
RESEARCH ARTICLE

Host Transcriptional Response to Influenza

and Other Acute Respiratory Viral Infections

– A Prospective Cohort Study

Yijie Zhai1,2, Luis M. Franco3, Robert L. Atmar4,5, John M. Quarles6, Nancy Arden6, Kristine

L. Bucasas1, Janet M. Wells5, Diane Niño5, XueqingWang2, Gladys E. Zapata2, Chad

A. Shaw1, JohnW. Belmont1,2,7*, Robert B. Couch5

1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States

of America, 2 Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United
States of America, 3 Laboratory of Systems Biology, Division of Intramural Research (DIR), National Institute
of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, Maryland, United States

of America, 4 Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of
America, 5 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas,

United States of America, 6 Department of Microbial and Molecular Pathogenesis, Texas A&MUniversity
System Health Science Center, College Station, Texas, United States of America, 7 Department of
Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America

* jbelmont@bcm.tmc.edu, jbelmont@bc.edu

Abstract

To better understand the systemic response to naturally acquired acute respiratory viral in-

fections, we prospectively enrolled 1610 healthy adults in 2009 and 2010. Of these, 142

subjects were followed for detailed evaluation of acute viral respiratory illness. We exam-

ined peripheral blood gene expression at 7 timepoints: enrollment, 5 illness visits and the

end of each year of the study. 133 completed all study visits and yielded technically ade-

quate peripheral blood microarray gene expression data. Seventy-three (55%) had an

influenza virus infection, 64 influenza A and 9 influenza B. The remaining subjects had a rhi-

novirus infection (N = 32), other viral infections (N = 4), or no viral agent identified (N = 24).

The results, which were replicated between two seasons, showed a dramatic upregulation

of interferon pathway and innate immunity genes. This persisted for 2-4 days. The data

show a recovery phase at days 4 and 6 with differentially expressed transcripts implicated

in cell proliferation and repair. By day 21 the gene expression pattern was indistinguishable

from baseline (enrollment). Influenza virus infection induced a higher magnitude and longer

duration of the shared expression signature of illness compared to the other viral infections.

Using lineage and activation state-specific transcripts to produce cell composition scores,

patterns of B and T lymphocyte depressions accompanied by a major activation of NK cells

were detected in the acute phase of illness. The data also demonstrate multiple dynamic

gene modules that are reorganized and strengthened following infection. Finally, we exam-

ined pre- and post-infection anti-influenza antibody titers defining novel gene expression

correlates.
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Author Summary

Gene expression profiling of human blood cells might uncover the complex dynamics of

host response to ARIs such as pandemic H1N1. However, only limited data are available

on the system level response to naturally acquired infections. To understand the molecular

bases and network orchestration of host responses, we prospectively enrolled 1610 healthy

adults in the fall of 2009 and 2010, followed the subjects with influenza-like illness (N =

133) for 3 weeks, and examined changes in their peripheral blood gene expression. We dis-

covered distinct phases of the host response spanning 6 days after infection, and identified

genes that differentiate influenza from non-influenza virus infection. We then moved the

focus from gene expression patterns to gene co-expression patterns. We detected gene

modules that are related to core features of regulatory networks and found a substantial in-

crease in the connectivity of the influenza responsive genes. Finally, we identified a molec-

ular signature that correlated significantly with antibody response to pH1N1 virus. Taken

together, our findings offer insights into the molecular mechanisms underlying host re-

sponse to influenza virus infection, and provide a valuable foundation for investigation of

the global coordinated responses to ARIs. Molecular correlates of the immune response

suggest targets for intervention and improved vaccines.

Introduction

Influenza viruses are highly contagious respiratory pathogens that cause about three to five

million cases of severe illness, and about 250 000 to 500 000 deaths worldwide each year [1]. In

the US, influenza affects an estimated 5% to 20% of the population yearly [2], and is responsi-

ble for an average of 3.1 million hospitalized days, and 31.4 million outpatient visits. Direct

medical costs are estimated to be at least $10.4 billion annually [3]. A new influenza virus ap-

peared in Mexico and the United States in April 2009 and caused extensive outbreaks of influ-

enza in the population. The virus was promptly identified as a swine-like influenza A (H1N1)

virus and shown to be a triple reassortant virus containing genes from swine, human, and

avian influenza A viruses [4]. Pandemic swine influenza (pH1N1) peaked in the United States

in October 2009, with minimal activity during the subsequent winter period of influenza and

reappeared during the winter of 2010–2011. Our recent studies showed that preexisting anti-

body to the seasonal A/H1N1 virus reduced pH1N1 influenza virus infection and illness in

healthy young adults [5, 6].

Complex coordinated responses are triggered in the host following an acute respiratory viral

infection. Many aspects of host-pathogen interactions after influenza infection have been stud-

ied [7–12]. Blood transcriptome profiling provides a ‘snap shot’ of the systematic host immune

networks, as blood circulates throughout the body, carrying naive and educated immune cells,

whose transcriptional activity can be influenced by environmental stimuli such as a respiratory

virus illness [13]. Transcriptional signatures have been described in the context of ARIs caused

by different etiological agents, including influenza, rhinovirus (HRV), and respiratory syncytial

virus (RSV), as well as by influenza vaccination [14–23]. These studies have shown that blood

gene expression signatures are distinctive for individuals with infection-induced ARI. ARI gene

expression signatures show highly significant enrichment for transcripts encoding proteins in-

volved in interferon signaling and pattern recognition induced innate immunity responses [14,

16].

Transcriptome analysis in influenza-infected mouse lungs has revealed distinct phases of

the host response extending over at least a two month period after infection [20]. In previously
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reported studies in humans with ARI, transcriptional profiling was only performed on RNA

samples collected either at a single timepoint of peak symptoms, or within the initial 2 to 3

days of hospitalization. The dynamic changes over the entire time course of naturally acquired

infection and illness in humans are less clear. Experimentally induced influenza infection has

been used to obtain information about changes in temporal gene expression [14, 21]. Huang

et al made important observations about the differences in response between asymptomatic

and symptomatic individuals. These studies, however, were limited by sample size and could

not contrast other common respiratory virus agents with influenza. Menachery et al reported a

contrasting gene signature between pH1N1 and coronavirus infected airway epithelial cells

[22]. The genes they investigated were limited to interferon-stimulated genes. Studies to char-

acterize the temporal dynamics of the systemic transcriptional response to ARI in humans are

necessary to better understand the biology of infection, the host response and occurrence of

disease. Furthermore, serum antibody responses to influenza virus infection have large inter-

individual variation [5, 6]. Several influenza vaccine studies showed genes that play a role in an-

tigen presentation and T cell recognition are associated with influenza vaccine-induced anti-

bodies [19, 23–25]. Whether the same sets of genes contribute to the variation in antibody

response to naturally acquired influenza infection is not known.

Approaches to uncover the modular organization and function of transcriptional systems

have shown promise in facilitating functional interpretation and discovering biological net-

works. These models have been successfully applied in several biological contexts [26–28].

Weighted Gene Co-expression Network Analysis (WGCNA) group sets of genes with similar

transcriptional patterns together to form a transcriptional module. Since the probability for

multiple transcripts to follow a complex pattern of expression across all the samples by chance

is low, such sets of genes should constitute coherent and biologically meaningful transcription-

al units [29, 30]. Recently developed differential co-expression analysis goes beyond identifica-

tion of differentially expressed genes (DEGs) or pathways to identify differential co-expression

pattern [31–33]. Under the premise that pairwise correlations between gene expression levels

result from regulatory relationships among the genes, major changes in co-expression patterns

between two conditions may indicate dysfunctional regulatory systems in disease.

The clinical, virological and immunological results of our prospective study of ARI in a

young adult population that included influenza and other known pathogenic viruses have been

reported [5, 6]. Using genome wide transcript profiling we provide evidence in this report for

three distinct phases of response among those persons with ARI: a) acute systemic activation of

the innate response; b) recovery with extensive cell repair and proliferation; and 3) restoration

of baseline gene expression patterns. These results provide new transcriptional correlates for

the evolution of ARI. The results indicate a central role for interferon and innate immunity in

the acute phase of the illness. The recovery phase has not been well characterized previously

and suggests new avenues for understanding the restoration of biological system equilibrium

after infection and illness.

Results

Etiology and demographics of the subjects with ARIs

1610 healthy adults were prospectively enrolled before the influenza seasons of 2009–10 and

2010–11. Of these, 142 (8.8%) who subsequently developed a moderate influenza-like illness

were enrolled for follow up; none met the criteria for severe respiratory disease. Of the 142 en-

rolled ill subjects, 133 reported for all scheduled study visits and had technically adequate gene

expression data (vide infra). Table 1 summarizes the infection and demographic data for these

133 subjects. Viral culture and RT-PCR for respiratory viruses indicated that 64 were infected
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with influenza A virus, and 9 were infected with influenza B virus. Infection with a rhinovirus,

respiratory syncytial virus (RSVA/RSVB), coronavirus (OC43, 229E, NL63, HKU1), or entero-

virus (Entero) was also detected in a number of the subjects with influenza-like symptoms.

There were 24 individuals with an influenza-like illness for whom no virus was identified. The

subjects were predominantly European-Americans (80.5%), consistent with the study

area population.

