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ABSTRACT

We present HotKnots, a new heuristic algorithm for the prediction of RNA secondary structures including pseudoknots.
Based on the simple idea of iteratively forming stable stems, our algorithm explores many alternative secondary structures,
using a free energy minimization algorithm for pseudoknot free secondary structures to identify promising candidate
stems. In an empirical evaluation of the algorithm with 43 sequences taken from the Pseudobase database and from the
literature on pseudoknotted structures, we found that overall, in terms of the sensitivity and specificity of predictions,
HotKnots outperforms the well-known Pseudoknots algorithm of Rivas and Eddy and the NUPACK algorithm of Dirks and
Pierce, both based on dynamic programming approaches for limited classes of pseudoknotted structures. It also outper-
forms the heuristic Iterated Loop Matching algorithm of Ruan and colleagues, and in many cases gives better results than
the genetic algorithm from the STAR package of van Batenburg and colleagues and the recent pknotsRG-mfe algorithm
of Reeder and Giegerich. The HotKnots algorithm has been implemented in C/C++ and is available from http://www.
cs.ubc.ca/labs/beta/Software/HotKnots.
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INTRODUCTION

RNA molecules play diverse roles in the cell: they act as

carriers of genetic information, catalysts in cellular pro-

cesses, and mediators in determining the expression level

of genes. The three-dimensional (3D) structure of an RNA

molecule is often the key to its function. In turn, the 3D

structure of an RNA molecule is significantly shaped by its

‘‘secondary structure,’’ which is determined by the collec-

tion of hydrogen bonds between pairs of bases in the
molecule. The secondary structure of a Hepatitis Delta

Virus (HDV) ribozyme sequence is depicted in two differ-

ent ways in Figure 1. The component stems (or helices)

and loops that are formed by the structure are evident in

Figure 1A. This structure has a ‘‘pseudoknot,’’ indicated by

the presence of crossed arcs in the arc representation of the

structure, in Figure 1B. Pseudoknots are present in the

secondary structure of many RNA molecules, such as
ribosomal RNAs, the catalytic core of group I introns,

RNase P RNAs, and viral RNAs. In many cases, pseudo-

knots play functional roles, for example in ribosomal

frameshifting (Giedroc et al. 2000), regulation of transla-

tion and splicing (Draper et al. 1998), and selinocystein

biosynthesis.

Computational prediction of RNA secondary structure is

useful not only as a step in determining the 3D structure of
RNA molecules, but also in directly inferring and compar-

ing the functions of molecules. The most successful

approach for computational RNA structure prediction is

comparative sequence analysis, in which covarying residues

are identified in a multiple sequence alignment of RNAs

with similar structures, but different sequences (Eddy and

Durbin 1994). Other comparative methods incorporate

evolutionary information (Knudsen and Hein 1999) or are
based on probabilistic models, such as stochastic context-

free grammars (Durbin et al. 1998). However, these meth-

ods can only be used when several related RNA sequences

are available and thus are not always applicable. Therefore,

computational methods for predicting the secondary struc-

ture of a single RNA sequence are in demand, and as new

roles for RNA continue to be discovered at a rapid pace,

such computational methods are becoming increasingly
important. Besides providing a tool for prediction of a

single sequence, the study of computational RNA predic-

tion models and methods can help us elucidate the princi-

ples governing RNA structure formation. In addition, when

Reprint requests to: Anne Condon, Department of Computer Science,
University of British Columbia, 2366 Main Mall, Vancouver, BC, V6T
1Z4, Canada; e-mail: condon@cs.ubc.ca; fax: (604) 822-5485.
Article and publication are at http://www.rnajournal.org/cgi/doi/

10.1261/rna.7284905.

1494 RNA (2005), 11:1494–1504. Published by Cold Spring Harbor Laboratory Press. Copyright ª 2005 RNA Society.

 Cold Spring Harbor Laboratory Press on August 4, 2022 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


multiple sequences are available, energy-based methods for
secondary structure prediction can be combined with co-

variation methods, yielding better results (Hofacker et al.

2002). When the number of sequences is small or there is

a single RNA molecule, prediction of RNA structure based

on free energy minimization is the most widely used

approach. That is, of the exponentially many possibilities,

the goal is to find the structure that has the lowest free

energy, where the energy is calculated as a function of
thermodynamic free energy terms for the stems as well as

conformational entropic terms for the loops. Some of these

terms have been obtained experimentally, and others are

estimated based on existing databases of naturally occurring

structures (Mathews et al. 1999) or are approximated for

algorithmic expediency.

Finding the thermodynamically most stable secondary

structure for a molecule appears to be computationally
intractable (NP-hard) (Akutsu 2000; Lyngsø and Pedersen

2000). Therefore, in practice, algorithms that output the

minimum free energy structure for a given input RNA

molecule can handle only a restricted class of structures.

For example, a widely used algorithm (Zuker and Stiegler

1981), based on the dynamic programming method, finds

the minimum free energy structure among those structures

that are pseudoknot free. A variant of that algorithm
(Lyngsø et al. 1999) has running time O(n3); through-

out n denotes the number of bases of an RNA molecule.

The dynamic programming approach has been developed

further (McCaskill 1990) to provide the probability that

each possible base pair is found in the structure for a

given molecule. Further dynamic programming algorithms

(Zuker 1989; Wuchty et al. 1998) provide a list of subopti-

mal structures that have free energy close to that of the

minimum free energy structure. All of these developments

have significantly enhanced the utility of tools for thermo-

dynamic prediction of pseudoknot-free secondary struc-
tures.

