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We proposed to use the conjugate gradient method to effectively solve the thermal resistance model in HotSpot thermal floorplan
tool. /e iterative conjugate gradient solver is suitable for traditional sparse matrix linear systems. We also defined the relative
sparse matrix in the iterative thermal floorplan of Simulated Annealing framework algorithm, and the iterative method of relative
sparse matrix could be applied to other iterative framework algorithms. /e experimental results show that the running time of
our incremental iterative conjugate gradient solver is speeded up approximately 11x compared with the LU decomposition
method for case ami49, and the experiment ratio curve shows that our iterative conjugate gradient solver accelerated more with
increasing number of modules.

1. Introduction

With the constant improvement of the chip speed, power
and temperature of a chip also increase accordingly. To cope
with the increasing temperature of chips, the thermal aware
floorplan method is widely used to avoid hotspots on chips
in physical design. It makes the thermal problem to be more
critical for physical design quality. In [1, 2], the authors
employ the hierarchical thermal model to decrease the
modules’ maximum temperature in chip physical design.
/ey use B∗-tree [3, 4] to represent the floorplan/placement
with Simulated Annealing optimization algorithm. /e
authors’ hierarchical thermal floorplan/placement includes
two critical steps. First, they cluster the modules by power
density, and then they use the Gauss–Seidel method to solve
the thermal linear system. In the [1, 2], the authors only have
done a theoretical analysis between the Gauss–Seidel method
and the traditional LU decomposition matrix solver by loop
iterative times. /ey assume that the time complexity of the
traditional LU decomposition matrix solver is 2n3/3 and
compare the Gauss–Seidel method real loop iterative times
with cn2 instead of the real program or solver CPU running
time.

In [5], the authors compare the program running time;
this comparison is not obvious because the program running
time includes other cost computations and SA’s iterative
time. In order to better compare the linear solver, in this
study, we improve the timing statistical method and join the
other preconditionmethods, such as the SSOR precondition.

In [8], exponentially increasing power densities in current
day designs due to aggressive technology scaling has resulted
in temperature being one of the primary design constraints
along with others like timing, area, and power. A lot of design
techniques are being adopted during the physical design stage
to minimize the power, apart from the architectural tech-
niques like throttling for dynamic thermal management. In
[8], the authors propose a practical methodology for better
thermal management by floorplan modifications based on
thermal hotspots obtained through dynamic simulations,
without disturbing the logical connectivity information.
/is methodology definitely warrants the benefits which can be
readily realized by doing this analysis early in the design cycle.
/is can also improve the placement of the thermal sensors and
boost additional performance which can be extracted by their
delayed triggering, considering the lateral spreading due to
better floorplanning.
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In [9], with the continuing scaling of CMOS technology,
on-chip temperature and thermal-induced variations have
become a major design concern. To effectively limit the high
temperature in a chip equipped with a cost-effective cooling
system, thermal-specific approaches, besides low-power
techniques, are necessary at the chip design level. /e
high temperature in hotspots and large thermal gradients are
caused by the high local power density and the nonuniform
power dissipation across the chip. With the objective of
reducing power density in hotspots, the authors proposed
two placement techniques that spread cells in hotspots over
a larger area. Increasing the area occupied by the hotspot
directly reduces its power density, leading to a reduction in
peak temperature and thermal gradient. To minimize the
introduced overhead in delay and dynamic power, they
maintained the relative positions of the coupling cells in the
new layout. /ey compared the proposed methods in terms
of temperature reduction, timing, and area overhead to the
baseline method, which enlarges the circuit area uniformly.
/e experimental results showed that our methods achieve
a larger reduction in both peak temperature and thermal
gradient than the baseline method. /e baseline method,
although reducing peak temperature in most cases, has little
impact on thermal gradient.

