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Abstract—Wearable thermal imaging is emerging as a powerful
and increasingly affordable sensing technology. Current thermal
imaging solutions are mostly based on uncooled forward looking
infrared (FLIR), which is susceptible to errors resulting from
warming of the camera and the device casing it. To mitigate
these errors, a blackbody calibration technique where a shutter
whose thermal parameters are known is periodically used to
calibrate the measurements. This technique, however, is only
accurate when the shutter’s temperature remains constant over
time, which rarely is the case. In this paper, we contribute by
developing a novel deep learning based calibration technique that
uses battery temperature measurements to learn a model that
allows adapting to changes in the internal thermal calibration
parameters. Our method is particularly effective in continuous

sensing where the device casing the camera is prone to heating.
We demonstrate the effectiveness of our technique through
controlled benchmark experiments which show significant im-
provements in thermal monitoring accuracy and robustness.

Index Terms—thermal sensing, thermal imaging, sensor cali-
bration, deep learning, mobile computing, sensing, IoT, pervasive
computing
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I. INTRODUCTION

Thermal Imaging is increasingly available thanks to afford-

able off-the-shelf thermal cameras. Indeed, attachable micro-

USB thermal cameras costing around $100 (e.g., FLIR ONE)

are already available on the market, and also some high-end

smartphones integrate thermal cameras (e.g., Caterpillar CAT

S60 and CAT S611). Thanks to this development, new types of

application areas and studies that utilize thermal sensing are

emerging. Examples of these application areas include energy

auditing of buildings [1], [2], diverse medical applications [3],

[4], [5], continuous monitoring of animals [6], [7], search and

rescue operations [8], psychological sensing applications such

1https://www.catphones.com/
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Fig. 1. Temperature measurements of a target in ambient room temperature
(see (a)) fluctuate over time as seen in (b).

as detection of cognitive load or affective states [9], [10], and

energy modeling of IoT devices [11].

Off-the-shelf thermal cameras predominantly rely on un-

cooled forward looking infrared (FLIR) which measures vari-

ations in radiation reflected at infrared wavelengths [12]. A

fundamental challenge with FLIR cameras is that measure-

ments are affected by temperature of the camera and the device

casing it [13]. This is particularly problematic in continuous

monitoring where camera and device temperature can fluctuate

significantly over time. To mitigate these effects, the ther-

mal sensor needs to be periodically recalibrated. A common

technique for recalibration is to cover the thermal sensor

with a shutter whose thermal properties are known (typically

measured in laboratory environments), and to estimate the

required calibration parameters from the difference between

current and known values of the shutter [13]. While this

method can mitigate errors, unfortunately it is effectively only

when the shutter’s temperature remains stable, which rarely

is the case. This is particularly the case for smartphones and

other wearables where CPU, internal temperature, and use of

the camera all influence the shutter’s temperature; see Sec. II.

To highlight and illustrate the severity of errors in con-

tinuous thermal monitoring, Fig. 1 shows temperature mea-

surements from a stable target (cardboard box in ambient

room temperature) obtained using the thermal camera of a
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Fig. 2. When the thermal camera calibrates, measurement values drop
suddenly, and take tens of seconds to rise back to normal levels.

Caterpillar CAT S60 smartphone. From the figure we can

clearly see how the temperature continues to increase even

though the camera is pointed at an object with constant

temperature. In Figure 2 we have highlighted points where the

device performs internal calibration to show how it is unable

to mitigate errors in the measurements. Indeed, from the plot

it would appear that calibration actually exacerbates the errors

instead of mitigating it. The reason for this is that operating the

camera, running CPU intensive applications, and other factors

result in heat seeping through to the shutter, and invalidating

the device internal thermal parameters.
In this paper, we contribute by developing a novel deep

learning based calibration technique for improving the quality

of thermal imaging, particularly for applications that require

continuous monitoring. In our approach, battery temperature

is used as a proxy for estimating the heating of the device,

and a calibration function that captures the offset between

thermal camera measurements and the actual temperature is

learned. By compensating values of the FLIR camera with

offset estimates, the performance of the thermal imaging is

significantly improved. We demonstrate the effectiveness of

our approach through benchmark experiments carried out in

carefully controlled hot and cold conditions. Results of our

experiments demonstrate significant improvements in both the

accuracy and robustness of thermal monitoring.

