechanism (limiting

buffering in the path) cannot effectively compete with the

highly deployed Reno reactive mechanism (inducing network

buffering and buffer overflowing). This point can be illus-

trated using an idealized convergence diagram for competition

between Reno and Vegas flows (Figure 25). While there is

no buffering on the path, both flows slowly increase their

share of network resources (x0–x1). Excessive buffering forces

Vegas to decrease its congestion window, but the Reno flow,

unaware of this buffering, continues acquiring more network

resources (x1–x2). That is, opposite reactions of the two

different congestion control algorithms (one growing, one

diminishing) maintain the fixed buffering level in the network,

leading to the proactive algorithm being completely pinched

off (x2). Buffers are purged only when the Reno flow detects

a packet loss (x3). After that, the convergence dynamics will

start looping along the path x4–x5–x2–x3–x4.

Network Share (Vegas)

E
qu

al
 (f

ai
r)
 s
ha

re

N
e
tw

o
rk

 S
h
a
re

 (
R

e
n
o
)

Network Limit

Packet
losses

x0

Zero Buffering

x2

x3

x4

x5

x1

Fig. 25. Convergence diagram when an ideal Vegas flow is competing with
a Reno flow

TCP Vegas+ was proposed as a way to provide a way of

incremental Vegas deployment. For this purpose, Vegas+ bor-

rows from both the reactive (Reno-like aggressive) and proac-

tive (Vegas-like moderate) congestion avoidance approaches.

More specifically, the Congestion Avoidance phase of Vegas+

initially assumes a Vegas-friendly network environment and

employs bottleneck buffer estimation to control the congestion

window (i.e., Vegas rules). At the moment when an internal

heuristic detects a Vegas-unfriendly environment, Congestion

Avoidance falls back to the Reno algorithm.

The Vegas-friendliness/unfriendliness detection heuristic is

based on a trend estimate of the RTT. The special state variable

C is increased if the sender estimates an increase in the

RTT and concurrently the size of the congestion window

is unchanged or even reduced. In the opposite case, if the

estimated RTT grows smaller, C is decreased. Clearly, large

values of C indicate a Vegas-unfriendly network state (i.e.,

if the congestion window is stable, the RTT also should be

stable). Transition to the aggressive mode is triggered when

C exceeds a predefined threshold. Return to the moderate

mode occurs only when C becomes zero. Vegas+ additionally

defines two special cases for modifying the state variable: (1)

entering Fast Recovery, C is divided in half, and (2) a packet

loss detected by the retransmission timer reduces C to zero.

In the example of Figure 25, the unfriendliness will be easily

detected during the transition from x1 to x2 and Reno’s rules

will be enforced, allowing the Vegas+ flow to obtain its fair

share of network resources.

The Vegas+ solution does not try to solve the fundamental

problems of Vegas discussed in Section II-G. Moreover, the

reactive congestion control elements of Vegas+ practically

nullify the inherited advantages of Vegas. Additionally, un-

der some network conditions (like presence of a fluctuated

congestion-unresponsive traffic or rerouting in the path) Ve-

gas+ can unnecessarily transition to the aggressive mode and

stay there indefinitely (assuming that probability of the loss

detected by the retransmission timer is very low).

I. TCP Veno

Fu and Liew [24] propose a modification to the Reno con-

gestion control algorithm (Section II-C) aimed at improving

the throughput utilization of TCP. The key idea is to use

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 317

C
o

n
g
e

s
ti
o

n
 w

in
d

o
w

Time
A. Normal

increase rate

B. Reduced

increase rate

Loss detection
High buffering

zone (>)

Fig. 26. Congestion window dynamics of TCP Veno

the Vegas bottleneck buffer estimation technique to perform

early detection of the congestion state. Unlike Vegas, this

buffer estimation is used only to adjust the increase/decrease

coefficient of the Reno congestion control algorithm, and thus

does not inherit Vegas’ problems.

The Veno (VEgas and reNO) algorithm defines two modifi-

cations. First, it limits the increase of the congestion window

during the congestion avoidance phase if the Vegas buffer esti-

mate shows excessive buffer utilization (i.e., ∆ > β). In other
words, if the Vegas estimate indicates a congestion state, the

sender starts probing network resources very conservatively

(increasing by one for every two RTT, “B” in Figure 26).

Second, reducing the congestion window upon entering Fast

Recovery is modified to halve the cwnd value only if the buffer
estimate also indicates congestion. That is, in the event of

detecting a loss and ∆ > β, the congestion window will be

halved. Otherwise, if only a loss is detected, it will be reduced

to 80% of its current size.

To summarize, the effectiveness of the Veno algorithm is

slightly improved in comparison to Reno. Veno flow tends

to stay longer in the congestion avoidance state with larger

congestion window values. However, the price for this is

additional latency to discover network resources. The Veno

modification has practically no effect on fairness. Therefore

we can consider it to have the same characteristics as the base

Reno algorithm.

J. TCP Vegas A

Besides the inability to compete with Reno flows effectively

(see Section II-H), TCP Vegas has a number of other internal

problems [25]. For instance, under certain circumstances,

Vegas can inappropriately choke off the flow rate to nearly

zero. This happens because the assumption that the RTT will

change only due to buffering is not entirely true. In fact, if

the RTT increases due to a routing change, the algorithm

will make a wrong decision, leading to the reduced flow rate.

To illustrate, Figure 27 presents two curves, one for a low-

RTT/low-rate (1, for example a DSL link) and another for a

high-RTT/high-rate (2, for example a satellite link) path. If a

route changes from 1 to 2 when the congestion window size is

equal to cwnd, the algorithm will wrongly calculate buffering
∆2 and may exceed a threshold. The minimal RTT for the low-

RTT/low-rate link will be erroneously used as a baseline in

calculating the expected rate for the high-RTT/high-rate link.

That is, having a congestion-free state, the estimate indicates

congestion.

Congestion window

T
ra

n
s
m

is
s
io

n
 r

a
te

cwnd

Ratemax
1

Ratemax
2

1

2

RTTmin
1

RTTmin
2

Fig. 27. TCP Vegas—estimation error if the path has been rerouted

Another assumption that surfaces occasionally and is in-

correct is that all flows competing along the same path will

observe the same RTTmin. Let us consider a situation with

two Vegas flows, one that has been transmitting data for a

long time and the other which has just started transmitting.

Naturally, the long-lived flow has more chances to observe the

true minimal RTT, compared to the new flow. The difference

between the minimum RTTs that the two flows observe causes

a difference in congestion state estimates (Figure 28): the old

flow thinks that the network is congested while the new one

estimated a congestion-free network state. As a consequence,

the distribution of network resources favors the new flow.

Srithith et al. [25] have presented the VegasA (Vegas

with Adaptation) algorithm, which extends the original Ve-

gas congestion control with an adaptable mechanism. The

threshold coefficients α and β from the Vegas algorithm are

adjusted depending on the steady state dynamics of the actual

transmission rate. That is, if VegasA detects an increase in

the actual bandwidth while the system is in a stable state

(i.e., α < ∆ < β), it assumes a path change and shifts the
boundaries of the control dead-zone upward (α = α + 1 and
β = β + 1). The boundaries are shifted downward if some
network anomaly is detected; for example, if the estimate is

showing congestion-free state ∆ < α, yet the rate in actuality
has decreased. Additionally, boundaries are shifted downward

every time the estimate shows the actual congestion.

Besides the threshold adaptability, VegasA adds additional

conditions to the congestion window management algorithm.

An increase is allowed in three cases: (1) if the estimate shows

no congestion and a lower threshold α has a minimal value

(the original Vegas rule); (2) if the actual rate has increased

and the estimate is showing no congestion (∆ < α); or (3) the
actual rate has decreased while the flow is in a steady state

(α < ∆ < β). A decrease should occur if either the network

has been determined to be in a congestion state (∆ > β) or if
the actual flow rate has decreased and the network has been

determined to be congestion-free.

According to simulation results [25], VegasA has substan-

tial improvements in various aspects when compared to the

original Vegas design. It preserves the Vegas properties of

stabilizing throughput in a steady state and does not suffer

significantly in the long term from changes in path RTT. To

some extent, a VegasA flow can compete with Reno flows

and acquire its resource share. However, these were only

testing environments; the algorithm has not been evaluated

in real networks. Moreover, VegasA do not address many

other problem that are discussed in the next sections of this

318 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

Congestion window

T
ra

n
s
m

is
s
io

n
 r

a
te

cwnd

RTTmin
1

RTTmin
2

Ratemax

Congestion

No congestion

O
ld

 fl
ow

New
 flo

w

Fig. 28. TCP Vegas—estimation error if a new flow is observing a higher
RTTmin

survey (such as the scalability issue in high-speed networks,

resistance to random losses, etc.).

III. PACKET REORDERING

All the congestion control algorithms discussed in the

previous section share the same assumption that the net-

work generally does not reorder packets. This assumption

has allowed the algorithms to create a simple loss detection

mechanism without any need to modify the existing TCP

specification [1]. The standard already requires receivers to

report the sequence number of the last in-order delivered data

packet each time a packet is received, even if received out of

order [27]. For example, in response to a data packet sequence

5,6,7,10,11,12, the receiver will ACK the packet sequence

5,6,7,7,7,7). In the idealized case, the absence of reordering

guarantees that an out-of-order delivery occurs only if some

packet has been lost. Thus, if the sender sees several ACKs

carrying the same sequence numbers (duplicate ACKs), it can

be sure that the network has failed to deliver some data and can

act accordingly (e.g., retransmit lost packet, infer a congestion

state, and reduce the sending rate).

Of course in reality, packets are reordered [33], [34]. This

means that we cannot consider a single duplicate ACK (i.e.,

ACK for an already ACKed data packet) as a loss detection

mechanism with high reliability. To solve this problem of a

false loss detection, a solution employed as a rule of thumb

establishes a threshold value for the minimal number of du-

plicate ACKs required to trigger a packet loss detection (e.g.,

three) [17], [18], [28]. However, there is a clear conflict with

this approach. Loss detection will be unnecessarily delayed

if the network does not reorder packets. At the same time,

the sender will overreact (e.g., retransmit data or reduce

transmission rate needlessly) if the network does in fact

reorder packets.

Packet reordering can stem from various causes. For ex-

ample, it can be erroneous software or hardware behavior,

such as bugs, misconfigurations, or malfunctions. But packets

can also be reordered in some networks as a side effect

of a normal delivery process. For example, packets can be

reordered if a router enforces diverse packets handling services

(differentiated services [35], [36]) and internally reschedules

packets in its queue (active queue management [37], [38]).

Also if the network provides some level of delivery guarantees

(e.g., wireless networks), the underlying layer (physical or link

layer) can retransmit some portion of the data without TCP’s

prompting and cause a shuffling of the upper layer packets.

TD-FR

RR

Eifel

DOOR PR

Reactive

(loss-based)

Fig. 29. Evolutionary graph of TCP variants that solve the packet reordering
problem

Finally, channel bundling and packet processing parallelism

will likely contribute a good portion of the future Internet

[39]–[41].

In this section we present a number of proposed TCP mod-

ifications that try to eliminate or mitigate reordering effects

on TCP flow performance (Table II). All of these solutions

share the following ideas: (a) they allow nonzero probability of

packet reordering, and (b) they can detect out-of-order events

and respond with an increase in flow rate (optimistic reaction).

Nonetheless, these proposals have fundamental differences due

to a range of acceptable degrees of packet reordering, from

moderate in TD-FR to extreme in TCP PR, and different

baseline congestion control approaches. The development of

these proposals is highlighted in Figure 29.

A. TD-FR

A number of measurements conducted in the mid 1990s

[33] proved the presence of out-of-order packet delivery in

the Internet. This highlights the problem of potentially over-

penalizing a TCP flow if its congestion control mechanism

employs loss detection using duplicate ACKs. That is, in the

absence of the congestion or packet losses, each event of

packet reordering triggers at least one (and probably more)

duplicate ACKs, which can be considered an indication of

congested pathways and a guide for reducing the transmission

rate.

At the same time, there are two observations about out-

of-order packet delivery. According to Paxson’s work [33],

this effect is not uniformly distributed across network sites.

Measurements identified a low level of reorderings (0.1%–
2% on average), with peaks in some traces as high as 36%.

Moreover, Paxson made the most interesting observation: the

data transfers having the highest degrees of reordering also

experienced almost no packet losses.

Paxson [33] proposed a simple way to eliminate the penal-

ties of reordering through TD-FR, time delayed Fast Recovery.

If a receiver does not respond immediately to out-of-order

data packets with duplicate ACKs, but postpones the action

(e.g., by 8–20 msec, depending on the reordering pattern),
a majority of the reordering events will be hidden from the

sender. However, the advantage of this solution is, at the same

time, a disadvantage as well. The artificial delay, aimed at

preventing overreaction, adds to the time required to detect

actual losses. If the delay grows too big, the “fast” loss-

detection mechanism becomes slower than a conventional

loss detection based on RTO. Clearly, the nondeterministic

nature of the reordering effect demands some path adaptation

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 319

TABLE II
FEATURES OF TCP VARIANTS THAT SOLVE THE PACKET REORDERING PROBLEM

TCP Variant Section Year Base Added/Changed Modes or Features Mod1 Status
Implementation

BSD2 Linux Sim

TD-FR
[33]

III-A 1997 Reno Time delayed fast recovery R Experimental

Eifel

[42], [43]
III-B 2000 NewReno Differentiation between transmitted and

retransmitted data packets
S or

(S+R+P)
Standard i3.0, F∗ 2.2.10∗ ns2

TCP DOOR

[44]
III-C 2002 NewReno Out-of-order detection and feedback, temporary

congestion control disabling and instant
recovery

S+R+P Experimental ns2∗

TCP PR
[45]

III-D 2003 NewReno Fine-grained retransmission timeouts, no
reaction to DUP ACKs

S Experimental ns2

DSACK

[46]
III-E 2000 SACK Reporting duplicate segments R Standard >2.4.0

RR-TCP

[47], [48]
III-F 2002 DSACK Duplicate ACK threshold adaptation S Experimental ns2

1 TCP specification modification: S = the sender reactions, R = the receiver reactions, P = the protocol specification
2 i for BSDi, F for FreeBSD ∗ optional or available in patch form

C
o

n
g

e
s
ti
o
n
 w

in
d

o
w

Time

Loss detection

Reordering detection

With Eifel (improved

robustness)

Original Reno w/o Eifel

Fig. 30. Comparison of congestion window dynamics between Reno
(NewReno) and Eifel

mechanisms, which unfortunately are not implemented in

Paxson’s solution.

B. Eifel Algorithm

Ludwig and Katz [42] introduced the Eifel2 algorithm as

an alternative method to alleviate the negative effects of

packet reordering in TCP throughput. Instead of the TD-FR

approach of introducing additional delay to the loss detection

process based on duplicate ACKs (Section III-A), Eifel tries

to distinguish reordering and real loss events. It does not try

to guess the event type upon reception of the first duplicate,

but rather postpones the decision until the first non-duplicate

ACK is received. In other words, if the TCP sender receives

a number (e.g., 3) of duplicate ACKs, as in NewReno, it

enters Fast Recovery. When a non-duplicate ACK is received,

Eifel checks its content and makes a decision whether to

continue Fast Recovery or abort recovery and restore the

original congestion window value. The advantage of the Eifel

algorithm is clearly visible in Figure 30. On the one hand,

the defined actions of Eifel do not affect normal operations

of the base congestion control algorithm when there is no

packet reordering. On the other hand, when some packets

are reordered, the original sending rate will be restored very

quickly.

To reach the right decision, Eifel must resolve the ambiguity

of a retransmission [26]. To clarify, let us consider a situation

2Authors choice of spelling, after a mountain range in western Germany

where a TCP sender decides to retransmit a data packet (e.g.,

due to receiving several duplicate ACKs). After receiving the

first non-duplicate ACK, the sender does not know whether

the retransmission helped resolve the problem or whether the

problem resolved itself (as in case of a long burst of reordered

packets). If either ACKs carry additional information to indi-

cate not only a sequence number, but also some identification

of the actual transmission, or if the ACKs can indicate that

the ACK itself has been triggered by a retransmitted data

packet, the ambiguity problem is easily resolved. The latter

case is the easiest and most “cost-effective” way. For example,

we can assign two bits from the unused space in the TCP

header, where one bit is used to indicate retransmission of a

data packet and the other one to echo this information back

to the sender in an ACK. Although theoretically possible, a

change in the TCP protocol is highly undesirable, as it makes

deployment practically impossible.

We could instead use a standardized and highly deployed

TCP Timestamp option [31]. In this case, the sender maintains

an additional state variable (a time of the first retransmission)

for each retransmitted data packet. Having the Timestamp

option, each ACK packet will explicitly indicate what we need.

If a received non-duplicate ACK has a timestamp less than

a corresponding state variable, the sender can be sure that

no actual losses have occurred on the path and transmission

should be returned to the original state. This ability to protect

TCP transfer from the packet reorderings in Internet paths,

achieved with relative simplicity, allowed Eifel to become an

RFC standard in 2005 [43].