Several other researchers have developed dynamic pro-

gramming algorithms that find the minimum free energy

structure from a restricted class that includes certain pseu-

doknotted structures (Rivas and Eddy 1999; Uemura et al.

1999; Akutsu 2000; Lyngsø and Pedersen 2000; Dirks and

Pierce 2003). Of these, the algorithm of Rivas and Eddy can

handle the broadest class of structures. In addition to this
algorithmic contribution, Rivas and Eddy provide a com-

plete model, along with parameters, for calculating the free

energy of pseudoknotted secondary structures. However,

the running time of their algorithm is O(n6), making it

feasible to run on small molecules only. Another limitation

is that currently the free energy estimates of component

pseudoknotted structures used in the algorithm are not

optimized. As a result, the minimum free energy prediction
is often not correct. Further compounding this problem is

the fact that the Rivas and Eddy algorithm only outputs the

minimum free energy structure, whereas a valuable feature

of tools for prediction of pseudoknot-free structures is that

they also provide a list of low-energy suboptimal structures.

The pknotsRG-mfe algorithm of Reeder and Giegerich

(2004) is another recently developed algorithm which uses

a dynamic programming approach, augmented with ‘‘can-
onization rules’’ that further restrict the class of pseudoknots

handled but reduces the running time to O(n4), which turns

out to be good enough to predict structure of sequences with

several hundred bases. Dynamic programming algo-

rithms now also provide suboptimal structures (Reeder and

Giegerich 2004) and base-pairing probabilities (Dirks and

Pierce 2003).

In contrast to the previously discussed approaches based
on dynamic programming, heuristic approaches provide no

guarantees of finding the minimal energy structure. How-

ever, heuristic approaches can be quite fast, thereby having

the ability to handle long RNA molecules. Furthermore,

they are inherently much less restricted than are dynamic

programming algorithms with respect to the complexity of

the underlying energy model. In addition, heuristic algo-

rithms are not limited to sampling from a restricted sub-
class of secondary structures, a feature that becomes more

important for longer molecules. In the past decade, there

have been significant advances in the development of heu-

ristic algorithms, leading to improvements in solving diffi-

cult computational problems in many application areas (see

Hoos and Stützle 2004).

Early heuristic algorithms for the prediction of pseudo-

knotted structures (Abrahams et al. 1990) derived the out-

FIGURE 1. Pseudoknotted secondary structure of a Hepatitis Delta
Virus ribozyme sequence. (A) Graphical view of the secondary struc-
ture, with the self-cleavage site indicated with an arrow. (B) Arc
representation of the same secondary structure. Crossed arcs indicate
that the structure is pseudoknotted.
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put structure by step-wise addition of stems, where the stem

chosen at each step maximized the decrease in free energy

of the structure. A disadvantage of this type of ‘‘greedy’’

approach is that once a stem is added to the structure, it is

not possible to later remove the stem. To address this

problem, van Batenburg et al. (1995) showed that a genetic

algorithm could be promising for prediction of pseudo-
knotted structures. The same authors described results on

a computer simulation of RNA folding pathways using a

genetic algorithm for structure prediction (Gultyaev et al.

1995). Their STAR algorithm maintains a list of stems that

can be added to a partially formed structure, and a stem is

added with probability that depends on the free energy of

the stem as well as on the free energy of the loop that is

formed when the stem is added. The algorithm also in-
cludes a mechanism for removal (disruption) of stems and

a crossover mechanism for producing new structures from

two ‘‘parental’’ structures. In tests of their algorithm on 10

RNA molecules, the percentage of correctly predicted base

pairs ranged from 62% to 87%.

Recently, Ruan et al. (2004) presented a heuristic algo-

rithm called iterative loop matching (ILM) for predicting

pseudoknotted RNA secondary structures. Roughly, ILM
first uses a dynamic programming algorithm for predic-

tion of pseudoknot-free secondary structures to identify a

promising helix (which may contain bulge or internal

loops), adds this helix to the structure, removes the bases

forming this helix from the sequence, and iterates to find

additional helices. Ruan and colleagues (Ruan et al. 2004)

also provided a method for determin-

ing pseudoknotted secondary structures
from multiple homologous sequences.

Isambert and Siggia (2000) used a

computer simulation of the folding

dynamics of an RNA molecule for

structure prediction. In addition to

providing candidate minimum free

energy structures, their method can

provide other useful information,
such as identification of kinetically

trapped states that may be on the

folding pathway of the RNA mole-

cule. We note also that both the algo-

rithms of Gultyaev et al. (1995) and

Isambert and Siggia (2000) can also

simulate folding during RNA synthe-

sis, providing further insight. The
Monte Carlo (probabilistic) simula-

tion of Isambert and Siggia is based

on a model that incorporates kinetic

as well as free energy principles and

provides the equilibrium distribution

of structures in the limit. Although

this is a potential strength of their

method relative to that of Gultyaev

et al. (1995), the current implementation handles a limited

class of structural topologies for efficiency reasons, and

there is currently no analysis of how quickly the Monte

Carlo simulation converges to the equilibrium distribu-

tion.

Yet another tool for RNA secondary structure predic-

tion, the SAPSSARN software (Gaspin and Westhof 1995)
allows the user to dynamically incorporate a chosen set of

folding constraints and to compute a series of suboptimal

saturated secondary structures satisfying all the given con-

straints. The approach can handle pseudoknots, but

requires interaction by a knowledgeable user, in the form

of constraint design.

Here we present a new heuristic algorithm, HotKnots, for

prediction of RNA secondary structure, including pseudo-
knots, which improves on the prediction quality of previous

algorithms (see Figs. 2, 3). Like other approaches, our algo-

rithm builds up candidate secondary structures by adding

substructures one at a time to partially formed structures.

