

Hosted Universal Composition:
Models, Languages and Infrastructure in mashArt

Florian Daniel1, Fabio Casati1, Boualem Benatallah2, Ming-Chien Shan3
1University of Trento - Via Sommarive 14, 38050 Trento - Italy

{daniel,casati}@disi.unitn.it
2 University of New South Wales- Sydney NSW 2052, Australia

boualem@cse.unsw.edu.au
3 SAP Labs- 3410 Hillview Avenue, Palo Alto, CA 94304, USA

ming-chien.shan@sap.com

Abstract. Information integration, application integration and component-based
software development have been among the most important research areas for
decades. The last years have been characterized by a particular focus on web
services, the very recent years by the advent of web mashups, a new and user-
centric form of integration on the Web. However, while service composition
approaches lack support for user interfaces, web mashups still lack well engi-
neered development approaches and mature technological foundations.
In this paper, we aim to overcome both these shortcomings and propose what
we call a universal composition approach that naturally brings together data and
application services with user interfaces. We propose a unified component
model and a universal, event-based composition model, both able to abstract
from low-level implementation details and technology specifics. Via the ma-
shArt platform, we then provide universal composition as a service in form of
an easy-to-use graphical development tool equipped with an execution envi-
ronment for fast deployment and execution of composite Web applications.

1 Introduction

The advent of Web 2.0 led to the participation of the user into the content creation and
application development processes, also thanks to the wealth of social web applica-
tions (e.g., wikis, blogs, photo sharing applications, etc.) that allow users to become
an active contributor of content rather than just a passive consumer, and thanks to web
mashups [1]. Indeed, especially mashup tools enable fairly sophisticated development
tasks, mostly inside the browser. They allow users to develop their own applications
starting from existing content and functionality. Some applications focus on integrat-
ing RSS or Atom feeds, others on integrating RESTful services, others on simple UI
widgets, etc. Many mashup approaches are innovative in that they tackle integration
at the user interface level (most mashups integrate presentation content, not “just”
data) and aim at simplicity more than robustness or completeness of features (up to
the point that advanced web users, not only professional programmers, can develop
mashups).

Inspired by and building upon research in SOA and capturing the trends of Web
2.0 and mashups, this paper introduces the concept of universal integration, that is,
the creation of composite web applications that integrate data, application, and user
interface (UI) components. Our aim is to do what service composition has done for
integrating services, but to do so at all layers, not just at the application layer, and
remove some of the limitations that constrained a wider adoption of workflow/service
composition technologies. Universal integration can be done (and is being done) to-
day by joining the capabilities of multiple programming languages and techniques,
but it requires significant efforts and professional programmers. In this paper we
provide abstractions, models and tools so that the development and deployment of
universal compositions is greatly simplified, up to the extent that even non-
professional programmers can do it in their web browser.
Scenario. To exemplify the needs for universal integration, in Figure 1 we present the
scenario that will accompany us throughout this paper, i.e., the development of a
business compliance monitoring (BCM) web application starting from existing ser-
vices and components.

A company’s compliance expert wants to develop a web application that allows her
to correlate company policies (representing the regulations the company is subject to)
with process execution data and compliance analysis data and, in case a compliance
violation by a process execution is detected, send a notification email. For this pur-
pose, she wants to integrate a variety of different components already existing inside
the company: components with own UI (Policy browser, Process browser, and Analy-
sis browser), SOAP web services (Process registry, Process engine), and RESTful
web services (Analyzer and Mail services). In addition to the “traditional” concerns of
service composition (mainly revolving around the sequential or conditional invocation
of components), UI components need to be synchronized: user interaction with the
policy browser (e.g., to select a policy) must cause the process browser UI to change
(showing processes affected by the policy). In general, in composed UIs, all compo-
nents may have to change at the same time as they need to display consistent informa-
tion. This also means that UI components must somehow be able to react to user input
(that’s what they have been designed for), but also to programmatic input: in the ex-
ample above, the process component should be notified of the selection in the policy

Policy
browser

Compliance
expert

Process
browser

Analysis
browser

Process
registry

Process
engine Analyzer

Mail

UI UI

UI
SOAP

REST

REST

SOAP

Compo-
sition
logic

Graphical
composition

tool

Execution
environment

Figure 1 Reference
scenario: development

of a business com-
pliance monitoring

application

browser and change its UI accordingly. Additional challenges are related to the fact
that the components are heterogeneous in nature, that developers need to master mul-
tiple communication protocols, client- and server-side programming techniques, dif-
ferent service and application architectures and programming languages, and must be
able to integrate the event-driven philosophy of UIs with the control-flow-based phi-
losophy of service orchestrations. These are only a few of the difficulties they en-
counter in their task; many others still lie in the details (e.g., how to deploy and main-
tain such complex integration logic).