In [10], with the thermal effect, improper analog placements
may degrade circuit performance because the thermal gradient
can affect electrical characteristics of the thermally sensitive
devices. Tomitigate the thermal effect in analog layout design, it
is required to reduce thermally induced mismatches among
matched devices in addition to eliminating thermal hot spots.
/e study presented major challenges arising from the chip
thermal gradient for analog placement , introduced nonuni-
form and uniform thermal profiles as well as the corresponding
placement configurations, surveyed key existing techniques for
analog placement under nonuniform and uniform thermal
profiles, and provided the experimental results for analog
placement with thermal consideration.

In [11], the work developed a thermal aware placer,
/ermPL, to abate both on-chip peak temperature and
thermal gradient by developing thermal force and padding
techniques cooperated with rough legalization in the force-
directed global placement. /ermal padding is firstly
adopted to reduce local power density. To make use of
thermal force, the authors used the thermal gain basis to fast
and accurately capture the temperature distribution of a
placement and effectively calculate the thermal contribution
of cells based on the thermal locality. /en, they utilized the
proposed innate thermal force assessed through thermal
criticality and capabilities to spread cells away from hotspots.
With the thermal gain basis, /ermPL can efficiently obtain
the thermal profile of placement with the maximum error of
0.65% compared with a commercial tool. Experimental results
show that /ermPL can provide 7% and 19% reduction on
average in peak temperature and thermal gradient, re-
spectively, within only 4.6% wirelength overhead.

In [12], with the thermal effect, improper analog place-
ments may degrade circuit performance because the thermal
impact from power devices can affect electrical characteristics
of the thermally sensitive devices. /ere is not much previous

work that considers the desired placement configuration
between power and thermally sensitive devices for a better
thermal profile to reduce the thermally induced mismatches.
/e study first introduced the properties of a desired thermal
profile for better thermal matching of the matched devices. It
then presented a thermal-driven analog placement method-
ology to achieve the desired thermal profile and to consider
the best device matching under the thermal profile while
satisfying the symmetry and the common-centroid con-
straints. Experimental results based on real analog circuits
show that the proposed approach can achieve the best analog
circuit performance/accuracy with the least impact due to the
thermal gradient, among existing works.

In this study, we embed the iterative conjugate gradient
method into HotSpot floorplan to compare the real CPU
running time different solvers with the same compiler and
running environment.

/e conjugate gradient solver was imported into the
thermal floorplan tool HotSpot [13], comparing with its
previous LU decomposition solver. /en, we can compare
the running time with different solvers of thermal floorplan
between conjugate gradient method and LU decomposition
solver. /e thermal floorplan solver is switched by the
program command line parameter with the same running
environment such as CPU and memory, GCC version, and
compiler’s option. It is more convective to compare CPU
time with two solvers than theoretical analysis about loop
iterative times. We also use the SSOR and Jacobi pre-
conditions to accelerate the conjugate gradient solver.

HotSpot thermal aware floorplan employs the thermal
model to compute the blocks’ temperature; the thermal tem-
perature metric is combining with other area and wire length
metrics, and it is a relative sparsematrix in theHotSpot thermal
model of iterative SA framework algorithm. /e HotSpot
thermal floorplan can decrease the maximum of block tem-
perature by evenly distributing the power density, avoiding
hotspots in the floorplan step of physical design. We import an
iterative method to solve this kind of relative sparse linear
system in the thermal model of floorplan. /is paper’s con-
tributions include the following:

(i) /e relative sparse matrix is defined. It can speed up
linear system solver convergence by the iterative
sparse method.

(ii) /e conjugate gradient iterative method is imported
in the HotSpot floorplan thermal model. It is an
efficient algorithm that can reduce the running time
by accelerating the linear solver in hotspot.

/is paper is organized as follows. Section 2 introduces the
HotSpot floorplan flow. Relative sparse matrix definition and
the thermal resistance model are given in Section 3 and Section
4, respectively. Section 5 shows the result of experiments, and
conclusions and future research are given in Section 6.

2. HotSpot Thermal Floorplan

/e VLSI physical design floorplan is to place the blocks
without overlap in the silicon die, and the floorplan algorithm
needs to obey the chip constraint, optimizing area, wire
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length, and thermal temperature metrics’ cost. /e placement
temperature is solved by linear equations in the thermal
model.

