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Abstract

Multi-object tracking (MOT) has been notoriously difficult to evaluate. Previous metrics overemphasize the importance of
either detection or association. To address this, we present a novel MOT evaluation metric, higher order tracking accuracy
(HOTA), which explicitly balances the effect of performing accurate detection, association and localization into a single
unified metric for comparing trackers. HOTA decomposes into a family of sub-metrics which are able to evaluate each of five
basic error types separately, which enables clear analysis of tracking performance. We evaluate the effectiveness of HOTA
on the MOTChallenge benchmark, and show that it is able to capture important aspects of MOT performance not previously
taken into account by established metrics. Furthermore, we show HOTA scores better align with human visual evaluation of
tracking performance.
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1 Introduction

Multi-Object Tracking (MOT) is the task of detecting the
presence of multiple objects in video, and associating these
detections over time according to object identities. The MOT
task is one of the key pillars of computer vision research,
and is essential for many scene understanding tasks such as
surveillance, robotics or self-driving vehicles. Unfortunately,
the evaluation of MOT algorithms has proven to be very dif-
ficult. MOT is a complex task, requiring accurate detection,
localisation, and association over time.

This paper defines a metric, called HOTA (Higher Order
Tracking Accuracy), which is able to evaluate all of these
aspects of tracking. We provide extended analysis as to why
HOTA is often preferable to current alternatives for evaluat-
ing MOT algorithms. As can be seen in Fig. 1, currently used
metrics MOTA (Bernardin and Stiefelhagen 2008) and IDF1
(Ristani et al. 2016) overemphasize detection and association
respectively. HOTA explicitly measures both types of errors
and combines these in a balanced way. HOTA also incorpo-
rates measuring the localisation accuracy of tracking results
which isn’t present in either MOTA or IDF1.

HOTA can be used as a single unified metric for ranking
trackers, while also decomposing into a family of sub-metrics
which are able to evaluate different aspects of tracking sepa-
rately. This enables clear understanding of the different types
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Fig. 1 A simple tracking example highlighting one of the main differ-
ences between evaluation metrics. Three different trackers are shown in
order of increasing detection accuracy and decreasing association accu-
racy. MOTA and IDF1 overemphasize the effect of accurate detection
and association respectively. HOTA balances both of these by being an
explicit combination of a detection score DetA and an association score
AssA

of errors that trackers are making and enables trackers to be
tuned for different requirements.

The HOTA metric is also intuitive to understand. This
can be seen clearly in Fig. 1. The detection accuracy, DetA,
is simply the percentage of aligning detections. The associa-
tion accuracy, AssA, is simply the average alignment between
matched trajectories, averaged over all detections. The final
HOTA score is the geometric mean of these two scores aver-
aged over different localisation thresholds.

In this paper we make four major novel contributions:
(i) We propose HOTA as a novel metric for evaluating multi-
object tracking (Sect. 5); (ii) We provide thorough theoretical
analysis of HOTA as well as previously used metrics MOTA,
IDF1 and Track-mAP, highlighting the benefits and short-
comings of each metric (Sect. 7 and 9); (iii) We evaluate
HOTA on the MOTChallenge benchmark and analyse its
properties compared to other metrics for evaluating current
state-of-the-art trackers (Sect. 10); (iv) We perform a thor-
ough user-study comparing how different metrics align with
human judgment of tracking accuracy and show that HOTA
aligns closer with the desired evaluation properties of users
compared to previous metrics (Sect. 11).

2 RelatedWork

Early History of MOT Metrics Multi-Object tracking has
a long history dating back to at least the 70s (Reid 1979;
Singer et al. 1974; Stein and Blackman 1975; Smith and
Buechler 1975). Early work tended to evaluate using their
own simple evaluation metrics, such that comparison wasn’t
possible between groups. In the early 2000s a number of
different groups sought to define standard MOT evaluation
metrics. This included the PETS (Performance Evaluation
of Tracking and Surveillance) workshop series (Young and
Ferryman 2005), the VACE (Video Analysis and Content

Extraction) program (Kasturi et al. 2006), and a number
of other groups (Waibel et al. 2009; Carletta et al. 2005;
Nghiem et al. 2007). In 2006, the CLEAR (CLassification
of Events, Activities and Relationships) workshop (Stiefel-
hagen et al. 2006) brought together all of the above groups
and sought to define a common and unified framework for
evaluating MOT algorithms. This became the CLEAR MOT
metrics (Bernardin and Stiefelhagen 2008) which positions
the MOTA metric as the main metric for tracking evaluation
alongside other metrics such as MOTP. MOTA was adopted
for evaluation in the PETS workshop series (Ellis and Fer-
ryman 2010) and remains, to this day, the most commonly
used metric for evaluating MOT algorithms, although it has
often been highly criticised (Shitrit et al. 2011; Bento and
Zhu 2016; Leichter and Krupka 2013; Leal-Taixé et al. 2017;
Milan et al. 2013; Ristani et al. 2016; Dave et al. 2020; Luiten
et al. 2020; Maksai and Fua 2019; Wang et al. 2019; Mak-
sai et al. 2017; Yu et al. 2016; Dendorfer et al. 2020; Luo
et al. 2014) for its bias toward overemphasizing detection
over association (see Fig. 1), as well as a number of other
issues (see Sect. 9).
Benchmarks’ use of Metrics In the last five years the two
most commonly used benchmarks for evaluating MOT have
been the MOTChallenge (Leal-Taixé et al. 2018; Milan et al.
2016; Dendorfer et al. 2019) and KITTI (Geiger et al. 2012)
benchmarks. Both of these have ranked trackers using the
MOTA metric, contributing to the general widespread use of
MOTA in the community.

Within the last few years the multi-object tracking com-
munity has grown enormously due in part to large investment
from the autonomous vehicle industry. This has resulted in
a large number of new MOT benchmarks being proposed.
Many of these rank trackers using the MOTA metric (PANDA
(Wang et al. 2020), BDD100k (Yu et al. 2020), Waymo
(Sun et al. 2019), ArgoVerse (Chang et al. 2019), PoseTrack
(Andriluka et al. 2018), MOTS (Voigtlaender et al. 2019)),
or a variation of MOTA (nuScenes (Caesar et al. 2020), UA-
DETRAC (Wen et al. 2020)).

Two other metrics have recently been adopted by some
MOT benchmarks. The IDF1 metric (Ristani et al. 2016)
which was proposed specifically for tracking objects through
multiple cameras has been used by ‘multi-camera MOT’
benchmarks such as Duke-MTMC (Ristani et al. 2016), AI
City Challenge (Naphade et al. 2017) and LIMA (Layne
et al. 2017). IDF1 has also recently been implemented as
a secondary metric on the MOTChallenge benchmark, and
has become preferred over MOTA for evaluation by a num-
ber of single camera tracking methods (Maksai and Fua
2019; Maksai et al. 2017; Wang et al. 2019) due to its focus
on measuring association accuracy over detection accuracy
(see Fig.1). IDF1 however exhibits unintuitive and non-
monotonic behaviour in regards to detection (see Sect. 9).
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The Track-mAP metric (also called 3D-IoU) was intro-
duced for tracking evaluation on the ImageNet-Video bench-
mark (Russakovsky et al. 2015). Recently it has been adapted
by a number of benchmarks such as YouTube-VIS (Yang
et al. 2019), TAO (Dave et al. 2020) and VisDrone (Zhu et al.
2020). Track-mAP differs from previously described metrics
in that it doesn’t operate on a set of fixed tracks, but rather
requires a set of tracks ranked by the tracker’s confidence that
each track exists. This makes Track-mAP incompatible with
many of the commonly used benchmarks (such as MOTChal-
lenge and KITTI) which do not require trackers to output a
confidence score with their predictions. Track-mAP suffers
from many of the same drawbacks as IDF1 due to its use of
global track-based matching, while also having a number of
other drawbacks related to the use of ranking-based matching
(See Sect. 9).

A number of extensions to the MOTA metric, such as PR-
MOTA (Wen et al. 2020) and AMOTA (Weng et al. 2020),
have previously been proposed to adapt the MOTA metric to
handle confidence ranked tracking results as is done in Track-
mAP. We present a simple extension to our HOTA metric in
Sect. 8 which similarly extends HOTA to confidence ranked
results, and which reduces to the standard HOTA metric when
taking a fixed set of detections above a certain confidence
threshold.

A number of other metrics (Shitrit et al. 2011; Bento and
Zhu 2016; Rahmathullah et al. 2016; Edward et al. 2009;
Smith et al. 2005; Wu et al. 2017) have been been proposed
for MOT evaluation, but to the best of our knowledge none of
them have been adopted by any MOT benchmarks and thus
have not become widely used for evaluation.

Other metrics such as the trajectory-based metrics (Mostly-
Tracked, Partially-Tracked, Mostly-Lost, Fragmentation)
(Wu and Nevatia 2006; Li et al. 2009), and the metrics of
Leichter and Krupka (False Negative Rate, False Positive
Rate, Fragmentation Index, Merger Index, Mean Devia-
tion) (Leichter and Krupka 2013) are commonly shown as
secondary metrics on benchmarks but are never used to
comprehensively rank trackers as they are too simple, often
focusing on only a single type of error each, and easy to be
gamed if desired.

Meta-Evaluation of Metrics PETS versus VACE (Manohar
et al. 2006) discusses the trade-off between presenting multi-
ple evaluation metrics versus a single unifying metric. Their
conclusion is that multiple metrics are useful for researchers
to debug algorithms and identify failure components, while a
unified metric is useful for end-users wishing to easily choose
highly performant trackers from a large number of options.
We resolve this conflict by presenting both a unified metric,
HOTA, and its decomposition into simple components which
can be used to analyse different aspects of tracking behaviour
(See Sect. 6).

Milan et al. (2013) analyse the tracking metrics available
in 2013 (CLEAR MOT (Bernardin and Stiefelhagen 2008)
and Trajectory-based Metrics (Wu and Nevatia 2006)) and
identify a number of deficits present in these metrics, partic-
ularly in MOTA. Based on this analysis they find none of the
metrics that were analysed to be suitable as a single unified
metric and recommend to present results over all available
metrics. We present HOTA as a solution to such issues, as a
metric suitable for unified comparison between trackers.

Leichter and Krupka (2013) present a theoretical frame-
work for analysing MOT evaluation metrics, which involves
two components. The first is a characterisation of five error
types that can occur in MOT (False negatives, False posi-
tives, Fragmentation, Mergers and Deviation). The second
component is the description of two fundamental properties
that MOT evaluation metrics should have: monotonicity and
error type differentiability. In Leichter and Krupka (2013),
they show that all previous metrics (including MOTA) don’t
have either of these properties. They propose a set of five
separate simple metrics, one for each error type, however
they make no effort to combine these into one unified met-
ric, and thus the usefulness of these metrics in comparing
trackers is limited. In Sect. 6 we show how HOTA can be
decomposed into components which correspond to each of
these five error types (Detection Recall, Detection Precision,
Association Recall, Association Precision and Localisation
Accuracy, respectively), and as such HOTA has the property
of error type differentiability which requires that the metrics
are informative about the tracker’s performance with respect
to each of the different basic error types. In Sect. 7 we show
how the combined HOTA metric is strictly monotonic with
regards to each of these five types of errors, thus having the
second required property. In Sect. 9 we show that no other
recently used metric has these desirable properties.

Tracking the Trackers (Leal-Taixé et al. 2017) sought to
analyse different evaluation metrics using human evaluators,
in order to find out how well different metrics reflect human
perception of the quality of tracking results. They only eval-
uated the set of CLEAR MOT (Bernardin and Stiefelhagen
2008) and trajectory-based (Wu and Nevatia 2006; Li et al.
2009) metrics. From these metrics they found that MOTA
remains the most representative measure that coincides to the
highest degree with human visual assessment, despite point-
ing out its many limitations. In Sect. 11 we seek to repeat this
study and compare our HOTA metric with MOTA and IDF1
using human visual evaluation. We find that HOTA performs
much better in this user-study than both MOTA and IDF1,
particularly among MOT researchers.
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3 Preliminaries

In this section, we lay the framework needed for understand-
ing the content of this paper. This includes describing the
multi-object task, the role of evaluation metrics, the ground-
truth and prediction representation and the notation we will
be using, as well as other fundamental concepts that will be
used throughout the paper.
What is Multi-Object Tracking? Multi-Object Tracking
(MOT) is one of the core tasks for understanding objects
in video. The input to the MOT task is a single continu-
ous video (although we present extensions for our metric
for multi-camera tracking in Sect. 8), split up into discrete
frames at a certain frame rate. Each discrete frame could be
an image, or could be another representation such as point
cloud from a laser scanner.

The output of the MOT task is a representation that
encodes the information about: (a) what objects are present in
each frame (detection), where they are in each frame (locali-
sation) and whether objects in different frames belong to the
same or different objects (association).

Evaluation Metrics and Ground-Truth In order to eval-
uate how well a tracker performs, we need to compare its
output to a ground-truth set of tracking results. The purpose
of an evaluation metric is to evaluate the similarity between
the given ground-truth and the tracking results. This is not
a well defined problem, as there are many different ways of
scoring such a similarity (especially between complex repre-
sentations such as sets of trajectories). However, the choice
of evaluation metric is extremely important, as the proper-
ties of the metric determine how different errors contribute
to a final score, as such it is favourable that metrics have
certain properties. The choice of metric also has the abil-
ity to heavily influence the direction of research within the
research community. In the age of competitive benchmarks,
a lot of research (for better or for worse) is evaluated on its
ability to improve the scores on these benchmarks. If bench-
marks are using metrics to evaluate these scores which are
biased towards only certain aspects of a task, this will also
bias research and methods towards focusing more on these
aspects.