Unlike other approaches, our algorithm maintains multiple

partially formed structures, and for each, several different

additions of a single substructure are considered, resulting in

a tree of candidate structures. Our criterion for determining
which substructures to add to partially formed structures at

successive levels of the tree is also new, relative to previous

algorithms: energetically favorable substructures called ‘‘hot-

spots’’ are found by a call to Zuker’s algorithm, with the

constraint that no base already paired may be in the struc-

ture. The algorithm uses a standard free energy model (Serra

FIGURE 2. Outline of RNA secondary structure prediction algorithm; details are discussed in
the text.

1496 RNA, Vol. 11, No. 10

Ren et al.

 Cold Spring Harbor Laboratory Press on August 4, 2022 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


et al. 1995; Mathews et al. 1999), extended to account for

pseudoknots (Dirks and Pierce 2003), to determine which

structures at nodes of the tree have the lowest free energies,

and outputs these. This energy model is also used to deter-

mine how to prune the tree of partial structures, so that more

alternatives are explored from the most promising (i.e., low-

est-energy) partial structures.

An empirical evaluation of HotKnots against five other
algorithms for the energy-based prediction of RNA sec-

ondary structures including pseudoknots presented later

in this paper indicates clearly that our new algorithm

reaches state-of-the-art performance in terms of the accu-

racy of its predictions. In most cases, it performs signifi-

cantly better than the Pseudoknots algorithm by Rivas and

Eddy (1999), the NUPACK algorithm by Dirks and Pierce

(2003), and the Iterated Loop Matching algorithm of Ruan
et al. (2004). Despite its conceptual simplicity, HotKnots

also often performs better than the genetic algorithm from

the STAR package of van Batenburg et al. (1995) and the

recent pknotsRG-mfe algorithm by Reeder and Giegerich

(2004). In addition to establishing HotKnots as a new

state-of-the-art algorithm for RNA secondary structures

including pseudoknots, our empirical evaluation provides

a comprehensive performance comparison of high-perfor-
mance algorithms for this problem, which should be useful

in the context of applications and future algorithm develop-

ment.

The remainder of this paper is organized as follows. We

present results on the performance of our algorithm and

two earlier algorithms in the Results section. We discuss

these results in the Discussion section, and conclude this

section with an outlook on future work. In Materials and
Methods, we give a detailed overview of our algorithm,

summarize properties of sequences used in our evaluation

of the algorithm, and describe our experimental protocol.

RESULTS

We evaluated our algorithm on 43 sequences or sequence

fragments, including tRNA, mRNA, tmRNA, HIV-1-RT-
ligand RNA, a hepatitis delta virus ribozyme, and viral

ribosomal frameshifting signals (see Materials and Methods

for details). Table 1 summarizes the sequences used.

Of the 43 sequences, 11 are pseudoknot-free (namely the

tRNA sequences and five of the RNaseP sequences);

furthermore, 31 of the sequences are relatively short, rang-

ing in length from 28 to 108 nucleotides (nt), whereas the

remaining 12 are significantly longer, with lengths ranging

from 210 to 400 nt. For each sequence, we measured both

the sensitivity and specificity of the lowest free-energy sec-

ondary structure predicted by our algorithm. We define the

sensitivity to be the ratio of true positives (i.e., base pairs in

the predicted structure which are also in the true structure)

to the total number of base pairs in the true structure;

intuitively, it measures the extent to which the algorithm

is able to predict the base pairs that make up the true

structure of a given RNA. We define the specificity to be

the ratio of the true positives to the total number of base

pairs in the predicted structure, which thus indicates the

accuracy of the base-pair predictions made by the algo-

rithm. Note that perfect predictions have sensitivity and

specificity values of 1.

We also measured the sensitivity and specificity of five

other algorithms on each sequence. Three of these are

dynamic programming algorithms: Pseudoknot (pknotsRE)

(Rivas and Eddy 1999), NUPACK (Dirks and Pierce 2003),
and pknotsRG-mfe (Reeder and Giegerich 2004). The other

two are heuristic algorithms: the ILM (Ruan et al. 2004) and

the STAR algorithm (Gultyaev et al. 1995). The STAR soft-

ware package implements three algorithms: greedy, stochas-

tic, and genetic. We ran our tests using the genetic algorithm,

FIGURE 3. Predicting the structure of the HDV ribozyme
sequence. (A) The known structure. (B) Two hotspots chosen
initially, as described in the subsection ‘‘Generating the initial list
of hotspots.’’ These happen to be stems S1 and S4 of the structure
in A. (C) The additional hotspots selected to be added to the
structure (see subsection ‘‘Selecting good hotspots’’). This is sub-
structure S2 of A. No further substructures were added by the
algorithm, based on our criteria described in the subsection
‘‘Selecting good hotspots.’’ Using our method as described in the
subsection ‘‘The function SecStr (S, Hv),’’ the set (S1, S2, S4) yields
the secondary structure of A.
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since the STAR website indicates that of the three algorithms,

it yields the highest quality predictions.

Table 2, a and b, show the sensitivity and specificity of
HotKnots, ILM, pknotsRE, STAR, pknotsRG-mfe, and

NUPACK on our sets of 31 short and 12 long test

sequences, respectively. When averaged over the set of

short test sequences, HotKnots shows the same specificity

and sensitivity as pknotsRG-mfe, while surpassing that of

all other algorithms. On the set of longer test sequences,

HotKnots shows better average specificity and sensitivity

than ILM and pknotsRG-mfe, but it is surpassed by STAR.
(For almost all of these sequences, pknotsRE and NUPACK

failed to produce results in our experiments.) However, on

five of the 12 long sequences, HotKnots shows higher sen-

sitivity than STAR, and on four of those also higher speci-

ficity.