C. TCP DOOR

Wang and Zhang [44] were concerned with TCP perfor-

mance in mobile ad hoc networks (MANETs), which feature

route changes with high probability and thus are highly

penalized by the conventional congestion control algorithms.

During route changes many packets can be lost, causing

congestion control to make the wrong decision for reducing

the rate of flow. If we can identify a time interval during

which the network route has changed, then we can eliminate

the penalty in TCP throughput by temporarily disabling the

320 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

C
o

n
g

e
s
ti
o
n
 w

in
d

o
w

TimeT2 T1

Reordering

detection and

instant recovery

Loss detection

Original Reno w/o DOOR

With DOOR

(improved

robustness)

Fig. 31. Comparison of congestion window dynamics between Reno (or
SACK) and DOOR

congestion control actions during this interval. This idea

underlies the proposed TCP DOOR (Detection of Out-of-

Order and Response).

During a route change event it is very probable that the

order of IP packets will be changed. Thus, the problem to

identify a route change can be replaced by identifying an out-

of-order packet delivery. Similar to Eifel (Section III-B), in

order to detect packet reordering reliably, each data and ACK

packet should carry some additional information. For example,

this information can be included in a new TCP option in the

form of a special counter, which is increased every time a

new packet is sent. In this case, the receiver can easily detect

reordering and report it to the sender using some bit, either in

the TCP header or in a new TCP option field. Another variant

considered in paper [44] is utilizing a well-known Timestamp

option [31] in a manner similar to the standard Eifel algorithm.

A reaction to detecting packet reordering (which can be

considered an equivalent to route change in MANETs) entails

two components (Figure 31). First, congestion control should

be temporarily disabled to mitigate transition effects (time

period T1 in Figure 31). Second, if congestion control has

recently reduced the sending rate due to loss detection (during

time interval T2 in Figure 31), the original state (the conges-

tion window and retransmission timeout values) should revert

(so called instant recovery). This action alleviates previous

penalties from the detected rerouting event. The interval for

the temporary congestion control disabling and the preceding

time period for the instant recovery are not known a priori and

depend on the actual network. Wang and Zhang conducted a

number of simulations where they varied underlying routing

protocols, timing values, and network conditions. Although

some of the results show more than a 50% throughput im-

provement compared to TCP with the SACK option, there are

cases with minimal to zero improvement.

D. TCP PR

Bohacek et al. [45] noticed that since packet reordering

is a common event in the network (e.g., in mobile ad hoc

networks), duplicate ACKs cannot be considered reliable

indications of either loss in the path or of congestion. In TCP

PR (Persistent Reordering), the authors no longer assume the

validity of inferring something from duplicate ACKs. Instead,

they focus on making the retransmission timeout a robust

and reliable loss and congestion indicator in a wide range

of network environments.

In contrast to previously developed congestion controls,

TCP PR maintains a timestamp for each transmitted data

packet. A loss is detected whenever the timestamp of a data

packet becomes older than the estimated RTT maximum (M).

The concept of RTT maximum is similar to the RTO, but

differs in implementation. Instead of the RTO recalculation

once per RTT, the maximum estimateM is readjusted on each

ACK arrival according to the formula:

M = β · max
{

α
1

cwnd · M, RTT
}

where α and β are constants (0 < α < 1, β > 1). Taking
into account that a recalculation is made with each ACK, α
represents a maximal decrease rate of theM in RTT timescale

(i.e., cwnd × α
1

cwnd is α).

As long as timeouts are treated optimistically (i.e., after a

loss detection, flow is allowed to transmit at a multiplicatively

reduced rate), TCP PR faces the problem of overreaction to

multiple losses from the same congestion event, similar to

Reno. To resolve this, each transmitted packet is also tagged

with the current value of the congestion window. When a

packet is lost, the congestion window is reduced by no more

than half of the stored value for the lost packet.

Because of different loss detection mechanisms, we cannot

directly compare TCP PR with the previous congestion control

algorithms. If we assume that an algorithm based on fine-

grained timeouts is as robust as one based on duplicate

ACKs, the fairness and effectiveness characteristics will be

exactly the same as presented in Section II-C. Though this

is not entirely true in all network environments, there are

networks (e.g., MANETs), where duplicate ACKs are highly

unreliable feedback. Thus, TCP PR can greatly help improve

TCP efficacy in those cases, e.g., where the network normally

reorders packets.

E. DSACK

The specification of the selective ACK extension for TCP

[20] does not define particular actions to take if a receiver

encounters a data packet which has already been delivered.

This can happen, for example, if the network reorders or

replicates data packets, or if the sender wrongly estimates

the retransmission timeout. The DSACK (Duplicate Selective

ACKnowledgements) specification [46] complements the stan-

dard and provides a backward-compatible way to report such

duplicates.

DSACK requires the receiver to report each receipt of

a duplicate packet to the sender. However, there are two

possibilities of duplication, which should be treated in slightly

different ways. First, the duplicated data can be some part of

the acknowledged continuous data stream. Second, it can be

a part of some isolated block. In the former case, a DSACK-

compliant receiver should include a range of sequence num-

bers in the first block of the SACK option (Figure 32a). In

the latter case, besides including a duplicate range in the first

block, the receiver should attach the isolated block at the

second position in the SACK option (Figure 32b). In that way,

DSACK, without violating the SACK standard [20], provides

a way to report packet duplication.

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 321

ACK

dup_start

dup_end

...

...

dup_end<ACK

(a) DSACK report

ACK

dup_start

dup_end

iso_start

iso_end

...

...

iso_start <= dup_start
dup_end <= iso_end

(b) DSACK+SACK report

Fig. 32. DSACK reporting

Similar to SACK, the DSACK specification does not specify

any particular actions for the sender. Instead, its authors

merely discuss several issues for future research. One such

issue is the detection of packet reordering events. If a sender

can assume that duplication is caused primarily by packet

reordering, it can undo some previous congestion control

actions upon receipt of a DSACK packet (similar to Eifel and

DOOR). Other discussed issues include a differential treatment

of the normal SACK and DSACK packets, an implementation

of some form of an ACK congestion control, and resolving the

issue of the RTO underestimation. However, DSACK-based

solutions should not blindly trust the DSACK information, as

the receiver can send faulty information, either intentionally

or unintentionally.

F. RR TCP

The SACK option by itself can provide a lot of information

about patterns of packet delivery. For example, the occurrence

of a reordering event can be detected if the sender receives

a selective ACK packet followed by a cumulative ACK.

Moreover, in this case we can also calculate a reordering

length, i.e., how long a packet was delayed, in terms of

packets. However, this would work only if no packets were

retransmitted. Otherwise, it is unknown which event (original

or repeated transmission) might have helped to recover a

packet loss previously reported by the SACK. An approach

presented in RR TCP (Reordering Robust) [47], [48] uses a

DSACK to resolve the retransmission ambiguity. In short, after

a sender retransmits a data packet that has been detected as

lost, a succession of an ACK (or a SACK) and a DSACK,

both covering the retransmitted packet, indicates that both

the original transmission and the retransmission were actually

successful. Because the sender knows the exact transmission

sequence (the order packets were transmitted and retransmit-

ted), reordering length can be easily calculated. The downside

of this approach is that we cannot infer anything if either of

the first or second ACK is lost.

RR TCP defines a way to use the calculated reordering

length. If we know how long packets are usually delayed, we

can adjust a threshold of duplicate ACKs (dupthresh, which

usually is 3), which triggers the Fast Recovery phase. This,

in contrast to Eifel (Section III-B) or DOOR (Section III-C),

will proactively protect the sender from overreacting if packets

have been reordered, not lost. Unfortunately, if dupthresh

is set too high, all advantages of the robust loss detection

LP Nice

Proactive

(delay-based)

Reactive

(loss-based)

Fig. 33. Evolutionary graph of TCP variants that implement a low-priority
data transfer service

will be eliminated. RR TCP includes a concept of a con-

trolling loop for finding the optimal dupthresh value for a

given path using a combined cost function, which integrates

several costs including false timeouts and fast retransmits.

Experimental evaluation shows consistent improvements with

RR TCP, compared to TCP with the SACK option, in a

wide range of network environments (i.e., varying delays, loss

ration, reordering lengths). However, these improvements are

effective only in long-lived TCP connections.

IV. DIFFERENTIAL SERVICES

Different application types have different data transfer re-

quirements. Some applications, composing one group, have

strict requirements for request-response delay and throughput

(e.g., WEB browsing, FTP transfer, etc.). Other applications

do not have any particular requirements and are highly tolerant

of the network conditions (e.g., automatic updates). In general,

if traffic of the first application group can be prioritized, the

overall user-perceived quality of service in the network (QoS)

can be increased [49]. Unfortunately, due to a high level of

Internet heterogeneity, even though there have been a number

of attempts to provide a QoS functionality on the network

(IP) level [50], [51], this feature is not yet globally available

[52]. To overcome the deployment problem and yet provide

some level of QoS, two host-to-host TCP-based prioritization

techniques have been proposed (Table III).
The central idea among the proposed solutions is to enforce

and guarantee, through special congestion control policies,

an “unfair” network share distribution between high- and

low-priority flows. This idea may seem to contradict the

basic fairness requirement for TCP congestion control: a new

congestion control should not be more aggressive than the

standard TCP congestion control algorithms (Reno, NewReno,

and SACK). However, if we restrict the TCP-based QoS scope

only to a low-priority service (i.e., to a problem of finding

congestion control policies that would guarantee the network

resource release if there are high-priority—standard TCP—

flows present), then we definitely will comply with the fairness

requirement.
In the remaining part of this section we will provide

an overview of the two existing TCP-based QoS proposals

(Table III), which share the idea of providing a one-level,

low-priority data transfer service. The key differences between

proposals are: (a) different baseline congestion control algo-

rithms (Vegas for Nice and Reno for LP, see Figure 33), and

(b) different mechanisms to detect the presence of a high-

priority data transfer.

A. TCP Nice

Venkataramani et al. [53] identified the need to optimize

the network resources in the presence of a large number

322 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

TABLE III
FEATURES OF TCP VARIANTS THAT IMPLEMENT A LOW-PRIORITY DATA TRANSFER SERVICE

TCP Variant Section Year Base Added/Changed Modes or Features Mod1 Status
Implementation

Linux Sim

Nice
[53]

IV-A 2002 Vegas Delay threshold as a secondary congestion
indicator

S Experimental 2.3.15∗

LP

[49], [54]
IV-B 2002 NewReno Early congestion detection S Experimental >2.6.18 ns2

1 TCP specification modification: S = the sender reactions, R = the receiver reactions, P = the protocol specification
∗ optional or available in patch form

of background transfers—automatic updates, data backups,

peer-to-peer file sharing, etc. As a solution, they proposed a

new congestion control algorithm, TCP Nice, that enables a

simple distributed host-to-host mechanism to minimize the in-

terference between high-priority (foreground) and low-priority

(background) flows. More particularly, Nice’s congestion con-

trol policies are adjusted to react highly conservatively to all

detected network state changes. In one sense, Nice considers

all standard TCP flows as carrying high-priority data and tries

to consume the network resources only if nobody else uses

them.

The design of Nice is based on the Vegas algorithm (see

Section II-G). There are two main reasons for this choice: (1)

Vegas incorporates a proactive congestion detection mecha-

nism which allows redistributing network resources between

competing TCP flows without inducing any packet losses (i.e.,

interference between Vegas flows is lower than that for stan-

dard TCP flows); (2) due to its proactive nature, a TCP flow

running the Vegas congestion control algorithm has problems

capturing its network resource share while competing with

a reactive Reno-like TCP flow (i.e., standard TCP flow), i.e.,

Vegas itself provides some level of a low-priority data transfer

service.

To provide a guarantee of the transmission rate reduction

in the presence of standard TCP flows, Nice defines a con-

cept similar to the queueing delay threshold defined in the

DUAL algorithm (Section II-B). However, there are several

major differences. First, the queuing delay is compared to the

threshold upon the arrival of each non-duplicate ACK packet.

Second, instead of the averaged RTT, a current RTT sample is

used in queuing delay calculations. Finally, the occurrence of

a current queuing delay estimate exceeding the threshold does

not automatically trigger changes in the congestion windows.

Instead, Nice counts the number of times (X) that the queuing
delay exceeds the threshold during each RTT period:

∀t ∈ (t0, t0 + RTT) QACK(t) > Qthresh ⇒ X = X + 1

The counted value X estimates the number of ACK packets

which have been delayed due to interference with cross traffic

(e.g., high-priority flows). If we assume the idealized case

when no ACKs are lost or delayed by the receiver, then

the ratio between X and the congestion window (measured

in packets) would estimate a percent of enqueued (delayed)

packets during the latest RTT. In Nice, if this estimate exceeds

a predefined threshold, the congestion window is halved

(Figure 34). The right choice of threshold value can make Nice

much more sensible than both the original DUAL and Vegas

algorithms. In addition, Nice allows the congestion window

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

High priority flow is present

(- interference triggering)

Fig. 34. Congestion window dynamics of TCP Nice

size to be a fraction (the minimum is 1/48), meaning that
only one packet is allowed to be sent in several RTT periods

(48 RTTs in the worst case). This makes Nice even more

conservative in network resource utilization in the presence of

cross traffic.

B. TCP LP

Almost concurrently with the Nice algorithm proposal (see

Section IV-A), Kuzmanovic and Knightly [49], [54] presented

a similar algorithm, TCP LP (Low Priority). It aimed to

provide a low-priority data transfer service for background

applications (e.g., software updates, data backup, etc.). How-

ever, for the baseline congestion control algorithm, its authors

have chosen NewReno instead of Vegas. Other differences are

in the way the presence of cross traffic is detected and what

preventive measures are applied to minimize interference.

In TCP LP the DUAL’s calculation of a queuing delay

(see Section II-B) is refined progressively by using more

accurate delay estimates. For this purpose LP makes use of the

Timestamp option [31] and applies heuristics to estimate the

one-way propagation delay (e.g., similar to Choi and Yoo’s

proposal [55]). Although this can complicate queueing delay

calculations, the resulting values are much more resistant to

congestion in the reverse channel, thus the level of false

congestion detections is substantially decreased. The actual

process of congestion detection (in terms of LP it is early

congestion detection) with minor modifications repeats the one

defined in DUAL: (1) LP maintains minimum and maximum

one-way delays during the connection lifetime, and (2) once

every RTT, TCP LP compares the current one-way delay

estimate with a predefined threshold (a fraction of queuing

delay plus a minimum of one-way delay).

The unique feature of the TCP LP algorithm is its reaction

to early congestion detection. Upon detection of a first such

event, LP reduces the congestion window to half the current

value and starts the inference timer. If the sender triggers

another early congestion detection event before the timer

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 323

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

High priority flow is present

inference timeout

early congestion detection

Fig. 35. Congestion window dynamics of TCP LP

elapses, LP infers presence of the high-priority flow and

the congestion window is reduced to the minimal value. In

other cases, LP resumes the normal (Reno-like) congestion

avoidance actions (Figure 35).

NS2 simulations and real-world experiments using a Linux

implementation of the LP algorithm have shown that it indeed

has the desired property of yielding network resources to the

standard TCP (high-priority) flows and, at the same time,

successfully utilizing the network bandwidth if no such flows

are present. Moreover, LP is able to fairly distribute the

network resources among low-priority flows (inter-fairness).

There is no definitive answer to whether the TCP LP

algorithm or Nice algorithm is better. On one hand, both

of them are extremely sensitive to activity in the network,

and thus fulfill a necessary condition for the low-priority

service implementation. But on the other hand, there is a big

question as to how well both algorithms are able to utilize

the network capacity if only low-priority flows are present.

Although Nice and LP should have the same characteristics

as the baseline algorithms (Vegas and NewReno respectively),

this has not been proved. Moreover, widespread use of wireless

and high-speed networks limit the applicability of either Nice

or LP, due to ineffectiveness of the baseline algorithms in

those environments. Although Kuzmanovic et al. [56] made

an attempt to create a high-speed modification of LP, HSTCP-

LP, additional research is required to investigate a real-world

applicability of the designed solution.

V. WIRELESS NETWORKS

The growing spread of wireless networks has highlighted

the need for TCP protocol modification. Originally designed

for wired networks where congestion is the primary cause

of packet losses, TCP is unable to react adequately to packet

losses not related to congestion. Indeed, if a data packet is lost

due to short-term radio frequency interference, then there are

no router buffer overflows and TCP’s decision to reduce the

congestion window is wrong. Instead, it should just recover

from the loss and continue the transmission as if nothing had

happened.