MOT Ground-Truth and Prediction Format The set of
ground-truth tracks is represented as a set of detections
(gtDets) in each video frame, where each gtDet is assigned
an id (gtID), such that the gtIDs are unique within each frame
and the gtIDs are consistent over time for detections from the
same ground-truth object trajectory (gtTraj).

For most evaluation metrics (MOTA, IDF1 and HOTA) a
tracker’s prediction is in the same format as the ground-truth
data. It consists of a set of predicted detections (prDets) in
each frame, each assigned a predicted id (prID), such that
the prIDs are unique within each frame and consistent over

time for detections from the same predicted object trajectory
(prTraj).

For the Track-mAP metric, in addition to the prDets with
PrIDs as above, each prTraj is assigned a confidence score
estimating how likely it is that this trajectory exists. If each
prDet is assigned a confidence score instead of each prTraj,
the confidence score for the prTraj is simply the average of the
confidence scores over the prDets that belong to the prTraj.

For tracking multiple object classes, each gtTraj and prTraj
may also be assigned a class id (gtCl / prCl). Previous metrics
have all been applied per class and averaged over classes.
Thus for simplicity we can ignore this class id when defining
metrics and assume that metrics are calculated only over a
single class of objects at a time. However, we also present
an extension to HOTA in Sect. 8 which explicitly deals with
multi-class tracking.

Types of Tracking Errors The potential errors between a
set of predicted and ground-truth tracks can be classified
into three categories: detection errors, localisation errors and
association errors (Leichter and Krupka 2013). Detection
errors occur when a tracker predicts detections that don’t
exist in the ground-truth, or fails to predict detections that are
in the ground-truth. Association errors occur when trackers
assign the same prID to two detections which have different
gtIDs, or when they assign different prIDs to two detections
which should have the same gtID. Localisation errors occur
when prDets are not perfectly spatially aligned with gtDets.

There are other ways of defining basic error types for
MOT, such as identification errors (Ristani et al. 2016).
However detection, association and localisation errors are
the most commonly used error types (Leichter and Krupka
2013) and are widely applicable for evaluating tracking for
a wide range of different tracking scenarios (see Sect. 6 for
examples). As such we only consider these error types when
analysing and comparing evaluation metrics.

Different Detection Representations Object detections
within each frame (gtDets and prDets) may have a number of
different representations depending on the domain and appli-
cation. Commonly used representations include 2D bounding
boxes (Leal-Taixé et al. 2018; Geiger et al. 2012), 3D bound-
ing boxes (Sun et al. 2019; Chang et al. 2019), segmentation
masks (Voigtlaender et al. 2019; Yang et al. 2019), point esti-
mates in 2D or 3D (Ellis and Ferryman 2010), and human
pose skeletons (Andriluka et al. 2018). In general tracking
evaluation metrics are agnostic to the specific representation
except for the need to define measures of similarity for each
representation.

Measures of Similarity Most metrics require the definition
of a similarity score between two detections, S. Track-mAP
requires such a similarity score between trajectories, Str.
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This similarity score should be chosen based on the detec-
tion representation used, but should be constrained to be
between 0 and 1, such that when S is 1 the prDet and gtDet
perfectly align, and when S is 0 there is no overlap between
detections. The most commonly used similarity metric for 2D
boxes, 3D boxes and segmentation masks is IoULoc, which is
the spatial intersection of two regions divided by the union of
the regions. For point representations (and human joint loca-
tions), a score of one minus the Euclidean distance is often
used, such that points are said to have zero overlap when they
are more than one meter apart.

Bijective Matching A common procedure in MOT evalua-
tion metrics (MOTA, IDF1, HOTA) is to perform a bijective
(one-to-one) matching between gtDets and prDets. This
ensures that all gtDets are matched to at most one prDet
and vice versa, and that any extra or missed predictions are
penalised. Such a bijective mapping can be easily calculated
by calculating a matching score between all pairs of gtDet
and prDet and using the Hungarian algorithm for finding the
matching that optimises the sum of the matching score. Usu-
ally there is a minimum similarity S ≥ α requirement for a
match to occur. After matching has occurred, we have some
gtDets and prDets that are matched together. We call these
pairs as true positives (TP). These are considered correct pre-
dictions. Any gtDets that are not matched (missed) are false
negatives (FN). Any prDets that are not matched (extra pre-
dictions) are false positives (FP). FNs and FPs are two types
of incorrect predictions.

Matching Versus Association The words match and associ-

ation are used throughout this paper to refer to two different
things. We refer to a match as a pair consisting of a matching
ground-truth detection and a predicted detection. On the other
hand association refers to a number of detections with the
same ID such that they are associated to the same trajectory.

Jaccard Index and IoU The Jaccard Index is a measure of
the similarity between two sets. It is defined as follows:

Jaccard Index =
|TP|

|TP| + |FN| + |FP|
(1)

The Jaccard index is commonly called the IoU (intersection
over union) because it is calculated as the intersection of the
two discrete sets divided by their union. However, in track-
ing IoU is also often used for describing the spatial overlap
between two spatial regions (e.g. boxes, masks). In order to
not confuse these terms we use ‘Jaccard index’ to refer to
the operation over discrete sets, and IoULoc to refer to the
operation over spatial regions.

Mathematical Metric Definition The term metric has a
strict mathematical definition. For a distance measure (such
as HOTA) between two sets (e.g. , ground-truth tracks and

predicted tracks) to be strictly a metric in the mathematical
sense, it must satisfy three conditions, (i) identity of indis-
cernibles, (ii) symmetry, and (iii) subadditivity (the triangle
inequality).

Within the computer vision community, the term met-
ric is commonly used for functions which calculate a score
by which algorithms can be ranked, without requiring the
three conditions above. We use this definition throughout
this paper, and for example, refer to MOTA as an evaluation
metric even though it doesn’t meet the last two requirements.

Note that for the purpose of evaluating the MOT task, it is
not strictly necessary for metrics to be symmetric or subad-
ditive. However, as we show in Sect. 7 these are both useful
properties to have. Of the commonly used metrics, HOTA is
the only one to have these properties and thus technically be
mathematically a metric.

4 Overview of Previous Metrics

In this section we provide a brief overview of the calculation
of the three metrics which are currently used by MOT bench-
marks (see Sect. 2). Our HOTA metric builds upon many of
the ideas of previous metrics (especially MOTA), and as such
it is important for the reader to have an overview of how they
work. An analysis comparing the properties and deficits of
all of the methods is presented in Sect. 9, and Tab. 1 gives
an overview of the different design decisions between the
metrics.

4.1 CLEARMOT: MOTA andMOTP

Matching Predictions and Ground-Truth In MOTA (Multi-
Object Tracking Accuracy), matching is done at a detec-
tion level. A bijective (one-to-one) mapping is constructed
between prDets and gtDets in each frame. Any prDets and
gtDets that are matched (correct predictions) become true
positives (TPs). Any remaining prDets that are not matched
(extra predictions) become false positives (FPs). Any gtDets
that are not matched (missing predictions) become false neg-
ative (FNs). prDets and gtDets can only be matched if they are
adequately spatially similar. MOTA thus requires the defini-
tion of a similarity score, S, between detections (e.g. IoULoc

for 2D bounding boxes), and the definition of a threshold, α,
such that detections are only allowed to match when S ≥ α.
In practice, multiple matches could occur, the actual match-
ing is performed such that the final MOTA and MOTP scores
are optimised (see below).

Measuring Association In MOTA, association is measured
with the concept of an Identity Switch (IDSW). An IDSW
occurs when a tracker wrongfully swaps object identities or
when a track was lost and reinitialised with a different iden-
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tity. Formally, an IDSW is a TP which has a prID that is
different from the prID of the previous TP (that has the same
gtID). IDSWs only measure association errors compared to
the single previous TP, and don’t count errors where the same
prID swaps to a different gtID (ID Transfer).

Scoring Function MOTA measures three types of tracking
errors. The detection errors of FNs and FPs, as well as the
association error of IDSW. The final MOTA score is cal-
culated by summing up the total number of these errors,
dividing by the number of gtDets, and subtracting from one.

MOTA = 1 −
|FN| + |FP| + |IDSW|

|gtDet|
(2)

MOTP Note that MOTA doesn’t include a measure of local-
isation error. Instead the CLEAR MOT metrics define a
secondary metric, MOTP (Multi-Object Tracking Precision),
which solely measures localisation accuracy. It is simply the
average similarity score, S, over the set of TPs.

MOTP =
1

|TP|
∑

TP

S (3)

Matching to Optimise MOTA and MOTP The matching
of prDets to gtDets is performed so that the final MOTA and
MOTP scores are maximised. This is implemented, in each
new frame, by first fixing matches in the current frame which
have S ≥ α and don’t cause an IDSW. For the remaining
potential matches the Hungarian algorithm is run to select
the set of matches that as a first objective maximises the
number of TPs, and as a secondary objective maximises the
mean of S across the set of TPs.

4.2 The IdentificationMetrics: IDF1

Matching Predictions and Ground-Truth IDF1 calculates
a bijective (one-to-one) mapping between the sets of gtTrajs
and prTrajs (unlike MOTA which matches at a detection
level). This defines new types of detection matches. IDTPs
(identity true positives) are matches on the overlapping part
(where S ≥ α) of trajectories that are matched together.
IDFNs (identity false negatives) and IDFPs (identity false
positives) are the remaining gtDets and prDets respectively,
from both non-overlapping sections of matched trajectories,
and from the remaining trajectories that are not matched.

Scoring Function The ID-Recall, ID-Precision and IDF1
scores are calculated as follows:

ID-Recall =
|IDTP|

|IDTP| + |IDFN|
(4)

ID-Precision =
|IDTP|

|IDTP| + |IDFP|
(5)

IDF1 =
|IDTP|

|IDTP| + 0.5 |IDFN| + 0.5 |IDFP|
(6)

Matching to Optimise IDF1 The matching is performed
such that IDF1 is optimised. This is performed by enumer-
ating the number of IDFPs and FDFNs that would result
from each match (non-overlapping sections), and from non-
matched trajectories (number of prDet and gtDet in these
trajectories, respectively). The Hungarian algorithm is used
to select which trajectories to match so that the sum of the
number of IDFPs and IDFNs is minimised. Note that the
localisation accuracy is not minimised during IDF1 match-
ing unlike in MOTA.

4.3 Track-mAP

Matching Predictions and Ground-Truth Track-mAP
(mean average precision) matches predictions and ground-
truth at a trajectory level. It requires the definition of a
trajectory similarity score, Str, between trajectories (in con-
trast to MOTA and IDF1 which use a detection similarity
score, S), as well as a threshold αtr such that trajectories
are only allowed to match if Str ≥ αtr. A prTraj is matched
with a gtTraj if it has the highest confidence score of all
prTrajs with Str ≥ αtr. If one prTraj should match with more
than one gtTraj, it is matched with the one for which it has
the highest Str, and the other gtTrajs can be matched by the
prTraj with the next highest confidence score. We define the
matched prTrajs as true positive trajectories (TPTr), and the
remaining prTrajs as false positive trajectories (FPTr).

Trajectory Similarity Scores Str is commonly defined for
2D bounding box tracking in two different ways.

In Russakovsky et al. (2015), Zhu et al. (2020), the set of
TPs is defined as pairs of detections in the trajectories where
S ≥ α (with S being IoULoc, and α being 0.5). FNs and FPs
are the remaining gtDets and prDets respectively. Str is then
equal to |TP|/(|TP| + |FN| + |FP|).

In Yang et al. (2019), Dave et al. (2020), Str is defined
as the sum of the spatial intersection of the boxes across the
whole trajectories, divided by the sum of the spatial union of
the boxes across the whole trajectories.

Scoring Function Track-mAP follows the calculation of
the average precision metric (Everingham et al. 2010; Rus-
sakovsky et al. 2015; Lin et al. 2014) over trajectories (instead
of detections as commonly used for evaluating object detec-
tion).

PrTrajs are ordered by decreasing confidence score. Let
the index of this ordering (starting at one) be n. Let the num-
ber of TPTrs in this list up to index n be |TPTr|n . For each
value of n, the precision (Prn) and recall (Ren) can be calcu-
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lated as:

Prn =
|TPTr|n

n
(7)

Ren =
|TPTr|n
|gtTraj|

(8)

The precision values are interpolated (InterpPrn) so that they
are monotonically decreasing.

InterpPrn = max
m≥n

(Prm) (9)

The Track mAP score is then the integral under the inter-
polated precision-recall curve created by plotting InterpPrn

against Ren for all values of n. This integral is approximated
by averaging over a number of fixed recall values.

Threshold and Class Averaging Track-mAP is sometimes
calculated at a fixed value of αtr (Dave et al. 2020), and
sometimes averaged over a range different αtr values (Yang
et al. 2019).

When multiple classes are to be tracked, Track-mAP is
usually calculated per class separately and then the final score
is averaged over the classes.

5 The HOTA EvaluationMetric

The main contribution of this paper is a novel evaluation
metric for evaluating Multi-Object Tracking (MOT) perfor-
mance. We term this evaluation metric HOTA (Higher Order
Tracking Accuracy). HOTA builds upon the previously used
MOTA metric (Multi-Object Tracking Accuracy) (Bernardin
and Stiefelhagen 2008), while addressing many of its deficits.