If we declare an algorithm to dominate on a sequence

when both its sensitivity and specificity are at least as good

as those of the other algorithms, then HotKnots dominates
on 14 of the 31 short sequences, while ILM, pknotsRE,

STAR, pknotsRG-mfe, and NUPACK dominate on 9, 13,

11, 16, and 14 sequences, respectively. (Note that more

than one algorithm may dominate on the same sequence if

their sensitivity and specificity match.) Furthermore, Hot-

Knots dominates on four of the 12 longer sequences,

whereas ILM, pknotsRE, STAR, pknotsRG-mfe, and

NUPACK dominate on 1, 1, 4, 2, and 0 sequences, respec-
tively.

HotKnots shows good performance on pseudoknotted as

well as on pseudoknot-free structures: HotKnots dominates on

14 of the 32 sequences with pseudoknotted structures, while

ILM, pknotsRE, STAR, pknotsRG-mfe, and NUPACK domi-

nate on 9, 13, 9, 14, and 13 of these sequences, respectively.

Among the 11 pseudoknot-free RNAs, HotKnots dominates

on four, whereas ILM, pknotsRE, STAR, pknotsRG-mfe, and

NUPACK dominate on 1, 1, 6, 4, and 1 sequences, respectively.
The overall performance advantage of STAR over Hot-

Knots observed on longer sequences is largely due to its

higher sensitivity and specificity on four of the five long,

pseudoknot-free RNAs.

Figure 4 shows the sensitivity and specificity of the base-

pair predictions made by HotKnots versus pknotsRG-mfe

and STAR, respectively. The correlation of the perfor-

mance of STAR versus HotKnots is rather weak across
our test sets in terms of both sensitivity and specificity;

the same is true for the performance of HotKnots versus

ILM and pknotsRE (data not shown). Interestingly, there

is a higher correlation between the performance measures

for pknotsRG-mfe versus HotKnots, particularly on the

longer sequences. This may be due to similarity of the

energy models.

The running times of HotKnots, ILM, pknotsRE,
pknotsRG-mfe, and NUPACK on each sequence (measured

on our reference machine, see Materials and Methods) are

given in Table 3. We do not include the running time of

STAR since tests of that algorithm were necessarily done on

a different machine and operating system, and the program

requires user interaction. Roughly, we found that the run-

ning time of the STAR algorithm is comparable to that of

HotKnots, taking a few seconds on short inputs and several
minutes on the long sequences. ILM is significantly faster

than either HotKnots or pknotsRE, but as indicated in

Table 2, this comes at the cost of poorer-quality predic-

tions. HotKnots is typically significantly faster than

NUPACK (which, as previously mentioned, failed to run

on the longer sequences), but, particularly for the longer

TABLE 1. Sequences used in our comparison of algorithms for pseudoknotted secondary structure prediction

Sequence IDs Sequence type Reference

DA0260, DA1280, DC0010, DC0262, DD0260, DY4441 tRNA (pseudonot-free) Sprinzl et al. 1998
RNaseP10058, RNaseP10215, RNaseP9917

EC_RNaseP_P4, RNaseP9955 RNaseP (pseudoknot-free) Brown 1999
Br-PrP, Ec-S15, Ec-alpha, Hs-PrP, T4-gene32 mRNA van Batenburg et al. 2001
LP-PK1, Ec-PK1, Ec-PK4, tmRNA 10380 tmRNA van Batenburg et al. 2001
satRPV, Tt-LSU-P3P7 ribozymes van Batenburg et al. 2001
HIVRT32, HIVRT332, HIVRT33 HIV-1-RT ligandRNA Turek et al. 1992
HDV hepatitis delta virus ribozyme Isambert and Siggia 2000
MMTV, MMTV-vpk, SRV-1, T2-gene32, BWYV,

pKA-A, minimalIBV viral ribosomal RNA frame-shifting signals Giedroc et al. 2000
TYMV viralRNA Deiman et al. 1997
telo.human telomerase RNA Chen et al. 2000
HDV-anti anti-genomic HDV Ferre-D’Amareand et al. 1998
TMV.L, TMV.R VDV_IRES, CSFV_IRES, HCV_Ires viral RNA van Belkum et al. 1985
A.tum.RNase.P RNaseP Brown 1999
EC_rpml rRNA van Batenburg et al. 2001

In order, the columns provide (1) sequence ID, as found in the database or paper from which we obtained the sequence; (2) type of sequence;
and (3) citation of the database or paper from which we obtained the sequence.
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TABLE 2. Sensitivity and specificity of the predictions of six algorithms on our (a) short and (b) long test sequences

(a)