Ideally, as shown in Figure 1, there would be a composition tool that hides the de-
scribed implementation details and allows developers to graphically specify the de-
sired composition logic, to execute it, and to obtain straight away the web application
in the lower left corner of the figure. Currently, there are no integration instruments
available that can cope with the described heterogeneity of components and that rely
on one single integration paradigm only. Service composition approaches cannot
handle UIs, and UI technologies are not designed with service integration in mind.
Our compliance expert therefore falls back to various programming languages and
tools or complex frameworks like J2EE and .NET along with AJAX scripting for UI,
which makes applications harder to develop and maintain, and certainly beyond the
reach of non-programmers. Yet, as more and more web applications offer their UI as
components, open APIs toward them, or both (a la Google Maps), the importance of
universal integration is likely to grow even faster in future.
Approach and contributions. In the following we describe a universal composition
model and tool, called mashArt. MashArt aims at empowering users with easy-to-use
and flexible abstractions and techniques to create and manage composite web appli-
cations. In particular, in this paper we make the following contributions:
• A universal component model, allowing the modeling of UI components, applica-

tion components (e.g., services with an API) and data components (representing
feeds or access to XML/relational data) using a unified model.

• A universal composition model, to combine the building blocks and expose the
composition as a MashArt component, possibly accessible via rest/soap, and/or
providing feeds, and/or having its own (composed) UI.

• The mashArt platform which is a service providing a number facilities for facilitat-
ing the rapid development and management of composite web applications. Ma-
shArt is entirely hosted and web-based, with zero client-side code.

In this paper we focus on the conceptual and architectural aspects of mashArt,
which constitute the most innovative contributions of this work, namely the compo-
nent and composition models as well as the development and runtime part of the infra-
structure. The reader is referred to the mashArt web site (http://mashart.org/ER09) for
more technical details.

We next introduce the principles that guide our work (Section 2), and then discuss
the state of the art (Section 3). In Section 4 and Section 5we introduce the mashArt
unified component and composition models. Section 6 describes the platform and
hosted execution environment. Section 7 provides concluding remarks.

2 Guiding principles

We aim at universal integration, and this has fundamental differences with respect to
traditional composition. In particular, the fact that we aim at also integrating UI im-
plies (i) that synchronization, and not (only) orchestration a la BPEL, should be
adopted as interaction paradigm, (ii) that components must be able to react to both
human user input and programmatic interaction, and (iii) that we must be able to
design the UI of the composite application, not just the behavior and interaction
among the components. This shows the need for a model based on state, events and
synchronization more than on method calls and orchestration. We recognize in partic-
ular that events, operations, a notion of state and configuration properties are all we
need to model a universal component. With respect to the design of the composite UI,
we assume developers will use their favorite Web development tool (we do not aim at
competing with these tools, although we do offer a simple templating mechanism for
rapid development of prototype applications that run in the browser). Rather, we
make it easy to embed mashArt components inside a Web application.

On the data side, we realize that data integration on the Web may also require dif-
ferent models: for example RSS feeds are naturally managed via a pipe-oriented data
flow/streaming model (a-la Yahoo Pipes) rather than a variable-based approach as
done in conventional service composition.

Another dimension of universality lies in the interaction protocols. MashArt aims
at hiding the complexity of the specific protocol or data model supported by each
component (REST, SOAP, RSS, Atom, JSON, etc) so a design goal is that from the
perspective of the composer all these specificities are hidden – with the exceptions of
the aspects that have a bearing on the composition (e.g., if a component is a feed, then
we are aware that it operates, conceptually, by pushing content periodically or on the
occurrence of certain events).

Generality and universality are often at odds with the other key design goal we
have: simplicity. We want to enable advanced web users to create applications (an old
dream of service composition languages which is still somewhat a far reaching objec-
tive). This means that mashArt must be fundamentally simpler than programming
languages and current composition languages. We target the complexity of creating
web pages with a web page editor, or the complexity of building a pipe with Yahoo
Pipes (something that can be learned in a matter of hours rather than weeks).

To achieve simplicity we make two design decisions: first, we keep the composi-
tion model lightweight: for example, there are no complex exception or transaction
mechanisms, no BPEL-style structured activities or complex dead-path elimination
semantics. This still allows a model that makes it simple to define fairly sophisticated
applications. Complex requirements can still be implemented but this needs to be
done in an “ad hoc” manner (e.g., through proper combinations of event listeners and
component logic) but there are no specialized constructs for this. Such constructs may
be added over time if we realize that the majority of applications need them.

The second decision is to focus on simplicity only from the perspective of the user
of the components, that is, the designer of the composite applications. In complex
applications, complexity must reside somewhere, and we believe that as much as
possible it needs to be inside the components. Components usually provide core func-
tionalities and are reused over and over (that’s one of the main goals of compo-

nents).Thus, it makes sense to have professional programmers develop and maintain
components. We believe this is necessary for the mashup paradigm to really take off.
For example, issues such as interaction protocols (e.g., SOAP vs. REST or others) or
initialization of interactions with components (e.g., message exchanges for client
authentication) must be embedded in the components.

