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Abstract

Wheat can adapt to most agricultural conditions across temperate regions. This success is the result of phenotypic plasticity

conferred by a large and complex genome composed of three homoeologous genomes (A, B, and D). Although drought is a major

cause of yield and quality loss in wheat, the adaptive mechanisms and gene networks underlying drought responses in the field

remain largely unknown. Here, we addressed this by utilizing an interdisciplinary approach involving field water status pheno-

typing, sampling, and gene expression analyses. Overall, changes at the transcriptional level were reflected in plant spectral traits

amenable to field-level physiological measurements, although changes in photosynthesis-related pathways were found likely to

be under more complex post-transcriptional control. Examining homoeologous genes with a 1:1:1 relationship across the A, B,

and D genomes (triads), we revealed a complex genomic architecture for drought responses under field conditions, involving

gene homoeolog specialization, multiple gene clusters, gene families, miRNAs, and transcription factors coordinating these

responses. Our results provide a new focus for genomics-assisted breeding of drought-tolerant wheat cultivars.

Keywords Transcriptomics . Plant spectral traits . Field drought tolerance

Electronic supplementary material The online version of this article

(https://doi.org/10.1007/s10142-018-0639-3) contains supplementary

material, which is available to authorized users.

* Sergio Gálvez

galvez@uma.es

* Pablo J. Zarco-Tejada

pablo.zarco@csic.es

* Cristobal Uauy

Cristobal.Uauy@jic.ac.uk

* Pilar Hernandez

phernandez@ias.csic.es

1 Departamento de Lenguajes y Ciencias de la Computación, ETSI

Informática, Campus de Teatinos, Universidad de Málaga,

29071 Málaga, Spain

2 Instituto de Agricultura Sostenible (IAS), Consejo Superior de

Investigaciones Científicas (CSIC), Alameda del Obispo s/n,

14004 Córdoba, Spain

3 John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK

4 Institute of Experimental Botany, Centre of Plant Structural and

Functional Genomics, CZ-78371 Olomouc, Czech Republic

5 Biological and Environmental Science&EngineeringDivision, King

Abdullah University of Science and Technology,

Thuwal 23955-6900, Kingdom of Saudi Arabia

6 Department of Plant Sciences and Plant Pathology, Montana State

University, Bozeman, MT 59717-3150, USA

7 Bioinformatics Unit, SCAI, Campus Rabanales, University of

Córdoba, 14014 Córdoba, Spain

8 International Wheat Genome Sequencing Consortium, 2841 NE

Marywood Ct, Lee’s Summit, MO 64086, USA

9 Departamento de Bioquímica y Biología Molecular, Campus de

Excelencia Internacional Agroalimentario (ceiA3), Universidad de

Córdoba, Campus Rabanales C6-1-E17, 14071 Córdoba, Spain

10 Veterinary and Agricultural Sciences, University of Melbourne,

Gratten St, Parkville, Victoria 3010, Australia

11 Department of Economic Development, AgriBio, Centre for

AgriBioscience, Jobs, Transport and Resources, La Trobe University,

5 Ring Rd, Bundoora, Victoria 3083, Australia

Functional & Integrative Genomics (2019) 19:295–309

https://doi.org/10.1007/s10142-018-0639-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10142-018-0639-3&domain=pdf
http://orcid.org/0000-0001-5166-4454
https://doi.org/10.1007/s10142-018-0639-3
mailto:galvez@uma.es
mailto:pablo.zarco@csic.es
mailto:Cristobal.Uauy@jic.ac.uk
mailto:phernandez@ias.csic.es


Introduction

Maintaining plant growth and yield under drought stress is a

major objective for wheat breeding programs worldwide. At

the molecular level, drought response is a complex genetic

mechanism (McWilliam 1989) involving multiple genes, tran-

scription factors, miRNAs, hormones, proteins, co-factors,

ions, and metabolites (Budak et al. 2015). The complexity of

this trait has hindered efforts to advance breeding for drought

using conventional DNA-based genetic markers. Research ef-

forts have therefore been devoted to the integration of physi-

ology attributes to derive novel diagnostic markers and facil-

itate the selection of parents and further breeding activity.

