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ABSTRACT

Location-hidden services, as offered by anonymity systems
such as Tor, allow servers to be operated under a pseudonym.
As Tor is an overlay network, servers hosting hidden services
are accessible both directly and over the anonymous chan-
nel. Traffic patterns through one channel have observable
effects on the other, thus allowing a service’s pseudonymous
identity and IP address to be linked. One proposed solution
to this vulnerability is for Tor nodes to provide fixed qual-
ity of service to each connection, regardless of other traf-
fic, thus reducing capacity but resisting such interference
attacks. However, even if each connection does not influ-
ence the others, total throughput would still affect the load
on the CPU, and thus its heat output. Unfortunately for
anonymity, the result of temperature on clock skew can be
remotely detected through observing timestamps. This at-
tack works because existing abstract models of anonymity-
network nodes do not take into account the inevitable im-
perfections of the hardware they run on. Furthermore, we
suggest the same technique could be exploited as a classical
covert channel and can even provide geolocation.

Categories and Subject Descriptors
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al—Security and protection; D.4.6 [Operating Systems]:
Security and Protection—Information Flow Controls; C.2.5
[Computer-Communication Networks]: Local and Wi-
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ciety]: Public Policy Issues—Privacy
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1. INTRODUCTION
Hidden services allow access to resources without the op-

erator’s identity being revealed. Not only does this protect
the owner, but also the resource, as anonymity can help
prevent selective denial of service attacks (DoS) [35, 36].
Tor [15], has offered hidden services since 2004, allowing
users to run a TCP server under a pseudonym. At the time
of writing, there are around 80 publicly advertised hidden
services, offering access to resources that include chat, low
and high latency anonymous email, remote login (SSH and
VNC), websites and even gopher. The full list of hidden
services is only known by the three Tor directory servers.

Systems to allow anonymous and censorship-resistant con-
tent distribution have been desired for some time, but re-
cently, anonymous publication has been brought to the fore
by several cases of blogs being taken down and/or their au-
thors being punished, whether imprisoned by the state [43]
or being fired by their employers [5]. In addition to blogs,
Tor hidden websites include dissident and anti-globalisation
news, censored or otherwise controversial documents, and
a PGP keyserver. It is clear that, given the political and
legal situation in many countries, the need for anonymous
publishing will remain for some time.

Because of the credible threat faced by anonymous content
providers, it is important to evaluate the security, not only of
deployed systems, but also proposed changes believed to en-
hance the security or usability. Guaranteed quality of service
(QoS) is one such defence, designed to protect against indi-
rect traffic-analysis attacks that estimate the speed of one
flow by observing the performance of other flows through
the same machine [33].

QoS acts as a countermeasure by preventing flows on an
anonymity-network node from interfering with each other.
However, an inevitable result is that when a flow is running
at less than its reserved capacity, CPU load on the node will
be reduced. This induces a temperature decrease, which af-
fects the frequency of the crystal oscillator driving the sys-
tem clock. We measure this effect remotely by requesting
timestamps and deriving clock skew.

We have tested this vulnerability hypothesis using the cur-
rent Tor implementation (0.1.1.16-rc), although – for reasons
explained later – using a private instance of the network.
Tor was selected due to its popularity, but also because it
is well documented and amenable to study. However, the
attacks we present here are applicable to the design of other
anonymity systems, particularly overlay networks.

In Section 2 we review how hidden services have evolved
from previous work on anonymity, discuss the threat models



used in their design and summarise existing attacks. Then
in Section 3 we provide some background on clock skew, the
phenomenon we exploit to link hidden service pseudonyms
to the server’s real identity. In Section 4 we present the
results of our experiments on Tor and discuss the potential
impact and defences. Finally, in Section 5 we suggest how
the general technique (of creating covert channels and side
channels which cross between the digital and physical world)
might be applied in other scenarios.

2. HIDDEN SERVICES
Low latency anonymity networks allow services to be ac-

cessed anonymously, in real time. The lack of intentional
delay at first glance decreases security, but by increasing
utility, the anonymity set can increase [1]. The first such
proposal was the ISDN mix [39], but it was designed for a
circuit switched network where all participants transmit at
continuous and equal data rates and is not well suited to
the more dynamic packet switched Internet. PipeNet [10]
attempted to apply the techniques of ISDN mixes to the In-
ternet, but while providing good anonymity guarantees, it
is not practical for most purposes because when one node
shuts down the entire network must stop; also, the cost of
the dummy traffic required is prohibitive.