Global gene expression profile for influenza infection in adults

We analyzed the global gene expression profiles of peripheral whole blood in the 133 adults

with an ARI at up to seven time points before, during, and after the occurrence of illness (Fig

1A and 1B). Because the subjects were enrolled prospectively we had control samples taken

from the same subject before occurrence of illness (baseline samples). A total of 890 microarray

analyses were completed. Samples which failed QC were excluded from the analyses (N = 10),

leaving 880 high quality arrays from which the subsequent analysis was conducted. Differential

expression analyses for each day, compared to the baseline were then stratified by viral agent.

We first analyzed the gene expression profiles in 49 subjects from whom an influenza virus

Table 1. Viral infections and demographic information of the 133 subjects with influenza-like illness enrolled at Texas A&MUniversity in Fall 2009
and 2010 from whommicroarray expression data were available.

2009 Cohort 2010 Cohort Total % of Subjects with ARI

Infections

Influenza A 24 21 45 33.8

Influenza A + HRV 6 10 16 12.0

Influenza A + RSVB 0 1 1 <1

Influenza A + OC43 0 1 1 <1

Influenza A + 229E 1 0 1 <1

Influenza B 0 4 4 3.0

Influenza B + HRV 0 5 5 3.8

HRV 19 6 25 18.8

HRV + RSVA 0 1 1 <1

HRV + RSVB 0 1 1 <1

HRV + NL63 0 1 1 <1

HRV + HKU1 2 1 3 2.3

HRV + Entero 1 0 1 <1

RSVA 1 0 1 <1

NL63 0 1 1 <1

HKU1 1 0 1 <1

Entero 1 0 1 <1

Unknown 17 7 24 18.0

Ethnicity/Race

White 58 49 107 80.5

Indian-American 10 6 16 12.0

African-American 5 3 8 6.0

Asian 0 2 2 1.5

*Influenza A = Influenza Virus type A; Influenza B = Influenza Virus type B; HRV = Human rhinovirus; RSVA = Respiratory Syncytial Virus type A;

RSVB = Respiratory Syncytial Virus type B; OC43 = Human coronavirus OC43; 229E = Human coronavirus 229E; NL63 = Human coronavirus NL63;

HKU1 = Human coronavirus HKU1; Entero = Enterovirus; Unknown: Our tests did not detect one of the viruses sought.

doi:10.1371/journal.ppat.1004869.t001
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infection was identified. The 24 subjects with influenza A virus infection in the 2009 cohort

were used as a discovery group, and the consistency of differential expressed genes was assessed

in another 21 influenza A virus infected subjects and 4 influenza B virus infected subjects in

the 2010 cohort as a validation group. After performing significance testing with corrections

for multiple tests, we detected highly significant expression differences in thousands of tran-

scripts during the period of influenza illness (days 0, 2, 4, 6) in both discovery and validation

groups. In contrast, once the subject had clinically recovered there were no significant expres-

sion differences detected (day 21, and spring samples).

A robust and dynamic host transcriptional response to influenza virus
infection still present after cell composition changes were taken into
account

Since blood is a complex tissue, changes in transcript abundance can be attributed to either

transcriptional regulation or changes in the composition of leukocyte populations. To “decon-

volute” these two phenomena, we computed a cell score derived from the expression profile of

each sample using a composite of lymphocyte, neutrophil or monocyte specific transcripts. We

found that lymphocyte lineagespecific transcripts were depressed in the acute phase of influen-

za virus infection, increased above baseline in the recovery phase, and then returned to baseline

on day 21 (Fig 2A). An opposite change in neutrophil score was observed (Fig 2B). Expression

levels of monocyte markers were increased in the acute phase and returned to baseline on day

6 (Fig 2C). These changes in established lineage markers of the broad cell populations probably

track the changes in cell composition in the peripheral blood. The changes in lymphocyte and

neutrophil proportions we predicted “in silico” are consistent with the changes described in

Fig 1. Study design and analysis scheme. (A) 1610 individuals were enrolled before the influenza season
in 2009 and 2010. Peripheral blood samples and nasal secretion samples were collected from each subject
at the beginning of enrollment for influenza antibody tests. Genomic DNA and whole blood RNA were
obtained from blood samples. Those subjects who became ill with influenza-like symptoms (N = 142) were
seen within 48 hours of onset and 2, 4, and 6 days later for repeat evaluation, specimen collections, and
medical care and 21 days later for collection of convalescent specimens. Nasal wash samples were collected
for virus detection on day 0 and day 2. 1509 of the enrolled subjects completed the study and were called
back in the spring of the next year for collecting whole blood RNA, serum and nasal wash samples. (B)
Sample size and data generation.

doi:10.1371/journal.ppat.1004869.g001
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Fig 2. A robust and dynamic host transcriptional response to influenza virus infection. (A-C) Peripheral blood cell composition was altered by
influenza virus infection. Cell scores for (A) lymphocyte, (B) neutrophil and (C)monocyte were computed for each sample from influenza-infected individuals,
by taking the PC1 of normalized expression levels of the lineage-specific gene sets (See S3 Table for the list of lineage specific genes). One-way analysis of
variance (ANOVA) was used to determine whether there are significant differences between each illness day and baseline. (D-E)Heatmaps demonstrating
the time course of the genes showing the most significant pattern of differential expression compared to baseline in patients with influenza virus and/or
rhinovirus infection. (D) 2009 Cohort, (E) 2010 Cohort. Each column corresponds to an individual RNA sample and each row represents the mean-centered,
normalized expression values for each of the differentially expressed genes (BH-corrected P values <0.05, |log2 FC| >1 in both 2009 and 2010 cohorts).
Samples were grouped by day and subjects were grouped by infections status (influenza virus infection group includes influenza A, influenza B, influenza A
+rhinovirus and influenza B +rhinovirus infections). The transcript order was determined by hierarchical clustering and the order was the same in the two
heatmaps. There are three clear phases of transcriptional regulation in response to infection– 1) an acute phase seen on the first day of illness that persisted
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experimental human challenges with influenza virus [34, 35]. Changes in lineage composition

could explain part of the differential gene expression observed during the infection. We there-

fore recomputed the differential expression analysis using the lymphocyte and neutrophil

scores as covariates in a series of contrasts focusing on days 0 to day 6 compared to baseline.

Although the p-values were slightly increased, the rank ordering of genes showing highly spe-

cific differential expression was nearly identical (Tables 2–5). This indicates that while cell

composition does affect estimates of total transcript abundance, the most important compo-

nent of the differential expression arises from changes in transcript abundance within those

populations. On a global scale, changes in the host transcriptomes were observed from the first

day of illness through day 6 evaluations. A total of 4,706 differentially expressed genes (DEGs)

(BH-corrected P values<0.05 in both cohorts) were identified over the course of 6 days of in-

fluenza virus illness (S1A Fig). 2119 transcripts, corresponding to 1421 genes, were responsive

to the infectious stimulus on day 0 (day 1 or 2 of illness). The number of DEGs peaked at day

4. On day 6, only a small number (N = 46) of DEGs were newly detected (i.e. DEGs that first

appeared on day 6 and were not detected at any time before). 738 out of the 1140 DEGs with |

log2 Fold-Change|> 0.3 were first detected on day 0 (S1B Fig).

Subjects with influenza virus infection showed a characteristic three-
phase response at the level of the transcript profile

We plotted a heatmap of the 202 transcripts (S1 Table) showing the most significant pattern of

differential expression compared to baseline (Fig 2D and 2E), and determined the transcript

order by hierarchical clustering. These genes fall into two clusters: 1) genes that were regulated

in the acute phase of influenza virus infection, and 2) genes that became differentially expressed

at a later time-point (recovery phase). All individuals showed complete recovery to the baseline

transcript profile by day 21 after onset of illness. In the acute phase, there was a very large in-

crease in components of the interferon pathway and innate immunity (e.g. IFI44L, IFIT1,

MX1, IFITM3, OAS2, IFI27 and IFIT3, see Table 2), as well as decreased expression of genes in-

volved in translational elongation and protein biosynthesis (e.g. RPS4X, RPS18, RPS6, RPS8

and RPL5, see Table 3). This was most intense on the first day of illness and continued for 2–4

days. This phase was followed by a characteristic recovery phase in which there was a transition

to genes involved in antigen binding and antibody secretion (IGJ, LOC652694, IGLL1 and

MZB1, see Table 4) and genes regulating cell morphogenesis (STRADB, DPYSL5, EPB42, LST1

andMAP1S, see Table 5). Inter-individual variations in the magnitude of transcriptional re-

sponse at each phase were observed (S2 Fig), and greater variations were seen at the times

when the transcriptional responses were strong. The expression profiles for individuals infected

with Influenza A and B virus were indistinguishable. Likewise individuals infected with both

influenza and rhinovirus were not different from those infected with influenza virus alone. No

statistically significant differences in expression of any transcripts were identified that marked

the mixed infection group.

for 2–4 days; 2) a recovery phase that peaked on day 4 and day 6 after virus infection; 3) restoration of baseline gene expression patterns by day 21. A full list
of the 202 transcript probes in the heatmaps and their corresponding genes is provided in S1 Table. (F-G) Expression changes of (F) IFI27 and (G) PI3
discriminate between infections with influenza virus and rhinovirus. Fold Changes of IFI27 and PI3 were measured in paired day 0 –baseline samples from
patients with ARI. Subjects were grouped by infections status. Enterovirus, HKU1, NL63, and RSV infections were grouped together as “Other” virus. One-
way ANOVA was used to determine whether there are any significant differences between influenza virus infection groups (Grey) and each non-influenza
virus group (Black). ***, P <0.001; **, P <0.005; *, P <0.01.

doi:10.1371/journal.ppat.1004869.g002
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A shared host transcriptional response to acute respiratory viral
infections

Although there were significant differences in gene expression between the non-influenza virus

infection group (e.g. HRV, RSV, coronavirus and enterovirus) and the influenza group (Fig 2D

and 2E, S3 Fig), the patterns of the three-phase transcriptional responses were nearly identical,

and the differential expression was largely explained by differences in the magnitude of effect.