These efforts include the translation of physiological research

to the field by implementing physiologically defined traits

within breeding programs (Reynolds et al. 2012) and more

recently high-throughput proxies have used spectral traits of

plants to aid in germplasm selection (Condorelli et al. 2018;

Gonzalez-Dugo et al. 2015).

Moving forward, a prerequisite for genomics-informed

cultivar improvement will be the understanding of the genet-

ic and genomic basis of the drought tolerance mechanisms.

These studies have laggedbehind inwheat compared toother

species primarily due to its large (1C = 16 Gb), hexaploid,

and complex genome, with over 85% repetitive DNA con-

tent. The recent fully annotated and mapped reference se-

quence for the bread wheat cultivar BChinese Spring^

(IWGSC 2018) provides the basis for improved analyses

with the potential to derive novel breeding targets. Among

these, transcriptomics is a powerful approach to identify

gene regulatory networks, transcription factors, and

miRNAs involved in the stress response and to identify dif-

ferentially expressed genes during drought treatments.

Traditionally, transcriptomics analyses of drought stress

have been carried out under highly controlled environ-

mental conditions by withholding water or using an os-

motic stress agent such as polyethylene glycol (PEG) or

mannitol, thereby leading to progressive drought stress

(Li et al. 2017; Liu et al. 2015; Qiu et al. 2017). Under

agronomic conditions, however, plants are often exposed

to milder, non-sustained drought stress (Fleury et al.

2010; Ma et al. 2017; Passioura 2007), particularly under

rainfed conditions, which accounts for over 70% of the

wheat crop worldwide (You et al. 2014). Integrating the

water status analysis in the field makes the analysis of

molecular drought responses under real agronomic

water-limited conditions feasible.

In this work, we used an interdisciplinary approach to

investigate the genomic architecture of drought stress un-

der field agronomic conditions, by combining state-of-the-

art monitoring of plant spectral traits related to water and

nutrient status under field conditions with gene expression

analysis.

Results and discussion

We grew standard-scale breeding plots of the reference wheat

cultivar BChinese Spring^ to assess the effects of varying

levels of drought stress and to evaluate this crop in a canopy

context under field conditions in the temperate Mediterranean

climate of Southern Spain (Fig. S1). We established three

different watering regimes and used plant spectral traits de-

rived from high-resolution hyperspectral and thermal imagery

(Zarco-Tejada et al. 2018) in conjunction with physiological

water status analysis (Fig. 1a) to determine the severity of the

stress. These watering regimes resulted in severe drought

stress, intermediate/mild drought stress, and a non-stressed,

fully irrigated control condition, as quantified by spectral anal-

yses. Plants under severe drought stress had lower stomatal

conductance, CO2 assimilation, fluorescence emission, and

photosynthetic rates compared to their counterparts under

mild drought stress and irrigation. Focusing on the mid-grain

filling stage (Zadok’s growth stage Z77, Zadoks et al. 1974),

the plants showed significant differences in leaf reflectance,

fluorescence, and the xanthophyll-sensitive Photochemical

Reflectance Index (PRI; Fig. 1a, Table S1; Gamon et al.

1992). Crop water and nitrogen status were also significantly

altered by the treatments, as detected by the spectral plant

functional traits Crop Water Stress Index (CWSI, Gonzalez-

Dugo et al. 2015) and Transformed Chlorophyll Absorption in

Reflectance Index (TCARI1510; Fig. 1b, Table S1). These re-

sults confirmed that the treatments were successful in impos-

ing a stepwise change in stress conditions.

We determined the gene expression patterns and drought

responses of this field-grown wheat by performing RNA se-

quencing (RNA-Seq) of the uppermost (flag) leaf from three

replicates for the three treatments at mid-grain filling (Z77). We

performed differential expression analysis of the RNA-Seq data

using two complementary bioinformatics pipelines

(STAR/DESeq and Kallisto/Sleuth) and defined statistical

thresholds that account for the higher inter-replicate variability

obtained under field conditions compared to controlled environ-

ments (Fig. S2). Using a consensus and stringent threshold

across the two pipelines (|lg2FC, β| > 1.0 and p-adjusted Q val-

ue < 0.05), we identified 979 drought-responsive differentially

expressed (DE) genes, including 470 that were upregulated and

509 that were downregulated between either stress condition

and the irrigated control. Only 10.3% of genes (101 genes)