The Anonymizer [3] and the Java Anon Proxy (JAP) [7]
provide low-latency anonymous web browsing. The main
difference between them is that while Anonymizer is con-
trolled by a single entity, traffic flowing through JAP goes
through several nodes arranged in a fixed cascade. However,
in neither case do they obscure where data enters and leaves
the network, so they cannot easily support hidden services.
This paper will instead concentrate on free-route networks,
such as Freedom [4, 8] and the Onion Routing Project [42],
of which Tor is the latest incarnation.

2.1 Tor
The attacks presented in this paper are independent of

the underlying anonymity system and hidden service archi-
tecture, and should apply to any overlay network. While
there are differing proposals for anonymity systems sup-
porting hidden services, e.g. the PIP Network [17], Tor is
a popular, deployed system, suitable for experimentation,
so initially we will focus on it. Section 5 will suggest other
cases where our technique can be used.

Tor hidden services are built on the connection anonymity
primitive the network provides. As neither our attack nor
the Tor hidden service protocol relies on the underlying im-
plementation, we defer to [12, 13, 14, 15] for the full details.
All that is important to appreciate in the remaining discus-
sion is that Tor can anonymously tunnel a TCP stream to a
specified IP address and port number. It does this by relay-
ing traffic through randomly selected nodes, wrapping data
in multiple layers of encryption to maintain unlinkability.
Unlike email mixes, it does not intentionally introduce any
delay: typical latencies are in the 10–100 ms range.

There are five special roles in a hidden service connec-
tion and all links between them are anonymised by the Tor
network. The client wishes to access a resource offered by a
hidden server. To do so, the client contacts a directory server
requesting the address of an introduction point, which acts
as an intermediary for initial setup. Then, both nodes con-
nect to a rendezvous point, which relays data between the
client and hidden server.

For clarity, some details have been omitted from this sum-
mary; a more complete description is in Øverlier and Syver-
son [38]. In the remainder of the paper, we will deal only
with an established data connection, from the client to the
rendezvous point and from there to the hidden server.

2.2 Threat Model
The primary goal of our attacker is to link a pseudonym

(under which a hidden service is being offered) to the oper-
ator’s real identity, either directly or through some interme-
diate step (e.g. a physical location or IP address). For the
moment, we will assume that identifying the IP address is
the goal, but Section 5.3 will discuss what else can be dis-
covered, and some particular cases in which an IP address
is hard to link to an identity.

Low-latency anonymity networks without dummy traffic,
like Tor, cannot defend against a global passive adversary.
Such an attacker simply observes inputs and outputs of
the network and correlates their timing patterns, so called
traffic-analysis. For the same reason, they cannot protect
against traffic confirmation attacks, where an attacker has
guessed who is communicating with whom and can snoop
individual network links in order to validate this suspicion.

It is also common to assume that an attacker controls
some of the anonymity network, but not all. In cases like
Tor, which is run by volunteers subjected to limited vetting,
this is a valid concern, and previous work has made use of
this [33, 38]. However, the attacks we present here do not
require control of any node, so will apply even to anonymity
networks where the attacker controls no nodes at all.

In summary, we do not assume that our attacker is part of
the anonymity network, but can access hidden services ex-
posed by it. We do assume that he has a reasonably limited
number of candidate hosts for the hidden service (say, a few
thousand). However, we differ from the traffic confirmation
case excluded above in that our attacker cannot observe, in-
ject, delete or modify any network traffic, other than that
to or from his own computer.

2.3 Existing Attacks
The first documented attack on hidden servers was by

Øverlier and Syverson [38]. It proposes and experimentally
confirms that a hidden service can be located within a few
minutes to hours if the attacker controls one, or preferably
two, network nodes. It relies on the fact that a Tor hid-
den server selects nodes at random to build connections.
The attacker repeatedly connects to the hidden service, and
eventually a node he controls will be the one closest to the
hidden server. Now, by correlating input and output traffic,
the attacker can confirm that this is the case, and so he has
found the hidden server’s IP address.

Another attack against Tor, but not hidden services per
se, is described by Murdoch and Danezis [33]. The victim
visits an attacker controlled website, which induces traffic
patterns on the circuit protecting the client. Simultane-
ously, the attacker probes the latency of all Tor nodes and
looks for correlations between the induced pattern and ob-
served latencies. The full list of Tor nodes is, necessarily,
available in the public directories along with their IP ad-
dresses. When there is a match, the attacker knows that
the node is on the target circuit and so can reconstruct the
path, although not discover the end node. In a threat model
where the attacker has a limited number of candidates for



the hidden service, this attack could also reveal its identity.
Many hidden servers are also publicly advertised Tor nodes,
in order to mask hidden server traffic with other Tor traffic,
so this scenario is plausible.