This indicates that the host response to acute respiratory viral infection, despite the distinctive

biology of these diverse viruses, is largely conserved. By performing differential expression

analysis comparing influenza virus and rhinovirus infection group (Criteria for DEGs were

BH-corrected P values< 0.0001), we found that comparing to rhinovirus, influenza virus infec-

tion and illnesses induced a larger magnitude and longer duration of activation of interferon

signaling pathway, and a greater depression in translation and protein biosynthesis (S4A and

S4B Fig, S2 Table). Some of the DEGs encode kinase or kinase inhibitor (e.g.MAPK1, PAK2,

CDKN1A and CDKN1B, S4C Fig). Several protein phosphatase encoding genes were also dif-

ferentially expressed, such as PPM1M, PPP2R4, PPP3CA, etc. However, the magnitudes of dif-

ferential expression in these genes were small and there were only two transcripts showed |log2
fold-change|>1.5: IFI27 was consistently upregulated in the influenza virus group on days 0–6

but not upregulated in the rhinovirus or other infection groups (Fig 2F); in addition, PI3 was

Table 2. Top upregulated genes in the acute phase of influenza virus infection.

Gene Symbol Gene Name logFC adj.P Value After deconvolution

logFC adj.P Value

IFI44L interferon-induced protein 44-like 4.21 1.80E-35 4.18 6.29E-31

ISG15 ISG15 ubiquitin-like modifier 4.47 6.51E-26 4.14 9.86E-21

IFIT1 interferon-induced protein with tetratricopeptide repeats 1 4.13 5.54E-23 4.13 8.72E-22

IFI27 interferon, alpha-inducible protein 27 3.08 5.09E-12 4.09 2.27E-10

IFITM3 interferon induced transmembrane protein 3 3.70 1.93E-22 3.99 2.21E-15

RSAD2 radical S-adenosyl methionine domain containing 2 4.12 1.14E-25 3.80 2.81E-23

LY6E lymphocyte antigen 6 complex, locus E 3.42 2.44E-29 3.73 2.47E-26

MX1 myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (mouse) 3.65 2.10E-24 3.63 3.97E-22

IFIT3 interferon-induced protein with tetratricopeptide repeats 3 3.73 3.18E-25 3.62 8.81E-22

IFI6 interferon, alpha-inducible protein 6 3.48 8.64E-24 3.58 1.54E-23

HERC5 hect domain and RLD 5 3.86 1.48E-22 3.42 5.50E-19

EPSTI1 epithelial stromal interaction 1 (breast) 3.47 1.96E-26 3.30 2.71E-24

IFIT2 interferon-induced protein with tetratricopeptide repeats 2 3.51 4.98E-21 3.19 1.11E-18

IFI44 interferon-induced protein 44 3.29 2.44E-29 3.19 2.09E-24

OAS2 2'-5'-oligoadenylate synthetase 2, 69/71kDa 3.37 1.25E-27 3.07 2.81E-23

OAS1 2'-5'-oligoadenylate synthetase 1, 40/46kDa 3.16 1.14E-25 2.88 2.85E-20

IRF7 interferon regulatory factor 7 3.20 6.51E-26 2.86 4.14E-19

OAS3 2'-5'-oligoadenylate synthetase 3, 100kDa 3.24 5.86E-25 2.80 9.28E-21

OASL 2'-5'-oligoadenylate synthetase-like 3.16 5.41E-20 2.72 5.75E-16

MT1A metallothionein 1A 3.24 1.21E-19 2.71 7.04E-13

XAF1 XIAP associated factor 1 2.80 1.78E-31 2.68 1.10E-24

GBP1 guanylate binding protein 1, interferon-inducible 2.95 6.14E-22 2.64 2.15E-14

STAT2 signal transducer and activator of transcription 2, 113kDa 2.49 1.39E-22 2.36 2.99E-15

LAP3 leucine aminopeptidase 3 2.44 3.73E-21 2.28 5.16E-14

GBP5 guanylate binding protein 5 2.48 5.77E-20 2.11 4.16E-12

doi:10.1371/journal.ppat.1004869.t002
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consistently downregulated in the influenza-infected individuals but not in the other groups

(Fig 2G). The fold changes of IFI27 and PI3 transcript levels comparing the first day of illness

with baseline were also measured by RT-qPCR, and were consistent with the microarray result

(S5 Fig).

We also examined the pattern of gene expression in the group of individuals reporting

symptoms of acute viral respiratory illness but who were negative in PCR or culture tests for

the tested viral pathogens. These individuals had gene expression profiles nearly identical to

those observed in the known virus groups, including the acute and recovery phases of gene ex-

pression. The transcript levels of IFI27 and PI3 in these subjects were more similar to the non-

influenza infection cases. Within this group there was some variability in the magnitude of the

transcriptional responses, including large variation in IFI27 and PI3, perhaps suggesting either

additional etiologic heterogeneity or incomplete sensitivity of the culture and PCR assays (S3

Fig).

Three subjects had a systemic expression profile consistent with activation of interferon sig-

naling on the day of enrollment (Fig 2D). One of these individuals had persistent elevations of

these transcripts throughout the study. One subject reporting illness symptoms did not have

the signature of acute systemic response on day 0 but had the typical signature by day 4. The re-

maining 4 subjects showed ‘off-cycle’ activation profiles consistent with additional intercurrent

infections with or without severe symptoms.

Table 3. Top downregulated genes in the acute phase of influenza virus infection.

Gene Symbol Gene Name logFC adj.P Value After deconvolution

logFC adj.P Value

PI3 peptidase inhibitor 3, skin-derived -1.51 6.40E-10 -2.11 4.09E-09

ALPL alkaline phosphatase, liver/bone/kidney -0.87 1.41E-03 -1.18 4.73E-04

RPL3 ribosomal protein L3 -1.30 9.50E-14 -1.05 4.73E-09

EIF3L eukaryotic translation initiation factor 3, subunit L -1.12 3.25E-15 -1.02 5.08E-13

RPS4X ribosomal protein S4, X-linked -1.21 5.55E-13 -1.01 1.18E-06

RPL23AP64 ribosomal protein L23a pseudogene 64 -0.85 1.39E-04 -1.00 6.99E-04

RPS8 ribosomal protein S8 -1.16 2.13E-13 -0.99 1.80E-09

MME membrane metallo-endopeptidase -0.89 6.06E-07 -0.99 1.07E-05

RPL5 ribosomal protein L5 -1.07 6.26E-13 -0.98 1.54E-08

TXNDC12 thioredoxin domain containing 12 (endoplasmic reticulum) -1.03 1.68E-20 -0.98 1.45E-16

RPS3 ribosomal protein S3 -1.20 3.87E-15 -0.96 3.11E-08

RPS27A ribosomal protein S27a -0.95 4.55E-10 -0.96 1.93E-07

RPS5 ribosomal protein S5 -1.24 8.98E-14 -0.93 1.80E-09

EMR3 egf-like module containing, mucin-like, hormone receptor-like 3 -0.87 1.95E-12 -0.93 7.91E-09

LOC729021 hypothetical protein LOC729021 -0.51 3.25E-04 -0.93 1.56E-06

RPL7A ribosomal protein L7a -0.94 5.26E-11 -0.90 1.68E-10

SGK1 serum/glucocorticoid regulated kinase 1 -1.11 1.17E-15 -0.88 9.67E-08

EIF4B eukaryotic translation initiation factor 4B -1.07 8.65E-15 -0.87 4.71E-14

CMTM2 CKLF-like MARVEL transmembrane domain containing 2 -0.52 8.21E-05 -0.87 1.73E-06

EEF1G eukaryotic translation elongation factor 1 gamma -1.10 5.64E-16 -0.86 4.25E-08

RPL4 ribosomal protein L4 -1.09 1.09E-14 -0.86 1.68E-07

RPS6 ribosomal protein S6 -1.09 4.48E-12 -0.86 6.21E-07

RPS28 ribosomal protein S28 -0.80 1.42E-03 -0.86 1.39E-03

KLRB1 killer cell lectin-like receptor subfamily B, member 1 -0.71 6.90E-09 -0.85 1.84E-06

RPL14 ribosomal protein L14 -0.47 5.71E-04 -0.85 8.26E-07

doi:10.1371/journal.ppat.1004869.t003
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Expression changes in lineage and activation state markers reveal
increased activated NK cells during the acute phase of influenza
infection

We used previously published lineage and activation state marker sets to compute cell type

scores for each sample (S3 Table). Lineage specific transcripts lists were obtained and then

mapped on to the Illumina array probe identifications. The expression levels of the lineage-spe-

cific markers on each day were computed by taking the average of all the influenza-infected in-

dividuals. The changes in the expression levels are likely influenced by both the proportion of

the cells in the peripheral blood as well as the transcriptional state of those cells. In the acute

phase of infection there was a slight depression of lineage markers for NK cells, followed by up-

regulation of the marker gene GPR56 on day 2 that became stable by day 21 and thereafter (Fig

3A). The same procedure was used to compute a score for the activation status. Notably, NK

cells showed very dramatic increases in activation state during the acute infection but then the

activation signature rapidly resolves in the convalescent phase as the infection subsided (Fig

3B). The changes observed in the 2009 cohort were replicated in the 2010 cohort. Our findings

of the dramatic activation of NK cells during the early phase are consistent with the

Table 4. Top upregulated genes in the recovery phase of influenza virus infection.