HOTA is designed to: (i) provide a single score for
tracker evaluation which fairly combines all different aspects
of tracking evaluation, (ii) evaluate long-term higher-order
tracking association, and finally, (iii) decompose into sub-
metrics which allow analysis of the different components of
tracker’s performance.

In this section, we provide a definition of the HOTA met-
ric. In Sect. 6 we show how HOTA can be decomposed into
a set of sub-metrics which can be used to analyse different
aspects of tracking performance. In Sect. 7 we analyse dif-
ferent properties of HOTA, and examine the design decisions
inherent to the HOTA formulation. In Sect. 9 we present a
comparison of HOTA to MOTA, IDF1 and Track-mAP, and
show how HOTA addresses many of the deficits of previous
metrics.

Matching Predictions and Ground-Truth In HOTA, match-
ing occurs at a detection level (similar to MOTA). A true
positive (TP) is a pair consisting of a gtDet and a prDet, for
which the localisation similarity S is greater than or equal to

the threshold α. A false negative (FN) is a gtDet that is not
matched to any prDet. A false positive (FP) is a prDet that
is not matched to any gtDet. The matching between gtDets
and prDets is bijective (one-to-one) in each frame. Multiple
different combinations of matches could occur, the actual
matching is performed to maximise the final HOTA score
(see below).

Measuring Association The concepts of TPs, FNs and FPs
are commonly used to measure detection accuracy. In order
to evaluate the success of association in a similar way, we
propose the novel concepts of TPAs (True Positive Associa-
tions), FNAs (False Negative Associations) and FPAs (False
Positive Associations), which are defined for each TP. For a
given TP, c, the set of TPAs is the set of TPs which have both
the same gtID and the same prID as c:

TPA(c) = {k},
k ∈ {TP | prID(k) = prID(c) ∧ gtID(k) = gtID(c)}

(10)

For a given TP, c, the set of FNAs is the set of gtDets with
the same gtID as c, but that were either assigned a different
prID as c, or no prID if they were missed:

FNA (c) = {k},
{TP | prID(k) �= prID(c) ∧ gtID(k) = gtID(c)}

k ∈
∪ {FN | gtID(k) = gtID(c)}

(11)

Finally, for a given TP, c, the set of FPAs is the set of prDets
with the same prID as c, but that were either assigned a dif-
ferent gtID as c, or no gtID if they did not actually correspond
to an object:

FPA (c) = {k},
{TP | prID(k) = prID(c) ∧ gtID(k) �= gtID(c)}

k ∈
∪ {FP | prID(k) = prID(c)}.

(12)

A visual example explaining the concept of TPAs, FNAs and
FPAs is shown in Fig. 2.

Note that although TPAs, FPAs, and FNAs are measured
between pairs of detections, these measures can be easily and
efficiently calculated by counting the number of matches per
each prID-gtID pair, and there is no need to explicitly iterate
over all pairs of detections.

Scoring Function Now we have defined concepts used to
measure successes and errors in detection (TPs, FPs, FNs)
and association (TPAs, FPAs, FNAs), we can define the
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Fig. 2 A visual explanation of
the concepts of TPA, FPA and
FNA. The different TPAs, FPAs
and FNAs are highlighted for
the TP of interest c. The TPAs
(green) for c (red) are the
matches which have the same
prID and the same gtID. The
FPAs have the same prID but
either a different or no gtID. The
FNAs have the same gtID but
either a different or no prID. In
the diagram, c has five TPAs,
four FPAs and three FNAs.
Conceptually these concepts are
trying to answer the question:
For the matched TP c, how

accurate is the alignment

between the gtTraj for this TP

(large dark blue circles) and the

prTraj for this TP (small black

circles) (Color figure online)

HOTAα score for a particular localisation threshold α:

HOTAα =

√

∑

c∈{TP} A(c)

|TP| + |FN| + |FP|
(13)

A(c) =
|TPA(c)|

|TPA(c)| + |FNA(c)| + |FPA(c)|
(14)

We call this a ‘double Jaccard’ formulation, where a
typical Jaccard metric is used over detection concepts of
TPs/FPs/FNs with each of the TPs in the numerator being
weighted by an association score A for that TP, which is
equal to another Jaccard metric, but this time over the asso-
ciation concepts of TPAs/FPAs/FNAs.

A measures the alignment between the gtTraj and prTraj
which are matched at the TP c. This alignment is calculated
using the same formulation (Jaccard) as is used to measure
the alignment between the whole set of all gtTrajs and all
prTrajs for detection, but in this case only over the subset of
trajectories that are matched at a TP.

Note that concepts such as A, TP, FN, FP, TPA, FNA and
FPA, are all calculated for a particular value of α. However,
the α subscript is omitted for clarity. We will continue to
omit this α throughout the paper except where it is needed
for understanding.

Matching to Optimise HOTA Like in MOTA (and IDF1) the
matching occurs in HOTA to maximise the final HOTA score.
The Hungarian algorithm is run to select the set of matches,
such that as a first objective the number of TPs is maximised,
as a secondary objective the mean of the association scores
A across the set of TPs is maximised, and as a third objective
the mean of the localisation similarity S across the set of

TPs is maximised. This is implemented with the following
scoring for potential matches, MS, between each gtDet i and
each prDet j .

MS(i, j) =
{

1
ǫ

+ Amax(i, j) + ǫS(i, j) if S(i, j) ≥ α

0, otherwise

(15)

where ǫ is small number such that the three components
have different magnitudes. Amax is the maximum A score if
detections are not required to be bijectively matched, e.g. if
each prDet and each gtDet are allowed to match with multiple
others. Amax is optimised as a proxy for A. This is because A

depends upon which matches are selected, and thus cannot
be optimised using a linear assignment formulation. This
approximation is valid, because A approaches Amax for the
optimal assignment. Amax is calculated, between each gtDet
i and each prDet j , as follows:

Amax(i, j) =
|TPA(i, j)|max

|TPA(i, j)|max + |FNA(i, j)|min + |FPA(i, j)|min
(16)

|TPA(i, j)|max is the maximum possible number of TPAs for
the pair (i, j). This is the number of frames where any gtDet
with the same gtID as i and any prDet with the same prID
as j adequately overlap with S ≥ α. |FNA(i, j)|min is mini-
mum number of FNAs for (i, j) and is the number of frames
where there is a gtDet with the same gtID as i which doesn’t
adequately overlap (S ≥ α) with a prDet with the same prID
as j . Similarly, |FPA(i, j)|min is minimum number of FPAs
for (i, j) and is the number of frames where there is a prDet
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with the same prID as j which doesn’t adequately overlap
with a gtDet with the same gtID as i .

Integrating over Localisation Thresholds The formulation
for HOTAα in Eq. 13 accounts for both detection and asso-
ciation accuracy, but doesn’t take into account localisation
accuracy. In order for HOTA to measure localisation, the
final HOTA score is the integral (area under the curve) of the
HOTA score across the valid range of α values between 0 and
1. This is approximated by evaluating HOTA at a number of
different distinct α values (0.05 to 0.95 in 0.05 intervals) and
averaging over these values. For each α value the matching
between gtDets and prDets is performed separately.

HOTA =
∫ 1

0
HOTAα dα ≈

1

19

∑

α∈{0.05, 0.1, ...
0.9, 0.95 }

HOTAα (17)

HOTA in One Sentence If HOTA were to be described in
one sentence it would be:

HOTA measures how well the trajectories of matching

detections align, and averages this over all matching detec-

tions, while also penalising detections that don’t match

6 Decomposing HOTA into Different Error
Types

A set of evaluation metrics has two main purposes. The first
purpose is to enable simple comparison between methods
to determine which perform better than others. For this pur-
pose it is important that there exists a single metric by which
methods can be ranked and compared, for this we propose
the HOTA metric (see Sec 5). The second purpose of eval-
uation metrics is to enable the analysis and understanding
of the different types of errors that algorithms are making,
in order to understand how algorithms can be improved, or
where they are likely to fail when used. In this section, we
show that the HOTA metric naturally decomposes into a fam-
ily of sub-metrics which are able to separately measure all of
the different aspects of tracking. Fig. 3 shows each of these
sub-metrics and the relations between them.

HOTA solves the long-held debate in the tracking commu-
nity (Manohar et al. 2006; Milan et al. 2013) about whether it
is better to have a single evaluation metric or multiple differ-
ent metrics. HOTA simultaneously gives users the benefits
of both options, a single metric for ranking trackers, and the
decomposition into sub-metrics for understanding different
aspects of tracking behaviour.

Taxonomy of Error Types We classify potential track-
ing errors into three categories: detection errors, association
errors and localisation errors. Detection errors can be fur-

Fig. 3 Diagrammatic representation of how HOTA can be decomposed
into separate sub-metrics which are able to differentiate between dif-
ferent types of tracking errors

ther categorised into errors of detection recall (measured by
FNs) and detection precision (measured by FPs). Association
errors can be further categorised into errors of association
recall (measured by FNAs) and association precision (mea-
sured by FPAs).

Detection recall errors occur when trackers fail to predict
detections that are in the ground-truth (misses). Detection
precision errors occur when trackers predict extra detec-
tions that don’t exist in the ground-truth. Association recall
errors occur when trackers assign two different prIDs to the
same gtTraj. Association precision errors occur when track-
ers assign the same prID to two different gtTrajs. Localisation
errors occur when prDets are not perfectly spatially aligned
with gtDets.

Our taxonomy aligns with previous work to classify dif-
ferent tracking errors (Leichter and Krupka 2013), which
defines the five basic error types as: false negatives, false
positives, fragmentations, mergers and deviations. These are
equivalent to detection recall, detection precision, association
recall, association precision, and localisation, respectively.

Leichter and Krupka (2013) argue that any set of tracking
metrics must be both error type differentiable and monotonic
with respect to these five basic error types. HOTA meets both
criteria as it naturally decomposes into separate sub-metrics
measuring each basic error type, and is designed to ensure
monotonicity (see Sect. 7).

Metrics for Different Tracking Scenarios with Different

Requirements The decomposition of HOTA into different
sub-metrics has the further advantage that it enables users to
select algorithms or tune algorithms’ hyper-parameters based
on the nuances of their particular use-case.

For example, in human motion analysis, crowd analysis
or sports analysis (Milan et al. 2013; Leal-Taixé et al. 2017)
it may be far more important to predict correct, identity pre-
serving trajectories (association recall and precision), than to
find all present objects (detection recall). Whereas for a driv-
ing assistance system, it is crucial to detect every pedestrian
to avoid collision (detection recall) while also not predict-
ing objects that are not present to avoid unnecessary evasive

123



International Journal of Computer Vision (2021) 129:548–578 557

action (detection precision). However, correctly associating
these detections over time may be less crucial (association
recall and precision). In surveillance scenarios, it is typically
more important to ensure all objects are found (detection
recall), whereas extra detections can easily be ignored by
human observers (detection precision). For short-term future
motion prediction it is important to have accurate trajectories
of recent object motion, without mixing trajectories of mul-
tiple objects (association precision), in order to extrapolate
to future motion. Whereas it doesn’t matter if trajectories are
not correctly merged into long-term consistent tracks (asso-
ciation recall).

With HOTA, different aspects of tracking can easily be
analysed and optimised for, which was not as easily or intu-
itively possible with previous metrics.

Measuring Localisation HOTA is calculated at a number
of different localisation thresholds α, and the final HOTA
score is the average of the HOTAα scores calculated at each
threshold. This formulation ensures that the final HOTA score
takes the actual localisation accuracy into account.

A localisation accuracy score (LocA) can be measured
separately from other aspects of tracking, as follows:

LocA =
∫ 1

0

1

|TPα|
∑

c∈{TPα}
S(c) dα (18)

Where S(c) is the spatial similarity score between the prDet
and gtDet which make up the TP c. This is similar to MOTP
(Bernardin and Stiefelhagen 2008), however it is evaluated
over multiple localisation thresholds α, similarly to how
HOTA is calculated.

Separating Detection and Association HOTA can be nat-
urally decomposed into a separate detection accuracy score
(DetA) and an association accuracy score (AssA) as follows:

DetAα =
|TP|

|TP| + |FN| + |FP|
(19)

AssAα =
1

|TP|
∑

c∈{TP}
A(c) (20)

A(c) =
|TPA(c)|

|TPA(c)| + |FNA(c)| + |FPA(c)|
(21)

HOTAα =

√

∑

c∈{TP} A(c)

|TP| + |FN| + |FP|

=
√

DetAα · AssAα

(22)

We see that HOTA is equal to the geometric mean of a
detection score and an association score. This formulation
ensures that both detection and association are evenly bal-
anced, unlike many other tracking metrics, and that the final
score is somewhere between the two.

It also ensures that both the detection score and association
score have the same structure. Both are calculated using a
Jaccard index formulation, and both are calculated to ensure
that each detection contributes equally to the final score.

The detection score is simply the standard Jaccard index,
which is commonly used for evaluating detection. The asso-
ciation score is a sum of Jaccard indices over the TPs, where
each is equal to a standard Jaccard index evaluated only
between the trajectories which are a part of that TP.

In practice (see Sect. 10) this often results in trackers hav-
ing DetA and AssA scores that are quantitatively similar.

Final DetA and AssA scores can be calculated by integrat-
ing over the range of α values in the same way as done for
the HOTA score in Eq. 17. Note that DetA and AssA should
only be combined into HOTA before integrating over a range
of α values, not afterwards.