Several defences are proposed by Murdoch and Danezis,
which if feasible, should provide strong assurances against
the attack. One is non-interference – where each stream go-
ing through a node is isolated from the others. Here each
Tor node has a given capacity, which is divided into sev-
eral slots. Each circuit is assigned one slot and is given a
guaranteed data rate, regardless of the others.

Our new observation, which underpins the attack pre-
sented, is that when circuits carried by a node become idle,
its CPU will be less active, and so cool down. Tempera-
ture has a measurable effect on clock skew, and this can be
observed remotely. We will show that an attacker can thus
distinguish between a CPU in idle state and one that is busy.
But first some background is required.

3. CLOCK SKEW AND TEMPERATURE
Kohno et al. [24] used timing information from a remote

computer to fingerprint its physical identity. By examining
timestamps from the machine they estimated its clock skew :
the ratio between actual and nominal clock frequencies.

They found that a particular machine’s clock skew de-
viates very little over time, around 1–2 parts per million
(ppm), depending on operating system, but that there was a
significant difference between the clock skews (up to 50 ppm)
of different machines, even identical models. This allows a
host’s clock skew to act as a fingerprint, linking repeated ob-
servations of timing information. The paper estimates that,
assuming a stability of 1 ppm, 4–6 bits of information on the
host’s identity can be extracted.

Two sources of timestamps were investigated by Kohno
et al.: ICMP timestamp requests [40] and TCP timestamp
options [21]. The former has the advantage of being of a
fixed nominal frequency (1 kHz), but if a host is Network
Time Protocol (NTP) [28] synchronised, the ICMP times-
tamp was found to be generated after skew adjustment, so
defeating the fingerprinting attack. The nominal frequency
of TCP timestamps depends on the operating system, and
varies from 2 Hz (OpenBSD 3.5) to 1 kHz (Linux 2.6.11).
However, it was found to be generated before NTP correc-
tion, so attacks relying on this source will work regardless
of the NTP configuration. Additionally, in the special case
of Linux, Murdoch and Lewis [34] showed how to extract
timestamps from TCP sequence numbers.

We will primarily use TCP timestamps, which are en-
abled by default on most modern operating systems. They
improve performance by providing better estimates of round
trip times and protect against wrapped sequence numbers
on fast networks. Because of their utility, TCP timestamps
are commonly passed by firewalls, unlike ICMP packets and
IP options, so are widely applicable. The alternative mea-
surement techniques will be revisited in Section 5.4.

3.1 Background and Definitions
Let T (ts) be the timestamp sent at time ts. Unless speci-

fied otherwise, all times are relative to the receiver clock. As
we are interested in changes of clock frequency, we split skew
into two components, the constant sc and the time-varying
part s(t). Without loss of generality, we assume that the
time-varying component is always negative.

Before a timestamp is sent, the internal value of time is
converted to a number of ticks and rounded down. The
nominal length of a tick is the clock’s resolution and the re-
ciprocal of this is its nominal frequency, h. The relationship
between the timestamp and input parameters is thus:

T (ts) =
j

h ·
`

ts + scts +

Z

ts

0

s(t) dt
´

k

(1)

Now we sample timestamps Ti sent at times tsi
chosen

uniformly at random between consecutive ticks, for all i in
[1 . . . n], with ts1 = 0. The quantisation noise caused by the
rounding can be modelled as subtracting a random variable
c with uniform distribution over the range [0, 1). Also, by
dividing by h, we can recover the time according to the
sender in sample i:

t̃i = Ti/h = tsi
+ sctsi

+

Z

tsi

0

s(t) dt − ci/h (2)

We cannot directly measure the clock skew of a remote
machine, but we can calculate the offset. This is the differ-
ence between a clock’s notion of the time and that defined
by the reference clock (receiver). The offset oi can be found
by subtracting tsi

from t̃i. However, the receiver only knows
the time tri

when a packet was received.
Let di be the latency of a packet, from when it is times-

tamped to when it is received, then tsi
= tri

− di. Skew is
typically small (< 50 ppm) so the effect of latency to these
terms will be dominated by the direct appearance of di and
is ignored otherwise. The measured offset is thus:

õi = t̃i − tri
= sctri

+

Z

tri

0

s(t) dt − ci/h − di (3)

Figure 1 shows a plot of the measured offset over packet
receipt time. Were the sampling noise c/h, latency intro-
duced noise d and variable skew s(t) absent, the constant
skew sc would be the derivative of measured offset with re-
spect to time. To form an estimate of the constant skew
observed, ŝc, in the presence of noise, we would like to re-
move these terms. Note that in (3) the noise contributions,
as well as s(t), are both negative.