Sensitivity Specificity

Sequence ID Length HotKnots ILM pknotsRE STAR
pknotsRG-

mfe NUPACK HotKnots ILM pknotsRE STAR
pknotsRG-

mfe NUPACK

BR-PrP 45 0.41 0.83 0.5 0.33 0.33 0.41 0.38 0.76 0.5 0.26 0.26 0.38
BWYV 28 1 0.88 1 1 1 1 1 1 1 1 1 1
DA0260 75 0.95 0.68 0.69 0.5 0.77 0.77 0.77 0.68 0.68 0.5 0.85 0.89
DA1280 73 1 1 0.76 1 1 1 0.95 0.8 0.69 0.95 0.95 0.95
DC0010 73 1 0.9 1 0.95 1 0.8 1 1 1 0.95 1 0.94
DC0262 73 0.85 0.85 0.61 0.85 0.85 0.61 0.78 0.66 0.52 0.78 0.78 0.54
DD0260 76 0.28 0.76 0.33 0.47 0.28 0.33 0.28 0.64 0.29 0.4 0.28 0.26
DY4441 73 0.95 0.76 0.71 1 0.19 0.19 0.95 0.69 0.71 1 0.16 0.17
Ec-alpha 108 0.45 0.66 0.45 0.45 0.45 0.45 0.29 0.4 0.29 0.3 0.29 0.3
Ec-PK1 30 1 0.36 1 0.36 1 1 1 0.44 1 0.5 1 1
Ec-PK4 52 0.68 0.52 0.68 0.68 0.68 1 1 0.58 0.92 1 1 1
Ec-S15 67 1 0.58 0.94 0.58 0.76 0.88 0.73 0.47 0.64 0.62 0.68 0.71
HDV 87 0.4 1 0.46 0.6 0.96 0.63 0.44 0.88 0.46 0.7 0.93 0.61
HDV-anti 91 0.16 1 0.41 0.62 0.16 0.41 0.14 0.66 0.31 0.6 0.14 0.32
HIVRT32 35 1 1 1 0.9 1 1 1 1 1 1 1 1
HIVRT322 35 1 1 1 0.9 1 1 1 1 1 1 1 1
HIVRT33 35 1 1 1 0 1 0.9 1 1 1 0 1 1
Hs-PrP 45 0 0.27 0 0 0 0 0 0.27 0 0 0 0
LP-PKl 30 0.5 0.5 0.5 0.5 0.5 0.8 1 0.71 0.83 1 1 1
minimalIBV 45 0.94 0.88 0.94 0.88 0.94 0.94 0.88 0.88 0.94 0.93 0.94 0.94
MMTV 34 1 0.81 1 1 1 0.45 0.91 0.81 0.91 0.91 0.91 0.5
MMTV-vpk 34 1 0.54 1 1 1 1 0.91 0.54 0.91 0.91 0.91 1
pKA-A 36 1 1 1 1 1 1 0.92 0.92 0.92 0.92 0.92 0.92
satRPV 73 0.59 0.77 0.81 0.59 0.81 0.59 0.68 0.68 0.85 0.76 0.85 0.68
SRV-1 38 1 0 1 1 1 1 0.91 0 0.91 0.91 0.91 0.91
T2-gene32 33 1 0.58 1 1 1 1 1 0.7 1 1 1 1
T4-gene32 28 0.63 0.63 1 1 1 1 0.87 1 1 1 1 1
TMV.L 84 0.52 0.8 0.52 0.64 0.8 0.52 0.61 0.76 0.59 0.69 0.83 0.61
TMV.R 105 0.67 0.76 0.44 0.85 0.67 0.52 0.74 0.7 0.48 0.96 0.74 0.54
Tt-LSU-P3P7 65 0.95 0.8 0.9 0.6 0.85 0.95 1 0.69 0.85 0.75 1 1
TYMV 86 0.72 0.88 0.72 0.88 0.76 0.44 0.78 0.75 0.78 0.88 0.79 0.5
AVERAGE 58 0.76 0.74 0.75 0.71 0.76 0.72 0.77 0.71 0.74 0.74 0.77 0.73

.(b)

Sensitivity Specificity

Sequence ID Length HotKnots ILM pknotsRE STAR
pknotsRG-

mfe NUPACK HotKnots ILM pknotsRE STAR
pknotsRG-

mfe NUPACK

A.tum.RNase.P 400 0.77 0.61 * 0.72 0.77 * 0.82 0.62 * 0.84 0.82 *
BVDV IRES 239 0.51 0.85 * 0.74 0.51 * 0.19 0.25 * 0.24 0.17 *
CSFV IRES 235 0.33 0.74 * 0.74 0 * 0.11 0.23 * 0.25 0 *
EC RNaseP p4 353 0.75 0.28 * 0.68 0.75 * 0.22 0.07 * 0.20 0.22 *
EC rpml 343 0.56 0.46 * 0.50 0.56 * 0.16 0.11 * 0.15 0.16 *
HCV lres 210 0.36 0.68 0.72 0.4 0.36 * 0.11 0.18 0.22 0.13 0.11 *
RNaseP10058 342 0.39 0.31 * 0.57 0.39 * 0.37 0.27 * 0.6 0.39 *
RNase10215 349 0.41 0.40 * 0.45 0.42 * 0.38 0.34 * 0.47 0.38 *
RNaseP9917 316 0.51 0.60 * 0.71 0.51 * 0.45 0.51 * 0.64 0.45 *
RNaseP9955 308 0.58 0.47 * 0.63 0.66 * 0.56 0.41 * 0.62 0.59 *
telo.human 210 0.7 0.28 0.48 0.48 0.54 * 0.55 0.17 0.32 0.38 0.42 *
tmRNA10380 297 0.46 0.34 * 0.25 0.4 * 0.48 0.31 * 0.25 0.37 *
AVERAGE 300 0.52 0.50 * 0.57 0.48 * 0.36 0.28 * 0.39 0.34 *

There is one row of the table per test sequence. Starting from the left, the columns report the sequence ID, sequence length, sensitivity of the
HotKnots, ILM, pknotsRE, STAR, pknotsRG-mfe, and NUPACK algorithms, respectively, and the specificity of the HotKnots, ILM, pknotsRE,
STAR, pknotsRG-mfe, and NUPACK algorithms. For a given sequence, an algorithm’s sensitivity value is marked in bold if the value is at least as
great as the sensitivity of the other algorithms, and similarly for specificity.
‘‘*’’ Indicates we were unable to run the algorithm to completion.
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sequences, requires substantially longer run times than

pknotsRG-mfe.1

With the sole exception of sequence TMV.R, HotKnots’

running time on all short sequences is <20 CPU sec on our

reference machine, and <1 CPU sec on most of the
sequences. On the longer sequences, HotKnots still take

<20 CPU min in all cases, and typically <10 CPU min.