3 State of the Art

Service composition approaches. A representative of service orchestration ap-
proaches is BPEL [6], a standard composition language by OASIS. BPEL is based on
WSDL-SOAP web services, and BPEL processes are themselves exposed as web
services. Control flows are expressed by means of structured activities and may in-
clude rather complex exception and transaction support. Data is passed among servic-
es via variables (Java style). So far, BPEL is the most widely accepted service com-
position language. Although BPEL has produced promising results that are certainly
useful, it is primarily targeted at professional programmers like business process de-
velopers. Its complexity (reference [6] counts 264 pages) makes it hardly applicable
for web mashups.

Many variations of BPEL have been developed, e.g., aiming at invocation of REST
services [7]and at exposing BPEL processes as REST services [8]. In [9] the authors
describe Bite, a BPEL-like lightweight composition language specifically developed
for RESTful environments. IBM’s Sharable Code platform [10] follows a different
strategy for the composition of REST or SOAP services: a domain-specific program-
ming language from which Ruby on Rails application code is generated, also compris-
ing user interfaces for the Web. In [11], the authors combine techniques from declara-
tive query languages and services composition to support multi-domain queries over
multiple (search) services. All these approaches focus on the application and data
layer; UIs can then be programmed on top of the service integration logic. mashArt
features instead universal integration as a paradigm for the simple and seamless com-
position of UI, data, and application components. We argue that universal integration
will provide benefits that are similar to those that SOA and process centric integration
provided for simplifying the development of enterprise processes.
UI composition approaches. In [12] we discussed the problem of integration at the
presentation layer and concluded that there are no real UI composition approaches
readily available: Desktop UI component technologies such as .NET CAB [13] or
Eclipse RCP [14] are highly technology-dependent and not ready for the Web.
Browser plug-ins such as Java applets, Microsoft Silverlight, or Macromedia Flash
can easily be embedded into HTML pages; communications among different technol-
ogies remain however cumbersome (e.g., via custom JavaScript). Java portlets [15] or
WSRP [2] represent a mature and Web-friendly solution for the development of portal
applications; portlets are however typically executed in an isolated fashion and com-
munication or synchronization with other portlets or web services remains hard. In
addition, portals do not provide support for service orchestration logic. The Web
mashup paradigm aims at addressing the above shortcomings. Mashup development is
still an ad-hoc and time-consuming process, requiring advanced programming skills

(e.g., wrapping web services, extracting contents from web sites, interpreting third-
party JavaScript code, etc).
Computer-aided web engineering tools. In order to aid the development of web
applications, the web engineering community has so far typically focused on model-
driven design approaches. Among the most notable and advanced model-driven web
engineering tools we find, for instance, WebRatio [16] and VisualWade [17]. The
former is based on a web-specific visual modeling language (WebML), the latter on
an object-oriented modeling notation (OO-H). Similar, but less advanced, modeling
tools are also available for web modeling languages/methods like Hera, OOHDM, and
UWE. All these tools provide expert web programmers with modeling abstractions
and automated code generation capabilities, which are however far beyond the capa-
bilities of our target audience, i.e., advanced web users and not web programmers.
Mashup tools. These tools typically provide easy-to-use graphical user interfaces and
extensible sets of components for mashup development also by non-professional
programmers. For instance, Yahoo Pipes (http://pipes.yahoo.com) focuses on data
integration via RSS or Atom feeds via a data-flow composition language. UI integra-
tion is not supported. Microsoft Popfly (http://www.popfly.ms) provides a graphical
user interface for the composition of both data access applications and UI compo-
nents. Services orchestration is not supported. JackBe Presto (http://www.jackbe.com)
adopts a Pipes-like approach for data mashups and allows a portal-like aggregation of
UI widgets (mashlets) visualizing the output of such mashups.IBM QEDWiki
(http://services.alphaworks.ibm.com/qedwiki) provides a wiki-based (collaborative)
mechanism to glue together JavaScript or PHP-based widgets. Intel Mash Maker
(http://mashmaker.intel.com) features a browser plug-in which interprets annotations
inside web pages allowing the personalization of web pages with UI widgets.

Although existing mashup approaches have produced promising results, techniques
that cater for simple and universal integration of web components are needed. These
techniques are necessary to transition Web 2.0 programming from elite types of com-
puting environments to environments where users leverage simple abstractions to
create composite web applications over potentially rich web components developed
and maintained by professional programmers. With this aim in mind, in the following
we describe the mashArt models and system.

4 The mashArt Component Model

The first step toward the universal composition model is the definition of a compo-
nent model. MashArt components wrap UI, application, and data services and expose
their features/functionalities according to the mashArt component model. The model
described here extends our initial UI-only component model presented in [3] to cater
for universal components.