Following the approach of Kohno et al., we remove the
terms by fitting a line above all measurements while min-
imising the mean distance between each measurement and
the point on the line above it. By applying the linear-
programming based algorithm described by Moon et al. [29],
we derive such a line. More formally this finds an estimate
of the linear offset component ô(t) = ŝc · t + β such that, for
all samples, ô(tri

) > õi and minimises the expression:

1

n
·

n
X

i=1

`

ô(tri
) − õi

´

(4)

The offset ô(t) is also plotted on Figure 1. The band of off-
set samples below the line is due to the sampling noise c/h,
as illustrated by the different width depending on h. Points
are outside this band because of jitter in the network delay
(any constant component will be eliminated), but latencies
are tightly clustered below a minimum which remains fixed
during the test. This is to be expected for an uncongested
network where routes change rarely. The characteristics of
these noise sources will be discussed further in Section 5.4.
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Figure 1: Offset between TCP timestamps of seven
machines and the measurer’s clock over time. The
bottom two lines ( ) show clocks with 100 Hz res-
olution and the others are 1 kHz. The range of the
quantisation noise is [0, 1/h), as indicated for the
h = 100 Hz case. The time since the beginning
of the experiment was subtracted from the mea-
surer’s clock and the first timestamp received was
subtracted from all timestamps. All machines were
on the same LAN, except one (+) which was ac-
cessed over a transatlantic link, through 14 hops.

3.2 Impact of Temperature
The effect of temperature on remote clock skew measure-

ments has been well known to the NTP community since
the early 1990s [25, 27] and was mentioned by Kohno et al.
However, we believe our paper to be the first that proposes
inducing temperature change and measuring the change in
clock skew, in order to attack an anonymity system.

As shown in Figure 2, the frequency of clock crystals varies
depending on temperature [9]. Exactly how depends on
tradeoffs made during manufacture. The figure shows an
AT-cut crystal common for PCs, whose skew is defined by a
cubic function. BT-cut is more common for sub-megahertz
crystals and is defined by a quadratic. The angle of cut al-
ters the temperature response and some options are shown.
It can be seen that improving accuracy in the temperature
range between the two turning points degrades performance
outside these values. Over the range of temperatures en-
countered in our experiments, skew response to temperature
is almost linear, so for simplicity we will treat it as such.

The linear offset fit shown in Figure 1 matches almost per-
fectly, excluding noise. This indicates that although temper-
ature varied during the sample period, the constant skew sc

dominates any temperature dependence s(t) present. Never-
theless, the temperature dependent term s(t) is present and
is shown in Figure 3. Here, ô(tri

) has been subtracted from
all õi, removing our estimate of constant skew ŝc. To esti-
mate the variable skew component ŝ(t), the resulting offset is
differentiated, after performing a sliding window line-fitting.
We see that as the temperature in the room varied over the
day, there is a correlated change in clock skew.
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Figure 2: AT-cut crystal clock skew over two tem-
perature ranges. Full operational range is shown
above, with indicated zoomed-in area below. On
the zoomed graph, the temperature and skew ranges
found in Figure 5(a) are shown. As skews are rela-
tive, the curves have been shifted vertically so that
skew is zero at the minimum observed temperature.

4. ATTACKING TOR
We aim to show that a hidden server will exhibit mea-

surably different behaviour when a particular connection is
active compared to when it is idle. Where the Murdoch and
Danezis attacks [33] probed the latency of other connections
going through the same node, we measure clock skew.

This is because when a connection is idle, the host will
not be performing as many computations and so cool down.
The temperature change will affect clock skew, and this can
be observed remotely by requesting timestamps. The goal
of our experiment is to verify this hypothesis.

Such an attack could be deployed in practice by an at-
tacker using one machine to access the hidden service, vary-
ing traffic over time to cause the server to heat up or cool
down. Simultaneously, he probes all candidate machines for
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Figure 4: Experimental setup with four computers.

timestamps. From these the attacker infers clock skew esti-
mates and when a correlation between skew and the induced
load pattern is found, the hidden service is de-anonymised.

The reliability and performance of the Tor network for
hidden servers is currently quite poor, so, to simplify ob-
taining results, our experiments were run on a private Tor
network. We see no reason these results would not transfer
to the real Tor network, even when it is made more reliable
and resistant to the Murdoch and Danezis attacks.