2.1. Introduction of Hot !ermal Floorplan. /e floorplan/
placement of physical design is a critical step for the thermal
aware design. Hot floorplan is a thermal aware tool to de-
crease the module temperature and avoid the hotspot con-
vergence. /e hot floorplan merges the thermal cost with the
traditional area and wire length cost into iterative Simulated
Annealing algorithm, and it is time-consuming to solve the
module temperature in the iterative Simulated Annealing
algorithm.

We also use the HotSpot model to guide thermal
floorplan/placement to do static temperature computer and
modules’ temperature statistics, and then the thermal cost is
integrated with the other area and wire length to do thermal
aware physical design.

HotSpot builds a thermal model to compute the dynamic
block or grid temperature on chip. We import the conjugate
gradient solver to accelerate the thermal block model com-
putation in floorplan SA algorithm.

3. Relative Sparse Matrix of Iterative
Framework Algorithm

/ere are more sophisticated algorithms to solve sparse linear
equations, avoiding to process zero entries of sparse matrix
[6, 7], such as the iterative method of linear systems. /e
relative sparse matrix is not a strict sparse matrix and it tends
to be a dense matrix; relative sparse matrix means that there is
a few “interesting” entry between one matrix and another.

3.1. Relative SparseMatrix. Relative sparse matrix definition:
if the matrix R � Ak+1 −Ak is sparse, there is a few nonzero
values of matrix R items. We define that matrices Ak and Ak+1
are relatively sparse; in other words, the matrixAk+1 is a sparse
matrix relative to matrix Ak. Assume there are two linear
equations Ak ∗ x � b and Ak+1 ∗ x � b, the order of solving
linear equations is as follows: the first step is solving
Ak ∗ x � b, the second step is solving Ak+1 ∗x � b in
sequentially iterative framework algorithm; for example,
Simulated Annealing algorithm solves Ak ∗x � b and
Ak+1 ∗ x � b sequentially with the same vector b, in a linear
system with different matrices from Ak to Ak+1.

In this case of sequentially relative sparse matrix, the
iterative methods are employed to solve the relative sparse
linear equations to reduce the number of iterations for the
convergence. /e detail operations are described as follows:

In the first step, the linear system A0 ∗x � b is solved
trivially, obtaining the solution x0, and then we reuse the
solution x0 as the initial estimate value for the linear equations
A1 ∗x � b. In the same way, we reuse the solution xk of
Ak ∗ x � b to be initial estimate value of Ak+1∗x � b, k≥ 0
sequentially.

In this case of the sequence relative sparse matrix, if we set
the initial estimate value of Ak+1 ∗ x � b equal to xk, xk is the
previous solution of Ak ∗ x � b, and it can speed up the

iterative method convergence. Because the changes of the
matrix from Ak to Ak+1 is little, even though the matrices Ak
and Ak+1 are full matrix not traditional sparse matrix about
entry densities, the matrixAk+1 is a sparse matrix relative to the
matrix Ak.

We can call this relative sparse linear system compu-
tation as the incremental updating solution method.

In the iterative algorithm, the previous iterative solution
preserved as intermediate solution is the initial estimate
value for current iteration in the linear system.

4. Relative Sparse Matrix in Thermal
Floorplan of SA Framework Algorithm

4.1. !ermal Model Introduction. In the floorplan of VLSI
physical design, the circuit modules are randomly placed in
the die using Simulated Annealing; once the Simulated
Annealing generates a floorplan of circuit modules, we cal-
culate the cost metric of die area, wire length between circuit
modules, and the maximum temperature of circuit modules
by the thermal model.