II. MOTIVATION AND BACKGROUND

The focus of our work is on improving the accuracy and

robustness of FLIR measurements. As shown in Fig. 1, current

off-the-shelf FLIR cameras are prone to measurement errors,

which limit the usefulness of measurements obtained from

them. In this section we investigate how different factors affect

the error. We first examine the effectiveness of the blackbody

calibration technique used by current off-the-shelf cameras and

demonstrate how even that is a source of error, due to incorrect

assumptions of the thermal characteristics of the shutter used

as blackbody. Secondly, we examine how CPU and camera

use result in heating of the device, and how this heat affects

the temperature of the shutter. Finally, we demonstrate that

these errors can be, to a large extent, identified from changes

in the battery temperature of the device casing the camera.

A. Effect of Calibration on Thermal Camera Error

Fig. 2 shows values of thermal camera measurements taken

over a 20 minute period by monitoring the surface of water

Fig. 3. Left to right: thermal images at 1, 2, 3, 5, and 10 min when running
a stress test. When the camera and CPU are both active (middle row), the
heat signature is very different from when only the thermal camera is active
(bottom row). When only CPU is active for a longer period, we get higher
heat saturation (top row). The small hot point indicated by the boxes in the
second column images is the thermal camera aperture on the device. The
larger hot area below it in the middle and bottom row of images is the flash
LED aperture.

inside a Smart Fridge (see Sec. IV). From the figure we

can observe that each calibration cycle results in a clearly

identifiable peak in temperature measurements. In the plot, the

first two calibration cycles have a high error, after which the

error starts to stabilize. During tests of the thermal camera

we have seen this to be a relatively common occurrence,

which suggests that the first 1 − 2 calibration cycles should

be omitted. Initially the calibration cycles are more frequent,

but the frequency converges to around 180 seconds, which

seems to be a device internal parameter on the Caterpillar CAT

S60 smartphones used in our experiments. Finally, while the

magnitude of changes resulting from the calibration algorithm

seems to converge, the error in temperature measurements in-

creases over time. As we demonstrate later in this section, this

increase in error mirrors changes in the internal temperature

of the device, which in this scenario cools down from around

30°C to around 24°C; see Fig. 4.

B. Effect of CPU and Device Casing

We next examine the extent of heat seeping through into

the shutter area. To estimate this, we carried out experiments

where we monitored the temperature of the back cover of

a CAT S60 smartphone while running a stress test that

maximized device CPU use. We repeated the experiment by

running the stress test while having the thermal camera active,

as well as having the thermal camera active without running

the CPU stress test. We did this to explore the effects of

heat conduction inside the device while the thermal camera

is in use. The temperature of the device was captured using a

FLIR TG167 hand-held thermal camera, which produced heat

images of the back cover. The results are shown in Fig. 3. From

the images we can observe clear thermal hotspots, i.e., areas

that warm up most. From running the stress test for 1, 2, 3, 5,

and 10 minutes with and without operating the thermal camera,

we observe distinguishable heat signatures, indicating that heat



resulting from system load is independent from heat resulting

from use of the thermal sensor; see Fig. 3.

In all experiment conditions we can clearly see that the area

around the thermal camera aperture and the shutter used in the

blackbody calibration heats up. The effect of this heating is

further exacerbated by the CAT S60 being dust and waterproof,

which means most of the heat is released through the opening

of the thermal camera. We can see that the hottest areas on the

right are the hinge of the SIM slot cover, a larger area under

the SIM slot door, and the opening of the thermal camera.

With the CPU active (middle and top rows), a large area

around the opening of the camera flash LEDs also heats up. In

summary, besides seeing a clear increase in thermal radiation

in the thermal camera during operating the camera, we can

see that also other operations of the device have an influence

on the temperature around the thermal camera.

C. Relationship between Battery Temperature and Thermal

Camera Measurements

We next investigate how the error in FLIR measurements

changes when the temperature of the device casing it changes.

We consider battery temperature, available through most smart

battery interfaces, as a proxy for change in device temperature.