The model is based on four abstractions: state, events, operations, and properties.
The state is represented as a set of name-value pairs. What the state exactly contains
and its level of abstraction is decided by the component developer, but in general it
should be such that its change represents something relevant and significant for the
other components to know. For example, for our Process browser component, we can

change the color in which the process is displayed or rearrange the process graph.
This is irrelevant for the other components that need not be notified of these changes.
Instead, clicking on a specific process or drilling down on a specific step may lead
other components to show related information or application services to perform
actions (e.g., compute compliance indicators). This is a state change we want to cap-
ture. In our case study, the state for the Process browser component is the process or
process step that is being displayed. Modeling state for application components is
something debatable as services are normally used in a stateless fashion. This is also
why WSDL does not have a notion of state. However, while implementations can be
stateless, from a modeling perspective it can be useful to model the state, and we
believe that its omission from WSDL and WS-* standards was a mistake (with many
partial attempts to correct it by introducing state machines that can be attached to
service models). For example, an application component may provide relations be-
tween compliance policies and processes that need to observe the policies, and can
raise a state change event each time processes need to be compliant with newly de-
fined policies, so that other components can be informed and for example change the
displayed information or compute compliance indicators for the new policy. Although
not discussed here, the state is a natural bridge between application services and data-
oriented services (services that essentially manipulate a data object).

Events communicate state changes and other information to the composition envi-
ronment, also as name-value pairs. External notifications by SOAP services, callbacks
from RESTful services, and events from UI components can be mapped to events.
When events represent state changes, initiated either by the user by clicking on the
component’s UI or by programmatic requests (through operations, discussed below),
the event data includes the new state. Other components subscribe to these events so
that they can change their state appropriately (i.e., they synchronize). For instance,
when selecting a process in the Process browser component, an event is generated
that carries details about the performed selection.

Operations are the dual of events. They are the methods invoked as a result of
events, and often represent state change requests. For example, the Process browser
component will have a state change operation that can request that the component

User
interface

Event

Operation

One-wayRequest-
response

mashArt
component

0..1
0..N

0..N

0..N

Name

Name
Reference

0..N

0..N

output

mandatory input

output

Name
Binding
URL

Type0..N

0..N

optional input

0..1

0..N

0..N
mandatory input

constant input

optional input
0..NConstructor

0..N
constant input

Parameter
Name
Type
Value

State Variable
0..NName

Value

Figure 2 The mashArt component
model

displays a specific process. In this case, the operation parameters include the state to
which the component must evolve. In general, operations consume arbitrary parame-
ters, which, as for events, are expressed as name-value pairs to keep the model sim-
ple. Request-response operations also return a set of name-value pairs – the same
format as the call – and allow the mapping of request-response operations of SOAP
services, Get and Post requests of RESTful services, and Get requests of feeds. One-
way operations allow the mapping of one-way operations of SOAP services, Put and
Delete requests of RESTful services, and operations of UI components. The linkage
between events and operations, as we will see, is done in the composition model. We
found the combination of (application-specific) states, events, and operations to be a
very convenient and easy to understand programming paradigm for modeling all
situations that require synchronization among UI, application, or data components.

Finally, configuration properties include arbitrary component setup information.
For example, UI components may include layout parameters, while service compo-
nents may need configuration parameters, such as the username and password for
login. The semantics of these properties is entirely component-specific: no “standard”
is prescribed by the component model. Again, they are name-value pairs.

In addition to the characteristics described above, components have aspects that are
internal, meaning that they are not of concern to the composition designer, but only to
the programmer who creates the component. In particular, a component might need to
handle the invocation of a service, both in terms of mapping between the (possibly
complex) data structure that the service supports and the flat data structure of mashArt
(name-value pairs), and also in terms of invocation protocol (e.g., SOAP over http).
There are two options for this: The first is to develop ad hoc logic in form of a wrap-
per. The wrapper takes the mashArt component invocation parameters, and with arbi-
trary logic and using arbitrary libraries, builds the message and invokes the service as
appropriate. The second is to use the built-in mashArt bindings. In this case, the com-
ponent description includes component bindings such as component/http, compo-
nent/SOAP, component/RSS, or component/Atom. Given a component binding, the
runtime environment is able to mediate protocols and formats by means of default
mapping semantics; mappings can also be customized (more details are provided in
the implementation section).In summary, the mashArt model intuitively accommo-
dates multiple component models, such as UI components, SOAP and RESTful ser-
vices, RSS and Atom feeds. Figure 2 combines the previous considerations in a meta-
model for mashArt components.

In Figure 3 we introduce our graphical modeling notation for mashArt components
that captures the previously discussed characteristics of components, i.e., state,
events, operations, and UI. Stateless components are represented by circles, stateful
components by rectangular boxes. Components with UI are explicitly labeled as such.
We use arrows to model data flows, which in turn allow us to express events and
operations: arrows going out from a component are events; arrows coming in to a
component are operations. There might be multiple events and operations associated
with one component. Depending on the particular type of operation or event of a
stateless service, there might be only one incoming data flow (for one-way opera-
tions), an incoming and an outgoing data flow (for request-response operations), or
only an outgoing data flow (for events). Operations and events are bound to their
component by means of a simple dot-notation: component.(operation|event).