The computers used in each test (shown in Figure 4) are:

Hidden Server: Tor client and webserver, hosting a 10 MB
file; fitted with a temperature sensor.

Tor Network: Two Tor directory server processes and five
normal servers, which can act as introduction and ren-
dezvous points, all unmodified. While all processes
are on the same machine, this does not invalidate our
results as only the Hidden Server is being analysed.

Attacker: Runs the Tor client, repeatedly requesting the
file hosted by Hidden Server, through the Tor Network.
For performance, this is modified to connect directly
to the rendezvous point.

Measurer: Connects directly to the Hidden Server’s public
IP address, requesting TCP timestamps, ICMP times-
tamps and TCP sequence numbers, although only the
results for the first are shown.

For two hours the 10 MB file is repeatedly downloaded
over the Tor network, with up to 10 requests proceeding in
parallel. Then for another two hours no requests are made.
During both periods timestamps are requested directly from
the server hosting the hidden service at intervals of 1 s plus a
random period between 0 s and 1 s. This is done to meet the
assumption of Section 3.1, that samples are taken at random
points during each tick. Otherwise, aliasing artifacts would
be present in the results, perturbing the line-fitting.

Finally, the timestamps are processed as described in Sec-
tion 3.2. That is, estimating the constant skew through the
linear programming algorithm and removing it; dividing the
trace into pieces and applying the linear-programming algo-
rithm a second time to estimate the varying skew.

Were an attacker to deploy this attack, the next step
would be to compare the clock skew measurements of all can-
didate servers with the load pattern induced on the hidden
service. To avoid false-positives, multiple measurements are
needed. The approach taken by Murdoch and Danezis [33]
is to treat the transmission of the load pattern as a covert
channel and send a pseudorandom binary sequence. Thus,
after n bits are received, the probability of a false-positive
is 2−n. From inspection, we estimate the capacity of the
covert channel to be around 2–8 bits per hour. An alter-
native taken by Fu et al. [16] is to induce a periodic load
pattern which can be identified in the power spectrum of
the Fourier transformed clock skew measurements. With ei-
ther approach, the confidence could be increased to arbitrary
levels by running the attack for longer.

4.1 Results
Overall throughput was limited by the CPU of the server

hosting the private Tor network, so the fastest Hidden Server
tested ran at around 70% CPU usage while requests were
being made. CPU load on the Hidden Server was almost
all due to the Tor process, we suspect due to it performing
cryptographic operations. A 1–1.5 ◦C temperature differ-
ence was induced by this load modulation.

Ideally, the measuring machine would have a very accurate
clock, to allow comparison of results between different ex-
periments over time and with different equipment. This was
not available for these experiments, however as we are inter-
ested only in relative skews, only a stable clock is needed,
for which a normal PC sufficed. It would also be desir-
able to timestamp packets as near as possible to receipt, so
while adding the timestamp at the network card would be
preferable, the one inserted by the Linux kernel and exposed
through the pcap [22] interface has proved to be adequate.

Figure 5 shows the results of two experimental runs, in the
same style as Figure 3. Note that the top graph shows a re-
lationship between clock skew and temperature opposite to
expectations; namely when temperature increases, the clock
has sped up. One possible explanation is that the PC is us-
ing a temperature compensated crystal oscillator (TCXO),
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Figure 5: Clock skew measurements for two ma-
chines. The graph is as Figure 3, but the grey bars
at the top indicate when the hidden server was be-
ing exercised. The top graph is from a mini-tower
PC with Dell GX1MT motherboard and Intel Pen-
tium II 400 MHz processor; the bottom is from a
mini-tower PC with ASUS A7V133 motherboard
and AMD Athlon 1.2 GHz processor.

but is over compensating; another is that the temperature
curve for the crystal is different from Figure 2. In both cases
there is a clear correlation between temperature and skew,
despite only a modest temperature change.

While the CPU is under load, there is increased noise
present in the results. This could be due to increased latency
on the network, or more likely because the CPU is so busy,
the operating system sometimes allocates a quantum to the
Tor process in between adding a timestamp to a packet and
dispatching it. However, note that the minimum latency is
unchanged (and is often reached) so the linear programming
algorithm still performs well. Were the minimum to change,
then a step in the graph would be expected, rather than the
smooth curve apparent.

4.2 Discussion
Murdoch and Danezis [33] proposed a defence to their flow

interference attacks, that did not require dummy traffic. It
was to ensure that no anonymous stream flowing through a
hidden server should affect any other, whether it belonged
to the anonymity service or not. All connections are thus
given a fixed quality of service, and if the maximum number
of connections is reached, further connections are refused.