Separating Recall and Precision HOTA is further decom-
posable in that each of the detection and association compo-
nents can be simply decomposed into a recall and precision
component.

Detection Recall/Precision The detection recall/precision
are defined as follows:

DetReα =
|TP|

|TP| + |FN|
(23)

DetPrα =
|TP|

|TP| + |FP|
(24)

DetAα =
DetReα · DetPrα

DetReα + DetPrα − DetReα.DetPrα
(25)

These are equivalent to the concepts commonly used in the
field of object detection (Everingham et al. 2010). Detec-
tion recall is the percentage of ground-truth detections that
have been correctly predicted, and detection precision is the
percentage of detection predictions made which are correct.
DetRe and DetPr are easily combined into DetA. Final DetRe
and DetPr scores can be calculated by integrating over the
range of α values in the same way as done for the HOTA
score in Eq. 17.

Association Recall/Precision The association recall/precision
are defined as follows:

AssReα =
1

|TP|
∑

c∈{TP}

|TPA(c)|
|TPA(c)| + |FNA(c)|

(26)

AssPrα =
1

|TP|
∑

c∈{TP}

|TPA(c)|
|TPA(c)| + |FPA(c)|

(27)

AssAα =
AssReα · AssPrα

AssReα + AssPrα − AssReα · AssPrα
(28)

Unlike the detection equivalent, these are novel concepts.
Association recall measures how well predicted trajectories
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cover ground-truth trajectories. E.g. a low AssRe will result
when a tracker splits an object up into multiple predicted
tracks. Association precision measures how well predicted
trajectories keep to tracking the same ground-truth trajecto-
ries. E.g. a low AssPr will result if a predicted track extends
over multiple objects.

AssRe and AssPr are easily combined into AssA. The
introduction of association precision and recall are very
powerful tools for measuring different aspects of MOT per-
formance and are a natural extension to the similar widely
used detection concepts. Final AssRe and AssPr scores can
be calculated by integrating over the range of α values in the
same way as done for the HOTA score in Eq. 17.

7 Analysing the Design Space of HOTA

In this section, we analyse a number of different design
choices of the HOTA algorithm, and the effect of these
choices on the properties of the evaluation metric.

Higher-Order Versus First-Order Association In HOTA
(and in MOTA) the concept of an association is measured
for each detection. The association score in HOTA, and the
number of IDSWs in MOTA seek to answer the question
‘how well is this detection associated throughout time?’. In
MOTA an IDSW measures this association only one time-
step back into the past. E.g. whether this detection has the
correct association compared to the previous detection. Since
association is measured only over one step, we term this first-

order association. A metric which considers associations
over two time-steps could be called second order associa-
tion. In contrast, HOTA measures association over all frames
of a video. We term this concept higher-order association

and name our HOTA metric after it. This property allows
HOTA to measure long-term association, which is lacking
from the MOTA metric.

Higher-Order Versus First-Order Matching Just as one of
the main conceptual differences between HOTA and MOTA
is first-order versus higher-order association between detec-
tions, one of the main conceptual differences between HOTA
and IDF1 can be thought of as first-order versus higher-order
matching between trajectories.

In IDF1, each trajectory is matched only with a single other
trajectory and scored by how well it aligns with this single
trajectory. We call this first-order matching. This is enforced
by a unique bijective matching between prTrajs and gtTrajs.
HOTA in contrast, is able to measure how well each trajec-
tory matches with all possible matching trajectories, which
we term higher-order matching. This is done by performing
matching at a detection level, which allows each trajectory
to match to different trajectories in each time-step, and then

scoring the alignment between each of these matching tra-
jectories for each matching detection.

Thus HOTA can be thought of as being higher-order in
terms of both association and matching.

Detection Versus Trajectory Matching Both HOTA and
MOTA create matches between sets of detections, whereas
other metrics like IDF1 and Track-mAP directly match whole
trajectories with one another. Matching detections has the
advantage over matching trajectories that all of the possible
trajectory matches can be measured by the metric simultane-
ously. In IDF1, if a gtTraj is split between multiple prTrajs,
only the best matching trajectories are considered correct,
while all the remaining trajectories are considered incorrect.
This causes the problem that the association accuracy of
non-matched trajectories are ignored, no matter how well
they are associated it will not affect the score. This also has
the disadvantage that the score actually decreases as detec-
tion accuracy increases for non-matched segments. This is
because such segments are considered negatives and decrease
the score. Matching at a detection level instead of a trajectory
level is required in order to ensure that the association accu-
racy of all segments contributes to the final score, and that
the metric monotonically increases as detection improves.

Jaccard Versus F1 Versus MODA In HOTA we use the
Jaccard index to measure both detection and association
accuracy. We compare this formulation with two possible
alternatives, the F1 score and the MODA score.

Jaccard =
|TP|

|TP| + |FN| + |FP|
(29)

F1 =
|TP|

|TP| + 0.5|FN| + 0.5|FP|
(30)

MODA =
|TP| − |FP|
|TP| + |FN|

(31)

The F1 score (also called the Dice coefficient) is the harmonic
mean of recall and precision and is used in IDF1 as well as
other metrics such as PQ for panoptic segmentation (Kir-
illov et al. 2019). The MODA score (Multi-Object Detection
Accuracy) is the MOTA score without considering IDSWs
and is often used for measuring detection accuracy in video.

Of the three, the Jaccard formulation is the only one that
meets all three requirements to mathematically be a metric,
and the only one that obeys the triangle inequality (MODA
also isn’t symmetric). Note that when using the Jaccard for-
mulation the entire HOTA metric also obeys the triangle
inequality, and is mathematically a metric, because the mean
of metrics over non-empty finite subsets of a metric space is
also a metric (Fujita 2013).

Fig. 4 shows a simple tracking example designed to show
the monotonicity of different formulations. The HOTA score
is evaluated using the three different formulations for both
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Fig. 4 A simple tracking example showing why the Jaccard formulation
for HOTA is preferable to a number of others such as F1, MODA and
a formulation which excludes FNs and FPs from the association score
(see text). For tracking a single object present in all frames (bold line),
two tracking results, A and B (thin lines) are presented. The x-axis of the
plots is the ratio of the len(traj 1)/len(gt). The tracking result of A should
always have a higher score than B for the metric to be monotonic in
detection, over all possible ratios of the len(traj 1)/len(gt), and also if the
predictions and ground-truth are swapped. This is only valid for Jaccard
based HOTA. Note that the MODA formulation is non-symmetric so
the results when swapping the ground-truth and tracks are shown as
dashed lines and labeled with an asterisk. The other formulations are
symmetric (Color figure online)

detection and association scores. If the evaluation measure is
monotone, the tracking results in (A) should always be higher
than (B) because (A) contains more correct detections. This
should also be true when swapping which set is the ground-
truth and which is the prediction. As can be seen of the three
formulations, Jaccard is the only one to exhibit this monotone
property. The F1 formulation scores B higher when the track
labeled (1) is adequately long. The MODA formulation is
non-symmetric. It acts the same as Jaccard in the absence
of TPs and TPAs, but exhibits very undesirable behaviour
when the ground-truth and predictions are switched. Both
the monotone and symmetric properties result in the Jaccard
formulation being preferable to the other two.

Including Versus Excluding Detection Errors in the Asso-

ciation Score In HOTA, the association score for a TP is
the Jaccard index score between the gtTraj and the prTraj
that have the same gtID and prID as the TP, respectively.
These trajectories could include FNs and FPs which are not
matched. This can be seen in the definitions of TPA and TNA

in Sect. 5. A potential alternative formulation would only cal-
culate this Jaccard index over TPs such that any FNs or FPs
in these trajectories are ignored, and do not count toward
the count of FNAs and FPAs. This formulation may seem
advantageous in that association is now calculated only over
TPs, and detection errors would no longer decrease the asso-
ciation score. However, as seen in the fourth panel of Fig. 4
this results in non-monotonic results where adding in correct
detections decreases the overall score, as the AssA decreases
faster than the DetA increases. By including all detections
of matching trajectories in the association score calculation,
we ensure that DetA and AssA are perfectly balanced such
that an improvement in either one cannot result in a larger
decrease in the other, thus ensuring the monotonicity of the
metric.

Note that in HOTA, the presence of these FNs and FPs
in the association score does not influence the error type

differentiability of the metric. The AssA still measures only
association and the DetA still measures only detection. These
terms in the association score correspond to measuring asso-
ciations to unmatched detections.

With Versus Without the Square Root The HOTA for-
mulation contains a square root operation after the double
Jaccard formulation. This square root has three effects. The
first is that it increases the magnitude and spread of track-
ers’ scores. While the magnitude of the scores is in itself not
important, it is nice to see that both the magnitude and spread
of HOTA scores is in the same ball-park range as previous
metrics (see Sect. 10 Fig. 13). This means that researchers’
current intuitive understanding of how good certain scores
are, still roughly holds.

The second effect of the square root is its interpretation
as the geometric mean of a detection score and an associa-
tion score. This is natural and intuitive as we wish for HOTA
to evenly balance both detection and association, thus hav-
ing HOTA as the geometric mean of these two scores is a
good choice. The geometric mean has the advantage over
other formulations such as an arithmetic mean that the score
approaches 0 as either of the two sub-scores approach zero.
Thus when a tracker completely fails in either detection or
association, a very low score will effectively represent this.

The third effect is that it accounts for double counting
of similar error types. As discussed above, the association
score also includes FP and FN detection errors. The use of
the square root prevents double counting of these errors. This
can be illustrated by a simple example. In cases where there
is only one gtTraj and one prTraj, such as in single object
tracking (SOT), the HOTA score reduces to the following
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equation:

HOTAα{SOT}

=
√

DetA.AssA

=

√

√

√

√

|TP|
|TP| + |FN| + |FP|

.
1

|TP|
∑

|TP|

|TP|
|TP| + |FN| + |FP|

=
|TP|

|TP| + |FN| + |FP|
(32)

In the single object tracking case, the association score and
the detection score are the same. This makes sense because
the association score can be thought of as the average detec-
tion score between matched trajectories, and where there is
only one possible matching trajectory these scores are the
same. The square root thus cancels out these same errors
being counted twice, and results in an intuitive metric for
SOT, which is just a Jaccard metric measuring the ratio of
correct to incorrect predictions.

With Versus Without the Detection Accuracy As we have
seen above, the AssA takes into account FP and FN detection
errors for matched trajectories. A natural question to ask then,
is whether we even need the DetA, or if the AssA is adequate
by itself. The DetA is critical for two reasons, the first is in
accounting for non-matched trajectories. If we have gtTrajs
or prTraj that are not matched at all, then these FNs and FPs
will not at all be taken into account in the AssA. The DetA
is needed to penalise these errors. The second reason is that
the AssA by itself is non-monotonic. Since it is the average
association over detections, if we add in one extra matching
detection (TP), if this TP has a low association score, then
the overall AssA will decrease. By including the DetA in the
HOTA score, the DetA and AssA are perfectly balanced such
that adding any correct match (TP) will always increase the
overall score and thus HOTA is monotonic.

Averaging over Detections Versus Averaging over Asso-

ciations In order to calculate the AssA we average the
association scores between matching trajectories over match-
ing detections. This is a natural formulation because it
ensures that each detection contributes equally to the AssA,
and it results in the intuitive understanding that the contri-
bution for each detection is weighted by how accurately that
detection is associated across time.

An alternative formulation would be to calculate AssA by
averaging over all possible associations rather than averaging
over detections. This would result in a quadratic dependence

on the number of TPs such that longer matching trajectories
would contribute quadratically more than shorter matching
trajectories, which is undesirable. It would also lose the
interpretation that the contribution of each TP is weighted
by its association accuracy, as well as making HOTA non-
monotonic.

Final Tracks Versus Potential Tracks with Confidence

Scores Taking into account the confidence of predictions has
both advantages and disadvantages for metrics. One of the
main disadvantages is that your metric is no longer evaluating
an actual final tracking result, but rather a selection of poten-
tial tracking results which are ranked by how likely each one
is. Such an approach makes sense when the ground-truth is
inherently ambiguous (such as trajectory forecasting) as we
can’t expect algorithms to predict the correct results and as
such it is only fair to allow multiple ranked predictions to
be evaluated. It also makes sense when the task is too diffi-
cult for current algorithms to accurately predict the correct
ground-truth (such as monocular 3D detection and tracking),
and again it is fair to allow algorithms to predict multiple
ranked results.

However, as algorithms become better at a task, it is better
to evaluate an algorithm’s ability to actually predict the cor-
rect ground-truth values. This also has other benefits such as
enabling constraints between detection representations such
as commonly used in segmentation mask tracking (Voigtlaen-
der et al. 2019) where segmentation masks are not allowed
to overlap.

For these reasons, HOTA is designed to operate on final
tracking results. We also present an extension to HOTA in
Sect. 8 in which we present a confidence ranked version of
HOTA, which reduces to the default HOTA when taking a
fixed set of detections above a certain confidence threshold.

Drawbacks of HOTA HOTA has two main potential draw-
backs, which could make using it less than ideal in some
situations. The first is that it may not be ideal for evaluat-
ing online tracking. This is because association is measured
over the entire video, and the association score for each TP
depends on how well it is associated in the future, which is
not a desirable feature for online evaluation.

The second potential drawback is that it doesn’t take frag-
mentation of tracking results into account (see Fig. 5). This
is by design, as we wish for the metric to measure long-
term global tracking. However, for applications where this is
important, this could be a drawback of HOTA.