exhibited differential expression at both stress levels (severe

and mild stress, Fig. S2a). We compared these field drought

stress-responsive DE genes with the results of de novo analysis

of publicly available Bdrought^ RNA-Seq datasets from PEG

shock-stressed seedlings (Liu et al. 2015). We identified 459

DE genes that were unique to field drought stress (46.9%),

whereas 520 genes (53.1%) were shared with PEG shock stress

(Fig. 2b). Of the 520 genes shared among experiments, 10.6%

(55 genes) exhibited opposite differential expression patterns
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when comparing experiments. Some of these differences likely

stem from the different wheat cultivars and developmental

stages examined. However, these results suggest that plants

grown under agronomic field conditions respond to drought

stress in ways that cannot be replicated in controlled conditions.

This would argue that field experiments will be required to

elucidate gene networks and pathways of relevance to breeding

for drought tolerance (Fig. 2).

Using the physical positions of genes across chromo-

somes, we found an enrichment of field drought-responsive

DE genes in the distal regions of chromosomes compared to

centromeric intervals (Tables S2–S3, Fig. S3). Only 3.4% of

DE genes were found in centromeric regions compared to

the expected 10% (Table S2) (IWGSC 2018). This distribu-

tion pattern is consistent with the enrichment of stress-

related genes at the distal ends of chromosomes compared

to proximal regions in the wheat genome (Ramírez-

González et al. 2018), providing evidence that this altered

distribution pattern is functionally relevant during field

drought stress responses.

Several genes encoding enzymes in the carotenoid biosynthe-

sis pathway were overexpressed under drought stress (Fig. S4).

Specifically, genes involved in the transformation of beta-

carotene to zeaxanthin (Z) and the transformation of violaxanthin

(V) to xanthoxin were upregulated under drought stress, as were

genes involved in ABA biosynthesis (Fig. S4a). We measured

several plant spectral traits to detect the changes in absorption of

V, antheraxanthin (A), and Z, indicating xanthophyll epoxidation

[epoxidation state (EPS) = (V + 0.5 A) (V +A + Z)]. The chang-

es in expression of drought-responsive genes likely led to an

increase in zeaxanthin biosynthesis and the degradation of

Fig. 2 Summary of common and specific DE gene responses. aDEgenes

are grouped by field stress level and classified into up- and downregulat-

ed. One hundred and one genes (53 upregulated + 37 downregulated) are

differentially expressed at both stress levels imposed (mild stress MS,

severe stress SS), and b comparison between field drought in flag leaf

(this study) and PEG shock in seedling leaves (Liu et al. 2015). Genes DE

in field are grouped for the two stress levels; in total 459 (16 + 115 + 328),

DE genes were unique to field drought stress. The number of genes

uniquely responsive to drought stress in the field ranged from 131

(16 + 115 for mild stress) to 443 (115 + 328 for severe stress) common

DE genes among studies (520 in total, 265 + 55 + 200) are classified into

up-, down-, and opposite-regulated gene groups (regulated in different

directions in each experiment)

Fig. 1 Integrated phenotyping workflow at the farm plot and flag leaf

tissue levels and gene expression analysis for dehydrin and aquaporin

gene families. a Remote sensing data thermal imagery of farm sites (a)

reflectance, leaf fluorescence (F), and Photochemical Reflectance Index

(PRI) measured at the flag leaf for severe stress (SS), mild stress (MS),

and irrigated (I) samples. b Crop Water Stress Index (CWSI) and

Transformed Chlorophyll Absorption in Reflectance Index (TCARI1510)

remote sensing indexes measured at the canopy level. c Expression values

(transcripts per million, TPM) of dehydrin (DHN) and aquaporin (AQP)

genes in tissues at the three water levels. The values of individual genes

are represented by boxplots and connected along the three water levels.

Differentially expressed genes are connected by red lines. Boxplots

include the median and 25–75 interquartile range. Means in (E) are

represented by red dots. Color codes used in the figure correspond to

the irrigated (I, purple), mild stress (MS, turquoise), and severe stress

(SS) watering status analyzed
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violaxanthin. These traits were detected by spectral indicators

due to their link to carotenoid absorption, which was reflected

by a decrease in leaf and canopy reflectance between 515 and

570 nm (CAR, Fig. S4b) in response to drought stress. Field

drought repressed the expression of several glutamine synthetase

genes, especially the GS1c-D homoeolog (Table S6), with de-

creased expression of this gene coinciding with decreasing

TCARI1510 values and N contents. Therefore, for carotenoid

and nitrogen pathways, changes at the transcriptional level were

reflected in the physiological data obtained from spectral instru-

ments in the field.