Implementing this is non-trivial as QoS must not only be
guaranteed by the host (e.g. CPU resources), but by its net-
work too. Also, the impact on performance would likely be
substantial, as many connections will spend much of their
time idle. Whereas currently the idle time would be given to
other streams, now the host carrying such a stream cannot
reallocate any resources, thus opening a DoS vulnerability.
However, there may be some suitable compromise, for ex-
ample dynamic limits which change sufficiently slowly that
they leak little information.

Even if such a defence were in place, our temperature at-
tacks would still be effective. While changes in one network
connection will not affect any other connections, clock skew
is altered. This is because the CPU will remain idle dur-
ing the slot allocated to a connection without pending data.
Unless steps are taken to defend against our attacks, the
reduced CPU load will lower temperature and hence affect
clock skew. To stabilise temperature, computers could be
modified to use expensive oven controlled crystal oscillators
(OCXO), or always run at maximum CPU load. External
access to timing information could be restricted or jittered,
but unless all incoming connections were blocked, extensive
changes would be required to hide low level information such
as packet emission triggered by timer interrupts.

While the above experiments were on Tor, we stress that
our techniques apply to any system that hides load through
maintaining QoS guarantees. Also, there is no need for the
anonymity service to be the cause of the load. For example,
Dean and Stubblefield [11] show that because SSL allows
the client to force a server to perform an RSA operation
before doing any substantial work itself, DoS attacks can
be mounted well before the connection is saturated. Such
techniques could be used to attack hidden servers where the
anonymity network cannot sustain high throughput.

Inducing clock skew and remotely measuring it can be
seen as a thermal covert channel because attacking a hidden
server could be modelled as violating an information flow
control policy in a distributed system. The client accessing
the hidden service over the anonymity network is using the
link between between the server’s pseudonym and its public
IP address, which is information at a “high” confidentiality
level. However, the client is prevented from leaking this
information by the trusted computing base of the anonymity
network. The user accessing the hidden server directly only
has access to “low” information, the real IP address by itself,
however if the “high” process can leak information to the
“low” process, the server’s anonymity is violated.

This scenario is analogous to covert channel attacks on
the ∗-property of the BLP model [6]: that processes must
not be able write to a process lower than its own privilege
level. This approach to the analysis of anonymity systems
was proposed by Moskowitz et al. [30, 31, 37], but we have
shown here further evidence that past research in the field
of covert channels can be usefully applied in enhancing the
security of modern-day anonymity systems.



5. EXTENSIONS AND FUTURE WORK
The above experiments presented an example of how tem-

perature induced clock skew can be a security risk, but we
believe that this is a more general, and previously under-
examined, technique which can be applied in other situa-
tions. In this section we shall explore some of these cases
and propose some future directions for research.

5.1 Classical Covert Channels
The above section discussed an unconventional applica-

tion of covert channels, that is within a distributed system
where users can only send data but not execute arbitrary
code. However, clock skew can also be used in conventional
covert channels, where an operating system prevents two
processes communicating which are on the same computer
and can run arbitrary software.

CPU load channels have been extensively studied in the
context of multilevel secure systems. Here, two processes
share CPU time but the information flow control policy pro-
hibits them from directly communicating. Each can still ob-
serve how much processing time it is getting, thus inferring
the CPU usage of the other.

A process can thus signal to another by modulating load
to encode information [26]. One defence against this attack
is to distort the notion of time available to processes [19] but
another is fixed scheduling and variations, ensuring that the
CPU of one process cannot interfere with the resources of
any at a conflicting security rating [20]. Temperature in-
duced clock skew can circumvent the latter countermeasure.
Covert channels are also relevant to recently deployed sepa-
ration kernels such as MILS [2, 44].

Figure 6 shows one such example. In previous cases, the
temperature in the measured machine has been modulated,
but now we affect the clock skew of the measurer. This
graph was plotted in the same way as before, but on the
measurer machine the CPUBurn program [41] was used to
induce load modulation, affecting the temperature as shown.
Timestamps are collected from a remote machine and as we
are calculating relative clock skew, we see the inverse of the
measurer’s clock skew, assuming the remote clock is stable.

Note that the temperature difference is greater than be-
fore (5 ◦C vs. 1–1.5 ◦C). This is because we are no longer
constrained by the capacity of the Tor network, and can
optimise our procedure to induce the maximum tempera-
ture differential. While this attack is effective, it requires
fairly free access to network resources, which is not common
in the general case of high-assurance systems where covert
channels are a serious concern.