The actual model of a specific component is specified by means of an abstract
component descriptor, formulated in the mashArt Description Language (MDL)
available on the mashArt web site http://mashart.org/ER09). MDL is for mashArt
components what WSDL is for web services, though considerably simpler and aiming
at universal components.

5 Universal Composition Model

Since we target universal composition with both stateful and stateless components, as
well as UI composition, which requires synchronization, and service composition,
which is more orchestrational in nature, the resulting model combines features from
event-based composition with flow-based composition. As we will see, these can
naturally coexist without making the model overly complex.

In essence, composition is defined by linking events (or operation replies) that one
component emits with operation invocations of another component. In terms of flow
control, the model offers conditions on operations and split/join constructs, defined by
tagging operations as optional or mandatory. Data is transferred between components
following a pipe/data flow approach, rather than the variables-based approach typical
of BPEL or of programming languages. The choice of the data flow model is moti-
vated by the fact that while variables work very well for programs and are well un-
derstood by programmers, data flows appear to be easier to understand for non-
programmers as they can focus on the communication between a pair of components.
This is also why frameworks such as Yahoo Pipes can be used by non-programmers.

To keep the solution simple as per our requirements (yet, as complete and flexible
as necessary) we had to make some compromises. For example, the model comes
without any structured or complex system activities (e.g., scopes, nested scopes, sub-
processes, timers) and does not include transaction management or exception han-
dling. If more complex modeling constructs are necessary (e.g., a join construct with a
special data merging function, a complex data transformation service, or a death-path
elimination BPEL-style), they can be (i) implemented using the language constructs
(although they could require many components and events and render the graph com-
plex), (ii) integrated in the form of dedicated services (implemented as components),
or (iii) by creating a BPEL subflow invoked by mashArt (this is supported by the tool
but not described here, as it is implementation and not an original contribution). The
model and the language described here provide for the necessary basic composition
logic, while more complex logics are integrated without requiring any extension at the
language level. As we go along and we realize that certain features are crucial, they
will be added to the model.

The universal composition model is defined in the Universal Composition Lan-
guage (UCL), which operates on MDL descriptors only. UCL is for universal compo-
sitions what BPEL is for web service compositions (but again, simpler and for univer-
sal compositions). A universal composition is characterized by:
• Component declarations: Here we declare the components used in the composi-

tion and provide references to the MDL descriptor of each component. This allows

access to all component details (e.g., the binding). Optionally, declarations may
also contain the setting of constructor parameters.

• Listeners: Listeners are the core concept of the universal composition approach.
They associate events with operations, effectively implementing simple publish-
subscribe logics. Events produce parameters; operations consume them (static pa-
rameter values may be specified in the composition). Inside a listener, inputs and
outputs can be arbitrarily connected (by referring to the respective IDs and para-
meter names) resulting into the definition of data flows among components. An
optional condition may restrict the execution of operations; conditional statements
are XPath statements expressed over the operation’s input parameters. Only if the
condition holds, the operation is executed.

• Type definitions: As for mashArt components, the structures of complex parameter
values can be specified via dedicated data types.

We are now ready to compose our reference BCM application. Composing an ap-
plication means connecting events and operations via data flows, and, if necessary,
specifying conditions constraining the execution of operations. The graphical model
in Figure 3represents for instance the “implementation” of the BCM scenario de-
scribed earlier. We can see the three UI components Policy, Process and Analysis and
the four stateless service components Repository, Engine, Analyzer and Mail (Reposi-
tory is invoked two times). The composition has four listeners:

1. If a user selects a policy from the list of policies (PolicySelected event), we re-
trieve the list of processes associated with that policy from the repository (Reposi-
tory.GetProcsByPolicy operation). Then we ask the process engine which of those
processes are actually deployed in the system (Engine.GetProcs) and display the
processes (ShowProcesses operation) in the Process component. In parallel, we al-
so forward the retrieved processes to the Analyzer service, which retrieves possi-
ble analysis results for the first process (Analyzer.GetResults) and causes the
Analysis component to render them.

2. By selecting another process (ProcessSelected) from the list rendered by the
Process component, the user can view the respective compliance analyses (if any)
by synchronizing the Analysis UI component (ShowAnalysis).

3. If a user selects a process, we retrieve the whole list of policies associated with
that particular process (Repository.GetPolicyByProc) and show it in the Policy UI
component (ShowPolicy).

4. Finally, if by looking at the analysis data the user detects a compliance violation
(ViolationDetected), she can send an email to a responsible person (Mail.Send-
Mail).

The graphical model represents the information that is necessary to understand the
composition from the composer’s point of view. Of particular interest for the structure
of the composition is the distinction between stateful and stateless components: State-
ful components handle multiple invocations during their lifetime; stateless compo-
nents always represent only one invocation. This explains why the Repository service
is placed twice in the model for its two invocations, while the Analysis UI component
is placed only once, even though it too is invoked twice.