Gene
Symbol

Gene Name logFC adj.P
Value

After
deconvolution

logFC adj.P
Value

IFI27 interferon, alpha-inducible protein 27 2.80 1.74E-14 2.84 6.01E-12

IGJ immunoglobulin J polypeptide, linker protein for immunoglobulin alpha and mu
polypeptides

1.35 3.36E-05 1.51 7.66E-05

IGLL1 immunoglobulin lambda-like polypeptide 1 1.16 5.71E-05 1.45 3.72E-05

LOC652694 similar to Ig kappa chain V-I region HK102 precursor 1.40 4.45E-05 1.42 5.30E-04

TXNDC5 thioredoxin domain containing 5 (endoplasmic reticulum) 0.98 2.62E-04 1.06 1.55E-04

LY6E lymphocyte antigen 6 complex, locus E 0.95 1.02E-07 0.98 8.20E-06

EPSTI1 epithelial stromal interaction 1 (breast) 0.87 2.78E-06 0.87 1.55E-04

HSP90B1 heat shock protein 90kDa beta (Grp94), member 1 0.82 8.25E-06 0.73 6.36E-04

MZB1 marginal zone B and B1 cell-specific protein 0.56 3.24E-03 0.72 3.28E-04

RGS18 regulator of G-protein signaling 18 0.47 1.14E-03 0.62 4.03E-04

XBP1 X-box binding protein 1 0.68 1.45E-05 0.59 3.83E-04

SEC11C SEC11 homolog C (S. cerevisiae) 0.47 7.85E-05 0.56 5.05E-05

ITGB1 integrin beta1(fibronectin receptor) 0.62 2.97E-06 0.54 3.23E-04

IFIT1 interferon-induced protein with tetratricopeptide repeats 1 0.35 2.44E-02 0.53 1.53E-02

IFI44L interferon-induced protein 44-like 0.54 1.01E-03 0.52 2.96E-03

IFI44 interferon-induced protein 44 0.48 5.05E-04 0.49 7.68E-04

IL8 interleukin 8 0.42 1.91E-04 0.49 4.94E-04

GZMA granzyme A (granzyme 1, cytotoxic T-lymphocyte-associated serine esterase 3) 0.60 1.23E-05 0.48 1.31E-03

ARGLU1 arginine and glutamate rich 1 0.50 1.12E-05 0.48 3.57E-04

ADD3 adducin 3 (gamma) 0.49 3.75E-05 0.48 9.41E-04

PSMA6 proteasome (prosome, macropain) subunit, alpha type, 6 0.32 9.41E-04 0.47 5.89E-04

TMEM123 transmembrane protein 123 0.50 1.70E-05 0.46 6.62E-04

EVI2A ecotropic viral integration site 2A 0.39 6.90E-04 0.45 1.50E-03

ZRANB2 zinc finger, RAN-binding domain containing 2 0.45 2.36E-05 0.43 8.58E-04

ITM2C integral membrane protein 2C 0.41 2.09E-03 0.43 2.50E-03

doi:10.1371/journal.ppat.1004869.t004
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observations from influenza-infected mouse lungs [20]. These data show an intense activation

of NK cells during the acute phase of infection.

Functional annotation and classification of differentially expressed
genes induced by ARIs

After the gene expression status of the peripheral blood cells of influenza-infected individuals

were profiled over the time course of illness, we then searched for molecular, cellular and bio-

logical processes that best correspond to the host gene expression responses. For this, we ana-

lyzed the functional annotation of differentially expressed genes using DAVID gene ontology.

Analyses of significant differentially expressed genes on day 0 and day 2 (BH-corrected P value

<0.05 in both discovery and validation cohorts) revealed that the upregulated genes were

mostly enriched in defense response, response to other organism, response to virus, innate im-

mune response, positive regulation of cytokine production, and positive regulation of tumor

necrosis factor production (Fig 4A), while the downregulated genes were involved in transla-

tional elongation, translation, cellular protein metabolic process, rRNA binding, and cellular

macromolecule biosynthetic process (Fig 4B). The functional interpretation of differentially

Table 5. Top downregulated genes in the recovery phase of influenza virus infection.

Gene Symbol Gene Name logFC adj.P
Value

After
deconvolution

logFC adj.P
Value

LOC100131726 HCC-related HCC-C11_v3 -1.49 1.04E-06 -1.33 1.41E-04

RNF213 ring finger protein 213 -1.41 6.96E-06 -1.24 5.44E-04

RN28S1 RNA, 28S ribosomal 1 -1.14 1.03E-03 -1.07 6.48E-03

STRADB STE20-related kinase adaptor beta -1.12 3.81E-05 -0.92 3.03E-03

EPB42 erythrocyte membrane protein band 4.2 -1.02 1.49E-06 -0.89 2.37E-04

TPRA1 transmembrane protein, adipocyte associated 1 -0.98 1.47E-05 -0.84 7.78E-04

DPYSL5 dihydropyrimidinase-like 5 -0.92 2.02E-05 -0.80 1.02E-03

TESC tescalcin -0.89 8.54E-06 -0.80 5.61E-04

ADIPOR1 adiponectin receptor 1 -1.01 5.87E-06 -0.77 1.03E-03

SPRYD3 SPRY domain containing 3 -0.90 8.48E-05 -0.77 2.19E-03

GYPC glycophorin C (Gerbich blood group) -0.81 4.39E-05 -0.73 2.03E-03

CSDA cold shock domain protein A -0.85 7.02E-05 -0.71 3.59E-03

ASCC2 activating signal cointegrator 1 complex subunit 2 -0.83 6.55E-05 -0.71 3.52E-03

UBXN6 UBX domain protein 6 -0.82 1.18E-05 -0.71 9.75E-04

MAP1S microtubule-associated protein 1S -0.81 1.10E-06 -0.71 1.51E-04

TSPAN5 tetraspanin 5 -0.79 7.95E-07 -0.70 1.33E-04

NECAP2 NECAP endocytosis associated 2 -0.74 2.70E-06 -0.69 1.67E-04

SLC25A37 solute carrier family 25, member 37 -1.00 4.95E-06 -0.68 1.14E-03

LOC729021 hypothetical protein LOC729021 -0.95 2.62E-07 -0.67 6.45E-05

MUC6 mucin 6, oligomeric mucus/gel-forming -0.76 2.09E-05 -0.66 9.70E-04

HAGH hydroxyacylglutathione hydrolase -0.73 1.01E-04 -0.65 3.34E-03

TAGLN2 transgelin 2 -0.79 7.76E-07 -0.64 1.51E-04

SLC4A1 solute carrier family 4, anion exchanger, member 1 (erythrocyte membrane protein band 3,
Diego blood group)

-0.76 2.41E-04 -0.62 9.94E-03

LST1 leukocyte specific transcript 1 -0.82 4.22E-06 -0.60 7.71E-04

SORL1 sortilin-related receptor, L(DLR class) A repeats containing -0.75 7.97E-07 -0.60 4.85E-05

doi:10.1371/journal.ppat.1004869.t005
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expressed genes in the recovery phase (day 4 and 6) is much less clear: there are a range of pro-

tein metabolic process and regulation of ubiquitin-protein ligase activity functions represented

in the upregulated genes (Fig 4A), and actin cytoskeleton organization functions associated

with the downregulated genes (Fig 4B), but how these changes may be integrated will require

further investigation. We observed a higher level of gene enrichment in the interferon signaling

and the tumor necrosis factor production pathway in the acute phase of influenza virus infec-

tion compared to rhinovirus infection.

Fig 3. There is little change in the expression of NK cell lineagemarkers (A), but a significant increase
in NK cell lineage activation genes (B) during the course of influenza. Lineage specific transcripts lists
were obtained (S3 Table) and then mapped on to the Illumina array probe identifications. The fold changes of
the lineage-specific markers on each day represent the differences to the baseline expression levels on a
log2 scale. Error bars show one standard deviation above and below the average of all the influenza-
infected individuals.

doi:10.1371/journal.ppat.1004869.g003
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Pathway enrichment analysis and interaction network of differentially
expressed genes in acute and recovery phases of the host response to
ARIs

We next examined how biological pathways might be altered during the course of influenza

with respect to baseline, by performing separate content analyses of DEGs on day 0 or day 6.