For other photosynthesis-related functional traits, drought

treatments resulted in a decrease in the solar-induced fluores-

cence emission (SIF, Guanter et al. 2014; Fig. S5). However,

changes at the transcriptional level were observed only for a

single component of photosystem II, PsbQ, which was

overexpressed in response to drought (Table S4). These results

suggest that drought-induced changes in pathways related to

photosynthesis are likely under more complex post-

transcriptional control than those described above (Fankhauser

and Aubry 2017). Consistent with this, the miRNA repertoires

differed among treatments (Fig. S6, Table S5–S6). Severe

drought-stressed plants had significant over-representation of

miRNA-target genes related to gene ontology terms such as

hydroquinone: oxygen oxidoreductase activity (GO:0052716)

and response to water deprivation (GO:0009414) (padj

< 0.001; Table S7), which is consistent with the spectral analysis

and RNA-Seq results.

We extended our initial analysis of DE genes and examined

the co-expression of 3678 drought-responsive genes (adjusted

p value < 0.05 in at least one of the two pipelines) by cluster-

ing them using self-organizing maps (SOM, Fig. S7a)

(Törönen et al. 1999). Co-expression modules 1 and 3 were

notable in that they showed a pattern of up- and downregula-

tion, respectively, with increasing stress (Fig. 3). These mod-

ules also had the highest number of significantly enriched GO

terms (Fig. S8), in categories such as regulation of gene ex-

pression, signaling, and response to water stress (module 3;

Table S8). For the gene homoeolog triads, we found that while

most (57.7%) were assigned to the same co-expression mod-

ule, there were clear homoeolog-specific drought responses

(Fig. S7b). This is consistent with the overall (whole genome)

homoeolog expression distribution across the three watering

status conditions analyzed (Fig. S9). Extending the co-

expression analysis to a wider set of 30,180 genes (p value

< 0.1) and publicly available drought experiment RNA-Seq

data (www.wheat-expression.com, Table S9), we performed

a weighted gene correlation network analysis (WGCNA)

(Langfelder and Horvath 2008) and detected specific modules

enriched for response to water, regulation, and signaling GO

terms (Fig. 3).

We uncovered a genomic architecture for drought responses

that included the existence of genomic regions hosting compact

clusters of genes that were differentially expressed under

drought stress conditions, which we denominated clusters of

drought-responsive genes (CoDReGs). In analogy to

Anhydrobiosis-related gene islands (ARIds) and cluster of

desiccation-associated genes (CoDAGs) (Costa et al. 2017),

for a given gene cluster to be considered a CoDReG, a set of

at least three genes must (i) be located within a 1-Mb region, (ii)

belong to an ABD homoeolog triad, and (iii) include at least

one gene that was differentially expressed in field drought stress

conditions. The 51 CoDReGs (Fig. 4a) included 915 genes

from four of the five SOM modules (Table S10) and were

preferentially located in distal parts of the wheat chromosomes,

consistent with our previous results for DE genes. Not all genes

within a CoDReG belonged to the same SOM module, as they

sometimes showed distinct expression patterns in response to

field drought stress. Genes encoding proteins involved in a

range of biological processes formed CoDReGs (Table S10),

e.g., dehydrin (DHN) genes and genes involved in carbohydrate

and lipid metabolism. Over half of wheat CoDReGs (55%)

were in regions syntenic to rice drought quantitative trait loci

(QTL) (Fig. S10, Tables S11-S12), which could be due to con-

served drought response mechanisms between wheat and rice.

It will be interesting to explore whether the wheat-specific

CoDReGs might underlie distinct drought tolerance mecha-

nisms in wheat that stem from its more temperate growing

environment.

To investigate the coordination in the relative expression of

the three wheat subgenomes in response to drought stress, we

analyzed homoeolog expression bias (Ramírez-González et al.

2018) in the 19,887 wheat genome triads and CoDReGs (Fig.