In Sect. 8 we present both an online version of HOTA and
a fragmentation-aware version of HOTA, which address both
of these issues.
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8 HOTA Extensions

In this section we provide a number of different extensions
to HOTA for use in different tracking scenarios.

Variety of MOT Scenarios HOTA is designed for a vari-
ety of MOT scenarios, from 2D box tracking, segmentation
mask tracking, 3D tracking, human pose tracking or point
tracking or beyond. HOTA can easily be adapted to any such
representation, all the is required is measure of similarity S

between objects in whichever representation is chosen (see
Sect. 3).

Multi-Camera HOTA HOTA also extends trivially to evalu-
ating Multi-Camera MOT. Both the ground-truth and predic-
tions could contain trajectories in multiple different cameras
with consistent ids across cameras. HOTA could then be
applied without any changes. We recommend the use of
HOTA for multi-camera tracking over the currently used
IDF1 metric due to the many advantages of HOTA and draw-
backs of IDF1 (see Sect. 9).

HOTA for Single Object Tracking As can be seen in Eq. 32,
HOTA simplifies trivially in the single object tracking (SOT)
case to being a Jaccard index (integrated over α values). Cur-
rently in SOT most evaluation procedures don’t penalise FPs
and only evaluate over frames where a gtDet is present. We
believe that the HOTA formulation is also perfectly suited
for SOT evaluation, both for effectively penalising FPs, as
well as for promoting unification between the MOT and SOT
communities.

Online HOTA By default, HOTA scores association globally
over the whole video sequence. Thus the association score
for a particular TP depends on how well it is associated both
forward and backward in time. For online tracking scenarios
(such as autonomous vehicles) this is not ideal evaluation
behaviour as the results from the tracker are used online in
each time-step (for decision making) and should be evaluated
in a similar way.

Thus we propose a simple extension of HOTA to the online
case which we call Online HOTA (OHOTA). OHOTA is cal-
culated in the same way as HOTA but only time-steps up to
the current time-step are used for calculating the association
accuracy for each TP.

This is a natural way to extend HOTA to online scenarios,
and has the further benefit that it can also be used to evaluate
online tracking where trackers are able to update previous
predictions in each new time-step. In this case, for each new
time-step the TPs for this time-step will have their association
scores calculated with the most up to date predictions from
all previous time-steps.

Fragmentation-Aware HOTA HOTA is designed to evalu-
ate global association alignment between gtTrajs and prTrajs.

1
2

A:

gt

B:

gt

C:

gt
AssA: 0.5 0.5 0.25
FragA: 0.5 0.25 0.25
HOTA: 0.71 0.71 0.5

0.71 0.59 0.5FA-HOTA:

3
4

1
2
3
4

1
2
3
4

Fig. 5 An example showing the difference between fragmentation and
association. One gtTraj is present in all frames (bold line), and three
tracking results, A, B and C (sets of thin lines) are presented. A and B
have equal association (global alignment), whereas they have different
fragmentation (short-range alignment). B and C have equal fragmen-
tation but different association. HOTA only measures association by
design. FA-HOTA measures both association and fragmentation

However, in some cases it is important to measure short-range
alignment, which we call fragmentation. Figure 5 clearly
shows the difference between association and fragmentation.

In most tracking scenarios the default version of HOTA
is preferable, however, for when measuring fragmenta-
tions is important, we present an extension which we call
fragmentation-aware HOTA (FA-HOTA).

FA-HOTAα =

√

√

√

√

∑

c∈{TP}

(√
A(c) · F(c)

)

|TP| + |FN| + |FP|
(33)

F(c) =
|FrA(c)|

|TPA(c)| + |FNA(c)| + |FPA(c)|
(34)

where the set of fragment associations of c, FrA(c), is the
subset of TPA(c) which belongs to the same fragment as c.
A fragment is a set of TPAs for which there are no FNAs or
FPAs between them.

We compute the geometric mean of fragmentation and
association for each TP in order to concurrently measure both
short-term fragmentation alignment and long-term associa-
tion. As the fragmentation score is bounded by the association
score, FA-HOTA equals HOTA when no fragmentation
occurs. This formulation also allows us to compute the over-
all fragmentation accuracy FragA:

FragA =
1

|TP|
∑

c∈{TP}
Frag(c). (35)

Importance Weighted HOTA As detailed in Sect. 6 dif-
ferent tracking applications can assign different impor-
tance to different aspects of tracking (detection/association
recall/precision). We present an extension of HOTA, Weighted
HOTA (W-HOTA) which allows users to apply different
weights to each aspect depending on their requirements.

W-HOTAα =

√

∑

c∈{TP} Aw(c)

|TP| + wFN|FN| + wFP|FP|
(36)
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Aw(c) =
|TPA(c)|

|TPA(c)| + wFNA|FNA(c)| + wFPA|FPA(c)|
(37)

Where each of the weightings, wFN, wFP, wFNA, wFNA are
values between 0 and 1. When all weightings are 1 we have
the original HOTA. When any single weight is 0 that com-
ponent no longer contributes to the score.

The default weighting provides a balanced weighting
between the different components, and should be used for
tracking evaluation unless there is a strong reason to use a
different weighting for a particular desired outcome.

Classification-Aware HOTA Traditionally, there are two
ways to deal with evaluation for tracking multiple classes.
The first option is to require trackers to assign each object to a
class and then evaluate over each class separately before aver-
aging the results over classes. A second option is to ignore
the effect of classification all together and simply evaluate all
classes together in a class-agnostic way as though they were
all the same class.

We propose a third option for dealing with evaluating
multiple classes which we call classification-aware HOTA
(CA-HOTA). We require that each prediction is assigned a
probability that it belongs to each class such that these proba-
bilities sum to one over all classes. CA-HOTA then becomes:

CA-HOTAα =

√

√

√

√

∑

c∈{TP}

(

A(c) · C(c)
)

|TP| + |FN| + |FP|
(38)

where C(c) is probability that the prDet of c assigned to the
class of the gtDet of c. This effectively weights the contribu-
tion of each TP by the classification score, in the same way
that it is weighted by an association score. In this setting we
have to include the classification score in the matching pro-
cedure so that the matching still maximises the final score.
Eq. 15 now becomes:

MS(i, j)

=
{

1
ǫ

+ C(i, j) + Amax(i, j) + ǫS(i, j) if S(i, j) ≥ α

0, otherwise

(39)

Classification is given the same priority as association in
matching. Each detection, even those belonging to the same
prTraj can have different class probabilities.

We can also compute the overall classification accuracy
ClaA, in order to evaluate the success of classification sepa-
rate from other aspects of tracking.

ClaA =
1

|TP|
∑

c∈{TP}
C(c). (40)

Class-Averaged Classification-Aware HOTA We can also
calculate a class-averaged classification-aware HOTA (CA2−
HOTA), by calculating a score for each class, Cls, as follows:

CA2-HOTAα{Cls}

=

√

√

√

√

∑

c∈{TPCls}

(

A(c) · C(c, Cls)
)

|TPCls| + |FNCls| +
∑

f ∈{FP} C( f , Cls)

(41)

where TPCls and FNCls are those which have a ground-truth
class Cls, and the notation C(c, Cls) is the classification score
which prediction c has assigned to the ground-truth class Cls.
The final score is calculated by averaging over all classes
before averaging over α thresholds.

For datasets with many classes (Dave et al. 2020; Yang
et al. 2019) we recommend the use of CA2-HOTA as it adjusts
for class bias during evaluation.

Federated HOTA TAO (Dave et al. 2020) uses a feder-
ated evaluation strategy. Not all objects are annotated in
all images. Instead, each image is labeled with the set of
classes for which there is confirmed no unannotated objects
(for which FPs can be evaluated). Extra predictions of other
classes should be ignored as they could be present but unan-
notated.

We propose a version of HOTA which adapts Eq. 41 to
federated evaluation (Fed HOTA).

Fed-HOTAα{Cls}

=

√

√

√

√

∑

c∈{TPCls}

(

A(c) · C(c, Cls)
)

|TPCls| + |FNCls| +
∑

f ∈{FP} I( f , Cls) · C( f , Cls)

(42)

where I( f , Cls) is 1 if f is from an image where the class
Cls should be counted as false positive, and 0 otherwise.

Confidence-Ranked HOTA HOTA operates on final track-
ing predictions rather than confidence-ranked potential tracks.
However, for certain tracking scenarios such as monocular
3D tracking where it is difficult for trackers to accurately
localise detections a confidence-ranked version (CR-HOTA)
is more suitable. This follows other metrics such as Track
mAP (Russakovsky et al. 2015) or sAMOTA (Weng et al.
2020).

When using CR-HOTA trackers must output a confidence
score for each detection, k. Detections over the whole bench-
mark are ordered by decreasing confidence. Looping over the
ordered detections, the detection recall score is calculated for
each one considering all detections with a higher confidence.
For 19 fixed recall values (0.05 to 0.95 in 0.05 intervals), the
HOTA score is calculated using Eq. 13 and Eq. 17, by tak-
ing into account all detections with a confidence score higher
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than the maximum confidence score needed to obtain a recall
at that threshold. The final CR-HOTA score is given by:

CR-HOTA =
∫ 1

0

HOTAk

DetRek

dk ≈
1

19

∑

k∈{0.05, 0.1, ...
0.9, 0.95 }

HOTAk

DetRek

(43)

By integrating the value of HOTA/DetRe over a range of
DetRe scores, we obtain a formulation which reduces to the
original HOTA score when only evaluating detections above
a given threshold. In this case the HOTA score would be the
same for all values recall value from 0 to DetRe and would
be zero afterward. Note that this formulation is the same as
how MOTA is adapted to sAMOTA in Weng et al. (2020).

9 Analysing Previous EvaluationMetrics

In this section, we analyse the previous evaluation metrics
MOTA (Bernardin and Stiefelhagen 2008), IDF1 (Ristani
et al. 2016) and Track-mAP (Russakovsky et al. 2015), iden-
tifying a number of drawbacks for each one and drawing
comparisons to our HOTA metric. See Sect. 4 for descrip-
tions of each of the previous metrics. Note that our analysis
of each metric is with respect to the properties of detection,
association and localization. This is not the only framework
in which results can be analysed, but one that is common
within the tracking community (Leichter and Krupka 2013).

High-level Comparison Between Metrics Table 1 shows an
overview of the key differences between the four metrics.

HOTA can be thought of as a middle ground between
MOTA and IDF1. MOTA performs both matching and asso-
ciation scoring at a local detection level which biases scores
toward measuring detection, while IDF1 performs both at a
trajectory level which ends up being biased towards asso-
ciation. HOTA matches at the detection level while scoring
association globally over trajectories. This results in HOTA
being balanced between measuring detection and associa-
tion, exhibiting many of the benefits of each method without
the drawbacks.

Track-mAP is similar to IDF1 in many ways in that it
performs both matching and association at a trajectory level
and as such is biased toward measuring association. However,
Track-mAP differentiates itself in that it operates on potential
tracks with confidence scores rather than final tracks and
doesn’t perform bijective mapping but matches based on the
highest confidence valid matches.

9.1 Problems with MOTA

MOTA has been the main MOT evaluation metric since 2006.
It has served the community over the years, however we
believe its drawbacks have restricted tracking research. Now
that we are equipped with better tools and a better under-
standing of the tracking task, we are able to analyse all of
the problems with MOTA, and ensure that new metrics, such
as HOTA, don’t have the same issues. We hope HOTA will
quickly replace MOTA as the default standard for evaluating
MOT algorithms.

Below we highlight 9 separate problems of the MOTA
metric, and show how these problems are addressed in
HOTA.

Problemwith MOTA 1 Detection performance significantly

outweighs association performance.

MOTA measures detection errors as FNs and FPs, and asso-
ciation errors as IDSWs. The ratio of the effect of detection
errors to association errors on the final score is given by
|FN|+|FP| : |IDSW|.

For real trackers this ratio is extremely high. For the top
ten trackers on the MOT17 benchmark (Milan et al. 2016) on
the 1st April 2020 this ratio varies between 42.3 and 186.4,
with an average of 98.6. This is not because trackers are
100 times better at detection than association, but rather that
MOTA is heavily biased towards measuring detection. In fact,
on average the effect of detection on the final score is 100
times as large as the effect of association.

We also compared the MOTA and MODA (MOTA with-
out IDSWs, which only measures detection) scores for 175
trackers on the MOT17 benchmark. When fitting a linear
regression model between MOTA and MODA the R2 value is
99.4 indicating that the detection only score MODA explains
more than 99% of the variation in final MOTA score. In con-
trast, the R2 value between MOTA and the number of IDSWs
is only 23.7.

This can potentially have significant negative effects on
the tracking community. If researchers are tuning their track-
ers to optimise MOTA to increase scores on benchmarks,
then such trackers will be tuned toward performing well for
detection while mostly ignoring the requirement of perform-
ing successful association.

HOTA is designed to not have this problem as it is
composed of a detection and association score which both
contribute equally. Table 2 and Fig. 13 show that the numer-
ical values for each of these scores are similar to one another
for real trackers.

Problemwith MOTA 2 Detection Precision significantly out-

weighs the effect of the Detection Recall.