Fig 4. Top GO terms enriched in differentially expressed genes over the course of 6 days after
influenza virus infection. DAVID was used to identify over-represented Gene Ontology terms among (A)
up-regulated genes and (B) down-regulated genes on each day (BH-corrected P values <0.05 in both 2009
and 2010 cohorts). The length of the bar (x-axis) represents the–log10 (Benjamini-adj.P value). The bars are
colored by day.

doi:10.1371/journal.ppat.1004869.g004
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We found that upregulated genes in acute influenza virus infection were enriched for canonical

pathways specific to interferon signaling (S6A Fig), role of pattern recognition receptors of

virus, TREM1 signaling, antigen presentation pathway, activation of IRF by cytosolic pattern

recognition receptors. Cellular processes such as dendritic cell maturation and crosstalk be-

tween dendritic cells and NK cells were also enriched, indicating the activation of these path-

ways in acute influenza. On the other hand, the downregulated genes were significantly

enriched for pathways related to gene translation and cell proliferation, such as EIF2 signaling,

regulation of eIF4 and p70S6K signaling and mTOR signaling. A group of pathways distinct

from those seen in the acute phase were enriched in DEGs in the recovery phase (S6B Fig). A

large number of upregulated genes in the recovery phase were functioning in the protein ubi-

quitination pathway. Stress response pathways (e.g. hypoxia signaling in the cardiovascular

system and NRF2-mediated oxidative stress response) were also enriched. In addition, signifi-

cant enrichment in multiple growth factor signaling pathways (e.g. GM-CSF signaling, HGF

signaling and PDGF signaling) and cell cycle regulation (e.g. mitotic roles of polo-like kinase)

were observed.

Dynamic transcriptional co-expression modules in response to influenza
virus infection

Highly co-expressed genes usually share common regulatory mechanisms or participate in the

same biological process. To reveal distinct patterns on how host genes are co-expressed in dif-

ferent stages of influenza virus infection, the WGCNAmethod was applied to the gene expres-

sion profiles of samples from the first or second day of illness (day 0), day 2, day 4 and day 6,

thereby the network organization is approached through inference of variable gene co-expres-

sion patterns and dynamic pathway activity rather than a fixed predefined gene annotations.

We examined the differentially expressed transcripts (BH-corrected P values<0.05 and |

log2 Fold-Change|> 0.3 in both cohorts) and detected 6 co-expression modules on day 0 (des-

ignated Day 0_1 to Day 0_6) (Table 6). Module Day 0_1 contains genes that are highly upregu-

lated (Fig 5A), and many of them are interferon signaling pathway genes (e.g. IFI6, IFI44L,

IFIT1, IFIT3, IRF7 and STAT1). Genes in module Day 0_2 are enriched for translational elon-

gation, the majority of the transcripts in this module are downregulated on day 0 but the tran-

script levels then gradually increased and became above baseline on day 4 (Fig 5B), suggesting

the host translation system was attenuated in the acute phase of influenza but then recovered

during the later phase.

We applied the same method to DEGs identified on day 2, day 4 and day 6 (Table 6). Al-

most all the GO terms over-represented in day 2 modules were observed on day 0, with the ex-

ception of the GO terms enriched in module Day 2_5: Hemoglobin complex / oxygen

transport. We found many hemoglobin genes in this module, and their transcript levels were

decreased on day 4, including HBD,HBE1, HBG1,HBG2, HBA1, etc (Fig 5C). DEGs on day 4

were grouped into 9 modules and these modules became more diverse in GO term enrichment.

A small module Day 4_4 contains some of the top upregulated genes (Fig 5D), such as IGLL1,

IGJ, LOC652694,MZB1, which are involved in antibody secretion.

To elucidate transcriptional regulatory networks within each module, we performed tran-

scriptional factor (TF) enrichment analysis using Pscan. The results for module Day 0_1, Day

0_2, Day 2_5 and Day 4_4 are shown in the networks (Fig 5E–5H) with the red nodes repre-

senting enriched TFs. Module Day 0_1 is regulated by the TFs in the interferon signaling path-

way. Module Day 0_2 involves genes targeted by ETS transcription factor family. Meanwhile,

the binding motifs of ARNT andMYCN are enriched in both Module Day 2_5 and Day 4_4.
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Table 6. GO functional enrichment analysis for the 26modules detected byWGCNA on different days after influenza virus infection.

Module No. of transcripts Representative GO functional enrichment Benjamini-adj. P value

Day 0_1 180 Response to virus 8.8E-4

Response to other organism 1.2E-2

Defense response 1.8E-2

Day 0_2 281 Translational elongation 1.5E-54

Cytosolic ribosome 1.5E-42

Translation 2.5E-38

Day 0_3 34 NA

Day 0_4 81 Ribonucleoprotein complex 3.8E-3

Day 0_5 419 Response to other organism 1.3E-6

Response to virus 2.3E-6

Innate immune response 6.7E-5

Day 0_6 128 Translational elongation 3.1E-11

Cytosolic ribosome 1.1E-9

Ribosome 3.1E-9

Day 2_1 69 Cytosolic ribosome 1.5E-2

Ribosomal subunit 2.8E-2

Day 2_2 428 Response to virus 4.7E-16

Response to other organism 1.3E-13

Defense response 7.3E-9

Day 2_3 200 Translational elongation 1.2E-17

Cytosolic ribosome 1.4E-16

Translation 3.8E-15

Day 2_4 47 NA

Day 2_5 169 Hemoglobin complex 7.3E-5

Oxygen transporter activity 5.3E-3

Oxygen transport 2.9E-2

Day 2_6 111 NA

Day 4_1 103 Generation of precursor metabolites and energy 3.1E-2

Day 4_2 60 RNA binding 9.6E-4

Day 4_3 120 Receptor activity 6.2E-3

Protein complex binding 9.4E-3

Plasma membrane 4.7E-2

Day 4_4 32 Endoplasmic reticulum part 1.4E-4

Nuclear envelope-endoplasmic reticulum network 9.7E-3

Endoplasmic reticulum membrane 1.1E-2

Day 4_5 38 NA

Day 4_6 58 NA

Day 4_7 187 Hemoglobin complex 1.1E-6

Oxygen transporter activity 1.6E-4

Oxygen transport 9.4E-4

Day 4_8 242 Response to virus 5.9E-16

Response to other organism 1.5E-12

Defense response 2.5E-7

Day 4_9 45 Caspase inhibitor activity 6.7E-3

Negative regulation of cell death 1.9E-2

Negative regulation of programmed cell death 2.7E-2

Day 6_1 125 NA

(Continued)
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Many genes in these networks contain binding motifs of multiple TFs, implying the TFs are

highly coordinated in regulating downstream targets.

An enhanced gene co-expression pattern after influenza virus infection
revealed by differential co-expression analysis

Differential co-expression patterns, wherein the level of co-expression of gene groups differs

between illness and pre-illness, can arise from an influenza infection-related change in the reg-

ulatory mechanism governing that set of genes. We performed differential co-expression analy-

sis on all the genes that are differentially expressed on day 0 in influenza-infected individuals.

We found that the correlations between gene expression levels of all the gene pairs are higher

on day 0 compared to baseline (Fig 6A). Particularly, the modules 1 in the lower left corner

have significant correlation differences between day 0 and baseline, suggesting that the module

genes are in the same regulatory network. For example (Fig 6B), the correlation coefficient be-

tween the expression levels of OAS2 and RNASEL gene are nearly 0 at baseline, yet they became

highly correlated (r = 0.72) on day 0. We computed the correlation coefficients among all gene

pairs and plotted the results as a function of the magnitude of correlation or connectivity (Fig

6C). The co-expression patterns among these genes peaked on the first day of illness, gradually

weakened thereafter, and become indistinguishable with baseline by day 21. The gene expres-

sion correlation also increased, though to a lesser extent, in HRV infection group (S7 Fig).

Genes that show evidence of correlation between gene expression and
the magnitude of the antibody response

Wemeasured serum antibody to the pH1N1 viruses in all subjects at enrollment and after sur-

veillance for illness [5, 6], and thus were able to record the magnitude of antibody response

(delta H1N1 titers). We wished to identify the genes whose transcripts levels are correlated

with antibody response. The Day 0 transcript levels of 2119 DEGs were tested for their correla-

tion with the delta antibody titers among 58 ill subjects with H1N1 infection. We found that a

total of 229 genes showed evidence of significant correlation between gene expression on the

first day of illness and the antibody response (Fig 7, S4 Table). Of these, 168 showed evidence

of positive correlation and 61 of negative correlation. LILRB4 (Leukocyte immunoglobulin-like

receptor subfamily B member 4) showed most significant positive correlation, and a member

of the forkhead transcription factors, FOXO3 exhibited most significant negative correlation.

Content analysis revealed that immune response (GO:0006955) were most enriched in the

genes showed positive correlation with antibody response (e.g. OAS1, CD14, APOBEC3G,

IFITM3 and LILRB4). B-cell proliferation genes (e.g. CD40, SASH3, CDKN1A and TICAM1)

Table 6. (Continued)

Module No. of transcripts Representative GO functional enrichment Benjamini-adj. P value

Day 6_2 56 Intracellular organelle lumen 7.7E-3

Intracellular membrane-bounded organelle 1.1E-2

Day 6_3 51 NA

Day 6_4 106 Endoplasmic reticulum membrane 1.4E-2

Nuclear envelope-endoplasmic reticulum network 1.5E-2

Endoplasmic reticulum part 2.7E-2

Day 6_5 73 NA

*NA = No significant (Benjamini-adj. P value < 0.05) GO term enrichment were observed.

doi:10.1371/journal.ppat.1004869.t006
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were strongly correlated with high antibody response. Genes that showed negative correlation

(e.g. FOXO3, DAPK2, SGK1, and TP53INP1) were enriched for apoptosis and programmed cell

death pathways (GO:0012501).