We consider two experiment setups, measuring cold water

inside a smart fridge, and measuring a painted wall in ambient

temperature; see Sec. IV.

Fig. 4 shows how the measured mean temperature of the

water changes over time in the smart fridge scenario, and

Fig. 5 shows results for ambient temperature scenario. The

pattern of measurement error is similar in both cases. From

both images we can see an error caused by calibration, which

stabilizes after two calibration cycles. For monitoring a wall

in ambient temperature, the values are slightly higher than

the ground truth, with the values initially rising as battery

temperature increases. For the smart fridge case, the reverse

occurs, i.e., the thermal camera values decrease below ground

truth as the device cools down. In both experiments, the

thermal camera values drift to a state where they consistently

differ from the ground truth. Result of these experiments

highlight how changes in battery temperature mirror errors

in the thermal camera values, and thus serve as a proxy for

assessing effect of the device casing the camera.

III. ADAPTIVE THERMAL CALIBRATION

The previous section demonstrated that the temperature

measurements recorded on the CAT S60 thermal camera suffer

from several problems. Firstly, the data fluctuates as the

device self-calibrates, and this can occur at any time when

operating the camera. Secondly, the values before and after

these fluctuations are further away from the true temperature

of the object than desired, and seem to mirror changes in

the internal temperature of the device. To mitigate the effects

of these error sources, in this section we develop a novel

deep learning based calibration technique for improving the

accuracy and robustness of thermal camera measurements.

A. Overview and Implementation

An overview of our model is shown in Fig. 6. In the first

stage (Preprocessing and Normalization), we extract five ag-

gregate statistical features from the thermal image: difference

in temperature, minimum, maximum, average, and variance

of the target object (as given by the image shown in the

screen). Difference in temperature measures changes in target

object over time, while the other features characterize the

most recent thermal image. In our experiments, we assume the

input image has been cropped to match with the target object.

When this is not the case, image segmentation techniques can

be used to identify the appropriate target (see, e.g., [14]).

Parallel to this, we retrieve battery temperature and latest

CPU usage that are closely correlated with the heating/cooling

process from the smartphone operating the thermal camera.

Both sets of features, together with the internal calibration

label (In Progress or Tuned) returned by the device are then

synchronized into a single (8 dimensional) representation,

which is transformed to match input for an LSTM layer. In

the transformation process we first remove noise introduced

by the internal calibration by removing all data from the

calibration period. The internal calibration labels returned by

the CAT S60 smartphone seem to correspond to the end of

the calibration period and reflect the end of the period where

measurements have clearly identifiable drift. To remove all

noisy measurements, we apply a reverse peak detection using

the frame labeled as ”calibrating” as the end of the peak and

remove all preceding frames matching the same peak. On

average, this process removes 13 frames preceding the end

of the calibration period while preparing segmented training

data for our model.

Our current implementation uses the Keras2 deep learning

library with TensorFlow as backend. In our experiments we

run the model on a commodity laptop (HP EliteBook 820).

However, the model can be converted to TensorFlow Lite3

based implementation, which can be employed on Android

mobile devices such as the CAT S60. In total, measurements

of 315 minutes at 1 fps and 3 MB size after preprocessing

and feature extraction, are used for model training and testing,

in which the amount of data varies depending on different

evaluation settings (see Sec. IV). The training is fast, as only

8 numerical features and a relatively small step size (see Sec.

III-A) are employed in our LSTM based model. The model

is trained for 10 epochs and each epoch takes on average 10

seconds, depending on the evaluation scenario.

B. Deep Learning Model

Our deep learning model consists of two further stages,

stacked LSTM layers (Recurrent layers) with attention mecha-

nism [15] followed by 5 fully-connected layers. The Recurrent

Layers use 10s as the time step for LSTM to take temporal

dependencies into account. As heating or cooling of the device

is a gradual process whose impact changes over time, we

2https://keras.io/
3https://www.tensorflow.org/lite/
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Fig. 4. Thermal calibration while measuring cold water in a smart
refrigerator. The temperature measurement is affected by the temperature
of the device, as evidenced by the internal battery temperature sensor.
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Fig. 5. Temperature measurements of a wall in an ambient temperature of
24°C. The temperature measurement is affected by the temperature of the
device, resulting in higher than expected values.