Let us consider MOTA without considering IDSWs. This
is MODA (multi-object detection accuracy). The equation
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Table 1 An overview of different design choices and properties for each of the previously used three metrics and HOTA

MOTA IDF1 Track-mAP HOTA

Representation Final Tracks Final Tracks Potential Tracks with Conf. Score Final Tracks

Matching Mechanism Bijective Bijective Highest Conf. Bijective

Matching Domain Detection Trajectory Trajectory Detection

Association Domain Prev. One Det Matched Dets Matched Dets All Dets

Scoring Function 1 −
∑

Err
|GTDet| F1 Score Av. Precision Doub. Jaccard

Bias Toward Detection Association Association Balanced

Fig. 6 Figure showing how MOTA and MODA vary with the Recall
and Precision (Color figure online)

for MOTA/MODA as shown in Eq. 2 can be rearranged as
follows:

MODA = 1 −
|FN| + |FP|

|gtDet|

=
|TP| − |FP|
|TP| + |FN|

= DetRe · (2 −
1

DetPr
)

(44)

It can be seen that this is not symmetric in terms of recall and
precision. The score increases linearly with increasing recall
and hyperbolically with increasing precision. This relation
can be seen visually in Fig. 6. Poor precision has a much
greater effect on the final score than poor recall.

Again this promotes researchers to tune trackers to opti-
mise precision at the cost of recall, because poor precision
values are penalised extremely heavily by MOTA. This can
be seen starkly in Fig. 13 where precision values for all track-
ers are much higher than recall values.

As described in Sect. 6, for different tracking applica-
tions the importance of recall versus precision varies. For
applications such as surveillance, recall is often much more
important than precision, and as such, the bias imparted by
MOTA is particularly harmful. Ideally a benchmark designed
for evaluating trackers for a range of applications would
evenly weight precision and recall. HOTA solves this issue

by using a symmetric Jaccard formulation and thus ensuring
that precision and recall are weighted evenly.

Problemwith MOTA 3 Association errors in MOTA, mea-

sured in the form of IDSWs, only take into account short-term

(or first order) association.

In MOTA, an IDSW is a TP which has a prID that is different
from the prID of the previous TP (that has the same gtID).
Formally a TP, c, is an IDSW under the following criteria:

c ∈ IDSW if prev(c) �= ∅
and prID(c) �= prID(prev(c))

prev(c) =
{

argmaxk(t(k)), if k �= ∅
∅, otherwise

k ∈ {TP | t(k) < t(c) ∧ gtID(k) = gtID(c)}
(45)

An IDSW only measures if there is an association tracking
error to the previous gtDet. This is equal to a single FNA for
each TP comparing to the previous TP from the same gtTraj.
This can be thought of as a first-order approximation to the
global association score over the whole trajectory.

This is only able to capture algorithms’ ability to perform
‘short-term tracking’, and is unable to evaluate global long-
term tracking over a whole video. HOTA in contrast is able
to evaluate higher-order global tracking by measuring FNAs
and FPAs compared to all other detections in matched trajec-
tories.

Problemwith MOTA 4 MOTA doesn’t take into account asso-

ciation precision (ID transfers).

The transpose of an IDSW is called an ID transfer (IDTR).
An IDTR is a TP which has a gtID that is different from
the gtID of the previous TP that has the same prID. Whereas
IDSWs compare to the previous gtDet, IDTRs compare to the
previous prDet. This is a first-order FPA, whereas an IDSW
is a first-order FNA. ID transfers commonly occur when a
predicted track spreads over two ground truth tracks. MOTA
doesn’t at all penalise such errors.
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Fig. 7 An example showing how MOTA does not correctly evaluate
tracking situations when a tracker corrects itself after making a mistake.
The thick line is the gtTraj. Thin lines are prTrajs. All detections are
TPs

As an example consider a short video with only two
frames. In scenario A, there is one ground-truth object present
in both frames, the tracker correctly detects it in each frame
but splits it into two tracks. In this case an IDSW occurs and
the MOTA score is 0.5. In scenario B, there are two ground-
truth objects which are present only in one of the frames each,
the tracker again detects both correctly but predicts that they
are the same object. In scenario B an ID transfer has occurred,
but this is not an IDSW and is not penalised and the MOTA
score is a perfect 1.0.

Earlier we saw how MOTA wasn’t symmetric between
detection precision and recall. Now we see that it also isn’t
symmetric between association precision and recall. In fact
it doesn’t measure association precision (ID transfer) errors
at all.

This is again potentially extremely undesirable behaviour.
Trackers can take advantage of this fact to ‘hack the metric’
to improve their score while performing worse tracking by
artificially merging their trajectories over multiple ground-
truth objects.

HOTA solves this error by measuring both FPAs and FNAs
when measuring association accuracy.

Problemwith MOTA 5 MOTA does not reward trackers that

correct their own association mistakes. In fact, it unfairly

penalises such corrections.

MOTA is not able to successfully evaluate tracking when
a tracker corrects itself after making an association mistake.
In this case, MOTA will penalise the tracker twice, first for
making a mistake, and then for correcting it. An example
of this can be seen in Fig. 7. In this example the ordering
of the scores should be (A) > (B) > (C). This is because
(A) corrects itself when making a tracking mistake. (B) does
not correct itself and continues to track the object with the
wrong ID. (C) is even worse making a further tracking mis-
take. However, the MOTA score does not follow this intuitive
ranking. MOTA is unable to account for the tracker correct-
ing itself and counts the correction as a further mistake. This
means that under MOTA (A) and (C) are equal even though
(A) is clearly much better than (C). This property of MOTA
heavily disincentivises research into long-term trackers that
are able to correct from mistakes.

Fig. 8 An example showing how MOTA does not reward trackers for
having a greater alignment between predicted and ground-truth trajec-
tories. The thick line is the gtTraj. Thin lines are prTrajs. All detections
are TPs

Fig. 9 An example on MOTAs variability with the frame rate. The
thick line is the GT trajectory. Thin lines are predicted trajectories. All
detections are TPs

HOTA solves this issue by measuring the association glob-
ally over the whole sequence. In the example HOTA ranks
the trackers with the intuitive ranking of (A) > (B) > (C).

Problemwith MOTA 6 MOTA does not reward trackers for

having a greater alignment between predicted and ground-

truth trajectories.

Another problem that arises because MOTA only evalu-
ates first-order short-term tracking, is that it does not reward
trackers based on how well predicted trajectories and ground-
truth trajectories align. This can be seen clearly in Fig. 8,
where it is clear that (C) > (B) > (A) due to the fact that in
(C) one of the prTrajs is 83% similar to the gtTraj, whereas in
(A) at best one of the trajectories is only 50% similar to the
gtTraj. However, because MOTA only evaluates short-term
association, it is unable to differentiate between these cases
and correctly measure the trajectory alignment.

This property is important, because as prTrajs and gtTrajs
become more similar to one another the evaluation score
should increase.

HOTA solves this problem by measuring association glob-
ally across the whole sequence. Thus HOTA correctly ranks
these trackers, and is able to take into account the level of
alignment between trajectories.

Problemwith MOTA 7 In MOTA, the influence of association

(IDSWs) on the final score is highly dependent on the video

frame rate.

This is easily seen with an example, as shown in Fig. 9,
where we show exactly the same sequence processed by the
same tracker. In (A), however, it is evaluated at the original
video frame rate of 40 fps, in (B) it is evaluated at a reduced
frame rate of 4 fps. Different scenarios call for different frame
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rates, e.g., in a surveillance scenario the frame rate of the
cameras tends to be low. In Fig. 9 we show how the tracker
is performing identically in both scenarios. However, as can
be seen, the MOTA score reflects a poorer performance of
the tracker when used at a low frame rate, 0.90 MOTA versus
0.99. This occurs because MOTA registers only a single error
in both cases (one IDSW), and yet this is normalised by the
total number of GT detections over the video, which increases
with the number of frames.

Our HOTA does not have this problem, because it mea-
sures the association error for each TP and averages this over
the TPs. Thus HOTA is independent of the frame rate, and
the HOTA value will be the same (0.707) for both (A) and
(B) in Fig. 9.

Problemwith MOTA 8 MOTA does not take into account

localisation accuracy.

MOTA is calculated at a pre-set value of α for determining
the matching between prDets and gtDets, but the value of
MOTA is the same regardless of how correct these matches
are as long as they are over a minimum localisation threshold.
Thus, MOTA was proposed as one of two metrics that should
be used in combination for measuring MOT accuracy. The
second of these is MOTP (Multi-Object Tracking Precision),
which is simply the average localisation similarity over the
TP matches (ignoring detection and association errors). Since
MOTA was designed to be used together with MOTP, it is
not able to measure localisation together in a single metric
with detection and association.

HOTA solves this issue by including the localisation accu-
racy into its calculation. By calculating the score over a range
of α values, HOTA is able to include localisation along with
detection and association together into one score.

Problemwith MOTA 9 MOTA scores can be negative and are

unbounded.

The final, and perhaps most frustrating, problem of MOTA is
that scores are not between 0 and 1, as is typically expected
for evaluation metrics. Although the maximum MOTA score
is 1 for perfect tracking, there is no lower limit to the MOTA
score, and it can go down to negative infinite. This is caused
by the score decreasing linearly with the number of FPs,
which can be continuously added forever. This leads to a
score that is hard to interpret: how can we understand a nega-
tive MOTA score? Furthermore, a MOTA close to zero might
not be as bad as it seems. HOTA does not have this problem
by conveniently being a score between 0 and 1.

9.2 Problems with IDF1

The IDF1 metric (Ristani et al. 2016) was originally designed
for evaluating tracking in a multi-camera setting, but is trivial

to apply to a standard single camera setting. An overview of
how IDF1 is calculated can be found in Sect. 4.

IDF1 was designed to measure the concept of ‘identifica-
tion’. This concept is related to, but distinct from the concepts
of detection and association which we analyse in this paper.
Identification is more about determining which trajectories
are present, rather than detecting objects and associating
them throughout time.

In recent years IDF1 has been adopted by a number of
MOT papers (Maksai and Fua 2019; Maksai et al. 2017;
Wang et al. 2019) for MOT evaluation instead of MOTA,
as these papers wish to adequately account for association in
evaluation, which is lacking from MOTA. However, IDF1
produces counter-intuitive and non-monotonic results for
measuring detection. Due to this, no single-camera MOT
benchmarks have adopted IDF1 as the main metric for eval-
uating trackers and new benchmarks are still choosing to
use MOTA instead of IDF1 despite all of MOTAs draw-
backs (Voigtlaender et al. 2019; Sun et al. 2019; Yu et al.
2020; Wang et al. 2020). This is because detection is such an
important part of tracking evaluation, and IDF1 isn’t able to
adequately measure it.

In IDF1, each gtTraj can be matched with a single prTraj
and vice versa. This contrasts to HOTA where gtTrajs and
prTrajs are evaluated as being matched if they are matched
at any point in time at any detections.

Just like MOTA can be thought of as only measuring
first-order association (a single previous association for each
detection) compared to HOTA measuring higher-order asso-

ciation (all possible associations for each detection), IDF1
can be thought of as measuring first-order matching (a sin-
gle possible match for each trajectory), compared to HOTA
measuring higher-order matching (all possible matches for
each trajectory).

Because IDF1 only allows a single best set of matching
trajectories to be evaluated, any trajectory that doesn’t end
up in this matching set is counted as a negative and decreases
the score, even if it contributes correct detections and asso-
ciations.

Below we highlight 5 separate problems of the IDF1 met-
ric, and show how these problems are addressed in HOTA.

Problemwith IDF1 1 The best unique bijective mapping of

whole trajectories is often not representative of the actual

alignment between ground-truth and predicted trajectories.

This can be best understood with an example, as shown in
Fig 10. In this example the best bijective mapping matches the
blue gtTraj with the grey prTraj. This occurs even though this
gtTraj is better matched with both other prTraj, and this prTraj
is better matched with both other gtTraj. Thus in this case,
matching these trajectories is the worst possible matching for
both the gtTraj and the prTraj. However they are still matched
here, as when considering all trajectories, all of the better
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Predicted 

Trajectories

Ground-truth 

Trajectories

IDF1 Matches

Fig. 10 A tracking example which shows how the single best trajec-
tory matching, as performed by IDF1, can result in unintuitive matches
between trajectories (Color figure online)

Fig. 11 A simple tracking example showing how IDF1 fails to cor-
rectly rank tracking performance because the score can decrease with
improving detection. The thick line is the gtTraj. Thin lines are prTrajs.
All detections are TPs, except the second half of the gt in B which are
FNs

matching options are better matched elsewhere and thus this
worst fitting match is what ends up being evaluated. This is
a perfect example to show why a unique bijective mapping
of trajectories does not make intuitive sense for evaluating
tracking, which often results in complex overlaps between
ground-truth and predicted trajectories.

HOTA avoids this problem by not forcing a single global
matching between trajectories but rather evaluating over all
combinations of ground-truth and predicted trajectories that
overlap at any point.

Problemwith IDF1 2 IDF1 actually decreases with improv-

ing detection.

In Fig. 10 it can be seen that in non-matched regions there
are many correct detection results. These correct detections
don’t add positively to the final score. In fact, each one of
these correct detections decreases the final IDF1 score. Thus
IDF1 is non-monotonic in detection.

This can be seen more clearly in Fig. 11, where the score
for (A) should be higher than for (B), but IDF1 ranks the two
tracking results in the other order because it penalises the
correct detections in the second trajectory.

This property is extremely counter productive for many
tracking scenarios such as in autonomous driving where it is
critical to correctly detect objects.

HOTA does not have this problem and is strictly mono-
tonic in detection such that improving detection always
improves the HOTA score.