We note that the code for pknotsRG-mfe was obtained

using a compiler that is highly optimized for dynamic

programming code, and led to a 90-fold speedup over a

non-optimized version of the code.

DISCUSSION

While HotKnots is a heuristic algorithm that is not guar-

anteed to find structures that are optimal with respect to

the underlying energy model, it perfectly predicts the true

secondary structure for seven of our 43 test sequences,

whereas the other two heuristic algorithms, ILM and

STAR, obtain only three and four perfect predictions,
respectively. For comparison, pknotsRE, pknotsRG-mfe,

1For the experiments reported in this paper, we used the latest imple-
mentation of pknotsRG-mfe available at the time of this writing, which is
substantially faster than the one used in Reeder and Giegerich (2004).

TABLE 3. CPU times for running five of the tested algorithms on our reference machine on our test sequences

Sequences HotKnots ILM pknotsRE pknotsRG-mfe NUPACK

Bt-PrP 0.07 Sec 0.03 Sec 7.72 Sec 0.03 Sec 0.68 Sec
BWYV 0.05 Sec 0.001 Sec 0.27 Sec 0.02 Sec 0.06 Sec
DA0260 1.97 Sec 0.05 Sec 5m25.7 Sec 0.06 Sec 10.72 Sec
DA1280 1.4 Sec 0.02 Sec 4m28.99 Sec 0.06 Sec 9.30 Sec
DC0010 0.27 Sec 0.03 Sec 4m31.74 Sec 0.05 Sec 7.70 Sec
DC0262 1.29 Sec 0.02 Sec 6m18.54 Sec 0.06 Sec 11.32 Sec
DD0260 6.24 Sec 0.01 Sec 6m8.08 Sec 0.06 Sec 12.08 Sec
DY4441 1.29 Sec 0.01 Sec 4m36.11 Sec 0.05 Sec 8.98 Sec
Ec-alpha 0.44 Sec 0.01 Sec 71m21.865 Sec 0.15 Sec 13.45 Sec
Ec-PK1 0.04 Sec 0.01 Sec 0.49 Sec 0.02 Sec 0.07 Sec
Ec-PK4 0.07 Sec 0.02 Sec 20.93 Sec 0.03 Sec 1.47 Sec

Ec-S15 0.44 Sec 0.02 Sec 2m18.83 Sec 0.04 Sec 5.62 Sec
HDV 14.3 Sec 0.02 Sec 16m21.8 Sec 0.07 Sec 24.03 Sec
HDV-anti 5.65 Sec 0.01 Sec 21m35.89 Sec 0.08 Sec 28.47 Sec
HIVRT32 0.04 Sec 0.01 Sec 1.2 Sec 0.02 Sec 0.15 Sec
HIVRT322 0.06 Sec 0.02 Sec 1.23 Sec 0.02 Sec 0.14 Sec
HIVRT33 0.04 Sec 0.01 Sec 1.21 Sec 0.02 Sec 0.15 Sec
Hs-PrP 0.06 Sec 0.02 Sec 6.97 Sec 0.03 Sec 0.69 Sec
Lp-PKI 0.04 Sec 0.02 Sec 0.48 Sec 0.02 Sec 0.07 Sec
minimallBV 0.07 Sec 0.01 Sec 6.89 Sec 0.03 Sec 0.65 Sec
MMTV 0.06 Sec 0.03 Sec 1.0 Sec 0.02 Sec 0.12 Sec
MMTV-vpk 0.03 Sec 0.001 Sec 0.99 Sec 0.02 Sec 0.14 Sec
PKA-A 0.06 Sec 0.01 Sec 1.47 Sec 0.02 Sec 0.19 Sec
satRPV 0.51 Sec 0.001 Sec 4m21.09 Sec 0.04 Sec 7.61 Sec
SRV-1 0.04 Sec 0.02 Sec 2.08 Sec 0.02 Sec 0.21 Sec
T2-gene32 0.04 Sec 0.02 Sec 0.82 Sec 0.03 Sec 0.12 Sec
T4-gene32 0.03 Sec 0.01 Sec 0.27 Sec 0.03 Sec 0.05 Sec
TMV.L 1.44 Sec 0.02 Sec 12m41.7 Sec 0.07 Sec 17.99 Sec
TMV.R 1m57 Sec 0.04 Sec 62m44.18 Sec 0.13 Sec 1m1.78 Sec
Tt-LSU-P3P7 0.61 Sec 0.02 Sec 1m48.02 Sec 0.04 Sec 4.52 Sec
TYMV 18.23 Sec 0.02 Sec 14m33.38 Sec 0.06 Sec 19.20 Sec
A.tum.RNase.P 18m52.05 Sec 0.07 Sec failed to run 22.05 Sec failed to run
BVDV IRES 6m6.14 Sec 0.13 Sec failed to run 2.55 Sec failed to run
CSFV IRES 6m54.56 Sec 0.13 Sec failed to run 2.55 Sec failed to run
EC RNaseP P4 2m31.18 Sec 0.69 Sec failed to run 12.66 Sec failed to run
EC rpml 6m36.89 Sec 0.58 Sec failed to run 11.40 Sec failed to run
HCV IRES 6m6.14 Sec 0.07 Sec 5424m0.56 Sec 1.61 Sec failed to run
RNaseP10058 6m54.56 Sec 0.60 Sec failed to run 11.06 Sec failed to run
RNaseP10215 2m31.18 Sec 0.74 Sec failed to run 12.37 Sec failed to run
RNaseP9917 6m36.89 Sec 0.37 Sec failed to run 7.93 Sec failed to run
RNaseP9955 4m19.84 Sec 0.40 Sec failed to run 6.36 Sec failed to run
TeloHuman 3m43.8 Sec 0.06 Sec 5373 m 17.43 Sec 1.81 Sec failed to run
tmRNA 10380 14m43.16 Sec 0.33 Sec failed to run 6.31 Sec failed to run
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and NUPACK, which are guaranteed to find structures that