Several solutions have been proposed to resolve this prob-

lem. One group gives up the idea of a pure host-to-host

data transfer either by (a) requiring routers to disclose the

network state (e.g., using explicit congestion notification [57]),

by (b) relying on network channels to recover from the non-

congestion-related losses (e.g., link-layer retransmission [58]

or TCP packet snooping and loss recovery by intermediate

routers [59]), or by (c) isolating the wireless error-prone and

Westwood

CRBABSE

Westwood+BR

BBE

Reactive

(loss-based)

Reactive

(loss-based with bandwidth estimation)

Fig. 36. Evolutionary graph of TCP variants that enable resistance to random
losses

wired error-safe transmission paths using an intermediate host

[60], [61]. These approaches are beyond the scope of this

survey and have been thoroughly discussed by Lochert et al.

[2].

In this section we focus on solutions that keep the host-

to-host idea and at the same time provide some level of

resistance to non-congestion related packet losses. The band-

width estimation technique proposed by Mascolo et al. as

a part of TCP Westwood [62] laid the foundation for the

sender-side distinguishing between a congestion-related and an

unrelated (random) loss without any support from the network.

Research that follows (Figure 36) identified several of West-

wood’s weaknesses, for example, bandwidth overestimation,

insufficient robustness in networks with extreme levels of

transmission errors, etc. Table IV shows characteristic features

of refinements in Westwood that try to mitigate discovered

problems.

A. TCP Westwood/Westwood+

TCP Westwood proposed by Mascolo et al. [62] keeps the

distributed network-independent ideology of TCP and is a

modification of the NewReno TCP congestion control algo-

rithm. At the same time, it can significantly improve the data

transfer efficiency in error-prone networks (e.g., wireless). To

do so Westwood replaces the blind Reno’s congestion control

actions that are triggered by loss detection (i.e., halving if three

duplicate ACKs are received) with a heuristic-based procedure

of setting the congestion windoww to an optimal value (Faster
Recovery). As an optimum, the heuristic considers a value

which corresponds to a data transfer rate observed in the

recent past (w ≈ rate × RTT). Indeed if there is a random
error due to wireless interference, the optimum would reflect

the best choice for the sender: transmission without any rate

reduction. In another case, if a packet is lost due to congestion

in the network, the data reception rate recently observed by the

receiver is exactly the rate at which the network is capable of

delivering data from the sender (“achieved data rate”). If the

sender continues transmission at a rate equal to that observed

by the receiver, the number of newly transmitted packets will

be equal to the number of delivered packets (router queues

would not be growing), and additional congestion will be

prevented.

Having this win-win situation for all packet loss cases,

the only question is how the sender can discover the rate

324 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

TABLE IV
FEATURES OF TCP VARIANTS THAT ENABLE RESISTANCE TO RANDOM LOSSES

TCP Variant Section Year Base Added/Changed Modes or Features Mod1 Status
Implementation

Linux Sim

TCP Westwood
[62], [63]

V-A 2001 NewReno Estimate of available bandwidth (ACK
granularity), Faster Recovery

S Experimental ns2∗

TCP Westwood+

[64]
V-A 2004 Westwood Estimate of available bandwidth (RTT

granularity)
S Experimental >2.6.12

TCPW CRB

[65]
V-B 2002 Westwood Available bandwidth estimate (combination of

ACK and long-term granularity), identifying
predominant cause of packet loss

S Experimental ns2∗

TCPW ABSE
[66]

V-C 2002 CRB Available bandwidth estimate (continuously
varied sampling interval), varied exponential
smoothing coefficient

S Experimental ns2∗

TCPW BR

[67]
V-D 2003 Westwood Loss type estimation technique (queuing delay

estimation threshold, rate gap threshold),
retransmission of all outstanding data packets,
limiting retransmission timer backoff

S Experimental

TCPW BBE

[68]
V-E 2003 Westwood Effective bottleneck buffer capacity estimation,

reduction coefficient adaptation, congestion
window boosting

S Experimental

1 TCP specification modification: S = the sender reactions, R = the receiver reactions, P = the protocol specification
∗ optional or available in patch form

Forward path

Return path

A
C

K

A
C

K

A
C

K

Data Data Data BW=Data/

BW ACKed data/

Fig. 37. Rationale for the available bandwidth estimation technique

observed by the receiver. As a direct solution we can ask the

receiver to send special rate notifications. However, from the

deployment point of view, this is extremely hard. The proposed

[62] and later patented [63] solution is to perform a sender-

side estimation of the actual delivery rate based on an existing

notification mechanism (i.e., using ACK packets).

To illustrate the rationale behind this estimate, let us con-

sider the following example (Figure 37). If we assume that an

ACK packet is generated right after a data packet is received

and that ACKs are evenly delayed in the return path, the ACK

rate observed by the sender will be equal to the data delivery

rate observed by the receiver. To calculate the forward-path

bandwidth actually utilized, we just need to multiply the ACK

rate by the amount of acknowledged data. The bandwidth

calculation holds in the long term even if some ACKs are

lost or delayed by the receiver; i.e., a decrease in the ACK

rate will be compensated by an increase in the acknowledged

data amount.

To mitigate fluctuations, Westwood has a two-level band-

width estimate processing capability. On the first level, the

instantaneous estimate is calculated upon reception of an ACK

packet (b = d/∆, where d is the amount of acknowledged data
by the ACK and ∆ is the time elapsed since the last ACK

received). On the second level, the calculated instantaneous

values are averaged with a special discrete time filter [62]:

B = α(∆) · B−1 + [1 − α(∆)] ·
(

b + b−1

2

)

where α(∆) is the averaging coefficient, as a function of ∆;
b and b−1 are current and previous samples of the bandwidth

estimate; and B−1 is the previously calculated average value

of the estimate.

Although set-up experiments have shown a good level of

precision for Westwood’s estimate, practice has discovered

that the calculation may be substantially wrong in certain

network conditions [64], [66]. For example, in the presence of

the ACK compression effect [69], when ACKs are differently

delayed and grouped due to congestion over the reverse

path, discrete averaging of instantaneous bandwidth estimation

samples leads to substantial overestimation. For that reason,

in the revised Westwood+ algorithm [64] the estimate has

been changed so that it is calculated with RTT granularity;

i.e., in the formula b = d/∆, d is now the amount of

acknowledged data during the last RTT and ∆ is the RTT

itself. This estimate of average bandwidth during the last RTT

is defined to be further averaged in long-term using the well-

known exponential smoothing technique, with a smoothing

factor α = 0.9:

B = α · B−1 + (1 − α) · b

Although it has been asserted the Westwood algorithm

shows good fairness properties, this is not entirely straight-

forward from a theoretical point of view. Presence of intra-

fairness property (i.e., fairness between TCP flows running

the Westwood algorithm) can be shown using the diagram in

Figure 38. After two flows start competing from any state

x0, they increase their congestion window (i.e., share of

network resources) evenly, until a network limit is reached.

It can be shown that if two Westwood flows simultaneously

detect a congestion event and reduce their congestion windows

w based on the achieved rate estimate (w = B × RTT),

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 325

Network Share

E
qu

al
 (f

ai
r)
 s

ha
re

N
e

tw
o

rk
 S

h
a
re

Network Limit

Packet losses

x0

Zero Buffering

x1

xn

xn+1

Fig. 38. Convergence diagram when two Westwood flows are competing
with each other

the ratio between flows’ congestion windows would remain

intact. During the consecutive Congestion Avoidance phase,

the ratio would slowly increase (e.g., if upon loss detection

the congestion window sizes of the two flows have the ratio

1:10, then after ten steps of linear increase—in ten RTTs—a

new ratio would be 11:20). Clearly, in a finite number of steps,

the ratio between congestion window sizes will become very

close to one.

Unfortunately, inter-fairness or fairness between Westwood

and legacy Reno-type flows is not quite definite. In an

idealized case, when a Westwood flow knows the exact

amount of utilized network resources, a Reno flow will be

suppressed. This will happen, in theory, because Reno always

halves its network share while Westwood sets it depending

on the estimate value. However, in practice, due to various

random processes in the network and an imprecise band-

width estimation technique (ACKs may be delayed or lost),

Westwood/Westwood+ flows can compete successfully and

relatively fairly with Reno-type flows.

B. TCPW CRB

Wang et al. [65] acknowledged the critical vulnerability of

Westwood: under certain network conditions the bandwidth

estimation (BE) technique gives highly inaccurate results.

As a solution to this problem they proposed TCPW CRB

(Westwood with Combined Rate and Bandwidth estimation),

which refines the estimation algorithm by complementing it

with a conservative long-term bandwidth calculation (“rate

estimation” RE) technique. It is similar to one from the West-

wood+ proposal, but the sampling period is some predefined

constant T , instead of a measured RTT.
Experimental results show that the long-term estimate pre-

vents overestimation if a network is experiencing congestion.

At the same time, it is likely to underestimate bandwidth in

the presence of random errors. To tackle both underestimation

and overestimation problems simultaneously, CRB maintains

two estimates, an old and a new. Upon detecting a packet

loss, CRB chooses one of the estimates depending on the

assumed predominant loss type: the old estimate for random

loss (i.e., new value of the congestion window is calculated

as BE ×RTTmin) and the new one for congestion loss (i.e.,

the congestion window is set to RE × RTTmin).

A primary cause for loss is assumed to be congestion

when the long-term bandwidth estimate RE shows a high

level of imprecision, which is determined by comparing the

ratio between the current congestion window size and relation

RE × RTTmin to a predefined threshold θ. If this ratio is
lower than the threshold θ (e.g., θ = 1.4), a congestion event
is assumed; otherwise, CRB thinks that loss is not related to

congestion.

As long as CRB does not conceptually change Westwood

policies upon detecting a loss (i.e., Faster Recovery), intra-

fairness characteristics remain unchanged. CRB authors claim

that the dual bandwidth estimate (BE and RE) improves

Westwood fairness to legacy Reno/NewReno flows. However,

this has been confirmed only through a number of NS2

simulations and the authors agree that future investigation is

required to evaluate CRB in wide-range network scenarios that

include real Internet experiments.

C. TCPW ABSE

As an extension of CRB (Section V-B), Wang et al. [66]

proposed TCPW ABSE (Westwood with Adaptive Band-

width Share Estimation). ABSE leverages the idea of dual

bandwidth estimation by introducing a bandwidth sampling

interval adaptation mechanism. In other words, instead of two

predetermined sample intervals for CRB (ACK inter-arrival

and a long predefined constant period), ABSE continuously

changes the interval depending on an estimated network state.

The network state estimation heuristic is adapted to directly

control the length of a sampling interval∆ in slightly changed

form compared to CRB:

∆ = max

(

∆min,
RTT · (V E − RE)

V E

)

where ∆min is a predefined minimal sampling interval,

V E is a Vegas-type estimation of expected rate (V E =
cwnd/RTTmin, see Section II-G), andRE is an exponentially

averaged bandwidth estimate with a sampling interval equal to

the RTT, similar to Westwood+ (Section V-A). If the current

value of RE is significantly smaller than predicted by the

Vegas-like estimation V E, the network is likely to be in severe
congestion. Thus, similar to CRB, a long sampling interval

will be calculated (i.e., ∆ is close to RTT when RE → 0).
In the opposite case, when V E and RE are close (i.e., when

a number of lost packets are close to or equal zero and when

RTT is close to the minimal value), the minimal sampling

interval will be used. Clearly, these observations of the border

cases comply with the definition of the CRB heuristic. It

is claimed that smooth adaptation of the sampling interval

improves estimation precision in transition periods.

In addition to the adaptive calculation of a sampling interval,

ABSE also defines a varied exponential smoothing coefficient

for averaging bandwidth estimation samples. The basic idea

is to make the averaging sharper if availability of network re-

sources is changing very dynamically (the new sample should

have a bigger impact on the averaged value), and smoother

otherwise. The level of dynamics is calculated through a

bandwidth estimate jitter. Through NS2 simulations, ABSE’s

authors have confirmed that the varied smoothing coefficient

326 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

is able to help achieve a fast response to changes, and at the

same time provide resistance to the noise.

Similar to CRB, ABSE does not change Westwood’s con-

cept of Faster Recovery, and thus has similar inter-fairness

properties. In addition, NS2 simulations showed very good

characteristics of ABSE fairness to legacy NewReno flows.

However, real-world experiments are required to confirm sim-

ulation results.

D. TCPW BR

Though the Westwood approach (Sections V-A through

V-C) can significantly improve the effective TCP throughput

in the presence of non-congestion related packet losses, Yang

et al. [67] discovered that it cannot effectively handle volumes

of random errors (> 2%). A newly proposed TCPW BR

(Westwood with Bulk Repeat) algorithm is also based on

Westwood, but additionally integrates a special loss-type de-

tection mechanism. Upon each loss detection, if it is estimated

to be non-congestion related, BR applies very aggressive

(highly optimistic) recovery policies instead of the original

ones. The proposed loss type estimation mechanism in BR is

a compound of two loss-detection algorithms [70]: the queuing

delay estimation threshold and rate gap threshold algorithms.

The queuing delay estimation threshold (QDET) algorithm

is similar to Spike [71] and is based on the DUAL concept

of measuring the queuing delay (Section II-B). The main

difference is that QDET maintains two thresholds Tstart and

Tend. Tstart represents a condition for entering the state

when all losses are assumed to be caused by congestion

(Tstart = α · Qmax). Tend is a condition for returning to

the default state when non-congestion loss type is assumed

(Tstart = β · Qmax). The threshold coefficients α and β can

be, for example, 0.4 and 0.05 respectively.

The rate gap threshold algorithm is based on comparing a

Westwood’s bandwidth estimate (BE) to a fraction α of the

expected throughput (V E). The latter is calculated in a manner
similar to Vegas (Section II-G): V E = cwnd/RTTmin. If

Westwood’s estimate is less than the predefined fraction of

expected throughput, loss is assumed to be due to a congestion

event; otherwise, non-congestion related loss type is assumed.

The rationale behind this comparison is that when there is

no congestion, even in the face of a substantial number of

packet losses, the data throughput is still relatively close to

the expected (i.e., RTT is close to RTTmin and the amount

of delivered data packets during last the RTT is close to cwnd).
Yand et al. [67] claimed that utilizing two loss-type es-

timation mechanisms increases estimation precision and re-

duces the number of false positives. This is especially crucial

because of BR’s policies when detecting a non-congestion

loss. If this is the case, BR immediately retransmits all

data packets that have been transmitted and have not yet

been acknowledged (outstanding data packets), and does not

modify the congestion window size. In some environments

these policies can be extremely helpful in the case of real

non-congestion losses, and much more effective than TCP

SACK/FACK (Section II-E, II-F) policies due to their internal

limitations (i.e., one SACK can indicate no more than four

blocks of lost packets).

In addition, BR changes the retransmission timer backoff

algorithm (see Section II-A) by limiting a maximum timer

value during non-congestion packet losses with a predefined

constant. This decision improves the recovery time in envi-

ronments where the probability of loss is extremely high.

E. TCPW BBE

Shimonishi et al. [68] showed that flows running the West-

wood, Westwood+ (Section V-A), or ABSE (Section V-C)

congestion control algorithms can be highly unfair to standard

TCP flows if the network has limited buffering capabilities. To

resolve this problem, they introduced BBE, a Bottleneck and

Buffer Estimation algorithm that refines the Westwood policy

of reducing the congestion window size w upon detecting

a loss. More specifically, BBE complements the congestion

window reduction policy with an additional variable coef-

ficient µ ≤ 1: w = RTTmin × B × µ, where B is the

Westwood estimate of a recent achievable rate. This coefficient

borrows DUAL’s concept (Section II-B) of sensing the current

network state: when the current queuing delay Q is close to a

maximumQmax, the network is considered to be experiencing

congestion and µ should be 1/2 (i.e., same as the standard
TCP during congestion); otherwise, the network is congestion-

free, and µ can be 1. The actual proposed calculation of
the coefficient µ is defined as µ = Qmax/(Q + Qmax)
where Qmax is not just the maximum queuing delay observed

during the connection lifetime, but the exponentially smoothed

queuing delay samples obtained just before each loss detection

event. This technique allows BBE to adapt easily to network

changes.

Additionally, BBE recognizes the overestimation problem in

the original Westwood algorithm and proposes a hybrid esti-

mation technique. In particular, BBE calculates the achievable

rate as a weighted sum of two estimates: the variable sampling

rate Bv (e.g., ACK rate, as in original Westwood) and a

constant sampling rate Bc (e.g., 1/RTT as in Westwood+).

The weighting is as follows: B = γ · Bv + (1 − γ) · Bc.

The coefficient γ, similar to the above-mentioned additional
reduction coefficient µ, relies on the queuing delay concept:
γ = 1/eα×RTT/RTTmax where α is some large positive

constant. As we can see, the estimate calculation follows a

general observation: the constant rate sampling is more precise

when the network is experiencing congestion (i.e., Bc has

more weight when RTT is close to RTTmax), and the variable

rate is more precise when the network is congestion-free (i.e.,

Bv has more weight when RTT is far from RTTmax).