Fig. 6. The deep neural network structure of our deep calibration approach for thermal cameras.

utilized LSTM layers to capture these temporal patterns. The

10 seconds time step causes the model to predict drift error

based on 10 seconds of data prior to the current frame. The

attention mechanism enables finer tuning and integration of the

input and output at each time step. It calculates a weight array

that gives different importance to each intermediate output,

and calculates the dot product of the weight and intermediate

output array as the output of LSTM layers. In addition, LSTM

layers can mitigate fluctuations caused by noisy sensor data

because they are robust against individual erroneous frames

that show spikes in temperature measurements. To ensure the

10s time step setting is consistent, we only consider data of

1Hz in our main experiments. Since amount of data from each

experiment scenario is limited, we employ L2 (0.01) kernel

regularization on the weights of the LSTM layers as well as

recurrent dropout (rate = 0.1) to prevent overfitting. In the final

stage, Fully Connected Layers, the 5 fully-connected layers

aggregate the high-dimensional activation output from LSTM

layers and match it with a final response. The 5 layers all

take RELU as activation function except for the output layer,

which uses a linear function. The layers have 64, 128, 32, and

1 units, respectively.

IV. EXPERIMENTAL SETUP

We rigorously evaluate our calibration technique using data

collected from two controlled environments with differing

ambient temperatures (ambient and cold) and target objects

Fig. 7. Experimental setup with the CAT S60 devices measuring water
containers and a wall at two different ambient temperatures (smart fridge and
room). Temperatures of the containers are validated with the FLIR TG167.

TABLE I
SUMMARY OF EXPERIMENT SETUPS

Environment Hot Cold Room Temp

Room 74 - 40 °C 4.5 - 6.2 °C 22.8 °C
Fridge 30 - 22 °C 2.8 °C 22 - 18 °C

with three different temperatures (hot, ambient, cold). In the

following we detail our experimental setup and measurements.

Evaluation Environments: We consider thermal measure-

ments captured with the FLIR camera of a Caterpillar CAT S60

smartphone. We collect measurements from two environments,

a Samsung RB38M7998S4 smart fridge as cold environment



and an indoor office space as ambient. Fig. 7 illustrates the

measurement setups, and Table I summarizes the temperature

values in our test environment. In the table, the last column

of first row and middle column of second row correspond

to static setups, others are dynamic. In both environments,

measurements from the FLIR camera were captured at 1 fps.

Cold, Smart Fridge: To acquire measurements from a con-

trolled cold environment, we placed the CAT S60 camera

inside a Samsung RB38M7998S4 smart fridge and used the

FLIR to monitor surface of water placed in a plastic container.

The internal temperature of the fridge was set to 4 °C.

As the smartphone operated inside the fridge, its operating

temperature cooled over time.

Ambient, Room: As our second environment, we consider a

room with an ambient temperature of 23.5 - 25 °C. The tem-

perature of the room was measured using a digital thermometer

placed approximately one meter apart from the phone.

Target Objects: The camera was pointed at water containers

with controlled temperatures. Water temperature was validated

using a TM-947SD Thermometer which measured temperature

every two seconds. We use water containers as target objects

because water reflects a high fraction of thermal radiation.

Specifically, since FLIR cameras measure thermal radiation

instead of absolute temperature, the accuracy of the mea-

surements is sensitive to the fraction of thermal energy that

the target object emits. The energy reflected by an object is

referred to as its emissivity, denoted ǫ. Emissivity ranges from

full absorption (i.e., no thermal energy is reflected, ǫ = 0)

to full reflectance (i.e., all energy is reflected ǫ = 1). For

water, emissivity is approximately 0.98, i.e., most of the

thermal radiation is reflected back and visible in the FLIR

measurements. Target objects had three different temperatures:

hot, cold, and ambient, all measured in both environments.

Temperature of the objects was either static or dynamic: cold

object in cold environment and ambient temperature object

in ambient environment had static temperatures, and in other

combinations temperatures were dynamic.