4b). Across all expressed triads, ~ 65% showed balanced ex-

pression between the A, B, and D subgenomes, independent

of the drought treatment (Fig. S9). However, CoDREGs had

higher homoeolog expression bias, with only ~ 30% of triads

showing balanced expression and 70% of triads having higher

or lower expression from a single homoeolog with respect to

the other two (Fig. 2b, Table S13). This expression bias in

CoDReGs became more severe as the drought stress level

increased (Fig. 2b) suggesting that homoeolog-specific ex-

pression of CoDReGs plays a role in the stress response. We

independently validated these findings on homoeolog special-

ization of gene expression in1 CoDREG regions (Fig. S11)

using the additional wheat drought experiments available at

www.wheat-expression.com (Borrill et al. 2016; Ramírez-

González et al. 2018).

The dehydrin gene family was of particular interest given its

known role in the drought response (Close 1996) and the differ-

ential expression of these genes in our RNA-Seq analyses. We

manually annotated dehydrin genes and analyzed their structures

based on dehydrin typical conserved sequences motifs (Malik

et al. 2017) (K, Y, and S) and named the 60 resulting genes

(Fig. 5a, Fig. S12, Table S14). We found an average of 1.97

K-motifs, 0.87 Y-motifs, and 0.73 S-motifs per dehydrin in the
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wheat genome. The dehydrin genes were clustered on chromo-

somes 5 and 6 (37 of 50 mapped), with 28 dehydrin genes

(46.7%) located on the long arm of group 6 chromosomes

(6L). Thirteen dehydrin genes were overexpressed in the flag

leaf in response to field drought (Fig. 5a), 11 of which were

located on 6L (Fig. 5a), with the remaining two on 5BL (Fig.

5a). This result is in contrast with other drought-related gene

families, such as aquaporins (Fig. 1c), which were not signifi-

cantly enriched in distal ends of chromosomes and had few DE

members under drought stress (8/162; Table S3). The main 6L

dehydrin cluster (Fig. 5a) corresponded to CoDReG_6_581_01,

which is in the same physical position as previously defined

wheat drought Meta-QTLs on chromosomes 6B and 6D

(MQTL53 and MQTL56 (Acuña-Galindo et al. 2015)). The
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T_CAD_C
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Fig. 3 Alluvial plots showing common gene ontology enrichment terms

of all SOM clusters (left) and stress response-significant WGCNA

modules (right). Black lines in SOM analysis (left) correspond to scaled

mean TPM values, gray lines correspond to maximum and minimum

values. The first three columns of the WGCNA modules (left to right)

correspond to irrigated (I), mild stress (MS), and severe stress (SS)

phenotypes. Black lines correspond to mean VST (TPM) values. Coded

phenotypes (Table S9): IS seedling PEG shock control, PEG1 seedling

1-h PEG stress, PEG 6 seedling 6-h PEG stress, AD_C anther stage

irrigated shelter phenotype, AD_S anther stage drought-stressed shelter

phenotype, T_C tetrad stage irrigated shelter phenotype, T_S tetrad stage

drought-stressed shelter phenotype, IP non-stressed pot phenotypes

Fig. 4 Clusters of drought-responsive genes (CoDReGs). a Physical

location on the RefSeqv1 chromosome pseudomolecules. b Relative

homoeolog gene expression (corresponding to the seven classes

categories described in Fig. S9) across the genome and CoDReGs, for

the three stress levels analyzed: irrigated (I), mild stress (MS), and severe

stress (SS)
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identification of this region across independent studies highlights

its potential as a breeding target.

The close physical proximity of the chromosome 5 and 6

DHN genes, together with the phylogenetic analysis, suggests

that these clusters arose through multiple rounds of duplica-

tions. This is reminiscent of other major stress tolerance loci,

such as the CBF cluster associated with cold tolerance in

wheat. In the CBF cluster, copy number variation determines

the level of cold resistance (Knox et al. 2010), similar to other

major adaptation loci in wheat such as photoperiod response

(PPD-1) and vernalization (VRN-1, Díaz et al. 2012;

Würschum et al. 2015; Zhu et al. 2014). It will be important

to determine haplotypes across these two DHN clusters and

define the effect of copy number variation on drought

tolerance.