The simulation results provided by BBE’s authors have

shown quite a good fairness to the legacy NewReno flows,

along with a good data transfer performance comparable to

the original Westwood algorithm. However, without further

theoretical and practical investigations it cannot be claimed

that BBE provides a universal solution for congestion control

in wired-wireless networks. Moreover, appearance of the high-

speed networks (both wired and wireless) has opened a

number of other problems (see Section VI) which outweigh

the issue of fairness to NewReno, under a wide variety of

network conditions.

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 327

HS-TCP

STCP

FAST

BIC

H-TCP

Hybla

Africa

Compound

Libra

NewVegas

Illinois

YeAH

CUBIC

ARENO

Fusion

Reactive

(loss-based)

Proactive

(delay-based)

Reactive

(loss-based with

bandwidth estimation)

TCPW-A

LogWestwood+

Fig. 39. Evolutionary graph of TCP variants aimed at improving efficiency
in high-speed or long-delay networks

VI. HIGH-SPEED/LONG-DELAY NETWORKS

The emergence of high-speed networks uncovered the in-

ability of deployed TCP variants (Reno, NewReno, SACK,

etc.) to use the resources of these networks effectively. All

of the congestion control algorithms discussed in Sections II

through V improve different aspects of efficiency for data

transfer, without questioning the basic principle on which

it rests, which was defined as far back as 1988 as part of

Tahoe (Section II-A): network resource discovery during the

congestion avoidance phase should be highly conservative. In

TCP implementations, this principle was generally realized

with a congestion window (cwnd) increase by one packet for
each RTT if no errors were detected. This works quite well if

network capacity or round-trip delays are relatively small, but

does not work well otherwise.

To illustrate the problem—sometimes referred to as the

bandwidth-delay product problem (BDP problem)—let us con-

sider a TCP flow trying to discover all the resources of

some network channel. The minimum time required for this,

assuming there are no packet losses, is on the order of the

channel bandwidth delay product (BDP). More precisely, to

get to a theoretical upper bound of a TCP data transfer rate

(D × cwnd/RTT , where D is a maximum data packet),

Reno/NewReno flow needs about D × cwnd RTTs, because
cwnd increases by one every RTT. In a network having

10 GiBit/s capacity, 100 ms round-trip delay, and a maximum

data packet size of 1500 bytes, it would take almost two hours

[72], [73]. Moreover, all the packets must be delivered during

these two hours, and that is equivalent to an unrealistic packet

loss probability.

In the remaining part of this section we discuss various

solutions (Table V) that address several congestion control

problems. Although these solutions rest on different assump-

tions and approaches (see Figure 39), they have the same

objective: to create an ideal algorithm for high-speed (e.g.,

optical) or large delay (e.g., satellite) links. The algorithm

should simultaneously (a) provide for efficient use of network

≈83k (10Gbps if RTT=100ms)

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

,
p

k
ts

10

10
2

10
3

10
4

10
-10

10
-7

10
-3

HS-TCP

Reno

Fig. 40. Objective of HS-TCP

resources, (b) respond quickly to network changes, and (c) be

fair to other flows present in the network. The latter is

divided generally into the three categories: (1) intra-fairness—

characteristic of resource distribution between flows running

the same congestion control algorithm in the same network

environment; (2) inter-fairness—characteristic of distribution

between flows running different algorithms in the same en-

vironments; and (3) RTT-fairness—characteristic of resource

distribution between flows sharing the same bottleneck link

but having different RTTs.

A. HS TCP

After recognizing TCP’s efficiency problem in high-speed

networks, Floyd [72], [74] proposed the HS-TCP (High-

Speed TCP) algorithm. This is an experimental congestion

control method that has several objectives. Among them

are (a) efficiency in high bandwidth-delay product (BDP)

networks, without relying on unrealistically low loss rates; and

(b) fairness to standard TCP in high loss rate environments.

For this purpose HS-TCP replaces the standard NewReno

increase coefficient α in Congestion Avoidance and decrease

factor β after a minor loss detection (during the Fast Recovery
phase) by functions of the congestion window size (α(w) and
β(w), respectively).

These functions α(w) and β(w) are obtained based on the
above-mentioned objectives defined in terms of the achievable

congestion window size and the required loss rate (bold curve

in Figure 40). That is, on the one hand, HS-TCP should be

able to utilize the 10 Gbps link for the network with a loss rate

not exceeding 10−7 (NewReno is unable to utilize this link if

the loss rate exceeds 10−10). On the other hand, it should

act like a standard NewReno [19] in environments with loss

probability higher than 10−3.

The resulting functions α(w) and β(w) vary from 1 and

0.5, respectively, when the congestion window is less than or

equal to 38 packets (i.e., it has same behavior as NewReno

when the congestion window is small) to (and beyond) 70 and

0.1 when the congestion window is more than 84k packets.

Figure 41 shows the schematic comparison between HS-TCP

and NewReno behavior during Congestion Avoidance/Fast

Recovery phases. As we can see, at high congestion window

sizes (or low loss rates) HS-TCP probes the network resources

more aggressively than Reno and, at the same time, reacts

more conservatively to loss detection events. This behavior

considerably increases the efficiency of high-speed/long-delay

networks. However, the tradeoff is an increased level of packet

328 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

TABLE V
FEATURES OF TCP VARIANTS AIMED AT IMPROVING EFFICIENCY IN HIGH-SPEED OR LONG-DELAY NETWORKS

TCP Variant Section Year Base Added/Changed Modes or Features Mod1 Status
Implementation

Win2 Linux Sim3

HS-TCP
[72], [74]

VI-A 2003 NewReno Additive increase steps and multiplicative
decrease factors as functions of the congestion
window size, Limited Slow-Start

S Experimental >2.6.13 ns2

STCP

[73]
VI-B 2003 NewReno Multiplicative Increase Multiplicative Decrease

congestion avoidance policy
S Experimental >2.6.13

H-TCP

[75], [76]
VI-C 2004 NewReno Congestion window increase steps as a

function of time elapsed since the last packet
loss detection, scaling increase step to a
reference RTT, multiplicative decrease
coefficient adaptation

S Experimental >2.6.13

TCP Hybla

[77]
VI-D 2004 NewReno Scaling the increase steps in Slow-Start and

Congestion Avoidance to the reference RTT,
data packet pacing, initial slow-start threshold
estimation

S Experimental >2.6.13

BIC TCP

[78]
VI-E 2004 HS-TCP Binary congestion window search, Limited

Slow-Start
S Experimental >2.6.12 ns2.6∗

TCPW-A

[79]
VI-F 2005 Westwood Agile probing, persistent non-congestion

detection
S Experimental ns2∗

LogWestwood+
[80]

VI-G 2008 Westwood+ Logarithmic congestion window increase S Experimental ns2∗

TCP Cubic

[81]
VI-H 2008 BIC The congestion window control as a cubic

function of time elapsed since a last congestion
event

S Experimental >2.6.16 ns2.6∗

FAST TCP

[82]–[84]
VI-I 2003 Vegas Constant-rate congestion window

equation-based update
S Experimental ns2.29∗

TCP Libra
[85]

VI-J 2005 NewReno Adaptation of the packet pairs to estimate the
bottleneck link capacity, scale the congestion
window increase step by the bottleneck link
capacity and queuing delay

S Experimental ns2

TCP NewVegas
[32]

VI-K 2005 Vegas Rapid window convergence, packet pacing,
packet pairing

S Experimental

TCP AR
[86]

VI-L 2005 Westwood,
Vegas

Congestion window increase steps as a
function of the achievable rate and queuing
delay estimates

S Experimental

TCP Fusion

[87]
VI-M 2007 Westwood,

Vegas
Congestion window increase steps as a
function of the achievable rate and queuing
delay estimates

S Experimental

TCP Africa

[88]
VI-N 2005 HS-TCP,

Vegas
Switching between fast (HS-TCP) and slow
(NewReno) mode depending on the Vegas-type
network state estimation

S Experimental ns2

Compound TCP

[89]
VI-O 2005 HS-TCP,

Vegas
Two components (slow and scalable) in the
congestion window calculation

S Experimental Vista,
S’08,
XP∗,
S’03∗

2.6.14–
2.6.25∗

TCP Illinois

[90]
VI-P 2006 NewReno,

DUAL
Additive increase steps and multiplicative
decrease factors as functions of the queuing
delay

S Experimental >2.6.22

YeAH TCP
[91]

VI-Q 2007 STCP, Ve-
gas

Switching between fast (STCP) and slow
(NewReno) mode depending on a combined
Vegas-type and DUAL-type estimate,
precautionary decongestion

S Experimental >2.6.22

1 TCP specification modification: S = the sender reactions, R = the receiver reactions, P = the protocol specification
2 MicrosoftTM operating systems: S for server versions 3 Network simulators ∗ optional or available in patch form

losses: more packets are lost during congestion events, which

occur more frequently.

The high-speed/long-delay networks create one more prob-

lem for TCP. During the initial Slow Start phase when an

approximate network limit is still unknown, the unbounded

exponential probing (see Tahoe in Section II-A) can lead to a

loss of extremely large numbers of packets. For example, in

a 10 Gbps link with 100 ms RTT, Slow Start (in the worst

case) can cause a loss of about 83,000 packets, which is

approximately 120 MBytes of wasted network resources. To

resolve this problem, Floyd [92] proposed a complementary

algorithm that bounds the maximum increase step during Slow

Start to 100 packets (Limited Slow Start). It is expected

that this limitation will not have a significant impact on

performance. There are two reasons why this is so. First, Slow

Start operates only during initialization, or re-initialization

after a timeout. In other words, it is insignificant for long-

lived flow performance. Second, it takes about 8 seconds to

fully utilize a 1 Gbps link with 100 ms RTT, which is assumed

to be a reasonable payoff for a significant reduction of induced

packet losses.

Another important question for a new congestion control

algorithm is how flows that utilize it interact with each

other (intra-fairness) and with other flows (inter-fairness),

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 329

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

Loss detection

Network limit

Standard Reno/NewReno

HS-TCP

improvement

Fig. 41. Congestion window dynamics of HS-TCP

including standard TCP flows. By definition, during severe

congestion situations (when the loss probability is high) HS-

TCP is equivalent to standard Reno and thus inherits all its

characteristics. In high-speed/long-delay networks, HS-TCP

explicitly does not consider fairness to standard TCP flows

to be significantly important, because standard flows cannot

effectively utilize the available network resources. However,

intra-fairness property is highly important. Fortunately, it can

be shown that because HS-TCP does not change the core

additive increase multiplicative decrease (AIMD) concept of

NewReno—namely, that during Congestion Avoidance the

window is increased by almost a constant number of packets

each RTT and decreased during Fast Recovery by a fraction

of itself (Figure 11)—NewReno’s intra-fairness properties are

preserved. However, HS-TCP has substantial problems with

fairness if flows have different RTTs. Although this problem

is inherited from Reno [78], subsequent research discovered

that AIMD coefficient scaling (functions instead of constants)

significantly intensifies this problem. A number of congestion

control algorithms discussed later in this survey (Hybla in

Section VI-D, H-TCP in Section VI-C, FAST in Section VI-I,

CUBIC in Section VI-H) address this problem and, at the same

time, preserve data transfer effectiveness in high-speed/long-

delay networks.

B. STCP

Kelly [73] proposed STCP (Scalable TCP) as an alternative

to HS-TCP (Section VI-A) to solve the data transfer effective-

ness problem in high-speed/long-delay networks. Instead of

complicated AIMD coefficient calculations, STCP rejects the

core AIMD concept and introduces a multiplicative increase

multiplicative decrease idea (MIMD). In other words, during

Congestion Avoidance an STCP flow increases its congestion

window w by a fraction α of the window size with each RTT
(i.e., w = w+α×w, where α = 0.01). During Fast Recovery,
it reduces the congestion window by a different fraction β
upon detecting a loss (i.e., w = w−β×w, where β = 0.125).
A hypothetical congestion window dynamic of STCP looks

similar to that of HS-TCP, but with increased frequency and

sharpness of increase/decrease phases (Figure 42).

Clearly, the proposed modifications resolve the target prob-

lem by making the increase/decrease dynamics follow expo-

nential functions, which scale quite well in many environ-

ments. However, the solution creates a number of critical

problems. First, from Figure 42 we can easily recognize that

even one STCP flow moves the network to a state of nearly

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

Loss detection

Network limit

Standard Reno/NewReno

STCP

improvement

Fig. 42. Congestion window dynamics of STCP

Network Share (STCP)

E
qu

al
 (f

ai
r)
 s
ha

re

N
e
tw

o
rk

 S
h
a
re

 (
S

T
C

P
)

Network Limit

x0

x1
x2

Packet
losses

Fig. 43. Convergence diagram of the two STCP flow competition

x0 − x1, x2 − x1 multiplicative increase (a flow with the larger
congestion window increases more than a flow with the smaller)
x1 − x2 multiplicative decrease (a flow with the larger congestion
window decreases more than a flow with the smaller)

constant congestion. This is generally undesirable for most

networks. Second, inter-fairness characteristics (i.e., fairness

to standard flows) are similar to HS-TCP: in the low-loss

rate zone (<10−3), STCP does not even try to be inter-fair,

assuming that standard TCP flows cannot effectively utilize

network resources; in the high-loss zone, STCP behaves like

standard TCP. Third, the MIMD approach does not con-

ceptually provide intra-fairness (i.e., fairness between STCP

flows). That is, under the assumption that two STCP flows are

experiencing the same RTTs and are able to detect a packet

loss simultaneously, the flow with the larger initial share will

always have an advantage (Figure 43). This happens because

multiplicative increase and multiplicative decrease policies

essentially preserve a ratio between congestion window sizes

of the flows. Finally, it can be shown that due to MIMD

policies, an STCP flow is extremely unfair, both to STCP and

to standard TCP flows that have higher RTT values [78].

C. H-TCP

Leith and Shorten [75], [76] presented one more alternative

to congestion control for TCP, called H-TCP (Hamilton TCP),

which is intended to have good fairness (inter-, intra-, RTT-)

and effectiveness properties. The key idea of their proposal

is that the congestion window increase step α in Congestion

Avoidance should be a non-decreasing function of the time

elapsed since the last congestion event (∆). In one sense,
this is similar to HS-TCP (Section VI-A) where the network

resource probing steps (i.e., the congestion window increase

330 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

C
o

n
g

e
s
ti
o
n

 w
in

d
o
w

Time elapsed from the last congestion event

Flow with RTT1

Flow with

RTT2=2·RTT1

- calculation of the target congestion window value

T1 T2

Fig. 44. Rationale of H-TCP’s RTT-unfairness

per RTT) grow as the congestion window itself is growing.

However, the functional dependence of the elapsed time ∆
has one significant advantage over the dependence of the

congestion window: namely, that no matter how large the

initial congestion window sizes have been, flows experiencing

the same network conditions will exhibit the same congestion

window increase dynamics. In other words, an H-TCP flow is

fair to other H-TCP flows present in the same network path.

To demonstrate that this holds, one can build a convergence

diagram of the two competing H-TCP flows and observe that it

looks similar to Figure 11, assuming that after a loss detection,

both flows decrease their congestion windows by half.

More specifically, H-TCP defines the increase in the conges-

tion window w as α(∆) for each RTT (equivalent to increase
as a fraction α(∆)/w for each reception of non-duplicate

ACK, where w is the current congestion window size. α(∆)
is the polynomial function over time ∆ elapsed since the last

congestion event, as follows:

α(∆) = 1 + 10(∆ − ∆low) + 0.5 · (∆ − ∆low)2

where ∆low is a predefined threshold of H-TCP’s compatibil-

ity mode—i.e., whenever ∆ < ∆low, α(∆) = 1.

It can be noted that this definition of α(∆) still leads to
some degree of RTT-unfairness. For example, let us consider

two H-TCP flows competing with each other and having

different RTT values (Figure 44). If we assume that α(∆)
is calculated once per RTT at time 0, T1, and T2 (note, with

this assumption we do not change the H-TCP principle, but it

allows us to highlight the problem), we see that a flow having

a longer RTT always loses to a flow with a shorter RTT. To

mitigate this effect, H-TCP defines an optional mechanism of

scaling the α(∆) to a reference RTT (RTTref) which, as an

example, can be 100 ms: α′(∆) = α(∆) × RTT/RTTref .

In addition to these changes in the Congestion Avoidance

phase, the H-TCP proposal includes a small modification of

the congestion window reduction policy in Fast Recovery.

More specifically, upon detecting a packet loss, H-TCP es-

timates the achieved flow’s throughput B(k) and compares it
with the estimate of the preceding loss event B(k − 1). If the
absolute value of the relation [B(k) − B(k − 1)]/B(k − 1)
is less than 0.2, the congestion window is reduced by the

ratio RTTmin/RTTmax; otherwise, the coefficient 0.5 is

used. However, later in the Internet-Draft proposal, Leith [76]

removed the Fast Recovery modification from H-TCP.