Cold: When measuring in the cold environment, the cold con-

tainer was placed in the fridge well in advance to ensure that

the temperature of the water matched the internal temperature

of the fridge as closely as possible. According to the a TM-

947SD Thermometer, water temperature was 2.3 - 2.5 °C after

3 hours in the refrigerator. In the ambient environment the wa-

ter warmed during the measurement, starting at approximately

4.5 °C and being 6.2 °C at the end.

Ambient: When measuring an ambient temperature object

in ambient temperature the water container was placed in

room temperature for a few hours before the measurement.

Temperature of the water was measured to be 22.8 °C using

the thermometer. The thermal camera was used to measure

water surface for 15 minutes, repeated three times. To regulate

the temperature of the phone there was a 15 minute break

between the repetitions. Object temperature was stable during

the measurement. In the cold environment the temperature of

the water cooled down during the measurements, starting at

about 24 °C. The phone was kept in the refrigerator 15 minutes

in first two measurements and 30 minutes in the third. Water

temperature was 22 °C and 18 °C at the end of the second

and third measurement periods, respectively.

Hot: In both environments the temperature of the water cooled

down during the measurements. In the ambient temperature

environment temperature of the hot water was approximately

70 °C at the beginning of the measurement and at the end it

was 40 to 45 °C. In the cold environment the hot water was

colder than in the ambient environment to prevent it warming

up the refrigerator. The warm water bowl was kept in the

refrigerator for 45 minutes and the temperature measured by

the thermometer cooled from 33.7 °C to 22.9 °C in the first

measurement and from 27.2 °C to 19.1 °C in the second.

Additional frame rates: Since the frame rate of the camera

can be assumed to affect the temperature of the phone, 3

additional frame rates were also used. This was done in the

ambient temperature environment with the water bowl as the

measured object. The frame rates used were 0.05 fps, 0.2 fps

and 3 fps, each measured twice. Duration of the measurement

was 10 minutes at 3 fps and 15 minutes at other frame rates.

Thermometer synchronization: Temperature measurements

were verified with a TM-947SD Thermometer. The thermome-

ter allows only manual adjustment of time and hence no

precise time synchronization was possible. To align times-

tamps as closely as possible, we performed a two phase

synchronization. First, we manually aligned times between

the thermometer and the CAT S60 smartphone to match as

closely as possible. While this is sufficient for cases where

the temperature remains (approximately) static, inaccuracies

in the time synchronization may introduce some errors for dy-

namically changing temperatures. In the dynamic temperature

experiments the synchronization was done by warming up the

thermometer sensor at the end of each measurement period.

The warming up was done with objects clearly warmer than

the measured water to cause the temperatures measured by the

thermometer to increase rapidly. To get the equivalent time

point from the CAT phone, the phone’s thermal camera was

pointed at the thermometer and the object warming it. In the

refrigerator environment the warming up was done by holding

thermometer sensor in hand. At the end of the experiment

in the room environment the water was still warmer than

human skin, so the warming up was done with a bowl of

just boiled water (about 85 degrees). Since the temperature of

the water was either decreasing or increasing slowly during all

dynamic measurements, rapid upward change in temperature

was detectable and easy to match to the measurements from

the camera. Matching was done by both observing where the

maximum temperature measured by the camera increased, and

by looking at the visible images taken by the camera.

Thermal Measurements: We capture radiometric thermal im-

ages as a series of Kelvin matrices (320×460) at varying frame

rates. For this purpose, we developed an Android application



using the FLIR One SDK4 that allows us to capture images and

collect various metrics automatically without requiring user

interaction. We additionally collect the sensor tuning state,

which describes the current calibration phase of the device

(Tuned or In Progress). Data points are stored with their

respective timestamps to the device storage and extracted for

analysis after measurements.

Other Measurements: During the thermal image capturing,

we also periodically collect system information from the

CAT phone. Since we suspect that the automatic calibration

performed by the thermal sensor does not account for the

changing properties of the shutter, we first tried to model the

heat conducted from other components as a result of system

load. However, since the internal sensor temperatures used in

the shutter-based calibration do not seem to be exposed by

any publicly known programmable interface, we had to resort

to battery temperature values reported by the BatteryManager

API in Android instead. This provides a coarse estimate of the

overall temperature of the casing on most smart devices.