Regarding the semantics of the two data flows leaving the Engine service, it is
worth noting that we allow the association of a condition to each operation. A condi-

tion is a Boolean expression over the operation’s input (e.g., simple expressions over
name-value pairs like in SQL where clauses) and constrains the execution of the oper-
ation. The two data flows in Figure 3 leaving the Engine service represent a parallel
branch (conjunctive semantics); if conditions where associated with either ShowPro-
cesses or Analyzer.GetResults the flows would represent a conditional branch (dis-
junctive semantics). A similar logic applies to operations with multiple incoming
flows that can be used to model join constructs. Inputs may be optional, meaning that
they are not mandatory for the execution of the operation. If only mandatory inputs
are used, the semantics is conjunctive; otherwise, the semantics is disjunctive.

A branch/join inside a listener corresponds to a synchronous branch/join. We speak
instead of an asynchronous branch/join, when branching and joining a flow requires
defining two listeners, one with the branch and one with the join. The listener with the
branch terminates with multiple operations; the listener with the join reacts to mul-
tiple events or operation results. Again, events may be optional or mandatory. If only
mandatory events are used, the semantics is conjunctive; if optional events are used,
the semantics is disjunctive. There is no BPEL-style dead path elimination, and in
case of conjunctive joins a FIFO semantic is used for pairing events. The combination
of events/operations with a graph and with optional/mandatory inputs naturally com-
bine a pub/sub approach with an orchestration approach.

Notice that although the model in the example shows a connected graph, this is not
true in general for universal compositions. Indeed, if a composition contains compo-
nents that need not be synchronized, the respective listeners will be disconnected,
resulting in a disconnected directed graph.

Finally, data passing does not require any variables to store intermediate results.
Parameter names and data types only refer to the data and the data structures ex-
changed via data flows. Data transformations are defined by connecting the event or
feed parameters with the parameters of the operations invoked as a result of the event
triggering. More complex mappings require knowledge about the exact data type of
each of the involved parameters. In general, our approach supports a variety of data
transformations: (i) simple parameter mappings as described above; (ii) inline script-
ing, e.g., for the computation of aggregated or combined values; (iii) runtime XSLT

Figure 3 Composition model for the BCM application

Policy

Repository.
GetProcsByPolicy Engine.GetProcs

Process

Repository.
GetPolicyByProc

Analyzer.GetResults

Analysis

Mail.SendMail

PolicySelected

ShowPolicy

ShowProcesses

ProcessSelected
ViolationDetected

Process
Selected

Show
Analysis

ShowAnalysis
UI UI UI

Stateful
component

Stateless Request-Response
service invocation

Notation not used in
the example

UI component with
events and operations

Data flow

Stateless.Event

Stateless.OneWay

transformations; and (iv) dedicated data transformation services that take a data flow
in input, transform it, and produce a new data flow in output. The use of the dedicated
data transformation services is enabled by UCL’s extensibility mechanism.

6 Implementing and Provisioning Universal Compositions

Development environment. In line with the idea of the Web as integration platform,
the mashArt editor runs inside the client browser; no installation of software is re-
quired. The screenshot in Figure 4 shows how the universal composition of Figure 3
can be modeled in the editor. The modeling formalism of the editor slightly differs
from the one introduced earlier, as in the editor we can also leverage interactive pro-
gram features to enhance user experience (e.g., users can interactively choose events
and operations from respective drop-down panels). But the expressive power of the
editor is the same as discussed above.

The list of available components on the left hand side of the screenshot shows the
components and services the user has access to in the online registry (e.g., the Policy
Browser or the Registry service). The modeling canvas at the right hand side hosts the
composition logic represented by UI components (the boxes), service components(the
circles), and listeners (the connectors). A click on a listener allows the user to map
outputs to inputs and to specify optional input parameters.

In the lower part of the screenshot, tabs allow users to switch between different
views on the same composition: visual model vs. textual UCL, interactive layout vs.
textual HTML, and application preview. The layout of an application is based on
standard HTML templates; we provide some default layouts, own templates can easi-
ly by uploaded. Laying out an application simply means placing all UI components of
the composition into placeholders of the template (again, by dragging and dropping

Component browser

UI componentService component

Composition canvas

Data flow connector

Events and
operations

Figure 4 The mashArt
editor

components). The preview panel allows the user to run the composition and test its
correctness. Compositions can be stored on the mashArt server.

The implementation of the editor is based on JavaScript and the Open-jACOB
Draw2D library (http://draw2d.org/draw2d/) for the graphical composition logic and
AJAX for the communication between client and server. The registry on the server
side, used to load components and services and to store compositions, is implemented
as a RESTful web service in Java. The platform runs on Apache Tomcat.
Execution environment. In developing a mashArt execution environment, the issues
that need to be solved include (i) the seamless integration of stateful and stateless
components and of UI and service components, (ii) the conciliation of short-lived and
long-lasting business process logics in one homogeneous environment, (iii) the con-
sistent distribution of actual execution tasks over client and server, and (iv) the trans-
parent handling of multiple communication protocols. We now detail these issues.