Fig. 45. Congestion window evolution in Hybla

D. TCP Hybla

Caini and Firrincieli [77] emphasized the problem of degra-

dation of TCP throughput with standard congestion control—

NewReno—in long-delay networks. It can be shown that in

NewReno’s Congestion Avoidance, the congestion window

size w is inversely dependent on RTT, and the TCP through-

put B has an upper bound that is inversely dependant on

RTT 2 (the throughput can be approximated by the expression

B ∼= w/RTT). Clearly, a flow with a shorter RTT will always
have an advantage compared to a flow with a longer RTT.

In heterogeneous networks, especially with satellite segments,

the RTTs may be different by several orders of magnitude,

potentially resulting in catastrophic unfairness in the network

resource distribution.

To resolve this RTT-unfairness problem, a Hybla algo-

rithm has been proposed [77]. This algorithm introduces

modifications to the NewReno’s Slow Start and Congestion

Avoidance phases that make them semi-independent of RTT.

In particular, to obtain the normalized increase steps in both

phases, the scaling factor ρ is calculated according to the

equation ρ = RTT/RTTref , where RTTref is a reference

RTT (e.g., 25 ms). Formally, the increase steps upon receiving

ACK packet are defined as follows:

w = w + 2ρ − 1, in Slow Start

w = w + ρ2/w, in Congestion Avoidance

This definition is illustrated in Figure 45, where three flows

having different RTT values are presented. The higher the

RTT value, the higher the ratio ρ becomes and the congestion
window is increased more rapidly with each ACK packet re-

ception. As a consequence, during the same time period, flows

will result in different congestion window values. However, if

we calculate the upper bound of the TCP throughput (i.e.,

the ratio between the congestion window and the RTT), we

will see that all three flows can transmit data at similar rates

(≈ 2 MByte/s after 500 ms).
In addition, Hybla introduces two more techniques that

complement the congestion control: pacing the transmission of

data packets [93] and estimating the initial slow-start threshold

using the packet pair algorithm [85]. The pacing is essentially

setting up a minimal delay between transmission of any two

consecutive packets. It is meant to smooth the burst-nature

of TCP transmissions. The packet pair algorithm provides an

ability to estimate the network path capacity. Knowledge of

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 331

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

Network limit

wmax

wmin

Fig. 46. Binary search for the optimal congestion window in TCP BIC

the network capacity may help us improve the convergence

speed and, to some degree, provides a scalability in high-BDP

networks.

A number of experimental evaluations [77] have confirmed

remarkable RTT-friendliness of the Hybla algorithm. However,

the cost of this friendliness is an increased aggressiveness of

the flows with larger RTT values. At the same time, these flows

have a slower feedback rate—a packet loss can be detected

no earlier than delivery of a packet can be confirmed (i.e.,

feedback rate is proportional to 1/RTT). Thus, more aggressive

flows can easily congest the network before they detect any

packet loss. To some extent, pacing technique soften, but

cannot eliminate this problem. Additionally, Hybla is designed

to fall back to the standard mode (to Reno-like congestion

control rules) if a flow’s RTT is less than a predefined

reference value. This property limits applicability of Hybla to

satellite-like channels: Hybla, similar to the standard Reno,

is unable to work effectively in high-speed networks with

relatively small delays.

E. BIC TCP

Xu et al. [78] pointed out the RTT unfairness problem

of HS-TCP (Section VI-A) and STCP (Section VI-B). For

example, if we assume that two competing flows can detect

a loss simultaneously (a synchronized loss detection), the

analytical calculations reveal that an HS-TCP flow having

an RTT x times smaller will get a network share which is

x4.56 times larger. Similar calculations for STCP show that,

in theory, the STCP flow with the smaller RTT will always

get all of the network resources, and a flow with the higher

RTT will get nothing (i.e., absolute unfairness). The problem

in both cases lies in the way these algorithms discover network

resources: a flow with a larger congestion window will try to

increase its share more than a flow with a smaller window.

In an attempt to create a congestion control that can scale

well in any high-BDP (high bandwidth-delay product) network

and yet to remain relatively RTT-fair, Xu et al. [78] proposed

a BIC (Binary Increase Congestion control) algorithm. This

algorithm extends NewReno with an additional operational

phase, Rapid Convergence. This phase rapidly discovers,

in a binary search manner, the optimal congestion window

size (i.e., the value corresponding to the available network

resources) by relying on detection of a packet loss as an

indication of congestion window overshooting. Schematically,

the congestion control concept of BIC as a search problem

is illustrated in Figure 46. While the network successfully

delivers data packets (i.e., the sender receives all ACKs during

the last RTT), the congestion window is updated to the median

Time

Network limit

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Loss detection Binary Search

Limited Slow Start

Fig. 47. Congestion window dynamics in TCP BIC

of the search range between minimum wmin and maximum

wmax congestion window sizes (initially, wmin is set to one

and wmax to some arbitrary high value). Besides updating the

congestion window, an indication of successful data delivery

raises the lower boundary wmin to the previous congestion

window size—the value when the network is expected to

be congestion-free. As soon as packet loss is detected (e.g.,

three duplicate ACKs are received), BIC sets the upper search

boundary wmax to the current congestion window size—

the value when the network is experiencing congestion—

and enters the well-known Fast Recovery phase, similar to

NewReno (see Section II-D). Additionally, to increase the

convergence rate in the low-loss network environments, BIC

reduces the multiplicative decrease coefficient from 0.5 to

0.125 (i.e., w = w − 0.125 · w) when the congestion window
size is more than 38. This number is borrowed from HS-

TCP and is aimed at providing compatibility to Reno in

environments with loss rates exceeding 10−3.

Though a true binary search algorithm features a very fast

(logarithmic) convergence time, in a high-BDP network it

may create the same problem that was discovered in Slow-

Start: if the congestion window is increased too fast, a large

number of packets can be lost (see Section VI-A). For this

reason, BIC not only adopts HS-TCP’s Limited Slow Start,

but it also limits the increase in Rapid Convergence when the

search range is too wide. In other words, during the RTT,

Rapid Convergence is not allowed to increase the congestion

window by more than some predefined value Smax. To address

the opposite case when the search range is too narrow—near

the estimated optimum—BIC defines the congestion window

increase by at least some constant Smin number of packets.

Finally, when the current congestion window value during

Rapid Convergence becomes very close to, or exceeds, the

target congestion window value, BIC enables the Limited Slow

Start phase with an unlimited slow-start threshold value. This

action is to discover a new upper bound and restart the binary

search (Figure 47).

The BIC approach for optimal congestion window discov-

ery has a unique feature for loss-based congestion control

approaches—the congestion window probing steps decrease

as the window approaches a target value. Xu et al. [78]

showed that in a synchronized loss model, the congestion

window ratio of two flows with different RTTs (RTT-fairness)

changes from e(1/RTT1−1/RTT2)t·ln 2 for small window sizes

to RTT1

RTT2
for large ones. In other words, in theory BIC is no

less RTT-fair than the standard Reno algorithm. However, a

number of later experimental evaluations [81], [94] showed

that in certain environments BIC may have low RTT-fairness

332 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

Loss detection

Network limit

Westwood estimate

(ERE*RTTmin)

Agile probing

Fig. 48. Congestion window dynamics of TCPW-A

and inter-fairness values (fairness to other deployed TCP

congestion controls). A revised version of BIC, called CUBIC

[81], is meant to improve these properties and is discussed in

Section VI-H.

F. TCPW-A

Wang et al. [79] proposed TCPW-A, a modification to

TCP Westwood (Section V-A) that improves its properties

in high-speed or long-delay networks. More specifically, they

introduced a concept of agile probing, which includes steps of

calculation of the Westwood-like eligible rate estimate (ERE)

and update to the slow start threshold based on this estimate.

These steps simultaneously provide two benefits: reduced net-

work stressing during the Slow Start phase (dynamic adjusting

of the threshold) and rapid discovery of available network

resources during the Congestion Avoidance phase (temporary

return to the Slow Start when the threshold becomes larger

than the congestion window; see Figure 48).

To prevent unnecessary switches to the Slow Start when

network resources are almost fully consumed, TCPW-A intro-

duces an additional technique called persistent non-congestion

detection (PNCD). The main idea of this technique is based

on the assumption that when the network is not congested, a

Vegas-like rate estimate (RE = cwnd/RTTmin) increases as

the congestion window increases.

In the TCPW-A proposal authors presented several exper-

imental evaluations. Although their results showed consider-

able improvements compared to standard NewReno, they did

not answer the question of how well TCPW-A behaves in

comparison to other high-speed TCP variants discussed in this

section.

G. LogWestwood+

Kliazovich et al. [80] proposed another high-speed ex-

tension of TCP Westwood (Section V-A). Besides the main

objective of being able to effectively utilize resources of

high-speed or long-delay networks, the proposed algorithm,

TCP LogWestwood+, features behavior similar to BIC (Sec-

tion VI-E): congestion window is increased rapidly when the

current value is small, and gently increased when approaching

an estimated maximum. Similar to BIC, for this “maximum”

LogWestwood+ takes a value of the congestion window ob-

served just before the last detection of a packet loss (i.e.,

just before the last reduction). The key difference between

LogWestwood+ and BIC, other than that the first is based on

Westwood+ and the second is based on NewReno, is that the

standard Congestion Avoidance phase (linear increase) is used

Time

Network limit

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Loss detection

Westwood estimate

(ERE*RTTmin)

Linear increaseLog increase

Fig. 49. Congestion window dynamics of TCP LogWestwood+

instead of the Slow Start phase after reaching the maximum

(Figure 49).

Analytical modeling and ns-2 simulations of the algorithm

behavior allowed the authors to claim that LogWestwood+ is

much more efficient and RTT-fair than the standard NewReno

algorithm. However, in some scenarios LogWestwood+ may

lose its scalability characteristics. For example, the initial Slow

Start phase may be prematurely terminated (e.g., due to a

burst of temporal congestion or even some random losses),

and later LogWestwood+ will not be able to rapidly discover

a new maximum in high-speed or long-delay networks.

H. CUBIC TCP

Rhee and Xu [81] noted the highly challenging problem

of creating a simple congestion control algorithm that scales

well in high-BDP networks, and at the same time has good

intra-, inter-, and RTT-fairness properties. Some of the previ-

ous congestion control proposals (e.g., HS-TCP, STCP, BIC)

enforce inter-fairness (i.e., fairness to the standard TCP flows)

by switching to standard congestion window update rules in

high-loss environments. The switching criteria in most cases is

a pre-calculated congestion window size w which corresponds

to a certain loss rate p (w = 1.2/
√

p). For example, the
threshold in HS-TCP is set to 38 packets, which corresponds to

a loss of one out of every 1000 consecutive packets (p = 10−3

pkt/s). However, this definition of loss rate is not the ideal

guideline, especially in heterogeneous networks where RTT

can vary significantly. For example, in a network with 10 ms

RTT, the loss rate 10−3 allows one loss every 380 ms, while

in a network with 100 ms RTT, the same rate allows only one

loss every 3.8 seconds. Thus if two flows competing in the

same bottleneck link have different RTTs, the flow with the

larger RTT is likely to remain in a compatible mode all the

time, while the flow with the smaller RTT quickly switches

to a scalable mode and acquires all available resources. This

observation allowed Rhee and Xu [81] to propose CUBIC

congestion control, which enhances the previously introduced

BIC algorithm (Section VI-E) with RTT-independent conges-

tion window growth functions. To accomplish this, CUBIC

borrows the H-TCP approach (Section VI-C) of defining the

congestion window w as a cubic function of elapsed time ∆
since the last congestion event, as follows:

w = C
(

∆ − 3
√

β · wmax/C
)3

+ wmax

where C is a predefined constant, β is a coefficient of

multiplicative decrease in Fast Recovery, and wmax is the

congestion window size just before the last registered loss

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 333

Time

Network limit

wmax

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w Loss detection

target window
1

2 2
3

1 – right branch of cubic function

2 – left branch of cubic function

3 – left and right branches of cubic function

2

Fig. 50. Congestion window dynamics in CUBIC

detection. This function preserves not only RTT-fairness, since

the window growth does not depend much on RTT, but also

scalability and intra-fairness properties of BIC’s Limited Slow

Start and Rapid Convergence phases. The function has a

very fast growth when the current window w is far from the

estimated target wmax, and it is very conservative when w
is close to wmax. Figure 50 shows the theoretical dynamics

of the growth of the congestion window in CUBIC. In the

initial step labeled 1, the target window wmax is unknown

and is discovered using the right branch of the cubic function.

This discovery is much more conservative than the exponential

discovery used in conventional Slow Start, but it is still

scalable to high-BDP networks. At later stages, following a

reduction upon detecting a loss, the congestion window gently

approaches the target (phase 2). If a loss is detected before

wmax is reached, the target is updated. If it was a temporary

congestion event, we will see a congestion window growth

according to both left and right branches of the cubic function

(phase 3).

Additionally, CUBIC provides a mechanism to ensure that

its performance is no worse than the performance of the

standard (Reno) congestion control. This mechanism includes

calculating a supplementary congestion window size wreno

that approximates the performance of a corresponding stan-

dard Reno flow. Because the congestion window in CUBIC

can be reduced by a fraction β different from 0.5 (i.e.,

generally βcubic �= βreno), the appropriate performance (an

average sending rate) can be achieved only if the supple-

mentary congestion window increase steps are scaled with

s = 3× (β−1)/(β +1) [81]. Formally, this can be written as
an increase of the window wreno by s every RTT. If CUBIC
detects that the supplementary window wreno exceeds the

main window, the latter is reset to be equal to the former.

The good performance and fairness properties of CUBIC

were confirmed by various experimental studies [81], [91] and

by real-world measurements. CUBIC is currently the second

most-used congestion control algorithm for TCP, due to the

fact that it has been the default for the Linux TCP suite

since 2006 (i.e., Linux kernel version 2.6.16). Nevertheless,

CUBIC does not have 100% network resource utilization and

can induce a large number of packet losses in the network (as

long as a loss is the only signaling mechanism).

I. FAST TCP

Jin et al. [82]–[84], inspired by the Vegas idea of congestion

control with the queuing delay as a primary congestion indica-

tor (see Section II-G), introduced a FAST algorithm. In some

sense, FAST may be considered a scalable variant of Vegas

that defines a periodic congestion window update based on the

internal delay-based estimate of the network state. However,

there are two fundamental differences between Vegas and

FAST: FAST defines a periodic fixed-rate congestion window

update (e.g., each 20 ms) and, to calculate the new target

congestion window size, FAST uses a specially designed

equation which incorporates a simple delay-based congestion

estimation feature:

w = w · RTTmin

RTT
+ α

where w is a current congestion window size, RTT and

RTTmin are current and minimum RTT, and α is an important
protocol parameter, as described below.

According to this equation, if the network is experiencing

congestion (RTT > RTTmin), FAST will decrease the con-

gestion window (use of the network resources) proportionally

to the congestion level estimated using RTT measurements

(RTTmin/RTT); otherwise, the window will be increased

based solely on the predefined parameter α. Selection of α has
conflicting effects on two important protocol parameters: scal-

ability and stability. In other words, if α is too large, the proto-
col will scale easily to any high-BDP (high bandwidth-delay

product) networks, but it will have substantial convergence

problems (the stable state when w = w×RTTmin/RTT +α
will be barely reachable). In the opposite case, when α is too
small, FAST will easily stabilize but will have scalability prob-

lems (e.g., if α = 1, FAST behavior is practically equivalent
to Vegas). Although the problem of accurate selection of α
is still an open issue, FAST’s authors have concluded that α
should be a constant. Attempts at making α vary depending

on the congestion window size, and RTT measurements are

reported to lead to substantial intra- and inter-unfairness [84].

To make the equation-based algorithm tolerant of short-

term fluctuations in network parameters, FAST uses a well-

known technique of exponential smoothing of the calculated

congestion window value. In addition, FAST limits a potential

increase in the congestion window (when α ≫ w) to be no
more than a current value, which is roughly equivalent to the

increase in the standard Slow-Start mode. The only difference

is that FAST increases the congestion window based on the

internal timer expiration (e.g., each 20 ms), but Slow-Start is

clocked by ACK packets reception.

Although simulation-based and real-world experiments

show remarkable intra-fairness, RTT fairness, stability, and

scalability, ongoing research [84], [95] recognizes a number

of serious issues with the design. First, FAST’s characteristics

depend highly on the true minimal RTT value, which is hard

to calculate in some environments (e.g., when routes tend to

be dynamic) without relying on additional messaging from the

network. Second, the RTT is not always a good substitute for

the queuing delay, especially when there is congestion along

the reverse path or when there are route changes. Finally, the

proposed congestion window update rule is not friendly to

standard TCP (Reno, NewReno, or SACK), even in small-

BDP networks.