V. RESULTS

We rigorously evaluate our approach using the measure-

ments described in the previous section. We report only results

for 1 fps frame rate as the performance of our model was

comparable for other frame rates. We focus on generalization

capability of the deep learning model across environments and

objects with differing target temperatures. We also compare

our approach to a SVR-based predictor to demonstrate the

need for deep learning. We also assess how inclusion of

training data from similar environments affects deep learning

performance. We separately assessed performance using the

entire image or parts of it. Best results were consistently

obtained by cropping input images to match with the target

object. As a consequence, all results, including the original

error, have been computed from cropped images.

A. Generalization Across Environments and Objects

We begin our evaluation by examining the performance

of our deep learning model in situations where the test

environment or test object have differing temperatures than

those used to train our model. Specifically, we run leave-

one-environment-out (i.e., 2-fold cross-validation considering

fridge and room as environments) and leave-one-object-out

(i.e., 3-fold cross-validation considering hot, ambient and cold

targets) cross-validation experiments.

Table II shows the results of our experiments and compares

our deep learning approach against a SVR baseline. The values

in the table are in °C. We separately consider mean, max,

standard deviation, and offset of (1) raw data; (2) stabilized

data; and data corrected with (3) SVR or (4) our deep learning

approach (mean and standard deviation only). The overall error

improved from 3.25 to 3.12, and 1.62 to 1.07, respectively.

Then we split the data based on the temperature of the

experiment object, hot, cold, or room temperature, to perform

4https://developer.flir.com/sdk-documentation/

Leave One Object Out Validation. Our approach improves the

overall accuracy of the measurement from 1.88 to 1.52 for

the ambient temperature object and from 2.50 to 1.69 for the

hot object, but it fails for the cold object validation where the

overall error grows to 5.63 from 4.15.

B. Performance across Static and Dynamic Objects

As the next step of evaluation, we consider how well the

model generalizes across static and dynamic target objects.

We perform this using a 2-fold cross-validation where all data

with static objects is considered in one fold, and all data with

dynamically changing temperatures in the other.

The results in Table II show that our model fails in both

cases as the measurements follow different distributions. The

main problem for the model is that the patterns between

battery temperature and target object are inconsistent across

the evaluation setups. For example, in Fig. V-B, the measured

temperature in training data is almost always higher than the

ground truth, so it is intuitive for the model to learn this

pattern, which is the other way around in most of the validation

data. Therefore our approach fails to predict the error.

To improve on performance, we separately assessed how

incorporating training data from dynamic environments would

help our deep learning model. In this case the overall error

decreased from 2.55 to 2.05, however our approach still

fails on some experiments and pushes it further away from

the ground truth, as in Fig.V-B. To summarize, our model

is capable of recalibrating thermal camera measurements

and to improve their accuracy when the target objects are

approximately stationary. When the device is heating, the

performance consistently improves. However, when device

is cooling down, performance gains remain smaller. In the

case of dynamic objects, the performance suffers unless data

from similar environments is incorporated into training. This

suggests that a reasonable calibration model could be trained

with a number of conditions, incorporating both static and

dynamic measurements.

C. SVR Baseline Comparison

As a baseline for our deep learning model, we run the

support vector regression (SVR) prediction model with a

linear kernel function where battery temperature is used as

a predictor, and consider the offset as the response variable.

We chose SVR as it has been successfully used in a wide range

of sensor-based machine learning tasks [16], [17]. For cross

validation, we use the similar setting than with deep learning

model. We compare the predicted offset and the true offset

and analyze the difference by calculating mean absolute error,

a standard procedure for prediction performance analysis. The

results in Table II show the mean, maximum, and standard

deviation of the error for (1) original data, (2) stabilized data,

(3) error for SVR-corrected estimates and (4) deep learning

based estimates, respectively. For both methods we used leave-

one-environment-out cross-validation (see Sections V.A and

V.B) to estimate the errors. We can see that SVR improves the

errors for some of the experiments, but fails to improve from



(a) (b) (c) (d)

Fig. 8. When we leave dynamic or static temperature objects out of training, the y axis shows the temperature in Celsius degree and the x axis represents
timestamps where several experiments are concatenated in the plot, (a) shows the compensated temperature given by our approach, compared with raw measure
and ground truth for leave dynamic out validation, (b) illustrates training data of leave dynamic out, (c) shows the compensated temperature for leave static
out, and (d) illustrates training data of leave static out.