/e Simulated Annealing is an iterative optimizing al-
gorithm; the thermal model is incorporated into the SA
(Simulated Annealing). /e thermal conduct in the die is
complex [14], and it can be an abstracted thermal resistant
model [15]:

R∗T � P ⇒ T � R−1∗P, (1)

where T and P are the vectors representing temperature and
power consumption, respectively; thermal resistance R is the
square matrix and symmetric matrix. Once the circuit blocks
are determined, the blocks’ power P vector will not change,
and it is a constant vector. /ermal resistance matrix R will
change entry values according to the placement detail, and it
is a dense matrix instead of the sparse matrix, but it matches
the relative sparse matrix definition in iterative Simulated
Annealing framework algorithm.

/e Simulated Annealing algorithm changes placement,
a few from one stage to another, computing new cost of
metrics, for example, moving a block from one location to
another unused location, and this perturbation will only
change one block’s location in placement so that the thermal
conduct between blocks and most block’s temperature
changes little too. Here the updating block’s thermal resistance
matrix R is a dense matrix but has a few “interesting” changes
about thermal resistance matrix items, and it is a relative
sparse matrix between Rn+1 and Rn. /e new thermal re-
sistance matrix Rn+1 is a relative sparse matrix with Rn.

4.2. LU Decomposition Solving Linear Equation. Solving
linear equations gave a system of linear equations in the
matrix form:

Ax � b. (2)

Given matrix A and vector b, the solution x is needed to be
solved./ematrixA is LUP decomposed such that PA� LU.
/e linear equations could be transformed into LU form
equivalently as
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LUx � Pb. (3)

/e LU solver is done in two logical steps:

(i) First step: solving the lower triangular matrix linear
equations, Ly � Pb for y

(ii) Second step: solving the upper triangular matrix
linear equations, Ux � y

/e cost of solving a system of linear equations is ap-
proximately 2n3/3 floating point operations if the matrix A
has size n [16].

/e LU decomposition is the direct solver method of the
linear equation.

4.3. Incrementally Iterative Conjugate Gradient Solver
and Convergence. /ere are many iterative linear solver
methods including conjugate gradient, Gauss–Seidel, and
successive over relaxation. In this study, the conjugate
gradient method is used to solve the thermal model in
floorplan.

4.3.1. Convergence of Incrementally Iterative Conjugate
Gradient Solver. /e conjugate gradient method is con-
vergence if the matrix is symmetric and positive definite./e
condition number associated with the linear equation Ax �
b gives a bound on how inaccurate the solution xwill be after
approximation. /e condition number of matrix is the
product of the two operator norms:

κ(A) � A−1
  · ‖A‖. (4)

If A is normal, then κ(A) � |λmax(A)/λmin(A)|, where
λmax(A) and λmin(A) are maximum and minimum values of
eigenvalues of a matrix A, respectively. /e convergence of
CG depends on the condition number of matrix κ(A) which
is equal to |λmax(A)/λmin(A)|.

Denoting initial guess for x0, at starting of the SA al-
gorithm, we can assume that x0 � [0, . . . , 0]; if we get x after
the first time linear solver, then the conjugate gradient solver
will reuse the previous xk as the next time initial estimate
value xk+1, k≥ 0./is incremental updating solutionmethod
can accelerate the solver convergence.

/e conjugate gradient method inspiresAx � b solution,
and x∗ is also unique in minimizing the following quadratic
function:

f(x) �
1

2
xTAx−xTb, x ∈ Rn. (5)

/is suggests taking the first basis vector p1 to be the
negative of the gradient of f(x) at x � x0, the gradient of
f(x) equals Ax0 − b, and we take p1 � b−Ax0.

It is conjugate to gradient between the vectors.
Let rk be the residual at the kth step:

rk � b−Axk. (6)

Note that rk is the negative gradient of f at x � xk, so the
gradient descent method would be to move in the direction
rk. Here, we insist that the directions pk be conjugate to each

other. We also require that the next search direction be built
out of the current residue and all previous search directions,
which is reasonably enough in practice.

4.3.2. Pseudocode of Conjugate Gradient Algorithm. /e
algorithm is detailed below for solving Ax � b, where A is
a real, symmetric, positive-definite matrix. /e input vector
x0 can be an approximate initial solution or 0.

/e pseudocode of conjugate gradient solver is shown in
Algorithm 1.