334 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

J. TCP Libra

Marfia et al. [85] proposed Libra as another variant of

congestion control to resolve the scalability issues in stan-

dard TCP, while preserving and improving the RTT-fairness

properties. Libra’s design is based on NewReno (Section II-D)

and modifies the Congestion Avoidance congestion window

increase steps to follow a specially designed function of both

the RTT and the bottleneck link capacity. The latter value in

Libra is estimated using a well-known packet pair technique

[96]. Formally, in Libra’s Congestion Avoidance, if no loss has

occurred, the congestion window is increased by α packets

every RTT, according to the equation:

α = k1 · C · P · RTT 2/(RTT + γ)

where RTT is the current RTT estimate, γ and k1 are

predefined constants (e.g., 1 and 2, respectively), C is a

value responsible for Libra’s scalability and represents the

capacity of the bottleneck link estimated using the packet pair

technique, and P is a penalizing factor which reduces the

increase step if the network experiences congestion (e.g., the

congestion window size is close to the convergence point).

In particular, penalizing factor P can be represented with the

expression based on queuing delay measurements:

P = e−k2×Q/Qmax

where k2 is some constant (e.g., 2), and Q and Qmax are cur-

rent and maximum queuing delay estimates (see Section II-B).

The rationale of the congestion window increase steps α
is as follows: the first part of the functional dependence

k1 · C makes the increase steps scalable to the bottleneck

link capacity. The penalizing part P forces Libra to decrease

the network resource probing intensity (the congestion win-

dow increase steps) exponentially, if the estimated level of

buffering in the network (Q/Qmax) increases. The last part,

RTT 2/(RTT + γ), is responsible for Libra’s RTT-fairness.
If RTT is significantly less than the constant γ, the increase
steps are scaled to RTT2—the essential requirement for RTT-

fariness (see Section VI-D). The constant γ is selected in a

way that considers all links with an RTT close to or more than

γ to have some pathological problems when RTT-fairness is
not an issue.

In addition, Libra also defines a change in the multiplicative

decrease policy of the Fast Recovery phase (w = w − β ×
w): the decrease coefficient β scales with the expression

θ/(RTT + γ), where θ and γ are constants. Although this

scaling factor is derived analytically [85], the recommended

values for these constants (θ and γ are equal to 1 second)

make the scaling factor close to 1 in most cases. Thus,

it is not very significant. Moreover, when the current RTT

value is large (e.g., potential congestion in the network), the

scaling factor will reduce β further. Yet this is the opposite

of what congestion control should do: the decrease should be

maximized in the presence of congestion and minimized when

the network is in a congestion-free state.

A number of experimental evaluations (ns2 simulations)

show that Libra can help improve the high-BDP link utilization

and fairness properties of TCP. However, the same results

show that Libra does not always outperform other congestion

control approaches, including the non-scalable Reno with se-

lective ACKs (Section II-E). Additionally, due to high reliance

on the queuing delay estimation (i.e., RTTmin, RTTmax, and

RTT measurement consistency), Libra’s properties, similar to

FAST (Section VI-I) and C-TCP (Section VI-O), will further

worsen because of estimation biases.

K. TCP New Vegas

Sing and Soh [32] recognized the advantages of the delay-

based congestion control approach presented in Vegas (Sec-

tion II-G). However, they also found that it has three seri-

ous problems (two of them have been inherited from Reno,

Section II-C): (a) it cannot effectively utilize high-BDP links,

(b) during the (re-)initialization phases (Slow Start and Fast

Recovery) the Vegas congestion control can generate very

bursty traffic, and (c) Vegas’ estimation of network buffering

can be significantly biased if receivers use the standardized

delayed ACK technique [17], [27].

To reduce the convergence time and improve to some degree

the high-BDP link utilization, the proposed New Vegas algo-

rithm defines a new phase called Rapid Window Convergence.

The key idea of this phase is not to immediately terminate

the Slow Start phase when the estimate of network buffering

exceeds the threshold (∆ > α), but to continue the opportunis-
tic exponential-like resource probing with reduced intensity. In

detail, when New Vegas’s Slow Start detects that the threshold

has been exceeded (early congestion detection), it remembers

the current congestion window value in a special state variable

wr and switches to the Rapid Window Convergence. In this

state, for every RTT, the congestion window is allowed to be

increased by x packets:

x = (wr)
−23+n

where n is a number of times the early congestion indicator

triggers in the Rapid Window Convergence phase. According

to the proposal [32], when n becomes more than 3, Rapid

Window Convergence terminates and normal Vegas-like Con-

gestion Avoidance takes its place. At any point, if a packet loss

is detected, NewVegas reacts exactly the same as the original

Vegas algorithms. In other words, if the loss is detected using

three duplicate ACKs, NewVegas switches to Fast Recovery

followed by Congestion Avoidance; if the loss is detected using

the RTO, NewVegas resets the congestion window size and

moves to Slow Start.

In order to solve the second problem of generation of bursty

traffic during initialization and re-initialization, NewVegas

applies the well-known packet pacing technique; it sets-up a

minimal delay between transmission of any two consecutive

packets [69], [97]. Although it is reported to have a negative

impact on TCP Reno performance [93], NewVegas authors

believe and experimentally confirm that with delay-based

congestion controls, packet pacing has only a positive effect.

The last problem of the estimation bias is solved by re-

quiring the sender to transmit data packets in pairs. In terms

of TCP, this means that if there are data to be sent and the

current value of the congestion window allows sending only

one data packet, NewVegas will hold any transmission until

the window increases by at least one packet. Clearly, this

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 335

C
o

n
g

e
s
ti
o
n

 w
in

d
o

w

Time

Network limit

Wprobe

Wbase

Loss detection

Standard Reno/NewReno

TCP-AR

improvement

Fig. 51. Congestion window dynamics in TCP-AR

technique can help overcome the RTT estimation problem,

when the TCP receiver does not immediately respond to

each data packet, but waits for a timeout or another data

packet. However, this is based on the assumption that two data

packets will not be separated much during delivery (e.g., due

to congestion) and that the TCP receiver sends ACK packets

for every other data packet, as a minimum. Neither of these

assumptions is entirely true in real networks. Thus, packet

pairing has questionable benefits on the precision of RTT-

based estimations (e.g., queuing delay). Moreover, the RTT

measurement can be improved significantly just by employing

the Timestamp option [31].

Although NewVegas authors have recognized the problem

of high-BDP link utilization, the proposed Rapid Window

Convergence resolves only one part of the problem: this phase

of scalable congestion window increase steps intends only

to improve the early termination of Slow Start. No scalable

features are designed for Congestion Avoidance and Fast

Recovery, which limits the potential applicability of NewVegas

in the future.

L. TCP-AR

Shimonishi and Murase [86] presented TCP-AR (Adaptive

Reno) as another approach to improve TCP performance and

preserve friendliness to standard TCP in high-speed networks.

It extends TCPW-BBE (Section V-E) with a scalable con-

gestion window probing in the Congestion Avoidance phase.

More specifically, the congestion window increase function

is defined to have two components: a slow constant increase

component Wbase (increased by one for every RTT) and a

scalable increase component Wprobe (increased by a function

of the Westwood-like achievable rate estimate and the queuing

delay, see Sections II-B and V-A respectively). The scalable

component is a continuous function that has two important

properties. First, when the network is congestion-free (i.e.,

when queuing delay is close to zero), the function gives a value

close to the Westwood-like achievable rate estimate. Second,

when the network is experiencing congestion (i.e., when

queuing delay is near maximum), the value of the scalable

component Wprobe is zero. Figure 51 shows conceptually the

congestion window dynamics of the TCP-AR algorithm.

Experimental results showed that TCP-AR can improve

the network utilization successfully and at the same time

preserve a good level of intra-fairness. However, relying on

the queuing delay and achievable rate metrics makes this

algorithm vulnerable if RTT measurements should become

noisy. In the worst case, when the queuing delay is wrongly

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

Loss detection

Network limit

1
3

2

1 – scalable increase (Q<threshold)

2 – constant congestion window (threshold < Q <3·threshold)

3 – reducing to the lower bound

Standard Reno/

NewReno

Fusion

improvement

Fig. 52. Congestion window dynamics in Fusion

estimated to be close to the maximum, TCP-AR totally loses

its ability to scale in high-BDP networks.

M. TCP Fusion

Kaneko et al. [87] presented a Fusion algorithm which, in a

fashion similar to TCP-AR (Section VI-L), combines the ideas

of Westwood’s achievable rate (Section V-A), DUAL’s queu-

ing delay (Section II-G), and Vegas’ used network buffering

(Section II-G) estimations. Instead of TCP-AR’s congestion

window increase in Congestion Avoidance as a continuous

function over the queuing delay, Fusion defines three separate

linear functions which are switched, depending on an absolute

(i.e., expressed in seconds) queuing delay threshold value. If

the current queuing delay is less than the predefined threshold

(zone 1 in Figure 52), the congestion window is increased at

a fast rate each RTT by a predefined fraction of Westwood’s

achievable rate estimate (scalable increase). If the queuing

delay grows more than three times the threshold (zone 3 in

Figure 52), the congestion window decreases by the number

of packets buffered in the network (i.e., the Vegas estimate).

In the case where the queuing delay lies somewhere in the

range between one and three times the threshold (zone 2 in

Figure 52), the congestion window remains unchanged. To

make Fusion behave at least as well as the standard Reno

congestion control, a conventional Reno-like window wr is

maintained along with the Fusion congestion window wf . If

wf becomes smaller than wr, the wf is reset equal to wr.

In addition, Fusion changes the constant congestion win-

dow reduction ratio β in Fast Recovery to the value β =
max(0.5, RTTmin/RTT). This ratio is essentially a simpli-
fied form of Westwood’s, where the sampling interval equals

the RTT [87].

Although experimental results of evaluating Fusion [87]

have shown some improvements in terms of utilization and

fairness characteristics in comparison to other scalable algo-

rithms (e.g., C-TCP, HS-TCP, BIC, FAST), Fusion not only

has the same vulnerabilities as TCP-AR, but also introduces

a new, more serious problem. Defining the threshold in abso-

lute terms requires manually adapting Fusion to a particular

environment. This manual configuration is highly undesirable

and usually impossible to perform. Another problem of Fusion

is the way it quickly defaults to standard congestion window

control rules. As one can see in Figure 52, in certain cases

Fusion may stay in the compatible, slow, non-scale mode most

of the time.

336 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

Loss detection

Network limit

Fast mode

(HS-TCP)

Slow mode

(NewReno)

High buffering

zone (>)

Fig. 53. Congestion window dynamics of TCP Africa

N. TCP Africa

King et al. [88] were concerned with the problems of

several previously proposed congestion control algorithms

for high-BDP networks, including HS-TCP (Section VI-A)

and STCP (Section VI-B). In response to these concerns

they developed the Africa (Adaptive and Fair Rapid Increase

Congestion Avoidance) algorithm. This algorithm combines

the aggressiveness (scalability) of HS-TCP when the network

is determined to be congestion-free and the conservative char-

acter of standard NewReno (Section II-D) when the network is

experiencing congestion. The congestion/non-congestion crite-

ria was borrowed from the Vegas algorithm (see Section II-G):

the estimate of network buffering ∆ is compared to some

predefined constant α. More formally, if Africa sees that
there is little buffering (∆ < α), it moves to fast mode and
directly applies the HS-TCP rules of the Congestion Avoidance

and Fast Recovery phases. These dictate congestion window

increase and decrease steps as functions of the congestion

window itself (see Figure 53). Otherwise, it moves to slow

mode and applies the Reno rules: increase by one, decrease

by half.

In a number of simulations conducted by its authors, Africa

showed good network utilization in high-BDP networks, lower

induced loss rate compared to HS-TCP and STCP, and fairness

properties (intra-, inter-, RTT-) comparable to those exhibited

by NewReno flows. Unfortunately, Africa has not been im-

plemented and evaluated in real networks. However, the idea

of multiple-mode congestion control for high-BDP networks

with delay-based mode-switching has been widely adopted

by several proposals discussed later. For example, the dual-

mode C-TCP algorithm (Section VI-O) is currently the most

deployed TCP congestion control in the world, since it is

embedded into the Microsoft Windows operating system (see

Table V).

O. C-TCP

Tan et al. [89] presented C-TCP (Compound TCP), a

congestion control approach similar in spirit to Africa (Sec-

tion VI-N). It also tries to use a delay-based estimate of

the network state to combine the conventional Reno-type

congestion control (Section II-C) with a congestion control

that is scalable in high-BDP networks. However, instead of

explicitly defining the fast and slow modes, C-TCP defines an

additional scalable component wfast to be added to the final

congestion window calculations (w = wreno + wfast). This

component is updated according to the slightly modified HS-

TCP rules (Section VI-A) but only when the Vegas estimate

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

Loss detection

Network limit

HS-TCP

rules

Transition from

HS-TCP to Reno

rules

High buffering

zone (>)

Fig. 54. Congestion window dynamics of C-TCP

∆ (Section II-G) shows a small level of network buffering

(∆ < α, where α is some small predefined constant). When

the estimate exceeds the threshold α, the scalable component
wfast is gently reduced by a value proportional to the estimate

itself (wfast = wfast − ζ · ∆, where ζ is a predefined

constant). This reduction can be understood as a smooth

transition between scalable HS-TCP and slow Reno modes,

as opposed to the instant transitions between the fast and

slow modes of Africa. As a result, the theoretical congestion

window dynamics of C-TCP (Figure 54) are very similar to

Africa’s with the exception that after the threshold has been

exceeded (∆ > α), we will see a convex curve (shown in
hatched bar) in the transition from the scalable HS-TCP to

the slow Reno mode.

Both simulation results and real-world performance evalua-

tion show substantial advantages of the C-TCP scheme: a good

utilization of the high-BDP links and good intra-, inter-, and

RTT-fairness properties. As a result, C-TCP has replaced the

conventional congestion control for TCP in Microsoft Win-

dows operating systems and is currently the most deployed

congestion control worldwide. However, on the weaker side,

because C-TCP relies on the Vegas estimate, it has inherited

the Vegas sensitivity to the correctness of RTT measurements.

For example, if flows competing with each other in the same

network observe different minimal RTT values (e.g., one flow

already sending data when a second one appears), the flow

seeing a higher RTT (which is equivalent to having a higher

threshold α value) will be much more aggressive and unfair

to the other flow.

P. TCP Illinois

Liu et al. [90] noted that congestion control algorithms

that interpret a delay as a primary signal for inferring the

network state (e.g., Vegas and Fast) are able to achieve a better

efficiency and do not stress the network excessively, compared

to congestion controls that rely only on packet losses (e.g.,

Reno, HS-TCP, STCP, etc.). However, the performance of

delay-based algorithms may suffer greatly when the delay

(RTT) measurements are very noisy, for example, due to a

high volume of cross traffic, route dynamics, etc. To resolve

this contradiction, the Illinois algorithm has been proposed.

This algorithm, similar to Africa (Section VI-N) and C-TCP

(Section VI-O), is based on NewReno (Section II-D) and is

designed on the one hand to be very aggressive when the

network is determined to be in a congestion-free state and on

the other hand be very gentle when the network is experienc-

ing congestion. However, Illinois has several implementation

differences. It defines both the congestion window w increase

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 337

βmax (0.5)

βmin (0.125)

αmax (10)

αmin (0.1)

Q1 Qmax Q2 Q3

Fig. 55. Additive increase α and multiplicative decrease δ coefficients as a
function of queuing delay Q

steps α in Congestion Avoidance (i.e., w = w+α every RTT)
and the decrease ratio β in Fast Recovery (i.e., w = w−β ·w,
upon detecting loss using three duplicate ACKs) to be special

functions of the queuing delay. The queuing delay calculation

follows the definition introduced in DUAL (Section II-B).

The increase coefficient α depends inversely on the queuing

delay, while the decrease coefficient is directly proportional

(Figure 55). The minimum and maximum values of α and

β, and the queuing delay thresholds Q1, Q2, and Q3, can

be varied to achieve desired performance characteristics. In

the Linux implementation, Illinois sets the default values of

αmax = 10, αmin = 0.3, βmin = 0.125, bmax = 0.5,
Q1 = 0.01 · Qmax, Q2 = 0.1 · Qmax, and Q3 = 0.8 · Qmax,

where Qmax is a maximum queuing delay observed over the

lifetime of the connection.

According to the Illinois specification, the α and β coeffi-
cients are updated once every RTT. However, to mitigate the

effects of queuing delay measurement noise, the α coefficient
is allowed to be set to the maximum, only if during several

consecutive RTTs (e.g., 5) the value of the queuing delay is

less than the first threshold Q1. Additionally, Illinois switches

to the compatibility mode (α = 1 and β = 0.5) when
the congestion window size is less than a predefined thresh-

old wt (e.g., ten packets). This switch, similar to HS-TCP

(Section VI-A) and STCP (Section VI-B), improves fairness

properties of Illinois to some extent, making it behave like

NewReno during severe congestion events. Figure 56 shows

the key cases of the Illinois theoretical congestion window

dynamics.

The theoretical and experimental evaluation of Illinois

showed that it is able to use the available resources in the

high-BDP networks better than the standard Reno congestion

control. At the same time, it preserves and improves the intra-,

inter-, and RTT-fairness properties. However, although the

queuing delay is a secondary parameter by which to infer the

network state—i.e., it controls only the amount of the conges-

tion window increase and cannot enforce its reduction—the

advantages of Illinois can easily be nullified. It can fall back

to the Reno mode (α = αmin and β = βmax) whenever either

the minimum or the maximum RTT values are incorrectly

estimated or the RTT includes large random components

(e.g., processing delay, different propagation delays when path

frequently changes, etc).