Discussion

This prospective study of 2009 pandemic influenza A virus infections and illnesses in healthy

adults in a university community detected clear gene expression patterns correlating with mod-

erate influenza. Transcriptional profiles for ill subjects were examined at 7 time points, includ-

ing baseline, the first day of illness and up to 21 days after as well as after the influenza season.

Fig 5. TF networks within theWGCNAmodules over the course of influenza illness. (A-D)Groups, or modules, of co-regulated DEGs were identified by
WGCNA. Representative Gene Ontology (GO) categories for each module were identified by functional enrichment analysis and shown in Table 6. Module
expression patterns across different time points were represented by violin plots of log2 fold-change in gene expression relative to baseline. (E-H) Pscan was
used to scan the promoter regions of all genes in each module and identify the over-represented transcription factor binding sites (TFBS). The predicted
transcription factors, which marked in red and their target genes (z-score > 2) were connected by edges in the networks.

doi:10.1371/journal.ppat.1004869.g005
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The aim of this study was to use an unbiased genome-wide approach to identify genes whose

expression is regulated by occurrence of an ARI and networks that are activated in the host re-

sponse to infectious stimuli during different stages of an acute respiratory viral illness.

The results show a gene expression signature that strongly corresponds to influenza virus

infection. Components of interferon pathway and innate immunity (IFI44L, IFITM3,MX1,

IRF7, OAS2, STAT2, etc.) are significantly upregulated in the acute phase of infection, while the

expression levels of genes involved in translational elongation and protein biosynthesis are de-

creased. Other researchers have identified host gene expression patterns that are associated

with viral infection in human airway epithelial cells [17] and bronchial epithelial cells [28].

DEGs in type I interferon or STAT1 signaling were similar to those found in our current study.

In particular, IFI27, an antiviral molecule that regulates interferon-mediated apoptosis, was the

most highly up-regulated gene in these studies [14,17]. Our study identified IFI27 and PI3 as

the most differentially expressed genes comparing influenza virus and rhinovirus infections.

IFI27 up-regulation was observed in hospitalized infants with RSV bronchiolitis [36], yet it was

not seen in the three healthy adults infected with RSV in our study. PI3 (peptidase inhibitor 3)

encodes elafin, a potent neutrophil elastase inhibitor, localized to the injury sites in the lung

[37]. PI3 protein was shown to possess antimicrobial and anti-inflammatory activities [38]. Its

mechanism of action is, however, poorly understood and down-regulation of PI3 has been re-

ported previously in patients with acute respiratory distress syndrome (ARDS) [39], but not in

studies of viral infections.

Fig 6. Host gene network connectivity became stronger after the subjects were infected with influenza virus. (A) In the comparative correlation
heatmap, the upper diagonal of the main matrix shows a correlation between pairs of genes among samples collected from the individuals after influenza
virus infection (Left: Day 0, Right: Day 4). The lower diagonal of the heatmap shows a correlation between the same gene pairs in these individuals on
baseline. Red color corresponds to positive correlations, and blue corresponds to negative correlations. (B) Changes in the correlation between genesOAS2

and RNASEL. Each dot corresponds to an individual and the axes mark the log2 expression values of the two transcripts in that individual. The genes are
uncorrelated on baseline (r = -0.01) but are positively correlated on day 0 (r = 0.72, P <0.001), and this correlation became attenuated on day 4 (r = 0.09).

doi:10.1371/journal.ppat.1004869.g006
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A key finding in this study was a recovery phase that involves differential expression of a set

of genes distinct from those observed in the acute phase of infection. Molecular characteriza-

tion of a recovery phase has not been previously reported and the functions in the immune re-

sponse of most of the differentially expressed genes are much less clear. Protein ubiquitination

pathways and protein metabolic process are associated with the genes upregulated in the recov-

ery phase. Symptomatic influenza cases exhibited extensive regulation in multiple growth fac-

tor signaling and cell proliferation pathways during the recovery phase. How these results may

be integrated will require further investigation.

Comparison of influenza and rhinovirus illnesses indicated that the intensity of the increase

in activation of the interferon and innate immunity pathways is less in rhinovirus infections. In

addition to IFI27 and PI3 that have the largest expression difference between influenza and

HRV, CDKN1A and CDKN1C, which are essential genes involved in cell cycle control, ap-

peared to be differentially expressed specifically in influenza virus infection. It has been re-

ported that influenza virus infection induced cell cycle arrest in G1/S phase [40], and the

transcriptional reprogramming of cell cycle correlated with the severity of influenza illness

[41]. The differences in host transcriptional response to influenza virus and rhinovirus infec-

tion might be explained by the fact that influenza virus replicates in the nucleus of host cells

while HRV replicates in cytoplasm [42], or explained by the distinct viral mechanisms in his-

tone modification [22]. Individuals who did not have an identified pathogen associated with ill-

ness had conserved systemic expression signatures that were indistinguishable from the

influenza and rhinovirus groups, with a large variation in the intensity of transcriptional re-

sponse. This suggests that they were actually infected with one of the respiratory viruses for

which we tested but which was not detected, or that they had an infection with another

Fig 7. A total of 229 genes showed evidence of significant correlation between gene expression and
the antibody response. (Left) Each individual is represented by a column in the heatmaps. The top
heatmap displays the magnitude of the antibody response (delta titer). The bottom heatmaps display the
deviations around the expression mean for each transcript. (Right) LILRB4 showed the greatest positive
correlation (r = 0.42, P <0.005) and FOXO3 showed the greatest negative correlation (r = -0.48, P <0.001)
between gene expression on day 0 and the magnitude of the antibody response to influenza virus infection.

doi:10.1371/journal.ppat.1004869.g007
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infectious agent that induces a similar transcriptional response. This question will be the sub-

ject of future investigation using highly sensitive next generation sequencing methods.

The finding of ‘out of cycle’ individuals suggests that there are many subclinical infections

or other subclinical disorders in healthy adults. Given that acute viral infection stimulates gene

pathways known to be involved in adult onset autoimmune disorders raises the possibility that

the number and intensity of infections may alter risk in genetically susceptible individuals. One

individual exhibited activation at all time points. This may represent a systemic disorder, a pos-

sibility that is now being examined in that subject. This suggests the possibility that gene ex-

pression profiles may be used in the detection of such disorders as an adjunct to standard

immunological testing.

We used weighted gene co-expression network analysis (WGCNA) to cluster the DEGs de-

tected on day 0 –day 6 into 26 modules. This module construction strategy takes advantage of

the biological variability inherent in the prospective cohort study in order to uncover the mod-

ular organization and function of transcriptional systems. The time-course transcriptional pro-

files make it possible to study the transcriptional regulation of these gene co-expression

networks during different phases of influenza illness. While GO terms enriched in the acute

phase modules are “response to virus” and “translational elongation”, recovery phase modules

are over-represented in a new set of GO terms, such as “endoplasmic reticulum part”, and

“programmed cell death”. We also found the hemoglobin genes in module Day 2_5 (e.g. HBD,

HBE1,HBG1) are downregulated in response to influenza virus infection, however, whether

this is due to true transcriptional regulation, or a decrease in their percentage in comparison to

the white cells will need further investigation. Furthermore, the TF regulatory networks in 4

modules were uncovered, which provides better insights to the underlying mechanisms of host

response to ARIs and will facilitate drug and vaccine development.

Our study went beyond gene co-expression and investigated the differential co-expression

patterns in influenza virus and rhinovirus infections. The idea behind this is that the identifica-

tion of changes in gene co-expression patterns between illness and baseline samples could pro-

vide information about infection-affected regulatory networks. Our result demonstrates that

the gene expression correlations are enhanced on a global scale in the response to ARI; a small

module containing 273 transcripts has the largest increase in network connectivity strength.

This suggests qualitative change in the gene network upon an infectious stimulus.

We know there are several cell-types in whole blood sample and the proportion of these

cell-types varies across samples, so it is possible that the co-expression modules were driven by

variation in markers for various cell-types. However, the differences in gene expression correla-

tion between baseline and the first day of illness are so large that it cannot be fully explained by

the variation in the expression values of the cell lineage markers, which does not change much

between baseline and illness. Thus, the changes in regulatory mechanisms are the major con-

tributor to the differential co-expression patterns.

The pandemic influenza A/H1N1 virus emerged in April 2009 and was the dominant influ-

enza virus circulating in humans in our study periods. By measuring the H1N1 antibody titers

on the same individual before and after the influenza season, we were able to record the magni-

tude of antibody response (delta H1N1 titers) and account for individual variation in a way

that would not have been possible otherwise. We identified 229 genes whose transcriptional

levels were correlated with the antibody response. Although the sample size we had for the cor-

relation analysis is relatively small, over 1/3 of the genes identified in this study have previously

been shown to be correlated with antibody response to influenza vaccination [24]. B cell prolif-

eration genes, which predict influenza vaccine-induced antibody response [23], were also cor-

related with the antibody response to naturally occurring influenza infection. These findings
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provide more insight into the molecular mechanisms of antibody production and secretion,

and may also contribute to influenza vaccine development.