4.3.3. Precondition of Conjugate Gradient Method. In most
cases, preconditioning is necessary to ensure fast conver-
gence of the conjugate gradient method./e preconditioned
conjugate gradient method takes the following form.

We consider a preconditioned system of

M−1Ax �M−1b, (7)

where M is a nonsingular matrix.
Jacobi preconditioning: the simplest preconditioner

consists of just the diagonal of the matrix:

mi,j �
ai,j if i �� j

0 else i! � j.
{ (8)

/is is known as the Jacobi preconditioner.
/e SSOR preconditioner, like the Jacobi preconditioner,

can be derived from the coefficient matrix without any work.
If the original, symmetric matrix is decomposed as

A � D + L + LT, (9)

in its diagonal, lower, and upper triangular part, the SSOR
matrix is defined as

M �(D + L)D−1(D + L)T. (10)

/e pseudocode of the conjugate gradient solver with
preconditioned is shown as Algorithm 1.

4.3.4. Incrementally Inherits Initializing Estimate Value from
Previous Solution. /e HotSpot thermal floorplan is using
the iterative Simulated Annealing algorithm. /e Simulated
Annealing algorithm changes the placement from one to
another, only one or two blocks’ location, and the most
blocks’ temperatures change a little. If the initialize estimate
value inherits from the previous temperature result, it can
reduce the number of iteration times for convergence. It is
the reason that the SA framework floorplan algorithm
employs the iterative conjugate gradient solver to accelerate
the convergence for the thermal model.

/e pseudocode of SA thermal floorplan algorithm with
the conjugate gradient thermal solver is shown in Algorithm 2.

4.4. Stopping Criteria for Iteration Solver. /e residual rnorm
is computed as follows:

rnorm �(r, r) �((b−A∗ x), (b−A∗x)). (11)
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If and only if rnorm < aimprecision, the iterations are ter-
minated after the residual is less small than the desired
precision.

/e overall iterative times of the conjugate gradient
solver are O(k3) in floorplan [17]. /e conjugate gradient
solver with preconditioned is O(k2.5); in two-dimensional
problem, n � k2, and in three-dimensional, n � k3.

/e linear equations can be solved by LU in time 2n3/3.
/e analysis and experiment also prove the excellence of the
conjugate gradient incremental updating solution method in
the SA iterative framework algorithm of thermal floorplan.

5. Results of Experiments

/e conjugate gradient algorithm is imported into the open
source HotSpot floorplan [15] in C and C++ program lan-
guage./e HotSpot thermal floorplan uses the SA (Simulated
Annealing) [18] optimal algorithm. /e experiments are
running on Ubuntu with Intel® Core™ CPU i5-2300
2.80GHz and 12Gmemory./e benchmarks are MCNC [19]
benchmark circuits. /e block power trace is generated by
a Perl script random function, and the power density ranges
from 105W/m2 to 107W/m2 for each block [14].

It is a more convictive way to compare CPU time of two
linear solvers in same program; the conjugate gradient al-
gorithm is been implanted by the C++ code and merged into
the hot floorplan [15]; and the conjugate gradient algorithm
compares with the hot floorplan default LU decomposition
solver. /e two linear solvers of program are switched by the

command line parameter, so the program run environment,
such as CPU, memory, GCC version, and compile option, is
the same.

Table 1 shows that the conjugate gradient solver without
precondition (CG normal in the table) run time is ap-
proximate; in the LU decomposition solver on MCNC case,
the run time unit is second; the conjugate gradient without
precondition solver run time is about speed up averagely
1.49 compared with the LU decomposition solver; the LU
decomposition solver once average time is 0.00387 second
(3.87E− 03 in the table); and the conjugate gradient solver
without precondition solver once average time is 0.00191
second (1.91E− 03 in the table).

Table 2 shows that the conjugate gradient solver with Jacobi
precondition run time is quicker than the LU decomposition
solver, and the conjugate gradient solver with Jacobi pre-
condition run time speeds up averagely 4.32x comparing with
the LU decomposition solver. /e conjugate gradient solver
with the Jacobi precondition solver once had an average time of
0.000567 second (5.67E− 04 in table).