(a) (b) (c)

Fig. 9. (a) compensated temperature given by our approach, compared with raw measure and ground truth, (b) CDF of error for compensated temp and raw
measure, (c) Illustration of training data, when static and dynamic data were included in training and validation. In (a) and (c) x axis shows timestamps while
y axis shows temperature in Celsius degree.

the cleaned mean in the Room vs Fridge, Dynamic vs Static

and Cold+Room temperature vs Hot experiment cases. The

main issue with SVR is that it tends to overfit on the difference

between battery temperature and target object temperature. As

a result, SVR provides good results when a consistent pattern

can be identified, but fails in other cases. While error could be

reduced in some cases through the use of alternative Kernels

or temporal smoothing (e.g., HMM or Kalman filter), the

key issue, lack of consistent pattern in input features, would

persist. The use of LSTM with attention mechanism allows

more complex relationships between input features and output

features to be captured, thus providing increased robustness

and reducing overfitting, motivating the use of deep learning.

VI. DISCUSSION

Software-based Model: Our experiments were carried out

on a CAT S60 smartphone with integrated FLIR camera.

The thermal camera is a self-contained subsystem within the

device, and for example the calibration process is not exposed

to applications running on the device. Our method requires

no additional hardware, and can be used without access to

the internals of the thermal camera subsystem and hence we

expect similar data cleaning and correction procedures to be

beneficial for other wearable thermal imaging systems. Note

that other devices may require using different input features as

proxy for device temperature changes (e.g., voltage changes)

instead of relying on battery temperature and CPU usage.

Generality: Our method has been tested with two CAT

S60 thermal camera smartphones in hot, cold and ambient

conditions. Our method does not rely on any special features

of these devices, and it can be applied on any Android device

with a thermal camera. Initial experiments with a Caterpillar

CAT S61 smartphone in cold environment have indicated

similar errors. However, further research exploring errors on

a wider range of devices is needed.

Operative Temperature Range: The CAT S60 smartphone

specifications mention an operative range of 15–35°C and

a scene temperature range of 10–120°C. In some of our

measurements, the battery temperature indicated values higher

than 35°C, and in the refrigerator measurement, the average

temperature of the scene was below 10°C. Despite this, With

our error correction method, we were able to correct the

performance of the thermal camera to that within the specified

ranges. In other words, our method can potentially be used to

increase the operative range of FLIR cameras.

Physical Aspects: Our method considers battery temperature

as the main input for predicting erroneous offset within ther-

mal images. However, the model does not directly incorporate

the various underlying theoretical relations in thermophysics.

For example, Stefan-Boltzmann’s law explains how the total

energy emitted by a blackbody is directly proportional to the

fourth power of its temperature, whereas Wien’s displacement

law states that the blackbody radiation curve peaks at a

wavelength inversely proportional to its temperature. Detailed

exploration and application of these thermophysical grounds



TABLE II
RESULTS OF PERFORMANCE COMPARISON BETWEEN OUR DEEP LEARNING APPROACH AND SVR

Model and Test Fridge,

Room

Room,

Fridge

Static,

Dynamic

Dynamic,

Static

Hot+Room

Temp, Cold

Cold+Room

Temp, Hot

Cold+Hot,

Room Temp

Orig. error mean 3.83 1.41 2.98 2.98 4.37 2.60 1.84
Orig. error max 12.75 10.38 11.49 11.49 21.03 16.14 4.23
Orig. error std 1.76 1.07 1.55 1.55 2.61 1.50 0.72
Stabilized mean 3.52 1.39 2.76 2.76 3.86 2.38 1.86
Stabilized max 5.99 3.62 4.68 4.68 6.07 5.99 3.87
Stabilized std 0.87 0.76 0.76 0.76 0.88 1.00 0.71
SVR Corrected mean 3.79 9.41 1.85 3.77 5.39 7.10 2.37
SVR Corrected max 6.18 13.67 3.78 5.95 7.69 8.79 4.42
SVR Corrected std 0.84 2.67 0.67 0.81 0.96 0.47 0.76
DL Corrected mean 3.12 1.07 3.69 3.42 5.40 1.65 1.51
DL Corrected std 2.50 1.17 1.10 1.29 2.51 1.04 1.56

could potentially help further improve the model.