Several limitations of this study are noteworthy. First, we studied two cohorts of healthy

young adults. Those subjects who subsequently developed influenza-like illness had moderate

symptoms [5]. Children, the elderly, were not included and, fortunately, none of the research

subjects developed severe illnesses. Second, this study did not allow analysis of the subjects

who had influenza infection without symptoms. Based on seroconversion rates, 38% of the sub-

jects were probably infected with influenza A H1N1 but did not have symptoms sufficient to

trigger a follow up study visit. Third, all the subjects with influenza-illness enrolled in year

2009–2010 were infected with influenza A H1N1. And in year 2010–2011, only 9 were infected

with influenza B and 3 were infected with influenza A H3N2, all the others were infected with

H1N1 infection. Thus the sample size was not sufficient for comparing host transcriptional re-

sponse to influenza A H1N1, H3N2 and influenza B. Fourth, the transcriptional responses to

infection of cells residing in the secondary immune tissues, like lymph nodes or spleen, might

be different from that of peripheral blood. Future research may investigate the correlations of

gene expression between cells residing in different tissues. Finally, while antibody titers have

been used to assess humoral immune responses, it is clear that they do not capture the com-

plexity of the host response to ARIs. Additional studies would be necessary to establish the

causal relationship between the genes identified and the antibody response, and whether they

also regulate cytokine or chemokine levels.

Despite these limitations, the findings in this study demonstrate the power of serial mea-

surements of gene expression, within the context of a prospective clinical trial, to identify can-

didate genetic mechanisms that determine responses to infection. We have genotyped all these

research subjects and have begun analyzing the impact of common genetic variation on the

gene expression patterns. Because we have made repeated measurements on the same individu-

al over time, we should be able to account for the effect of person in a way that would not have

been possible using cross-sectional methodologies. The dynamic nature of the measurements

should also allow the identification of genetic effects that are either enhanced by or only evident

after the strong perturbation of acute infection.

Materials and Methods

Ethics statement

The study was conducted at Texas A&M University, College Station, TX. The protocol and in-

formed consent were approved by the Baylor College of Medicine and Texas A&M University

institutional review boards before the study began. Healthy adults age 18 to 49 at the college

and in the community were invited to enroll to be followed for acute respiratory illness (ARI)

through two consecutive influenza seasons 2009–2010 and 2010–2011. All adult subjects pro-

vided written informed consent.

Human subjects

After subjects provided consent, a medical history was taken to ensure good health, and base-

line specimens were obtained. Surveillance for influenza began during the September 2009 en-

rollment period because pH1N1 as a cause of influenza was identified in the population during

enrollment. Subjects were given thermometers and instructions to call and report for evalua-

tion within 48 hours of onset for any ARI (Fig 1A). Except for the Thanksgiving holiday period

and 4 weeks of the Christmas holiday period, a coordinator and physician enrolled persons

presenting within 48 hours of onset with a new ARI with fever or that caused them to miss

school, work, or social activities. Specimens were obtained and medical care was provided,
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including the antiviral zanamivir if indicated. Enrolled persons were seen 2, 4, and 6 days later

for repeat evaluation, specimen collections, and medical care and 21 days later for collection of

convalescent specimens. These subjects are those included in the present report. Surveillance

for influenza was terminated after 5.5 months; all subjects were asked to return for specimen

collection and to provide a medical and ARI history. The study was repeated 2010–2011 with

surveillance for influenza limited to January to April as community surveillance did not detect

influenza before the Christmas break.

Illnesses

A study physician obtained an oral temperature, completed a symptom survey, and performed

a respiratory system examination at each illness visit. All cases were classified as clinically mod-

erate using standard criteria.

Serology

Serum specimens obtained at enrollment, acute and convalescent visits for illnesses, and the

terminal visit were tested simultaneously using hemagglutination-inhibition (HAI) antibody

tests following previously described methods. Virus antigens were a locally obtained pH1N1

virus (A/Baylor/09) and the most recently prevalent seasonal A/H1N1 virus (A/Brisbane/59/

07), A/H3N2 virus (A/Perth/16/09), and B virus (B/Brisbane/60/08).

Virus infections

A combined 8-mL nasal wash and throat swab specimen was collected at each illness visit.

Specimens from the day 0 and 2 visits were tested for all respiratory viruses in tissue cultures.

All specimens were also tested by reverse-transcriptase polymerase chain reaction (RT-PCR)

for respiratory viruses including influenza A, pH1N1 influenza, influenza B, picornavirus/rhi-

novirus, respiratory syncytial virus, human metapneumovirus, parainfluenza viruses, coronavi-

ruses, and adenoviruses.

RNA purification from peripheral whole blood

We collected peripheral whole blood samples (2.5 mL) in PAXgene RNA stabilization tubes

(QIAGEN Inc., Valencia, CA, U.S.A.) at each visit of those enrolled for illness and froze the

samples at—80°C until RNA purification to minimize gene expression changes induced by

handling and processing. RNA purification was performed using the PAXgene Blood RNA sys-

tem (QIAGEN Inc., Valencia, CA) according to manufacturer’s instructions. Quality control of

RNA samples was performed using spectrophotometry (NanoDrop-1000 Spectrophotometer,

Thermo Fisher Scientific, Waltham, MA, U.S.A.) and microfluidic electrophoresis (Experion

Automated Electrophoresis System, Bio-Rad Laboratories, Hercules, CA).

Gene expression profiling

cRNA synthesis. We performed in vitro transcription assay on all peripheral whole blood

RNA samples prior to chip hybridization. Ambion Illumina TotalPrep RNA Amplification

Kits for 24 reactions (Applied Biosystems/Ambion, Austin, TX) were used according to the

manufacturer’s protocol. Briefly, 11uL of 50ng/uL total RNA was reverse-transcribed with an

oligo(dT) primer bearing a T7 promoter, using ArrayScript reverse transcriptase (RT). The

cDNA then went through second strand synthesis to produce the template for in vitro tran-

scription with T7 RNA Polymerase. MEGAscript in vitro transcription (IVT) and biotin UTP

(provided in the kit), were used to generate biotinylated, antisense RNA copies (cRNA) of each
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mRNA in a sample from the template cDNA. cRNA samples were eluted once using 40 uL nu-

clease-free water. Spectrophotometry (NanoDrop-1000 Spectrophotometer, Thermo Fisher

Scientific, Waltham, MA, U.S.A.) and microfluidic electrophoresis (Experion Automated Elec-

trophoresis System, Bio-Rad Laboratories, Hercules, CA) were performed to QC samples be-

fore hybridization onto Illumina Human HT-12v4 Expression BeadChips (Illumina, San

Diego, CA).

Illumina Expression BeadChip Assay. Biotin-labeled RNA (cRNA) was hybridized to

Illumina Human HT-12v4 Expression BeadChips (Illumina, San Diego, CA) according to the

manufacturer’s protocol and scanned on an Illumina iScan Reader (Illumina, San Diego, CA).

The initial standard quality control thresholds were imposed on the raw intensity signals of the

microarray using the iScan Control Software (Illumina, San Diego, CA). Microarrays which

failed this QC step were excluded from the analysis.

Microarray data processing. Initial quality control of the signal intensity data was per-

formed on the transcript probes in the microarray using the algorithms in the lumi package in

R statistical software, version 2.14.1 [43]. Integration of raw probe profiles was carried in Geno-

meStudio software (Illumina). Background adjustment, variance stabilization transformation,

and rank invariant normalization were carried out using corresponding functions in the R

package lumi. A detection p-value cut-off of 0.05 was imposed on the normalized intensities to

consider a transcript as detected. All differential expression analyses were restricted to 17,708

transcript probes in the microarray with detection P values� 0.05 in at least 70% of

the samples.

Differential gene expression analyses

All statistical analyses on the gene expression data were performed in R Statistical Software

[44], version 2.14.1. Differential gene expression analyses with cell composition covariates con-

trasting the individual day-specific data with the baseline sample obtained at the time of enroll-

ment were performed using function for linear model fitting in the limma R package [45]. The

significance of differences in gene expression was tested using a Bayes moderated t-test [46].

Correction for multiple testing was addressed by controlling the false discovery rate (FDR)

using the Benjamini and Hochberg (B.H.) method. A transcript probe was considered signifi-

cantly differentially expressed if the B.H. corrected P value was< 0.05. The heatmap function

in R Statistical Software was used to generate a heatmap of mean-centered normalized

expression values.

Cell decomposition analysis

Gene expression profiles were investigated for correlation with cell composition in the whole

blood. Cell lineage and activation state markers were used as described in Abbas et al [47]. A

full list of marker genes we used to compute the cell scores is provided in S1 Table. Cell lineage

scores for all individuals were obtained by taking the first Principal Component (PC1) of aver-

age-normalized expression values for each of the lineage-specific gene sets. [When this method

was used to compute the cell scores for the 121 subjects whose whole blood transcriptional pro-

file and Complete Blood Count (CBC) are publicly available at Gene Expression Omnibus

(GEO accession: GSE30119), the resulting expression-based lymphocyte and neutrophil scores

showed a high correlation (r2 = 0.64 and 0.65, respectively) with actual measurements of per-

cent lymphocyte and neutrophil in the CBC (S8 Fig).] Neutrophil and lymphocyte scores were

then introduced as quantitative covariates in the linear models of the differential expression

analyses to account for the differences in cellular composition between individuals.
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Real-time PCR

TaqMan (Applied Biosystems, Foster City, CA) quantitative real-time reverse transcriptase po-

lymerase chain reaction (RT-PCR) was performed on baseline and Day 0 paired RNA samples

from 18 randomly selected subjects with influenza infection only and 11 subjects with rhinovi-

rus infection only. cDNA was first synthesized from approximately 2 ug of total RNA in a

20-ul reaction volume using the High Capacity RNA to cDNA kit (Applied Biosystems). Taq-

Man probes, available as “Assay on Demand”, were used in the analyses of the expression levels

of 2 target genes, IFI27 (Hs01086373_g1) and PI3 (Hs00160066_m1), as well as endogenous

control gene GAPDH (Hs03929097_g1). Quantitative RT-PCR was performed on 1ul of cDNA

in triplicates with the CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules,

CA). The fold increase in mRNA expression was determined using the ΔΔCT method with the

baseline sample of each pair as calibrators.