are optimal with respect to their energy models, achieve

eight perfect predictions, each of which was also obtained

by at least one of the three heuristic algorithms.

In particular, of the sequences whose secondary structure

is perfectly predicted by pknotsRE and pknotsRG-mfe,

only one (T4-gene32) is not perfectly predicted by
HotKnots. Unlike the heuristic algorithms, pknotsRE,

pknotsRG-mfe, and NUPACK support only restricted

types of pseudoknots, but this does not seem to be a serious

disadvantage in terms of the quality of predictions on the

shorter sequences, particularly in the case of pknotsRG.

No algorithm gets perfect predictions on any of the 12

long sequences, where the best sensitivity and specificity

values are around 0.8.
When considering the best of the 20 lowest-energy sub-

optimal structures found by HotKnots on the short

sequences, an average sensitivity of 0.92 and an average

specificity of 0.89 are obtained. For the sequences Ec-PK4,

LP-PK1, T4-gene32, and HDV-anti, the secondary struc-

ture with the second-lowest energy is in fact the real

structure. Other sequences for which one of the subopti-

mal structures is close to the real structure are: (1) Hs-Prp,
for which the suboptimal structure ranked 10th, yields

sensitivity 0.76 and specificity 0.8; (2) TYMV, for which

the suboptimal structure ranked fourteenth, yields sensi-

tivity 1 and specificity 0.96; (3) satRPV, for which the

suboptimal structure ranked seventh, yields sensitivity

0.81 and specificity 0.85; and (4) TMV.L, where sensitivity

0.86 and specificity 0.8 are obtained for the suboptimal

structure ranked seventh. When considering the best of
the 20 lowest-energy suboptimal structures found by

pknotsRG on the short sequences, the sensitivity and speci-

ficity are somewhat lower than for HotKnots, at 0.82 and

0.85, respectively.

The sensitivity of the HotKnots predictions is <0.5 on

only six of the 31 short sequences, and we investigated

some of these sequences in more detail. For the Hs-PrP

sequence, the sensitivity of HotKnots is 0, meaning that no
base pair in the real structure was predicted; moreover,

none of the suboptimal predicted structures contains any

real base pairs either. The predicted structure is a long

stem with 14 base pairs containing some small bulges and

internal loops (and no multiloops or pseudoknots),

whereas the real structure is pseudoknotted, with 11 base

pairs forming two stems. The free energy of the predicted

structure is �21.6kcal/mol; the free energy of the true
structure is �6.83kcal/mol. This indicates that the energy

model is misleading, in this case overly penalizing the

formation of a pseudoknot. The secondary structure

obtained for Hs-PRP when GU pairs are not allowed is

significantly better, with a sensitivity of 0.52. For the

sequence Bt-PrP, a long stem-like structure with internal

loops and a large bulge is predicted by HotKnots, having

free energy �20.4kcal/mol, whereas the true structure is

pseudoknotted, with two stems of length 6, having free

energy �12.4kcal/mol, again indicating the weakness of the

energy model. In this case, the ILM algorithm is signifi-

cantly better, perhaps because it favors stems that do

not contain loops or bulges—a strategy that, considering

ILM’s overall performance, does not seem to be effective in

general.
The work presented here can be extended in various

directions. We believe that there is significant potential

to further reduce the running time of HotKnots by using

more advanced search techniques. A branch-and-bound

method could be used to reduce the size of the tree that is

actually generated and searched, reminiscent of an early

method proposed by Papanicolaou et al. (1984). In princi-

ple, HotKnots is very flexible with respect to its underlying
energy model. In particular, by replacing SimFold (the

subroutine used within HotKnots for predicting pseudo-

knot-free structures) with a heuristic procedure for pseu-

doknot-free structure prediction, HotKnots can be easily

modified to support energy models that are not amenable

to dynamic programming algorithms. This is relevant in

the sense that there is some indication that limitations of

the energy model need to be overcome in order to achieve
further performance improvements. Finally, in principle it

is possible to combine HotKnots with covariation-based

secondary structure prediction methods to achieve

improved performance in cases where a small number of

homologous RNA sequences are available (Hofacker et al.

2002).

MATERIALS AND METHODS

In this section we give detailed descriptions of the HotKnots

algorithm and the RNA sequences used in our evaluation, as

well as additional information on our computational experi-

ments.

The HotKnots algorithm

Our algorithm is based on the premise that substructures with

low energy that can form from the input sequence S are likely to

be in the true structure. We focus on simple stem-like substruc-

tures that are comprised only of stacked pairs, bulge loops con-

taining one unpaired base, and interior loops with two

(opposing) unpaired bases. We call such substructures ‘‘hot-

spots.’’ A set of hotspots is first computed, and each hotspot in

the set is used as a basis for expanding a secondary structure for

the input sequence S. The algorithm outputs the list of secondary

structures corresponding to each hotspot set, sorted by the free

energy value that is calculated using the Turner parameters (Serra

et al. 1995; Mathews et al. 1999).