Q. YeAH TCP

Baiocchi et al. [91] introduced one more alternative for

congestion control that combines packet loss detection and

measurement of RTT as mechanisms to estimate the net-

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Time

Loss detection

Network limit

Transition from

αmax (10) to αmin (0.1)

Transition from

βmin (0.125) to

βmax (0.5)

Buffering zone (Q>0)

Fig. 56. Congestion window dynamics of TCP Illinois

work state. Similar to Africa (Section VI-N), the proposed

YeAH (Yet Another High-speed) algorithm defines the slow

NewReno (Section II-C) and the fast STCP (Section VI-B)

modes in Congestion Avoidance and Fast Recovery explicitly.

For the former, the congestion window increases by at most

one packet every RTT and decreases by half upon detecting a

loss from three duplicate ACKs. In the latter, the congestion

window is updated aggressively—increased by a fraction of

the congestion window itself each RTT and decreased by

another fraction which is much smaller than that in slow mode

(i.e., less than half). To provide a reliable mechanism for

mode switching, YeAH defines simultaneous use of two delay-

based metrics: the Vegas-type estimate of a number of packets

buffered in the network (see Section II-G) and the DUAL-type

network congestion level estimate (see Section II-B). However,

there are two differences in the definition of the latter metric

from what was introduced in DUAL. First, in queuing delay

calculations YeAH uses the minimum of recently measured

RTTs (e.g., during the last RTT) instead of an averaged RTT.

Second, the congestion level is measured, not as a fraction of

the maximum queuing delay (e.g., Q/Qmax), but as a fraction

of the minimum RTT observed during the connection lifetime.

To summarize, if YeAH estimates a low level of packet buffer-

ing in the network (∆ < α, where α is a predefined threshold)
and the queuing delay estimate shows a low congestion level

(Q/RTTmin < ϕ, where ϕ is another predefined threshold),

then it behaves exactly as STCP; otherwise, the slow Reno-

like mode is enforced.

In addition to mode switching, YeAH includes two more

mechanisms for improving robustness during congestion

events and enhancing intra-fairness properties. The first mech-

anism, precautionary decongestion, is close in spirit to C-TCP

(Section VI-O), whereby it reduces the congestion window w
by the number of packets ∆ estimated to be buffered in the

network if this number exceeds a predefined threshold ε (i.e.,
w = w − ε · ∆). The second mechanism repeats another idea

presented in C-TCP: the congestion window is restricted to

be a value that is greater than if only Reno rules are applied.

For this purpose, YeAH maintains a reference congestion

window size wreno that varies according to Reno rules. YeAH

furthermore disables the precautionary decongestion if the

reference window is more than the actual congestion window

size.

Experimental evaluation showed that YeAH maintains high

efficiency in high-BDP networks that maintain a network

buffering at a very low level. Additionally, the results con-

firmed that approaches which combine delay-based and loss-

based metrics (e.g., Africa, C-TCP, YeAH) can improve inter-,

intra-, and RTT-fairness properties substantially compared to

338 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

pure loss-based approaches (Reno, HS-TCP, STCP). How-

ever, the performance of YeAH—similar to all delay-based

approaches—can degrade when RTT measurements have sig-

nificant noise.

VII. OPPORTUNITIES FOR FUTURE RESEARCH

Currently we have a situation where there is no single

congestion control approach for TCP that can universally

be applied to all network environments. One of the primary

causes is a wide variety of network environments and different

(and sometimes opposing) network owners’ views regarding

which parameters should be optimized. A number of the

congestion control algorithms from Section VI (HS-TCP, S-

TCP, Africa, TCP-AR, C-TCP, etc.) address this problem

by incorporating at least two sets of rules to control the

transmission rate of a flow (i.e., conventional Reno-like rules

when the network seems to be congested and scalable rules

otherwise).

Some algorithms switch modes based on a currently

achieved transmission rate (e.g., “reactive” HS-TCP and S-

TCP behave as standard Reno while the congestion window

is less then a predefined threshold). In some network environ-

ments, especially when the probability of loss is high, such

switching rules makes algorithms behave in a non-high-speed,

therefore inefficient, mode. Other algorithms (e.g., “proactive”

Vegas, C-TCP, Illinois, YeAH, etc.) use patterns in delay

measurements for switching purposes. If the delay patterns

change because of non-congestion-related factors, for example

because of a re-routing path, these algorithms may suffer from

efficiency and fairness degradation. This happens because such

algorithms do not have the ability to invalidate various internal

parameters during the transmission.

Moreover, the current version of Linux kernel provides

an API for software developers to choose any one of the

supported algorithms for a particular connection. However,

there are not yet the well-defined and broadly-accepted criteria

to serve as a good baseline for appropriately selecting a con-

gestion control algorithm. Additionally, objective guidelines

to select a proper congestion control for a concrete network

environment are yet to be defined.

Another aspect of congestion control not yet fully in-

vestigated is the problem of short-lived flows (e.g., DNS

requests/responses via TCP). The congestion control tech-

niques developed so far do not really work if the connection

lifetime is only one or two RTTs. The only congestion control

parameter useful during such connections is the initial value of

the congestion window. Clearly this value has a direct impact

on the performance of short-lived flows. However, if the initial

value is large enough and the number of short-lived flows in

the network is substantial, the available capacity can easily

be exceeded. Because all TCP flows behave independently, a

new short-lived flow has no idea of the present network state

and can only exacerbate any congestion present in the system.

Thus, we need a mechanism to make new flows aware of the

current network state (e.g., an ability to estimate the available

network path capacity before the actual data transfer). One

potential direction to solving this problem is to maintain global

estimates of network states. The challenge is distinguishing

the independent network states without knowing the exact

topology of the Internet.

There are also questions about the fundamental assumptions

of TCP congestion control. First of all, it was initially assumed

that each TCP flow should be fair to each other. Often,

Jain’s index (see Section II-A) is used as a fairness measure.

However, Jain’s metric was based on user shares [29], but

everything in TCP is based on individual flows. Essentially,

this allows users to game even the “ideally” fair TCP conges-

tion control system and acquire an advantage in the network

resources distribution. For example, if one user opens only

one TCP connection and another opens five, the network

resources will be distributed as one to five. Thus, “ideally”

fair congestion control under current definitions is not really

“ideal.” To summarize, a fundamental research question is how

to enforce fairness on a user-level basis without sacrificing

throughput of individual flows.

Several problems have arisen as user mobility significantly

increased. More and more users now have multiple physical

access channels to the Internet. However, TCP is fundamen-

tally unable to use them simultaneously, for example to speed-

up data transfer (since a TCP connection is identified by the

tuple {srcIP, srcPort, dstIP, dstPort}). A new generation of

the reliable data transfer protocol, SCTP [98], provides basic

support for multi-homing, but problems of efficient channel

utilization, reliable detection of congestion events in separate

and common network paths, and user fairness are still to be

solved.

Recently, a new congestion control-related problem has

appeared on the Internet. For many years, there has been a

belief that the more data packets routers can buffer, the more

effectively network channels are utilized. The best known

recommendation is to set the buffer size equal to a bandwidth-

delay product (BDP) of the connection served [99]. In practice,

router manufacturers and network administrators often choose

maximum values for the bandwidth and delay (or choose

some large buffer size). As a result, instead of providing

fast feedback to a TCP sender by dropping a number of

packets, routers extensively buffer packets making a TCP

sender unaware of an abnormal situation in the network.

Recently there were several reports of the excessive buffering

syndrome (also known as a congestive queueing or buffer

madness event) on the “End-to-end” mailing list [100], where

round-trip delays grew in excess of 5–10 seconds.

VIII. CONCLUSION

In this work we have presented a survey of various ap-

proaches to TCP congestion control that do not rely on any

explicit signaling from the network. The survey highlighted

the fact that the research focus has changed with the devel-

opment of the Internet, from the basic problem of eliminating

the congestion collapse phenomenon to problems of using

available network resources effectively in different types of

environments (wired, wireless, high-speed, long-delay, etc.).

In the first part of this survey, we classified and discussed

proposals that build a foundation for host-to-host congestion

control principles. The first proposal, Tahoe, introduces the

basic technique of gradually probing network resources and

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 339

relying on packet loss to detect that the network limit has

been reached. Unfortunately, although this technique solves

the congestion problem, it creates a great deal of inefficient

use of the network. As we showed, solutions to the efficiency

problem include algorithms that (1) refine the core congestion

control principle by making more optimistic assumptions

about the network (Reno, NewReno); or (2) refine the TCP

protocol to include extended reporting abilities of the receiver

(SACK, DSACK), which allows the sender to estimate the

network state more precisely (FACK, RR-TCP); or (3) intro-

duce alternative concepts for network state estimation through

delay measurements (DUAL, Vegas, Veno).

The second part of the survey is devoted to a group of

congestion control proposals that are focused on environments

where packets are frequently reordered. These proposals show

that in such environments, efficiency can be improved signifi-

cantly by (1) delaying the control actions (TD-FR), or (2) by

undoing previously applied actions if reordering is detected

(Eifel, DOOR), or (3) by refining the network state estimation

heuristic (PR, RR).

In the third part of our survey, we showed that basic host-

to-host congestion control principles can solve not only the

direct congestion problem but also provide a simple traffic

prioritizing feature. Two algorithms examined (Nice and LP),

applying slightly different techniques to achieve the same

goal, have the same aim: to provide an opportunity to send

non-critical data reliably without interfering with other data

transfers.

In the last two sections of the survey, we showed that

technology advances have introduced new challenges for TCP

congestion control. First, we discussed several solutions (the

Westwood-family algorithms) which apply similar techniques

for estimating the last “good” flow rate and using this rate

as a baseline to distinguish between congestion or random

packet loss. Second, we reviewed a group of solutions with

the most research interest over the recent past. These proposals

aim to solve the problem of poor utilization of high-speed

or long-delay network channels by TCP flows. The first

proposals addressing this problem (HS-TCP, STCP, H-TCP)

introduced simple but highly optimistic (aggressive) policies

to probe networks for the available resources. Unfortunately,

such techniques led to the appearance of a number of other

problems, including the intra-, inter-, and RTT-unfairness.

Later proposals employed more intelligent techniques to

make congestion control aggressive only when the network

is considered congestion-free and conservative during a con-

gestion state. Two proposals, BIC and CUBIC, use packet

loss to establish an approximated network resource limit,

which is used as a secondary criterion to estimate the current

network state. Another group of proposals (FAST, Africa,

TCP-AR, C-TCP, Libra, Illinois, Fusion, YeAH) perform this

by relying on secondary delay-based network state estimation

techniques. Unfortunately, there are disadvantages to both of

these approaches, and there is no current consensus in the

research community regarding which approach is superior. Not

surprisingly, they co-exist in the current Internet: C-TCP is

deployed in the Windows-world, and the Linux-world uses

CUBIC.

IX. ACKNOWLEDGMENT

The authors are very much obliged to Erik Kline and Janice

Wheeler for the valuable input on the survey organization and

sleepless nights spent in reading and correcting errors in this

text.

APPENDIX

See Figure 57 for an evolutionary graph of variants of TCP

congestion control.

REFERENCES

[1] J. Postel, “RFC793—transmission control protocol,” RFC, 1981.
[2] C. Lochert, B. Scheuermann, and M. Mauve, “A survey on congestion

control for mobile ad hoc networks,” Wireless Communications and
Mobile Computing, vol. 7, no. 5, p. 655, 2007.

[3] J. Postel, “RFC791—Internet Protocol,” RFC, 1981.
[4] A. Al Hanbali, E. Altman, and P. Nain, “A survey of TCP over ad hoc

networks,” IEEE Commun. Surveys Tutorials, vol. 7, no. 3, pp. 22–36,
3rd quarter 2005.

[5] J. Widmer, R. Denda, and M. Mauve, “A survey on TCP-friendly
congestion control,” IEEE Network, vol. 15, no. 3, pp. 28–37, May/June
2001.

[6] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz,
“A comparison of mechanisms for improving TCP performance over
wireless links,” IEEE/ACM Trans. Netw., vol. 5, no. 6, pp. 756–769,
December 1997.

[7] K.-C. Leung, V. Li, and D. Yang, “An overview of packet reordering
in transmission control protocol (TCP): problems, solutions, and chal-
lenges,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 4, pp. 522–535,
April 2007.

[8] S. Low, F. Paganini, and J. Doyle, “Internet congestion control,” IEEE
Control Syst. Mag., vol. 22, no. 1, pp. 28–43, February 2002.

[9] G. Hasegawa and M. Murata, “Survey on fairness issues in TCP
congestion control mechanisms,” IEICE Trans. Commun. (Special Issue
on New Developments on QoS Technologies for Information Networks),
vol. E84-B, no. 6, pp. 1461–1472, June 2001.

[10] M. Gerla and L. Kleinrock, “Flow control: a comparative survey,” IEEE
Trans. Commun., vol. 28, no. 4, pp. 553–574, April 1980.

[11] J. Nagle, “RFC896—Congestion control in IP/TCP internetworks,”
RFC, 1984.

[12] C. A. Kent and J. C. Mogul, “Fragmentation considered harmful,” in
Proceedings of the ACM workshop on Frontiers in computer commu-

nications technology (SIGCOMM), Stowe, Vermont, August 1987, pp.
390–401.

[13] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion
control in the Internet,” IEEE/ACM Trans. Netw., vol. 7, no. 4, pp.
458–472, August 1999.

[14] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM,
pp. 314–329, 1988.

[15] Z. Wang and J. Crowcroft, “Eliminating periodic packet losses in 4.3–
Tahoe BSD TCP congestion control,” ACM Computer Communication

Review, vol. 22, no. 2, pp. 9–16, 1992.
[16] V. Jacobson, “Modified TCP congestion avoidance algorithm,” email

to the end2end list, April 1990.
[17] M. Allman, V. Paxson, and W. Stevens, “RFC2581—TCP congestion

control,” RFC, 1999.
[18] S. Floyd and T. Henderson, “RFC2582—the NewReno modification to

TCP’s fast recovery algorithm,” RFC, 1999.
[19] S. Floyd, T. Henderson, and A. Gurtov, “RFC3782—the NewReno

modification to TCP’s fast recovery algorithm,” RFC, 2004.
[20] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanov, “RFC2018—TCP

selective acknowledgment options,” RFC, 1996.
[21] M. Mathis and J. Mahdavi, “Forward acknowledgement: refining

TCP congestion control,” in Proc. conference on applications, tech-
nologies, architectures, and protocols for computer communications

(SIGCOMM), New York, NY, USA, 1996, pp. 281–291.
[22] L. Brakmo and L. Peterson, “TCP Vegas: end to end congestion

avoidance on a global Internet,” IEEE J. Sel. Areas Commun., vol. 13,
no. 8, pp. 1465–1480, October 1995.

[23] G. Hasegawa, K. Kurata, and M. Murata, “Analysis and improvement
of fairness between TCP Reno and Vegas for deployment of TCP Vegas
to the Internet,” in Proc. IEEE ICNP, 2000, pp. 177–186.

340 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

RFC 793

Tahoe

Reno

DUAL

VegasFACK NewReno

Vegas+

Veno

Vegas A

Reactive

(loss-based)

TD-FR

RR

Eifel

DOOR

PR

LP

Nice

Westwood
CRBABSE

Westwood+

BR

BBE

Reactive

(loss-based with

bandwidth estimation)

HS-TCP

STCP

FAST

BIC

H-TCP

Hybla

Africa

Compound

Libra

NewVegas

Illinois

YeAH

CUBIC

ARENO

Fusion

Proactive

(delay-based)

Congestion

collapse

Reordering

Low-priority

Wireless

High-speed

TCPW-A

LogWestwood+

Fig. 57. Evolutionary graph of variants of TCP congestion control.

[24] C. P. Fu and S. C. Liew, “TCP Veno: TCP enhancement for trans-
mission over wireless access networks,” IEEE J. Sel. Areas Commun.,
vol. 21, no. 2, February 2003.

[25] K. Srijith, L. Jacob, and A. Ananda, “TCP Vegas-A: Improving the
performance of TCP Vegas,” Computer Communications, vol. 28, no. 4,
pp. 429–440, 2005.

[26] P. Karn and C. Partridge, “Improving round-trip time estimates in
reliable transport protocols,” in Proc. SIGCOMM, 1987.

[27] R. Braden, “RFC1122—Requirements for Internet Hosts - Communi-
cation Layers,” RFC, 1989.

[28] W. Stevens, “RFC2001—TCP Slow Start, Congestion Avoidance, Fast
Retransmit,” RFC, 1997.

[29] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks,” Computer
Networs and ISDN Systems, vol. 17, no. 1, pp. 1–14, 1989.