Functional enrichment and pathway analysis

Gene lists were analyzed using Ingenuity Pathway Analysis (IPA) software and DAVID Ontol-

ogy (http://www.david.abcc.ncifcrf.gov) to identify significantly enriched pathways. Expressed

genes represented in the full dataset were used as the background. The Biological Process, Mo-

lecular Function and Cellular Component subsets of the Gene Ontology (GO) were used for

enrichment analysis. DAVID Ontology uses t-test to derive P values and applies the Benja-

mini-Hochberg method to correct for multiple testing. IPA uses a right-tailed Fisher’s exact

test to derive P values for identifying significantly overrepresented pathways. A smaller P value

indicates the overrepresentation of a pathway or a GO term by the DEGs is less likely due to

random chance.

De-novo network (module) analysis

To identify groups of host transcripts that showed coordinated regulation in response to acute

illness, we applied the weighted gene co-expression network analysis (WGCNA) [29]. The

WGCNA method constructs networks or modules consisting of groups of genes that are highly

correlated across a set of samples. Briefly, the absolute value of the Pearson correlation coeffi-

cient is calculated for all pairwise comparisons of gene-expression values. The Pearson correla-

tion matrix is then weighted and transformed into an adjacency matrix. WGCNA uses the

topological overlap matrix based dissimilarity measure as input of hierarchical clustering. A

dendrogram (cluster tree) of the network is then obtained from hierarchical clustering. Finally,

modules are defined by cutting branches off the dendrogram. WGCNA was performed using

the WGCNA package provided in R software.

Transcription factor binding site motifs enrichment analysis

JASPAR is an open-access database (http://jaspar.cgb.ki.se) derived exclusively from sets of nu-

cleotide sequences experimentally demonstrated to bind transcription factors. Transcription

factor binding specificity is represented by position-specific scoring matrices (PSSM) in JAS-

PAR. Employing the profiles available in JASPAR, Pscan (http://www.beaconlab.it/pscan)

scans a set of sequences (promoters positions -450 to +50 with respect to the transcription start

site) from co-regulated or co-expressed genes and identifies the enriched transcription factor

binding site motifs by comparing the average matching value of the matrix on the sequences

analyzed and that on the whole promoter set (same set of regions with respect to the transcrip-

tion start site) of the same organism. Z-test was used to derive P values and Bonferroni method

was applied to correct for multiple testing.
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Differential co-expression analysis

All the transcripts showed differential expression on Day 0 were used in the differential co-ex-

pression analysis (DiffCoExpr) [31]. To detect changes in correlations between gene pairs with-

in module and also between pairs of modules during ARIs, DiffCoExpr, an untargeted

approach in which gene modules are not pre-defined, was carried out for each day contrasted

with the baseline. Briefly, an adjacency matrix as the Spearman correlation coefficients for all

pairs of genes was built for each day and baseline. Then, the correlation changes on each day

compared to baseline were quantified by the difference between signed squared correlation co-

efficients. Finally, the Topological Overlap based dissimilarity matrix was derived from the ad-

jacency change matrix, and was used as input for gene clustering and module detection.

Supporting Information

S1 Fig. Dynamics of global gene expression changes after influenza virus infection. Differ-

ential expression analysis was performed for each day, contrasted to baseline. (A) A total of

4,706 differentially expressed genes (BH-corrected P values<0.05 in both 2009 and 2010 co-

horts) were identified over the course of 6 days after influenza virus infection, (B) 1140 of the

DEGs also passed the threshold |log2 Fold-Change|> 0.3. Bars indicate the number of DE

genes on each day. Colors indicate the day on which differential expression of the genes were

newly detected, e.g. brown: differentially expressed genes newly detected on day 0 compared to

baseline; blue: differentially expressed genes that appeared at day 4 and were not differentially

expressed at any time before.

(TIF)

S2 Fig. The magnitude of the transcriptional response varied between individuals in (A) in-

fluenza virus infections and (B) rhinovirus infections. Fold change of the acute phase genes

and recovery phase genes were computed in each individual comparing each illness day and

baseline. A full list of the genes is provided in S1 Table. Each dot represents the average |log2
FC| of all the acute phase genes or recovery phase genes in a subject after infection. White back-

ground indicates 2009 cohort and grey background indicates 2010 cohort.

(TIF)

S3 Fig. Host transcriptional response to non-influenza virus infections involved the same

transcripts that were differentially expressed in the influenza virus infection.Heatmap was

plotted as in Fig 3 with the identical transcript list. Subject were grouped by infections status as

represented by different colors above columns–Orange = Entero+HRV, Yellow = Entero,

Grey = HKU1+HRV, White = HKU1, Purple = NL63+HRV, Light Blue = NL63, Brown = RSV

+HRV, Gold = RSV, Black = Unknown. Five individuals with FluA infection and five with

HRV infection were included in the heatmap for comparison purposes (Red = FluA,

Green = HRV).

(TIF)

S4 Fig. Heatmaps demonstrating the time course of the genes showing the most significant

pattern of differential expression comparing influenza virus with rhinovirus infection. (A)

2009 Cohort, (B) 2010 Cohort. Each column corresponds to an individual RNA sample and

each row represents the mean-centered, normalized expression values for each of the differen-

tially expressed genes (BH-corrected P values<0.0001). Samples were grouped by day and sub-

jects were grouped by infections status (influenza virus infection group includes influenza A,

influenza B, influenza A +rhinovirus and influenza B +rhinovirus infections). The transcripts

fall into 3 groups: 1. transcripts that had contrasting fold-changes between influenza virus and
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rhinovirus infection group; 2. transcripts that were responsive to rhinovirus infection but had

no change in influenza virus infection; 3. transcripts that were responsive to influenza infection

but had no change in rhinovirus infection. A full list of the transcript probes in the heatmaps

and their corresponding genes is provided in S2 Table. (C) CDKN1A, CDKN1B and CDKN1C

are among the DEGs detected when comparing influenza virus and rhinovirus infection. Fold

Changes of CDKN1A, CDKN1B and CDKN1C were measured in paired day 0 –

baseline samples.

(TIF)

S5 Fig. The expression changes of IFI27 and PI3measured by RT-PCR are consistent with

the microarray data. Fold Changes of IFI27 and PI3 transcript levels were measured in paired

day 0 –baseline samples by microarray (Black) and qPCR (Grey). Subjects are grouped by in-

fections status—Left = FluA (N = 14), Middle = FluB (N = 4), Right = HRV (N = 11).

(TIF)

S6 Fig. Canonical pathways enriched by differentially expressed genes on (A) day 0 and (B)

day 6 after influenza virus infection, as determined by Ingenuity Pathway Analysis (http://

www.ingenuity.com). The percentage indicates the proportion of upregulated (red) and

downregulated (green) genes in relative to all the genes present in a pathway. The numbers at

the end of columns indicate the total number of genes in that pathway. The–log (p-value) in-

creases as a pathway is more significantly associated (as indicated by the orange dot along the

x-axis).

(TIF)

S7 Fig. Gene network connectivity became stronger after the subjects infected with rhinovi-

rus. In the comparative correlation heatmap, the upper diagonal of the main matrix shows a

correlation between pairs of genes among samples collected from HRV-infected individuals on

the first day of illness. The lower diagonal of the heatmap shows a correlation between the

same gene pairs in these individuals on baseline. Red color corresponds to positive correlations,

and blue corresponds to negative correlations.

(TIF)

S8 Fig. PC1 of lymphocyte and neutrophil markers are highly correlated with actual mea-

surement of cell proportions for the 121 individuals in GSE30119. The first principle com-

ponents (PC1) of average-normalized expression values of lymphocyte, neutrophil and

monocyte specific genes (See S3 Table for the list of lineage specific genes) were plotted along

the x-axis. Percent lymphocyte, neutrophil and monocyte in the blood were transformed by

quantile normalization and plotted along the y-axis. The squared correlation coefficients (r2)

between PC1 and cell proportions for lymphocyte, neutrophil and monocyte were 0.64, 0.65,

and 0.16 respectively. Liner regression line is shown in red and the black lines represent 95%

prediction interval.

(TIF)

S1 Table. A list of the transcript probes that were plotted in the time-course expression

heatmaps contrasting aris and baseline (enrollment).

(DOCX)

S2 Table. A list of the transcript probes that were plotted in the time-course expression

heatmaps contrasting influenza and rhinovirus infections.

(DOCX)
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S3 Table. Cell lineage and activation state markers selected from the published literatures

for computing the cell scores.

(DOCX)

S4 Table. Genes showed evidence of correlation between gene expression on day 0 and the

magnitude of antibody response.

(DOCX)

S5 Table. Differentially expressed genes on day 0 –day 6 of influenza virus infection.

(XLSX)
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