Table 3 shows that the conjugate gradient solver with
SSOR precondition run time is less better than the con-
jugate gradient solver with the Jacobi Precondition;
the conjugate gradient solver with SSOR precondition
run time speeds up averagely 5.18x with the LU de-
composition solver; the conjugate gradient solver with the
SSOR precondition solver once had an average time of
0.000473 second (4.73E − 04 in table). It is 11x for test case
ami49. /e profit of conjugate gradient solver with SSOR

Require: f(x): objective function; x0: initial solution;
Ensure: optimal x∗

(1) int Iter � 0;
(2) double α, β, rp, rpold, bnorm, rnorm;
(3) vector r, p, q, z;
(4) initial r � b ? A ? x;
(5) rnorm � (r,r);
(6) while (rnorm < precision) do
(7) if using preconditioned then
(8) z � M−1r; (using difference preconditioned)
(9) else
(10) z � r; (no preconditioned)
(11) end if
(12) rp � (r,z);
(13) if Iter �� 1 then
(14) p0 � z
(15) else
(16) β � rp/rpold;
(17) p � z + β ∗ p
(18) end if

(19) q � A ∗ p;
(20) α � (r,z)/(p,q);
(21) x � x + α ∗ p;
(22) r � r − α ∗ q;
(23) rnorm � (r,r);
(24) rpold � rp;
(25) end while

ALGORITHM 1: /e conjugate gradient algorithm as an iterative method.
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precondition gains the best result ratio comparing with the
LU decomposition solver.

Figure 1 shows the conjugate gradient solver run time
versus the LU decomposition solver on the MCNC bench-
mark. /e figure name rule: the CG is the conjugate gradient
solver without precondition; the Jacobi is the conjugate
gradient solver with Jacobi precondition; the SSOR is the
conjugate gradient solver with SSOR precondition. /e
conjugate gradient solver without precondition run time is
more than the LU decomposition solver on two small cases,
and less than on large cases; the conjugate gradient solver with

Jacobi and SSOR precondition experimental results are less
than the LU decomposition solver results./e precondition is
important for the iterative conjugate gradient solver.

Figure 2 shows the conjugate gradient solver run time
ratio versus the LU decomposition solver on the MCNC
benchmark. Naming rules are consistent with Figure 1. /e
experimental ratio curve shows that our iterative conjugate
gradient solver accelerated more with increasing number of
modules.

We also received the reviewer proposal to adapt to the
larger GSRC benchmark of examples to test the scalability of

Require: cost(f) SA floorplan evaluate metric;
Ensure: optimal floorplan f∗

1 rnorm � (r,r);
2 int Iter � 0;
3 double α, β, rp, rpold, bnorm, rnorm;
4 vector r, p, q, z;
5 initial T schedule;
6 /∗ stop annealing if temperature has cooled down enough or max no. of iterations have been tried∗ /
7 while (T ≥ Tcold && steps < cfg.Nmax) do
8 n � cfg.Kmoves ∗ flp− > n units;
9 i � downs � rejects � 0;
10 sumcost � 0;
11 /∗ try enough total or downhill moves per T ∗/
12 while (do(i < 2 ∗ n)&&(downs < n))
13 make random move and data process to floorplan
14 new cost � floorplan evaluate metric;
15 // area (A), temperature (T), and wire length (W):
16 lambdaA ∗ A + lambdaT ∗ T + lambdaW ∗ W
17 reusing the T to be linear solver initial solution
18 if (new cost < cost ‖ rand fraction() < exp(−(new cost− cost)/T)) then
19 /∗ downhill always accepted ∗/
20 or /∗ Boltzmann probability function ∗/
21 accepted new cost
22 else

23 rejects++;
24 end if

25 i++;
26 end while

27 /∗ stop annealing if there are too little accepts ∗/
28 if((rejects/i) > cfg.Rreject)
29 break;
30 /∗ annealing schedule ∗/
31 T∗� cfg.Rcool;;
32 steps++;
33 end while

ALGORITHM 2: /e SA thermal floorplan algorithm with the conjugate gradient thermal solver.