Problemwith IDF1 3 IDF1 ignores the effect of how good

association is outside of matched sections.

Fig. 12 A simple tracking example showing how IDF1 fails to cor-
rectly rank tracking performance because it ignores the effect of any
association that is not included in the best matching trajectories. The
thick line is the gtTraj. Thin lines are prTrajs. All detections are TPs

Due to the fact that only the matched sections count
towards the score, the association can be trivially bad in non
matched regions and this will have no effect on the IDF1
score. Thus creating better or worse association does not
necessarily correlate to an increase or decrease in the IDF1
score. This can be seen most clearly in Fig. 12 where the
IDF1 scores for (A), (B) and (C) are identical where it is
clear that the trackers should be evaluated such that (A) >

(B) > (C).
HOTA does not have the same problem as all detections

are evaluated, not just the best matching ones. Thus HOTA
ranks these trackers correctly.

Problemwith IDF1 4 Scoring highly on IDF1 is more about

estimating the total number of unique objects in a scene than

it is about good detection or association.

Due to the fact that any extra trajectories that are not
matched as one of the best matching trajectories are auto-
matically counted as negatives, one of the key design goals
for trackers that are optimizing for IDF1 becomes to estimate
the total number of unique objects in the scene and only pro-
duce that many tracks, rather than performing good detection
or good association. This is because if there are more (or less)
predicted trajectories than ground-truth trajectories, the extra
(missing) trajectories are automatically counted as negatives
and severely decrease the score. This is a very different objec-
tive than the objective defined in this paper for multi-object
tracking, which is to detect the presence of objects and to
associate these consistently over time.

In contrast, optimizing for HOTA directly optimises for
both accurate detection and accurate association as the final
HOTA score is a combination of scores for each of these
components.

Problemwith IDF1 5 IDF1 does not evaluate the localisa-

tion accuracy of trackers.

Like MOTA, IDF1 is also evaluated at a fixed α threshold
for how accurate localisation needs to be for detections to
match, however the actual localisation of the detections is
ignored as long as they are beyond the threshold.

HOTA is evaluated over a range of localisation thresholds
α and as such HOTA increases as the localisation of trackers
increases.
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9.3 Problems with Track-mAP

Track-mAP is an extension of the mAP metric, commonly
used for evaluating detection (Everingham et al. 2010; Rus-
sakovsky et al. 2015; Lin et al. 2014), to the video domain. An
overview of Track-mAP can be found in Sect. 4. Track-mAP
doesn’t operate on final tracking results but on confidence-
ranked potential tracking results. This results in it being
non-trivial to compare to other metrics as it operates on a
different, metric specific tracking output format. Track-mAP
is similar to IDF1 in that it also performs matching at a tra-
jectory level. This results in it also being non-monotonic in
detection. Below we highlight 5 problems of Track-mAP, and
show how these are addressed in HOTA.

Problemwith Track-mAP 1 The interpretation of tracking

outputs is not trivial, nor easily visualisable.

With other metrics, when one wishes to understand a tracker,
all they have to do is visualise the tracking results. One can
easily identify each of the error types defined for each of the
other metrics. This is not the case for Track-mAP. Here the
output is likely many overlapping outputs, many of which
have low confidence scores, with the actual influence of each
trajectory on the final score being hidden behind the implicit
confidence ranking. This makes developing trackers that opti-
mise Track-mAP a potentially frustrating experience. It also
makes user-comparison, like the type we perform in Sect. 11
impossible, as the representation doesn’t allow meaningful
analysis of the visual results.

Problemwith Track-mAP 2 It is possible to game the metric

by tuning trackers for quirks of the metric, which do not

necessarily correspond to better tracking.

There are a number of ways in which a trackers output can
be tuned to increase Track-mAP without actually improv-
ing the tracking result. One of these, as discussed in Luiten
et al. (2019), is that by producing many different predictions
with low confidence scores, it greatly increases the chances
of obtaining a correct trajectory match and thus improving
the score. In Luiten et al. (2019) they do this by replicating
trajectories for each class for all other classes. Since this is
possible to tune algorithms in this way, it becomes a require-
ment for methods to adequately compete. Trackers that don’t
do this will be heavily penalised. Some benchmarks (Dave
et al. 2020) have attempted to mitigate this issue by restricting
results to a maximum number of trajectories per video. How-
ever (Dave et al. 2020) still allows 300 trajectories per frame
which still enables significant gaming. HOTA and other met-
rics don’t have this issue because trackers are required to
produce final tracking results.

Problemwith Track-mAP 3 The threshold for being counted

as a positive match is so high that a lot of improvement in

detection, association and localisation is ignored by the met-

ric.

In the Track-mAP version used in Russakovsky et al. (2015),
Zhu et al. (2020) for a trajectory to be counted as a positive
it must be successfully detected and associated such that the
Jaccard over detections is at least 50%. This is a very high
threshold for many tracking scenarios. We can see in Fig. 13
that for all published trackers on the MOTChallenge leader-
board the average Jaccard association alignment between
trajectories (AssA) ranges between 0.25 and 0.5. This means
that even for the very best tracker, more than half of its best
guess predictions will be counted as errors in Track-mAP.
This has the effect that as trackers improve significantly in
terms of detection and association this is not shown by an
improvement in metric scores. E.g. trajectories that align 5%
or 45% are given the same score. For the Track-mAP version
used in Dave et al. (2020), Yang et al. (2019) this threshold
is even harder to reach because although the threshold is still
50%, the score that must be above this threshold is effec-
tively a multiplication of both the trajectory alignment and
the average localisation score across the trajectory which is
usually much lower (see Sect. 4)

HOTA doesn’t have this issue as it measures the align-
ment between all trajectory pairs, not just those over a certain
threshold.

Problemwith Track-mAP 4 Improving detection (adding

correctly matching trajectories) can decrease the score.

Track-mAP is non-monotonic in detection. This is because
it matches at a trajectory level (like IDF1) such that extra
trajectories are counted as negatives, even if they contain
correct, previously unaccounted for detections. As described
previously this is a non-intuitive and undesirable property
for many applications such as autonomous driving where
detection is critical. HOTA on the other hand is monotonic
in detection.

Problemwith Track-mAP 5 Track-mAP mixes association

and detection (and localisation) in a way that is not error

type differentiable.

In the Track-mAP version used in Russakovsky et al.
(2015), Zhu et al. (2020) the score used to measure whether
trajectories match is a combination of both detection scores
and association scores in a way that is not separable or inter-
pretable. Thus trajectories can match and add positively to
the score if they have high detection accuracy and medium
association accuracy, or medium detection accuracy and high
association accuracy. The Track-mAP metric doesn’t give
any indication as to which of these situations is occurring
and as such has very limited use for understanding and opti-
mizing the behaviour of trackers. The Track-mAP version
used in Dave et al. (2020), Yang et al. (2019) is even worse in
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Fig. 13 Trends between various metrics and sub-metrics on MOT17. All 37 trackers from Table 2 are shown in order of decreasing HOTA (Color
figure online)

that the matching score also mixes localisation accuracy with
detection and association. Furthermore the effect of locali-
sation accuracy of the score can vary based on differences in
object scale over time, which is even more unintuitive. Note
that the detection version of mAP (Everingham et al. 2010;
Russakovsky et al. 2015; Lin et al. 2014) which the tracking
version is based upon doesn’t have this problem because the
matching score only measures a single type of error, which
is detection errors. The problem arises when this metric is
extended to video to measure multiple error types simulta-
neously.

HOTA doesn’t have this problem because it is designed
to be decomposable into separate scores for each error type,
such that the effect of each error type on the final metric is
clear and the overall metric is error type differentiable.

10 Evaluating Trackers with HOTA on
MOTChallenge

In order to see how HOTA compares to other metrics for
real state-of-the-art trackers, we evaluated HOTA on track-
ers submitted to the MOTChallenge MOT17 benchmark, and
compared these HOTA scores with the MOTA and IDF1
scores. We cannot compare to Track-mAP because this met-
ric requires trackers to supply confidence scores which is not
the case for the MOTChallenge benchmark.

We restrict our evaluation to only those methods that are
published in peer reviewed journals and conferences. We
evaluate 37 different trackers (Brasó and Leal-Taixé 2020;
Wang et al. 2019; Bergmann et al. 2019; Sheng et al. 2018;
Maksai and Fua 2019; Yoon et al. 2020; Zhu et al. 2018;
Keuper et al. 2018; Chen et al. 2017, 2019; Xu et al. 2019;
Henschel et al. 2018, 2019; Long et al. 2018; Kim et al. 2015,
2018; Lee et al. 2018; Yoon et al. 2018; Fu et al. 2018, 2019;
Chu and Ling 2019; Liu et al. 2019; Lee and Kim 2018;
Song et al. 2019; Karunasekera et al. 2019; Babaee et al.
2019; Sanchez-Matilla and Cavallaro 2016, 2019; Bewley

et al. 2016; Bochinski et al. 2017; Baisa 2018; Song and
Jeon 2016; Baisa 2019; Eiselein et al. 2012; Kutschbach
et al. 2017; Baisa and Wallace 2019) on MOT17 (Milan et al.
2016). This includes all of the trackers for which the relevant
bibliographic information was available when this analysis
was performed on the 1st April 2020.

Ranking Methods by HOTA In Table 2 we show all of the
published trackers, ranked according to our proposed HOTA
metric. For fine-grained analysis, we also show the detection
accuracy DetA, the association accuracy AssA, the detection
recall DetRe, the detection precision DetPr, the association
recall AssRe and the association precision AssPr. For a defi-
nition of these metrics, see Sect. 6. We also show the scores
for MOTA and IDF1 metrics, and add an indicator to how
the rankings change in compared to HOTA ranking.

Comparing Trends across Metrics In Fig. 13 we show how
the scores for different metrics and sub-metrics vary across
all of the trackers that we evaluated on MOT17.

Fig. 13 (left) shows results for HOTA along with the two
previously used metrics MOTA and IDF1. We observe, (i)
that although these metrics do not always agree, they do fol-
low a similar loose trend. (ii) it is clear according to all three
metrics which trackers are performing well and which do
not. This is not surprising, as all three metrics are aiming
to quantify the quality of tracking. This can also be seen in
Table 2 where the top-performing methods according to each
metric is always within the top four methods over all other
metrics. (iii) there are some significant differences in ranking
between HOTA and both MOTA and IDF1. (iv) in general,
HOTA aligns better in ranking with IDF1 than MOTA. This
is not surprising, as HOTA and IDF1 both aim to measure
long-term tracking quality, whereas MOTA is only able to
capture short-term tracking success. This is also reflected in
the table, where the change in rankings for MOTA is larger
compared to IDF1.

In Fig. 13 (middle), the HOTA score is compared with
its two major components, the DetA and AssA scores which
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.1 measure detection success and association success, respec-

tively. HOTA is computed as the geometric mean of the
two and thus is always between the two values. We make
the following observations. (i) both detection accuracy and
association accuracy improve as trackers get better; (ii) top-
performers are better at association than detection, while poor
performing trackers are better at detection; (iii) there is larger
variability over the association score over different track-
ers compared to the detection scores. This is expected as all
trackers used the given public detections as input proposals.

In Fig. 13 (right) we compare four different components
of HOTA: the detection precision and recall, and association

precision and recall. As can be seen, (i) precision values
are higher than recall for both detection and association; (ii)
precision values are mostly within a similar range across
all trackers, whereas recall values show an obvious trend to
decrease as the tracker performance is dropping.

Analysing the State-of-the-Art in Multiple Dimensions

HOTA combines the different aspects of tracking in a bal-
anced way suitable for ranking trackers. However it is also
informative to compare trackers along all of the different
dimensions of tracking. In Fig 14 we compare trackers along
a number of different dimensions within the sub-metric space
of the HOTA family of metrics.

This analysis allows one to clearly see the benefits and
pitfalls of certain trackers, and allows for the selection of
top performing trackers for different applications that may
have different requirements. Any tracker along the multi-
dimensional Pareto front can be considered to be state-of-
the-art in at least one aspect of tracking performance.

The fourth subplot shows how the HOTA score varies over
the localisation threshold α for the top five ranked trackers.
By showing performance over the range of all thresholds
we are able to analyse and compare different properties of
trackers that are not otherwise apparent by using a single
evaluation score, such as which trackers perform very well
when matches are allowed to be loosely localized and those
that still perform well when a higher standard of localization
is required.

What is also clear from this analysis is that the set of
lowest-level sub-metrics (DetRe, DePr, AssRe, AssPr) are
not enough on their own to tell the whole story about the
results between different trackers. One is able to gain a greater
level of understanding by examining the higher-level metrics
which are combinations of these sub-metrics (DetA, AssA
and HOTA). This highlights one of the key benefits of HOTA
compared to previous evaluation approaches, that it simul-
taneously is able to measure different aspects of tracking
performance, while being able to combine these together into
unified representative scores.