Applications: While the S60 thermal camera can detect tem-

perature contrasts without calibration, the measurement values

are not accurate enough without out method. Our method

enables accurate (error reduced by up to 61%), continuous

monitoring of object temperature without the need for cal-

ibration hardware at the measurement location. Besides the

scenarios covered in the Introduction, there are several other

domains that would benefit from our approach. For example,

with our method, portable and compact thermal cameras such

as the Flir One and the S60 can be used in the professional

domain to, e.g., monitor temperatures of goods in transit in

the cold chain (temperature-controlled supply chain of, e.g.,

food), detect problems in cooling of a data center, and monitor

cognitive load. In addition, consumer applications include

using the device as a thermometer, as a warning system for hot

surfaces in the kitchen, mapping the airflow within a house,

and checking the condition of door and window insulation

through prolonged monitoring as the outside temperature

changes during the day and night.

VII. RELATED WORK

This paper focuses on calibration and processing of the

FLIR thermal images in order to eliminate errors caused by

measurement devices themselves or any ambient background

heat. Mobile FLIR cameras can utilize periodic calibration by

using the camera’s shutter as an external blackbody equivalent,

as presented by Nugent et al. [13], but in the case of mobile

devices, ambient temperatures also have to be considered as a

part of the calibration process. Lin et al. [18] take into account

changes in ambient temperature as a reason for fast changes

in FPA temperatures, and present a method where the camera

output is corrected based on FPA temperature instead of using

the shutter. This however requires access to FPA temperatures.

Shutter-less calibration of uncooled thermal cameras is also

explored by Bieszczad et al. [19] who leverage the mean

FPA temperature for offset calculation and correction. Cao

et. al [20] present an online, in the wild image processing

method for estimating the current FPA temperature utilizing

offline per-pixel calibrations, in which they find a temperature

minimizing the intensity variance within a thermal image.

However, this relies on the assumption that effects of ambient

heat are always displayed as non-uniformity in the image.

Mobile thermal sensing: Mobile devices are known to be heat

sources as well as temperature sensors. Gurrum et al. [21]

study temperature measurements for different smartphone

hardware components, such as battery and display. Xie et

al. [22] mention especially CPU and battery as the major

heat generating components. Therminator [23] simulates the

relationship between temperature of hardware components

and skin layers of smartphones. To summarize, hardware

components, such as CPU, GPU, and battery, can produce a

temperature varying from 30 to 50 Celsius degrees in normal

room conditions. When considering a mobile device as a

thermal sensor, one must take into account the heat generated

by the device itself in addition to the ambient temperature.

Background temperature control: Certain background-

subtraction techniques have been used to distinguish areas of

interest; these may involve, for example, fusion with visual

images and thermal images, or object recognition [24], [9].

Also, background temperature have been controlled by using

a heated plate [25]. Problem of these techniques relate that

they cannot dismiss the thermal effect of the background heat

to the actual interest area. By considering how thermal images,

especially ones taken by FLIR cameras, should be adjusted and

processed, we can produce reliable images where variation of

the background heat can be taken into account.

VIII. SUMMARY AND CONCLUSION

We contributed by developing a novel calibration technique

for improving the measurement quality of FLIR cameras.

In our approach, battery temperature, CPU usage, and other

internal parameters were used to learn a mapping that captures

the effect of device temperature change on errors in the ther-

mal measurements. By compensating the values of the FLIR

camera with error estimates, the values returned by the camera

can be corrected and the performance of the thermal imaging

significantly improved. We demonstrated the effectiveness of

our approach through benchmark experiments carried out in

carefully controlled hot and cold conditions. Results of our

experiments demonstrated significant improvements in both



the accuracy and robustness of thermal monitoring, reducing

the maximum error by 61.0% on average.
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