Stateful components may internally maintain state variables as well as the state in
their UI, raising events upon state changes. Stateful application components may be
implemented as wrappers that manage communications with an external service, the
state itself, and possible correlation logic (that is, stateful wrappers may internally
embed the analogous of BPEL correlation sets logic, consistently with the approach of
pushing complexity to components). As for now, wrappers are implemented by com-
ponent developers, even though we are implementing mechanisms for embedding
state management and correlation management in MDL and UCL extensions.

Short-lived process logics are represented by listeners that involve stateful compo-
nents or synchronous service invocations only. Such logics can easily be executed at
the client side. Stateful components are instantiated inside the client browser or the
server-side framework and run there locally. The lifetime of client-side components
strictly depends on the user’s browsing behavior, e.g., the user might leave the com-
posite application by navigating to another page or by closing the browser. Long-
lasting process logics are represented by listeners that involve asynchronous service
invocations and external notifications or callbacks. Such logics typically require the
availability of a web server and a constantly available runtime environment, which
can only be guaranteed on the server side. The optimal distribution of components
and tasks over client and server is another problem that needs to be addressed. For
instance, UI components typically run on the client side, while we wait for notifica-
tions by an external web service on the server side. Depending on the kind of process
logics and the nature of the involved components, the association of components to
either the client or the server side may be computed at startup of the composite appli-
cation. For now, we can handle client-side components and external notifications.

Finally, the handling of multiple communication protocols (e.g., SOAP and plain
http) requires either the implementation of wrappers or of message adapters that me-
diate between the native protocols of remote services and the internal message format
of the execution environment. Depending on the binding, a suitable protocol adapter
is selected. For instance, the component/http binding allows issuing arbitrary Get,
Post, Put, or Delete http calls to a specified URI. Adapters can be customized for
individual components: the content that is sent is specified by a text document (e.g., a
SOAP-compliant XML document) that can include references to operation parameters
(surrounded by $ signs) that are replaced by the mashArt framework with the actual
values at runtime. In this way, we can implement many kinds of message exchanges

(e.g., SOAP- or REST-based). Reply values can be similarly mapped using XPath
expressions inside the component definition.

Figure 5 contextualizes the previous considerations in the functional architecture of
our execution environment. The environment is divided into a client- and a server-
side part, which exchange events via a synchronization channel. On the client side,
the user interacts with the application via its UI, i.e., its UI components, and thereby
generates events that are intercepted by the client-side event bus. The bus implements
the listeners that are executed on the client side and manage the data and SOAP-
HTTP adapters. The data adapter performs data transformations, the SOAP-HTTP
adapters allow the environment to communicate with external services. Stateful ser-
vice instances might also use the SOAP-HTTP adapters for communication purposes.
The server-side part is structured similarly, with the difference that the handling of
external notifications is done via dedicated notification handlers, and long-lasting
process logics that can be isolated from the client-side listeners and executed inde-
pendently can be delegated to a conventional process engine (e.g., a BPEL engine).

The whole framework, i.e., UI components, listeners, data adapters, SOAP-HTTP
adapters, and notification handlers are instantiated when parsing the UCL composi-
tion at application startup. The internal configuration of how to handle the individual
components is achieved by parsing each component’s MDL descriptor (e.g., to under-
stand whether a component is a UI or a service component). The composite layout of
the application is instantiated from the HTML template filled with the rendering of
the application’s UI components.

The client-side environment is an evolution of the already successfully imple-
mented and tested UI integration framework of the Mixup project [3], that was how-
ever limited to UI components only. The environment comes with an AJAX imple-
mentation of the UCL and MDL parsers and is integrated with the mentioned online
registry storing components and compositions. The server-side environment has suc-
cessfully passed a prototype implementation (the effort of several Master theses)
based on Java and the Tomcat web server. The integration with the external process
engine (e.g., Active-BPEL) and of the client- and server-side parts is ongoing.

Figure 5 Universal execution framework

Web user
interface

UI component
instances

UI component
instances

UI component
instance

Process engine

Notification
handler

Long-running
processes

External
services

User

Data
adapter

SOAP
adapter

HTTP
adapter

UI component
instances

UI component
instances

Stateful service
instances

Client-side bus Server-side bus

Data
adapter

HTML
layout MDL UCL

Client Server

SOAP,
HTTP

SOAP,
HTTP

SOAP
adapter

HTTP
adapter

A first conclusion that can be drawn from our experiences is that performance does
not play a major role on the client side. This is because in a given composition, only a
limited number of components run on the client, and the client needs to handle only
one instance of the application. On the server-side, performance becomes an issue if
multiple composite applications with a high number of long-lasting processes are
running in the same web server. Although we did not run scalability experiments yet,
the re-use of existing and affirmed technologies, simple servlets for notification han-
dlers, and BPEL engines for process logics will provide for the necessary scalability.
MashArt at work in the BCM example. Once components are in place and we have
searched what we need from the registry (via the registry browser), we are ready to
define universal composite applications. The mashArt ingredients that allow composi-
tion are the graphical UCL editor for the drag-and-drop development of UCL compo-
sitions and the execution environment for the hosted execution of ready compositions.
Furthermore, an online monitoring and analysis tool provides a visual analysis of
active and completed executions. The development of our BCM application would
thus occur in the following steps:
1. The compliance expert starts the UCL editor and composes the UCL logic of the

application by putting together the required components, found in the registry.
2. Still in the graphical editor, she can define the applications appearance by apply-

ing a simple layout template (e.g., an HTML template with <div>placeholders;
some templates are readily available, own ones can easily be uploaded) and plac-
ing the composition’s UI components.