Promising sets of hotspots are built up in a tree-like fashion.

That is, the algorithm builds a tree T, in which each node v has an

associated set of hotspots, Hv. The size of the set of hotspots

associated with a node is equal to the distance of the node from

the root of the tree, with the root node having no associated
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hotspots. As noted above, each set Hv is expanded into a second-

ary structure, which we denote by SecStr(S, Hv). The algorithm is

summarized in Figure 2, and the details, such as how promising

hotspots are identified, how SecStr(S, Hv) is expanded from Hv,

etc. are described in the following subsections. Figure 3 illustrates

how the algorithm works on the HDV ribozyme sequence.

Generating the initial list of hotspots

For each pair of positions i and j in the sequence for which

j � i > 3, the algorithm finds the minimum energy hotspot that

ends with base pair i . j, if any such hotspot exists with energy <0.

This is done using a simple local alignment algorithm (Smith and

Waterman 1981), in which the two sequences to be aligned are the

input sequence S, ordered from 50 to 30, and S, ordered from 30 to

50, with complementary or G-U pairs being considered a ‘‘match.’’

The parameters of the energy model of Turner et al. (Serra et al.

1995; Mathews et al. 1999) are built into the local alignment

algorithm, and extra penalties are added for each bulge and inter-

ior loop added to the hotspots, in order to keep the total length of

hotspots from growing too large.

We use the restriction j � i > 3 because the minimum number

of unpaired bases in a hairpin loop is three (Mathews et al. 1999;

Zuker et al. 1999), and hence the smallest distance between

two bases within one base pair should be at least four. Of all

the possible hotspots, the first 20 hotspots that have energy

lower than �0.4 kcal/mol and have more than two base pairs

are chosen for the initial list. A parameter, k, determines

the number of hotspots selected. In our experiments, k was set

to 20.

Selecting good hotspots

In the ‘‘build’’ procedure, good hotspots are selected in a manner

quite different from that used for finding the initial hotspots. The

method employs a dynamic programming algorithm for predict-

ing pseudoknot-free secondary structures similar to the mfold

algorithm (Zuker and Stiegler 1981; Lyngsø et al. 1999), specifi-

cally the SimFold implementation (Andronescu et al. 2005). Sim-

Fold can take as input both an RNA sequence and a set of con-

straints on the output structure. These constraints can include

constraints that certain bases must be unpaired in the output

structure, and output the pseudoknot-free secondary structure

with minimum free energy, among those that satisfy the given

input constraints. SimFold also uses the thermodynamic pa-

rameters of Turner and colleagues (Serra et al. 1995; Mathews

et al. 1999).

To select hotspots of the sequence S that do not overlap

(i.e., share bases) with those in a set of hotspots Hv, we use

SimFold with input S and the constraints that every base of any

hotspot in Hv must remain unpaired. Of those hotspots in the

structure output by SimFold, those with free energy below �0.4

kcal/mol are selected. Note that this method for selecting the new

hotspots enables the algorithm to find new hotspots that may

form pseudoknots with the hotspots already in Hv. This approach

is motivated by the idea that if the true structure for sequence S

includes the hotspots in Hv, then any new hotspot forming a

pseudoknot with those in Hv will be in the secondary structure

for S only if that new hotspot has low energy.

The function SecStr(S, Hv)

Next, we describe how the secondary structure SecStr (S, Hv)

associated with sequence S and hotspot set Hv is determined. Let

s1,s2, . . . ,sl be the segments of sequence S obtained by removing

the bases that are in hotspots of Hv. SimFold is used to find the

minimum free energy structure for each segment si. Then SecStr

(S, Hv) is exactly the union of these l secondary structures, plus the

hotspots in Hv.

Note that SecStr (S, Hv) contains no pseudoknots other than

those implied by the set of hotspots Hv, but if u is a child of v then

the secondary structure SecStr (S, Hv) may include new pseudo-

knots.

Determining if a hotspot set is promising

If the energy of the secondary structure SecStr (S, Hv) is no

more than 80% higher than the energy of SecStr (S, Hr) where

r is the root node of the tree, and is at most 5kcal/mol, then

the set Hv is deemed to be promising. The choices of 80% and

5 kcal/mol were made based on preliminary testing of the

code. Again, the Turner parameters (Serra et al. 1995; Math-

ews et al. 1999) together with those of Dirks and Pierce (2003)

for pseudoknotted loops are used to determine the energy of a

structure. Note that since Hr is the empty set, SecStr (S, Hr) is

in fact the minimum free-energy pseudoknot-free secondary

structure for S, as output by SimFold. By only adding nodes

to the tree for promising hotspot sets, the search space is

reduced, which helps keep the algorithm efficient.

Sequence data set

Table 1 provides references for the sequences used in evaluating

the algorithms.

Experimental details

The experiments for HotKnots, ILM, pknotsRE, pknotsRG-mfe,

and NUPACK were run on a PC with dual 2-GHz Intel(R) XEON

processors (only one of which was used for our experiments)

with a 512-KB PCU cache and 4-GB RAM, running SuSE Linux

version 9.1 (i586). Running times were measured using the

‘‘time’’ command. The STAR software was run on a similar PC

under Windows; it has an interactive interface that does not

support accurate measurement of running time, which made

precise time comparisons with the other algorithms impossible.

STAR runs in rounds; at the end of each round the user is

presented with a secondary structure and may indicate whether

another round of computation should be performed. In our

experiments, we ran the algorithm for between 10 and 20 rounds,

depending on the length of the sequence, stopping when the

structure output did not change for five rounds.
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