Analyzing Metrics across Detectors The MOT17 bench-
mark requires methods to produce results using the same
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Fig. 14 Comparison between sub-metrics showing results for all peer
reviewed trackers on MOT17. Each of the four plots shows a differ-
ent decomposition of metrics into their corresponding sub-metrics for
evaluating different aspects of tracking. The grey curves are level sets

contours of constant score. The red staircase function shows the Pareto
front. Only the top-5 trackers by HOTA are shown in the legend and far
right plot for clarity (Color figure online)

tracking method with a set of three different input detections.
Thus it is possible to analyze how different performance met-
rics behave when using different detectors. Figure 15 shows
such an analysis for HOTA, MOTA and IDF1, as well as for
all of the sub-metrics of HOTA. For all main metrics, using
a better input detector improves the score. Of the three main
metrics, MOTA is by the most affected by the choice of input
detector. On the other hand, HOTA and IDF1 exhibit sim-
ilar trends when using different detectors as input. In fact,
MOTA exhibits similar trends to DetA. This is because, as
discussed in Sect. 9.1, MOTA is mostly a proxy for detec-
tion accuracy and thus is highly correlated with DetA. As
expected, the association scores are far less dependent on the
detector input, although it can be seen that better detectors
still aid better association. This is not surprising – having
more correct detections allows for more correct associations
to be made. Precision values for both detection and associa-
tion are less affected by the choice of detector compared to
recall values.

Do the Metrics Disagree where we expect them too? In
Sect. 9 we laid out a number of theoretical problems of
both the MOTA and IDF1 metrics and discussed how HOTA
addresses these issues. In that analysis, we argued that MOTA
and IDF1 are two ends of the metric spectrum, with HOTA
being the middle ground. One of the main issues with MOTA
is that it does not adequately score association and mostly
only depends on detection accuracy, while IDF1 is exactly
the opposite – heavily relying on accurate association while
exhibiting non-intuitive behavior with regards to detection
quality.

In Fig. 16 we plot the MOTA, IDF1 and HOTA scores
for all trackers on MOT17 against the DetA and AssA
sub-scores, which measure the detection and association
accuracy, respectively. We obtain the coefficient of deter-
mination (R2) by fitting the line-of-best-fit and determining
the strength of correlation between these metrics. As can be

Fig. 15 Trends for various metrics when using different detectors as
input on MOT17. All 37 trackers from Table 2 are shown, and are
ordered separately for each plot by the metric used (Color figure online)

seen, the theoretical analysis of the weaknesses of MOTA
and IDF1 is reflected in these results. Our observations are
the following. (i) MOTA highly correlates with the detec-
tion score (0.96) while exhibiting low correlation with the
association score (0.46). (ii) IDF1 exhibits almost the oppo-
site behaviour, correlating strongly with the association score
(0.97), but shows low correlation with the detection score
(0.58). (iii) HOTA is between these two extremes, correlating
reasonably strongly with both detection (0.67) and associa-
tion (0.94). This explains why in many cases in Table 2 the
HOTA score causes trackers to increase in rank compared to
MOTA while simultaneously decreasing in rank compared
to IDF1 (and vice versa).
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MOTA IDF1 HOTA

DetA

AssA

0.96 0.58 0.67

0.46 0.97 0.94

Fig. 16 Plotting each of the 3 main metrics against both the detection
score and the association score for trackers on MOT17. The line of best
fit is plotted in red, and the coefficient of determination (R2) is shown
in the top left of each plot (Color figure online)

Note that the correlation is stronger for association than
detection. This is not because association is assigned a higher
weight by HOTA (both are weighted equally). The reason for
this is that there is a wider range of association scores among
the trackers, compared to the range of detection scores. This is
to be expected, when all trackers are using a set of given pub-
lic detections as input. Thus the variation in tracking scores
is more likely to come from association than detection.

Methods which HOTA ranks higher than MOTA but lower
than IDF1 are those for which the association is more accurate
than the detection. An example of this is SAS_MOT17 (Mak-
sai and Fua 2019) which rises 26 places in HOTA compared
to MOTA but falls 2 places compared to IDF1. This method
specifically focuses on performing accurate association (and
they also analyse how IDF1 is better correlated with better
association than MOTA), at the cost of detection accuracy.
Thus this method performs poorly on MOTA and very well
according to IDF1, while performing somewhere in between
according to HOTA.

Methods which HOTA ranks higher than IDF1 but lower
than MOTA are those for which the detection is more accurate
than the association. An example of this is JBNOT (Henschel
et al. 2019) which drops 8 places compared to MOTA, but
rises 5 places w.r.t . to IDF1. This method focuses on improv-
ing detection recall, particularly during occlusions by using
body joint detectors. However this does not perform associ-
ation as well as many other methods. Therefore, this method
ranks highly according to MOTA, but poorly according to
IDF1. HOTA again places it in-between, taking both detec-
tion and association evenly into account.

11 Human Visual Assessment Study

In previous sections we have provided theoretical analysis as
to why HOTA is preferable to other metrics, as well as exper-

imental analysis when using these metrics to evaluate real
trackers. In this section we take this analysis one step further
and perform a large-scale user-study in order to determine
how these metrics align with human judgment of tracking
quality. Our study follows many aspects of the design of
Leal-Taixé et al. (2017) which previously attempted to eval-
uate tracking metrics using human evaluators. This study
evaluated MOTA against a number of simple metrics such
as Mostly Tracked, Detection Recall and MOTP. We wish to
extend their analysis by running a study comparing HOTA,
MOTA and IDF1.

Each of the different metrics has its own set of assumptions
about what is important for tracking and evaluates against
the best practices according to its own assumptions. Here we
seek to answer the question of whether the assumptions for
each metric align with the assumptions that humans make
when viewing objects tracked through a video. While this is
not a perfect proxy for the usefulness of these assumptions
for any particular tracking application, it is nonetheless use-
ful to know how each of these sets of assumptions aligns
with human ranking. Furthermore, by specifically recruiting
MOT researchers to participate in our study, we are able to
evaluate how the assumptions of each metric align with the
assumptions of the community of people who would be using
these metrics. We believe it is a useful property for metrics
to evaluate tracking results in a way that is similar to how
experts would rank the results when viewing them.

Such an experiment needs to be carefully designed, such
that the experiment imposes as little bias to the results as pos-
sible. In order to conduct this study, we split the 7 sequences
of the test-set of MOT17 up into 6 seconds chunks, which
gives us 36 short clips. We performed trial evaluations across
video lengths of 3, 6 and 9 seconds and found that the optimal
span for this study was 6-second clips. At 9 seconds the video
was too long for the human attention span to adequately judge
tracking quality accurately. At 3 seconds the videos were too
short for the tracking results to be representative of meaning-
ful tracking scenarios. We then evaluated all trackers on the
MOT17 benchmark, across these 36 six second video clips,
and evaluated the MOTA, IDF1 and HOTA scores. In order to
directly compare between metrics in the most user efficient
way possible, we designed our experiment as a head-to-head
comparison between metrics, such that the user will be pre-
sented with a pair of videos showing the tracking results of
two different trackers. Each video pair consists of the results
for two trackers where two of the metrics significantly dis-
agree on which of the trackers performs better. Users are
then to select which tracker performs better, thus agreeing
with one of the two metrics in the head-to-head comparison.
Users were also given the option to select that both trackers
performed equally, or to skip a video pair.
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Fig. 17 An example of user-interface used for the user-experiment and the tracking visualisation (Color figure online)

Determining the pairs We determined which pairs to
show by first determining pairs that met our head-to-head
requirements, and then by sub-selecting valid pairs based on
diversity of sequences, detectors and trackers shown. Two
trackers, A and B, are are a valid pair to compare for the
two metrics M1 and M2 (for a particular sub-sequence and
detector input) if they meet the following conditions:

S1 · S2 < 0, |S1| > 0.05, |S2| > 0.05 (46)

where S1 and S2 are defined as:

S1 = M1(A) − M1(B), S2 = M2(A) − M2(B) (47)

The first constraint ensures that the two metrics disagree
about which tracker is better (e.g. , that the difference between
scores for the trackers on one metric should have a different
sign than for the other metric). The second two constraints
ensure that for both metrics there is a significant difference
between the trackers (at least 0.05) so that any difference in
ranking between the metrics is significant.

We evaluated 175 trackers on 108 unique combinations
of sub-sequence and input detections (36 sub-sequences and
three detection inputs). When comparing all pairs of trackers
which met the above constraints there were hundreds of valid
pairs per combination of metric. However we were aiming
for a smaller set of videos for the user study, as we wished for
each pair to be evaluated by a number of different users. We
sub-sampled the pairs in such a way that we took at most one
pair from each sub-sequence/detection combo and at most
one pair that contained each tracker. We did this by greedily
taking the pairs which minimise S1 × S2, thus finding pairs

for which the metrics maximally disagree, and for each cho-
sen pair removing all pairs which contain the same tracker or
the same sub-sequence/detection combination from the pool
of valid pairs, and iterating greedily until there is no more
pairs to choose from. This gave us 67 pairs for HOTA versus
MOTA, 51 pairs for HOTA versus IDF1, and 69 pairs for
MOTA versus IDF1.

Result Visualisation The way tracking results are displayed
to users is critically important for such a user study. Depend-
ing on how they are displayed, different aspects of tracking
could be emphasised. As we have seen in Sect. 9 and 10,
MOTA scores depend more on the quality of detection while
IDF1 scores depend more on the quality of association, thus
it is important that the visualisation method makes both types
of potential errors as obvious as possible to users.

If the visualisation fairly balances the visual saliency of
detection and association, then MOTA and IDF1 should
perform equally well when compared head-to-head in the
user-study, as each is representative of these two different
error types. Fig. 18 shows that this ends up being the case.

An example of our tracking visualisations (along with the
user interface for rating trackers) can be seen in Fig. 17.

As can be seen we have made detection as obvious as pos-
sible by showing bounding boxes with both a thick colored
border and a slightly transparent fill. We have also made asso-
ciation as obvious as possible by showing a tracking history
of the bottom of each bounding box (in 2D pixel space) as
coloured points with lines joining them. This history remains
shown for the whole history of a track, and only disappears
when that object is no longer present in the current frame.
Such a visualisation style allows for both a quick understand-
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Fig. 18 Results of our user study showing which metrics better agree
with human judgment. Experiments are set up in a head-to-head manner
where for a pair of videos the two metrics in the pair disagree on which
is better. Users selected the better tracking results, or alternatively rated
both the same. Inner circles are the results excluding those that ranked

both equally, while outer circles include these results ‘n=’ shows the
number of video pairs evaluated for each comparison. Results from all
users are shown in the big circles. Results are also shown by user self-
reported domain, using information about whether the user is a multi-
object tracking researcher (MOT) and whether they are a computer
vision researcher (CV) (Color figure online)

ing of the properties of trackers, as well as allowing for a
conscientious user to take their time and understand all of
the complex detections and associations present.

We play videos to users at half the natural frame-rate
for easier video clarity. Users are also able to move around
frames of the video by either clicking or dragging with the
mouse, or by using the arrow keys. Pairs of trackers were
shown to users in a random order, and users could evaluate
as many pairs as they desired. The videos within each pair
were shuffled so that the placement had no impact on which
metric was under evaluation.

Results of the User Study We obtained user study results
from 230 participants, 62 of which are multi-object track-
ing researchers, and 122 of which are computer vision
researchers. On average each user evaluated 9.02 pairs of
trackers, for a total of 2075 unique tracker comparisons. On
average users took 2 minutes and 13 seconds to evaluate each
tracking pair, spending on average 20 minutes evaluating
trackers. This is the equivalent of 80 hours spent evaluating
tracking results.

A visualisation of results of the head-to-head comparisons
between trackers can be seen in Fig. 18. Note that some pairs
were used in multiple metric head-to-heads. As can be seen,
looking at all participants, HOTA outperforms MOTA by
agreeing with human evaluators 61.6% of the time compared
to 38.4% for MOTA (when excluding those that voted for
both). In the comparison of HOTA and IDF1, human evalu-

ators agree even more that HOTA is a better tracking metric,
agreeing with HOTA 72.0% of the time compared with only
28.0% for IDF1. In the head-to-head for MOTA versus IDF1
each metric agreed with users around 50% of the time.

For researchers who work in multi-object tracking the lev-
els of agreement with the HOTA metric compared to both
alternatives are much higher. Compared to MOTA, users
agreed with HOTA 79.3% of the time. Compared to IDF1,
users agreed with HOTA 85.9% of the time.

These results show that HOTA better aligns with human
judgment of the accuracy of tracking results than previous
metrics. The fact that MOT researchers agree even more con-
sistently with HOTA is a strong indication that HOTA is able
to successfully evaluate trackers in a way that is relevant for
the multi-object tracking community. Evaluating trackers is
a difficult task for humans, with often many objects present
and extremely complex scenes. The ‘correct’ answer is usu-
ally not obvious (as shown by users taking on average more
than 2 minutes per pair). However researchers in this field
have experience working with such data and know what to
look for in good tracking results. As such, the fact that HOTA
agrees so strongly with the judgment of MOT researchers is
a strong indication of the usefulness for the HOTA metric.

12 Conclusion

In this paper, we introduce HOTA (Higher Order Tracking
Accuracy), a novel metric for evaluating multi-object track-
ing. Previously used metrics only capture part of what is
important for tracking. MOTA is unable to capture associ-
ation accurately. On the other hand, IDF1 and Track-mAP
perform non-intuitively in regards to detection. HOTA tack-
les these problems with a simple, elegant formulation that
equally weights detection and association accuracy.

We argue analytically and experimentally why our pro-
posed metric is preferable over the alternatives, testing HOTA
using state-of-the-art trackers on the MOTChallenge bench-
mark. Furthermore, we perform a large-scale user study and
demonstrate that human visual assessment of tracking accu-
racy aligns better with HOTA compared to both MOTA and
IDF1.

We believe that HOTA will change the nature of tracking
research, laying the groundwork for new algorithms to be
designed and benchmarked against a metric that measures
both detection and association quality.
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