3. After checking a preview of the application in the editor, she stores the UCL com-
position in the online registry, and the application appears in the registry browser.

Once the new composite application has been defined, it can be executed either
through the registry browser or via a dedicated URI. As the application is started, the
runtime environment parses the UCL file, loads the layout, and instantiates UI com-
ponents using the constructor parameters specified in the UCL file. During the execu-
tion of the application, the runtime environment logs the occurrence of events and
operation calls. Authorized users can then monitor and analyze executions of compo-
sitions through an interface that allows the graphical exploration of the events. We
discuss neither the monitoring interface nor the authorization model as they do not
correspond to significant innovations or contributions of the paper. The authorization
model is essentially role-based, while the monitoring and analysis is (in the present
version) limited to a graphical process-oriented GUI for monitoring each instance and
a reporting infrastructure to view statistics on executions (e.g., average lifetime, statis-
tics on the duration on each operation, detection of outliers).

7 Conclusion

In this paper, we have considered a novel approach to UI and service composition on
the Web, i.e., universal composition. This composition approach is the foundation of
the mashArt project, which aims at enabling even non-professional programmers (or
Web users) to perform complex UI, application, and data integration tasks online and
in a hosted fashion (integration as a service). Accessibility and ease of use of the

composition instruments is facilitated by the simple composition logic and imple-
mented by the intuitive graphical editor and the hosted execution environment. The
platform comes with an online registry for components and compositions and will
provide tools for monitoring and analysis of hosted compositions.

The key findings of our work are: (i) state and events/operations are the main ab-
stractions we need for universal integration; (ii) it is possible to provide a simple yet
universal composition model by combining synchronization constructs with flow-
based ones; (iii) essential to simplicity is the separation of what is simple and exposed
to the composer from what is complex and exposed to professional programmers
(creating reusable components); (iv) universal composition requires a division of
client-side and server-side composition logic for scalability and usability purposes.

Acknowledgments. We thank Maristella Matera, Jin Yu and Regis Saint-Paul for
their contribution to the Mixup framework.

8 References
[1] J. Yu, et al., Understanding Mashup Development and its Differences with Traditional

Integration, Internet Computing, vol. 12, no. 5, 2008, pp. 44-52.
[2] OASIS. Web Services for Remote Portlets, August 2003. [Online]. www.oasis-

open.org/committees/wsrp
[3] J. Yu, et al., A Framework for Rapid Integration of Presentation Components, WWW'07,

2007, pp. 923-932.
[4] G. Alonso, F. Casati, H. Kuno, V. Machiraju, Web Services: Concepts, Architectures and

Applications. Springer, 2003.
[5] S. Dustdar, W. Schreiner, A survey on web services composition, Int. J. Web Grid Ser-

vices, vol. 1, no. 1, pp. 1-30, 2005.
[6] OASIS. Web Services Business Process Execution Language Version 2.0, April 2007.

[Online]. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
[7] C. Pautasso, BPEL for REST, BPM'08, Milano, 2008.
[8] T. van Lessen, et al. A Management Framework for WS-BPEL, ECoWS'08, Dublin,

2008.
[9] F. Curbera, et al. Bite: Workflow Composition for the Web, ICSOC'07, Vienna, 2007, pp.

94-106.
[10] E. M. Maximilien, et al. An Online Platform for Web APIs and Service Mashups, Inter-

net Computing, vol. 12, no. 5, pp. 32-43, Sep. 2008.
[11] D. Braga, et al. Optimization of Multi-Domain Queries on the Web, in VLDB'08, Auck-

land, 2008, pp. 562-573.
[12] F. Daniel, et al. Understanding UI Integration - A Survey of Problems, Technologies, and

Opportunities, IEEE Internet Computing, pp. 59-66, May 2007.
[13] Microsoft Corporation. Smart Client - Composite UI Application Block, December 2005.

[Online]. http://msdn.microsoft.com/en-us/library/aa480450.aspx
[14] The Eclipse Foundation. Rich Client Platform, October 2008. [Online].

http://wiki.eclipse.org/index.php/RCP
[15] Sun Microsystems. JSR-000168 Portlet Specification, October 2003. [Online].

http://jcp.org/aboutJava/communityprocess/final/jsr168/
[16] R. Acerbis, et al. Web Applications Design and Development with WebML and WebRa-

tio 5.0. TOOLS (46) 2008, pp. 392-411.
[17] J. Gómez, et al. Tool Support for Model-Driven Development of Web Applications,

WISE’05, pp. 721-730.