Table 1: /e conjugate gradient solver without precondition.

Design name Block number
LU solver CG

Run time Solver times Solver average time Run time Ratio Solver average time

xerox 10 5.69 26601 2.14E− 04 5.32 1.07 2.00E− 04
hp 11 7.53 29401 2.56E− 04 8.88 0.85 3.02E− 04
ami33 33 337.87 91001 3.71E− 03 299.52 1.13 3.29E− 03
ami49 49 1534.41 135801 1.13E− 02 524.65 2.92 3.86E− 03
avg 25.75 471.38 70701 3.87E− 03 209.59 1.49 1.91E− 03
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our algorithm. However, we need to emphasize that HotSpot
floorplan is designed for the CPU small quantity module
floorplan, which is not suitable for running the large

collection of placement instances, so the running time is
relatively long. Table 4 shows that the conjugate gradient
solver with SSOR precondition run time is better than the
LU decomposition solver, the conjugate gradient solver with
SSOR precondition run time speeds up averagely 17x with
the LU decomposition solver, the conjugate gradient solver
with SSOR precondition is 24x for test case n300. /e profit
of the conjugate gradient solver with SSOR precondition
gains the best result ratio comparing with the LU de-
composition solver.

6. Conclusions and Future Work

/e conjugate gradient solver is often been used in large
sparse matrix method computation, and the HotSpot
thermal floorplan could be speeded up by using the sparse
matrix iterative linear solver.

/e experiments show that the iterative conjugate gra-
dient solver is faster than the direct LU decomposition solver
on the MCNC benchmark.

/e relative sparse matrix theory could be applied to
other iterative framework algorithms, and the relative sparse
matrix could be extensible. /e future works may be the
following:

(i) Extend to other precondition methods of an iterative
linear solver, and we could use other preconditions.

Table 2: /e conjugate gradient solver with the Jacobi precondition.

Design name Block number
LU solver CG with Jacobi precondition

Run time Solver times Solver average time Run time Ratio Solver average time

xerox 10 5.69 26601 2.14E− 04 3.97 1.43 1.49E− 04
hp 11 7.53 29401 2.56E− 04 5.3 1.42 1.80E− 04
ami33 33 337.87 91001 3.71E− 03 65.76 5.14 7.23E− 04
ami49 49 1534.41 135801 1.13E− 02 165.02 9.3 1.22E− 03
avg 25.75 471.38 70701 3.87E− 03 60.01 4.32 5.67E− 04

Table 3: /e conjugate gradient solver with SSOR precondition.

Design name Block number
LU solver CG with SSOR precondition

Run time Solver times Solver average time Run time Ratio Solver average time

xerox 10 5.69 26601 2.14E− 04 3.74 1.52 1.41E− 04
hp 11 7.53 29401 2.56E− 04 5.04 1.5 1.71E− 04
ami33 33 337.87 91001 3.71E− 03 53.44 6.32 5.87E− 04
ami49 49 1534.41 135801 1.13E− 02 134.7 11.39 9.92E− 04
avg 25.75 471.38 70701 3.87E− 03 49.23 5.18 4.73E− 04
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Figure 1: Run time comparing with different block numbers.
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Figure 2: Ratio of run time comparing with different block
numbers.

Table 4:/e conjugate gradient solver with SSOR precondition run
time on the GSRC benchmark.

Design
name

Block
number

LU solver
second (s)

CG solver with
SSOR second (s)

Ratio

n100 100 380.857101 44.486236 8.561234558
n200 200 6411.656280 311.195691 20.60329389
n300 300 32716.53333 1326.933276 24.65574865
Avg 600 13169.68224 560.8717343 17.94009237
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(ii) Explore sparse linear system theory to speed up our
program because there are many theoretical inno-
vations to solve linear system in the last two decades.
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