Where access to a remote timing source is blocked, the
skew between multiple clock crystals within the same ma-
chine, due to their differing temperature responses and prox-
imity to the heat source, could be used. For example, in a
typical PC, the sound card has a separate crystal from the
system clock. A process could time how long it takes (ac-
cording to the system clock), to record a given number of
samples from the sound card, thus estimating the skew be-
tween the two crystals.

5.2 Cross Computer Communication
Physical properties of shared hardware have previously

been proposed as a method of creating covert channels. For
example, hard disk seek time can be used to infer the previ-
ous position of the disk arm, which could have been affected

by “high” processes [23]. However, with temperature, such
effects can extend across “air-gap” security boundaries.

Our experiments so far have not shown evidence of one
desktop computer being able to induce a significant tem-
perature change in another which is in the same room, but
the same may not be true of rack-mount machines. Here,
a 3 ◦C temperature change in a rack-mount PC has been
induced by increasing load on a neighbouring machine [18].
Blade servers, where multiple otherwise independent servers
are mounted as cards in the same case, sharing ventilation
and power, have even more potential for thermal coupling.

If two of these cards are processing data at different se-
curity levels, the tight environmental coupling could lead to
a covert channel as above, even without the co-operation
of the “low” card. For example, if a “low” webserver is
hosted next to a “high” cryptographic co-processor which
does not have Internet access, the latter could leak informa-
tion to an external adversary by modulating temperature
while the webserver clock-skew is measured. Side-channels
are also conceivable, where someone probing one card could
estimate the load of its siblings.

We simulated this case by periodically (2 hours on, 2 hours
off) exposing a PC to an external heat source while a second
computer measured the clock skew. The results showed that
3 ◦C temperature changes can be remotely received. Addi-
tionally, this confirmed that it is temperature causing the
observed clock skew in the previous experiments, and not
an OS scheduling artifact. The resulting graph was similar
to Figure 5 except there is no increased noise during heat-
ing, as would be expected from the hypothesised interference
attack resistant anonymity system.

5.3 Geolocation
In the attacks on anonymity systems so far, we have been

inducing load through the anonymity system and measuring
clock skew directly. An alternative is to measure clock skew
through the anonymity network and let the environment
alter the clock skew. This allows an attacker to observe
temperature changes of a hidden server, so infer its location.

Clock skew does not allow measurement of absolute tem-
perature, only changes. Nevertheless this still could be ade-
quate for geolocation. Longitude could simply be found by
finding the daily peak temperature to establish local time.
To find latitude, the change in day length over a reasonably
long period could be used.

It was apparent in our experiments when a door to the
cooler corridor was left open, so national holidays or when
daylight saving time comes into effect might be evident. Dis-
tortion caused by air-conditioning could be removed by in-
ferring the temperature from the duty cycle (time on vs.
time off) of thermostatically controlled appliances.

In this section we have assumed that we probe through
the anonymity network. In the case of Tor, this will in-
troduce significant jitter, and it is unclear how badly this
will affect timing measurements. Alternatively, the attacker
could connect directly to the external IP address.

This raises the question of utility – often IP addresses
can easily be mapped to locations [32]. However, this is
not always the case. For example, IP anycast and satellite
connections are hard to track to a location; as are users who
seek to hide by using long-distance dialup. While latency
in the last two cases is high, jitter can be very low, lending
itself to the clock skew attacks.
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Figure 6: Clock skew measurements of a remote machine while modulating CPU load of the measurer
(mini-tower, Intel D875 motherboard, Pentium 4 3.2 GHz CPU), for which temperature is also shown. The
measurer and remote machine are separated by a transatlantic link, so the noise level is higher.

5.4 Noise Sources and Mitigation
In the above section, we proposed acquiring timing infor-

mation from a hidden server through the anonymity net-
work. Here, in addition to the problem of increased jitter,
the timing sources we have used (ICMP/TCP timestamps
and TCP sequence numbers) may not be available. For ex-
ample, Tor operates at the TCP layer so these possibilities
do not exist, whereas Freedom [4, 8] allows the transmission
of arbitrary IP packets.

One option proposed by Kohno et al. is to use a Fourier
transform to extract the frequency of a periodic event, for
example, packet emission caused by a timer interrupt. An-
other possibility is to use application level timestamps. The
most common Tor hidden service is a web server, typically
using Apache, and by default this inserts a timestamp into
HTTP headers. However, this only has a 1 Hz resolution,
compared to the 1 kHz used in our experiments.