[30] S. Floyd, “Revisions to RFC 2001,” Presentation to the TCPIMPL
Working Group, August 1998. [Online]. Available: ftp://ftp.ee.lbl.gov/
talks/sf-tcpimpl-aug98.pdf

[31] V. Jacobson, R. Braden, and D. Borman, “RFC1323—TCP Extensions
for High Performance,” RFC, 1992.

[32] J. Sing and B. Soh, “TCP New Vegas: Improving the Performance of
TCP Vegas Over High Latency Links,” in Proc. 4th IEEE International
Symposium on Network Computing and Applications (IEEE NCA05),
2005, pp. 73–80.

[33] V. Paxson, “End-to-end Internet packet dynamics,” SIGCOMM Com-
puter Communication Review, vol. 27, no. 4, pp. 139–152, 1997.

[34] M. Przybylski, B. Belter, and A. Binczewski, “Shall we worry about
packet reordering,” Computational Methods in Science and Technology,
vol. 11, no. 2, pp. 141–146, 2005.

[35] K. Nichols, S. Blake, F. Baker, and D. Black, “RFC2574—definition
of the differentiated services field (DS field) in the IPv4 and IPv6
headers,” RFC, 1998.

[36] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,
“RFC2575—an architecture for differentiated services,” RFC, 1998.

[37] T. Bu and D. Towsley, “Fixed point approximations for TCP behavior
in an AQM network,” in Proc. SIGMETRICS, New York, NY, USA,
2001, pp. 216–225.

[38] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “On designing
improved controllers for AQM routers supporting TCP flows,” in Proc.
IEEE INFOCOM, vol. 3, 2001, pp. 1726–1734.

[39] J. Bennett, C. Partridge, and N. Shectman, “Packet reordering is not
pathological network behavior,” IEEE/ACM Trans. Netw., vol. 7, no. 6,
pp. 789–798, December 1999.

[40] C. M. Arthur, A. Lehane, and D. Harle, “Keeping order: Determining
the effect of TCP packet reordering,” in Proc. Third International
Conference on Networking and Services (ICNS), June 2007.

[41] J. Arkko, B. Briscoe, L. Eggert, A. Feldmann, and M. Handley,
“Dagstuhl perspectives workshop on end-to-end protocols for the future

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 341

internet,” SIGCOMM Computer Communication Review, vol. 39, no. 2,
pp. 42–47, 2009.

[42] R. Ludwig and R. H. Katz, “The Eifel algorithm: making TCP robust
against spurious retransmissions,” SIGCOMM Computer Communica-

tion Review, vol. 30, no. 1, pp. 30–36, 2000.

[43] R. Ludwig and A. Gurtov, “RFC4015—the Eifel response algorithm
for TCP,” RFC, 2005.

[44] F. Wang and Y. Zhang, “Improving TCP performance over mobile ad-
hoc networks with out-of-order detection and response,” in Proceedings
of the 3rd ACM international symposium on mobile ad hoc networking

& computing, New York, NY, 2002, pp. 217–225.

[45] S. Bohacek, J. Hespanha, J. Lee, C. Lim, and K. Obraczka, “TCP-
PR: TCP for Persistent Packet Reordering,” in Proc. International

Conference on Distributed Computing Systems, vol. 23, 2003, pp. 222–
233.

[46] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “RFC2883—An
Extension to the Selective Acknowledgement (SACK),” RFC, 2000.

[47] M. Zhang, B. Karp, S. Floyd, and L. Peterson, “RR-TCP: a reordering-
robust TCP with DSACK,” International Computer Science Institute,
Tech. Rep. TR-02-006, July 2002.

[48] ——, “RR-TCP: a reordering-robust TCP with DSACK,” in Proc. 11th
IEEE International Conference on Network Protocols (ICNP), 2003,
pp. 95–106.

[49] A. Kuzmanovic and E. Knightly, “TCP-LP: low-priority service via
end-point congestion control,” IEEE/ACM Trans. Netw., vol. 14, no. 4,
pp. 739–752, 2006.

[50] D. Clark and W. Fang, “Explicit allocation of best-effort packet delivery
service,” IEEE/ACM Trans. Netw., vol. 6, no. 4, pp. 362–373, 1998.

[51] X. Xiao and L. Ni, “Internet QoS: A big picture,” IEEE Network,
vol. 13, no. 2, pp. 8–18, 1999.

[52] B. Davie, “Deployment experience with differentiated services,” in
Proceedings of the ACM SIGCOMM workshop on Revisiting IP QoS:

What have we learned, why do we care?, New York, NY, 2003, pp.
131–136.

[53] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP Nice: A Mecha-
nism for Background Transfers,” Operating Systems Review, vol. 36,
pp. 329–344, 2002.

[54] A. Kuzmanovic and E. W. Knightly, “TCP-LP: a distributed algorith
for low priority data transfer,” in Proc. IEEE INFOCOM, April 2003.

[55] J.-H. Choi and C. Yoo, “One-way delay estimation and its application,”
Computer Communications, vol. 28, no. 7, pp. 819–828, 2005.

[56] A. Kuzmanovic, E. Knightly, and R. Les Cottrell, “HSTCP-LP: A
protocol for low-priority bulk data transfer in high-speed high-RTT
networks.”

[57] K. Ramakrishnan, S. Floyd, and D. Black, “RFC3168—the addition of
explicit congestion notification (ECN),” RFC, 2001.

[58] M. Gast and M. Loukides, 802.11 wireless networks: the definitive

guide. O’Reilly & Associates, Inc. Sebastopol, CA, USA, 2002,
chapter 2.

[59] H. Balakrishnan, S. Seshan, and R. Katz, “Improving reliable transport
and handoff performance in cellular wireless networks,” Wireless
Networks, vol. 1, no. 4, pp. 469–481, 1995.

[60] A. Bakre and B. Badrinath, “I-TCP: Indirect TCP for Mobile Hosts,”
Department of Computer Science, Rutgers University, Tech. Rep. DCS-
TR-314, 1994.

[61] K. Brown and S. Singh, “M-TCP: TCP for mobile cellular networks,”
SIGCOMM Computer Communication Review, vol. 27, no. 5, pp. 19–
43, 1997.

[62] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “TCP
Westwood: Bandwidth estimation for enhanced transport over wireless
links,” in Proc. ACM MOBICOM, 2001, pp. 287–297.

[63] M. Gerla, M. Y. Sanadidi, and C. E., “Method and apparatus for TCP
with faster recovery,” U.S. Patent 7 299 280, November 20, 2007.

[64] L. A. Grieco and S. Mascolo, “Performance evaluation and comparison
of Westwood+, New Reno and Vegas TCP congestion control,” ACM
Computer Communication Review, vol. 342, April 2004.

[65] R. Wang, M. Valla, M. Sanadidi, B. Ng, and M. Gerla, “Effi-
ciency/friendliness tradeoffs in TCP Westwood,” Proc. Seventh Inter-

national Symposium on Computers and Communications, pp. 304–311,
2002.

[66] R. Wang, M. Valla, M. Sanadidi, and M. Gerla, “Adaptive bandwidth
share estimation in TCP Westwood,” in Proc. IEEE GLOBECOM,
vol. 3, November 2002, pp. 2604–2608.

[67] G. Yang, R. Wang, M. Sanadidi, and M. Gerla, “TCPW with bulk
repeat in next generation wireless networks,” IEEE International

Conference on Communications 2003, vol. 1, pp. 674–678, May 2003.

[68] H. Shimonishi, M. Sanadidi, and M. Gerla, “Improving efficiency-
friendliness tradeoffs of TCP in wired-wireless combined networks,”
in Proc. IEEE ICC, vol. 5, May 2005, pp. 3548–3552.

[69] L. Zhang, S. Shenker, and D. Clark, “Observations on the dynamics of
a congestion control algorithm: The effects of two-way traffic,” ACM
SIGCOMM Computer Communication Review, vol. 21, no. 4, pp. 133–
147, 1991.

[70] N. Samaraweera, “Non-congestion packet loss detection for TCP error
recovery using wireless links,” IEEE Proc. Communications, vol. 146,
no. 4, pp. 222–230, August 1999.

[71] S. Cen, P. Cosman, and G. Voelker, “End-to-end differentiation of
congestion and wireless losses,” IEEE/ACM Trans. Netw., vol. 11,
no. 5, pp. 703–717, 2003.

[72] S. Floyd, “RFC3649—HighSpeed TCP for large congestion windows,”
RFC, 2003.

[73] T. Kelly, “Scalable TCP: improving performance in highspeed wide
area networks,” Computer Communications Review, vol. 32, no. 2,
April 2003.

[74] S. Floyd, HighSpeed TCP and Quick-Start for Fast Long-Distance

HighSpeed TCP and Quick-Start for fast longdistance networks
(slides), TSVWG, IETF, March 2003.

[75] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long-
distance networks,” in Proceedings of PFLDnet, 2004.

[76] D. Leith, “H-TCP: TCP congestion control for high bandwidth-delay
product paths,” IETF Internet Draft, http://tools.ietf.org/html/draft-
leith-tcp-htcp-06, 2008.

[77] C. Caini and R. Firrincieli, “TCP Hybla: a TCP enhancement for
heterogeneous networks,” International J. Satellite Communications

and Networking, vol. 22, pp. 547–566, 2004.

[78] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
for fast, long distance networks,” in Proc. IEEE INFOCOM, vol. 4,
March 2004, pp. 2514–2524.

[79] R. Wang, K. Yamada, M. Sanadidi, and M. Gerla, “TCP with sender-
side intelligence to handle dynamic, large, leaky pipes,” IEEE J. Sel.

Areas Commun., vol. 23, no. 2, pp. 235–248, February 2005.
[80] D. Kliazovich, F. Granelli, and D. Miorandi, “Logarithmic window

increase for TCP Westwood+ for improvement in high speed, long
distance networks,” Computer Networks, vol. 52, no. 12, pp. 2395–
2410, August 2008.

[81] I. Rhee and L. Xu, “CUBIC: a new TCP-friendly high-speed TCP
variant,” SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 64–
74, July 2008.

[82] C. Jin, D. Wei, S. Low, G. Buhrmaster, J. Bunn, D. Choe, R. Cottrel,
J. Doyle, W. Feng, O. Martin, H. Newman, F. Paganini, S. Ravot, and
S. Singh, “FAST TCP: from theory to experiments,” December 2003.

[83] C. Jin, D. Wei, S. Low, J. Bunn, H. Choe, J. Doyle, H. Newman,
S. Ravot, S. Singh, F. Paganini et al., “FAST TCP: From Theory to
Experiments,” IEEE Network, vol. 19, no. 1, pp. 4–11, 2005.

[84] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: motiva-
tion, architecture, algorithms, performance,” IEEE/ACM Trans. Netw.,
vol. 14, no. 6, pp. 1246–1259, 2006.

[85] G. Marfia, C. Palazzi, G. Pau, M. Gerla, M. Sanadidi, and M. Roccetti,
“TCP Libra: Exploring RTT-Fairness for TCP,” UCLA Computer
Science Department, Tech. Rep. UCLA-CSD TR-050037, 2005.

[86] H. Shimonishi and T. Murase, “Improving efficiency-friendliness trade-
offs of TCP congestion control algorithm,” in Proc. IEEE GLOBE-

COM, 2005.

[87] K. Kaneko, T. Fujikawa, Z. Su, and J. Katto, “TCP-Fusion: a hybrid
congestion control algorithm for high-speed networks,” in Proc. PFLD-
net, ISI, Marina Del Rey (Los Angeles), California, February 2007.

[88] R. King, R. Baraniuk, and R. Riedi, “TCP-Africa: an adaptive and
fair rapid increase rule for scalable TCP,” in Proc. IEEE INFOCOM,
vol. 3, March 2005, pp. 1838–1848.

[89] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound TCP
approach for high-speed and long distance networks,” July 2005.

[90] S. Liu, T. Basar, and R. Srikant, “TCP-Illinois: A loss and delay-based
congestion control algorithm for high-speed networks,” in Proc. First
International Conference on Performance Evaluation Methodologies

and Tools (VALUETOOLS), 2006.

[91] A. Baiocchi, A. P. Castellani, and F. Vacirca, “YeAH-TCP: yet an-
other highspeed TCP,” in Proc. PFLDnet, ISI, Marina Del Rey (Los
Angeles), California, February 2007.

[92] S. Floyd, “RFC3742—Limited slow-start for TCP with large conges-
tion windows,” RFC, 2004.

[93] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the perfor-
mance of TCP pacing,” in Proc. IEEE INFOCOM, vol. 3, March 2000,
pp. 1157–1165.

342 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

[94] S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu, “A step toward realistic
performance evaluation of high-speed TCP variants,” in Fourth Interna-
tional Workshop on Protocols for Fast Long-Distance Networks, Nara,
Japan, March 2006.

[95] S. Belhaj, “VFAST TCP: an improvement of FAST TCP,” in Proc.

Tenth International Conference on Computer Modeling and Simulation,
2008.

[96] R. Kapoor, L.-J. Chen, L. Lao, M. Gerla, and M. Y. Sanadidi,
“CapProbe: A simple and accurate capacity estimation technique,” in
Proceedings of SIGCOMM, Portland, Oregon, USA, August/September
2004.

[97] D. Wei, P. Cao, and S. Low, “TCP Pacing Revisited,” in Proceedings
of IEEE INFOCOM, 2006.

[98] A. Caro Jr, J. Iyengar, P. Amer, S. Ladha, and K. Shah, “SCTP:
a proposed standard for robust internet data transport,” Computer,
vol. 36, no. 11, pp. 56–63, 2003.

[99] A. Dhamdhere and C. Dovrolis, “Open issues in router buffer sizing,”
ACM SIGCOMM Computer Communication Review, vol. 36, no. 1, pp.
87–92, 2006.

[100] “End-to-end mailing list,” http://www.postel.org/e2e.htm.

Alexander Afanasyev received his B.Tech. and
M.Tech. degrees in Computer Science from Bauman
Moscow State Technical University, Moscow, Russia
in 2005 and 2007, respectively. In 2006 he received
the medal for the best student scientific project in
Russian universities.
He is currently working towards his Ph.D. degree

in computer science at the University of California,
Los Angeles in the Laboratory for Advanced System
Research. His research interests include network
systems, network security, mobile systems, multi-

media systems, and peer-to-peer environments.

Neil Tilley received his bachelor’s degree from the
University of California, Davis. His current research
interests include parallel and networked systems. He
has been pursuing a Ph.D. in Computer Science at
the University of California, Los Angels since 2009.

Peter Reiher received his B.S. in Electrical Engi-
neering and Computer Science from the University
of Notre Dame in 1979. He received his M.S. and
Ph.D. in Computer Science from UCLA in 1984
and 1987, respectively. He has done research in the
fields of distributed operating systems, network and
distributed systems security, file systems, ubiquitous
computing, mobile computing, and optimistic paral-
lel discrete event simulation. Dr. Reiher is an Ad-
junct Professor in the Computer Science Department
at UCLA.

Leonard Kleinrock received his B.E.E. degree from
City College of New York (CCNY) in 1957 and
received his Ph.D. from Massachusetts Institute of
Technology in 1963. He is a Distinguished Professor
of Computer Science at UCLA and served as chair-
man of the department from 1991 to 1995. He re-
ceived honorary doctorates from CCNY (1997), the
University of Massachusetts, Amherst (2000), the
University of Bologna (2005), Politecnico di Torino
(2005), and the University of Judaism (2007). He
has published more than 250 papers and authored six

books on a wide array of subjects including queuing theory, packet switching
networks, packet radio networks, local area networks, broadband networks,
gigabit networks, nomadic computing, peer-to-peer networks and intelligent
agents. He is a member of the American Academy of Arts and Sciences, the
National Academy of Engineering, an IEEE Fellow, an ACM Fellow, and a
founding member of the Computer Science and Telecommunications Board of
the National Research Council. Among his many honors, he is the recipient of
the CCNY Townsend Harris Medal, the CCNY Electrical Engineering Award,
the Marconi Award, the L.M. Ericsson Prize, the NAE Charles Stark Draper
Prize, the Okawa Prize, the Communications and Computer Prize, NEC C&C,
the IEEE Internet Millennium Award, the UCLA Outstanding Teacher Award,
the Lanchester Prize, the ACM SIGCOMM Award, the Sigma Xi Monie Ferst
Award, the INFORMS Presidents Award, and the IEEE Harry Goode Award.
He was listed by the Los Angeles Times in 1999 as among the “50 People
Who Most Influenced Business This Century.” He was also listed as among the
33 most influential living Americans in the December 2006 Atlantic Monthly.
Kleinrock’s work was further recognized when he received the 2007 National
Medal of Science, the highest honor for achievement in science bestowed by
the President of the United States. This Medal was awarded “for fundamental
contributions to the mathematical theory of modern data networks, for the
functional specification of packet switching which is the foundation of the
Internet Technology, for mentoring generations of students and for leading
the commercialization of technologies that have transformed the world.”