To improve performance in these adverse conditions by
mitigating the effect of noise, we must first understand the
source. The noise component of (3) is the sum of two inde-
pendent parameters: quantisation noise ci/h and latency di,
although we only care about the variable component of the
latter, jitter ji. The quantisation noise is chosen uniformly
at random from [0, 1/h), and so is trivially modelled, but ji

can only be found experimentally.
The top graph of Figure 7 shows the smoothed probability

density for round trip jitter (divided by two), which can be
measured directly. If we assume that forward and return
paths have independent and similar jitter, then ji would be
the same distribution. By convolving the estimated densities
of the two noise sources, we can show the probability density
of the sum, which matches the noise measurements of clock
offset shown on the bottom of Figure 7.

The linear programming algorithm used for skew calcula-
tions is effective at removing ji, because values are strongly
skewed towards the minimum, but for ci/h, it is possible
to do better. One obvious technique is to increase h by se-
lecting a higher resolution time source. We have used TCP

timestamps in this paper, primarily with Linux 2.6, which
have a nominal frequency of 1 kHz. Linux 2.4 has a 100 Hz
TCP timestamp clock, so for this, ICMP timestamps may
be a better option, as they increment at a nominal 1 kHz.

Unlike TCP timestamps, we found ICMP to be affected by
NTP, but initial experiments show that while this is a prob-
lem for finding out absolute skew, the NTP controlled feed-
back loop in Linux intentionally does not react fast enough
to hide the changes in skew this paper considers. Another
option with Linux is to use TCP sequence numbers, which
are the sum of a cryptographic result and a 1 MHz clock.
Over short periods, the high h gives good results, but as the
cryptographic function is re-keyed every 5 minutes, main-
taining long term clock skew figures is non-trivial.

Note that to derive (2) from (1) we assumed that samples
are taken at random points between ticks. This allows the
floor operation (⌊ ⌋) to be modelled as uniformly distributed
noise. Regular sampling introduces aliasing artifacts which
interfere with the linear programming algorithm.

However, the points which contribute to the accuracy of
the skew estimate, those near the top of the noise band, are
from timestamps generated just after a tick. Here, the value
of ci is close to zero, and just before the tick, ci is close
to one and the timestamp is one less. An attacker could
use the previous estimate of skew to target this point and
identify which side of the transition the sample was taken.
From this, he can estimate when the tick occurred and so
refine the skew estimate.

This approach effectively removes the quantisation error.
Rather than 1/h defining the noise band, it now only lim-
its the sampling rate to h. Multiple measurements would
still be needed to remove jitter, most likely by using the
same linear programming algorithm as in the simple case,
but perhaps also taking into consideration the round trip
time. Adequate results can be achieved using näıve random
sampling, but the improved technique would be particularly
valuable for low resolution clocks, such as the 1 Hz Apache
HTTP timestamp mentioned above.
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Figure 7: Top graph shows probability density of
measured round trip time jitter (divided by two)
with overlaid kernel density estimate ( ). Bottom
graph is density of measured offset noise, overlaid
with the above density, uniform quantisation noise
model ( ) and the calculated sum of the two com-
ponents ( ). The breaks in the x axis indicate quar-
tiles and the mean is shown as ◆. Measurements
were taken over a transatlantic link (14 hops).

6. CONCLUSION
We have shown that changes in clock skew, resulting from

only modest changes in temperature, can be remotely de-
tected even over tens of router hops. Our experiments show
that environmental changes, as well as CPU load, can be
inferred through these techniques. However, our primary
contribution is to introduce an attack whereby CPU load
induced through one communication channel affects clock
skew measured through another. This can link a pseudonym
to a real identity, even against a system that ensures perfect
non-interference when considered in the abstract.

We have demonstrated how such attacks could be used
against hidden services. We validated our expectations by

testing them with the deployed Tor code, not simulations, al-
though on a private network, rather than the publicly acces-
sible one. Our results show that proposed defences against
interference attacks which use quality of service guarantees,
are not as effective as previously thought. We suggest that
when designing such systems, considering only the abstract
operating system behaviour is inadequate as their implemen-
tation on real hardware can substantially decrease security.

We proposed future directions for security research using
thermal covert channels. These include allowing two com-
puters which share the same environment, but are otherwise
isolated, to communicate. Also, processes on the same com-
puter, under an information-flow-control policy, can send
information through temperature modulation, despite fixed
scheduling preventing CPU load based covert channels.

Finally, we proposed how localised temperature changes
might aid geolocation and suggested methods to deal with
low resolution clocks.
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