We examined the expression of all dehydrin genes based on

850 available RNA-Seq datasets (Ramírez-González et al.

2018) and clustered these data alongside our field drought

results (Fig. 5b, Fig. S13). We identified both common and

different DE dehydrin genes in response to field drought vs.

PEG-induced drought stress (Fig. 2). Interestingly, some

drought-responsive dehydrin genes, such as DHN38, were

grain-specific in the absence of stress, suggesting that a com-

mon mechanism functions between abiotic stress and grain

dehydration. According to our synteny analysis, only two

homoeolog triads (DHN11 and DHN35) were syntenic with

rice and Brachypodium (Table S15). This together with the

physical clustering indicates a distinct pattern of translocations

and expansion of this family in wheat (IWGSC 2018). The

DHN11 triad was expressed across most tissues, with the B

homoeolog differentially expressed under field drought con-

ditions and syntenic with a rice drought QTL for osmotic

adjustment (Zhang et al. 2001) (Fig. S14). By contrast, other

highly drought-responsive genes identified in our study, like

DHN3-A1 and DHN3-D6 (Fig. 5b), were not syntenic with

rice genes. These results support the presence of common

and species-specific responses, as indicated by CoDReG anal-

ysis. Interestingly, the homoeologous DHN4-B1 and DHN4-

D1 genes expressed alternative splicing variants with different

responses to drought stress (Fig. 5b), highlighting the potential

for the specialization of homoeologs.

We identified 228 TFs that were predicted to regulate

dehydrin genes (Table S16) based on a Genie3 network

(Ramírez-González et al. 2018). The AP2/EREBP and NAC

TF families were most frequently predicted to regulate

dehydrin genes (16.7% and 13.6% of all predicted TFs, re-

spectively; Table S16), and these families were enriched for

dehydrin targets compared to all downstream target genes (χ2,

p value < 0.001, Table S16). Many rice and Arabidopsis

orthologs of these AP2/EREBP and NAC TFs have been

shown to regulate drought responses in these species

(Table S17; Joshi et al. 2016). Furthermore, one ortholog,

OsDREB1A, directly binds to the promoter of OsDHN (Lee

et al. 2013), a rice dehydrin gene, suggesting a conserved

mechanism regulating dehydrin gene expression between rice

and wheat. The AP2/EREBP TFs were predicted to target

49.7% of dehydrins across all tissues (Fig. S15), increasing

to 77.8% in the ripening grain, suggesting a potential regula-

tory mechanism for the tissue-specific expression of dehydrin

genes in ripening grain mediated by a subset of AP2/EREBP

TFs (Fig. S16).

As part of defining the genome architecture of field drought

response, we also identified a ~ 50-Mb genomic region on the

long arm of group 5 chromosomes containing several

drought-responsive DE genes (Fig. 6) and genes previously

associated with drought tolerance (Quarrie et al. 1994). This

region included genes known to affect drought tolerance

(Close 1996; Iuchi et al. 2001) including those from the carot-

enoid pathway (PSY3, NCED) and the DHN chromosome 5

cluster, as well as a gene encoding UDP glucose-6-

dehydrogenase (Table S5), which partitions carbon resources

during spike development to ensure fertility and grain yield

(Ferreira and Sonnewald 2012). This interval also contained

the major vernalization gene VRN1 (Yan et al. 2003), which

was recently shown also to affect root system architecture in

wheat (Voss-Fels et al. 2017). Given the strong selection pres-

sure on VRN1 within breeding programs, it will be important

to determine the extent of linkage drag across this 50 Mb

region to help define the most locally relevant haplotypes,

combining appropriate vernalization requirements with

drought tolerance, for use in marker-assisted breeding.

In summary, we applied an interdisciplinary approach that

combined water status field phenotyping information with

gene expression data. We identified commonalities between

spectral trait alterations quantified from specific narrow bands

and transcriptional changes in leaves. This approach defined

genomic regions that influence field drought responses in

polyploid wheat. Extending this approach to other plant func-

tional traits for precise field phenotyping will facilitate the

discovery of novel and valuable expressed alleles for breed-

ing. Several of the identified regions overlapped with rice

QTLs, while other regions overlapped exclusively with wheat

�Fig. 5 Analysis of the dehydrin (DHN) gene family. a Chromosomal

positions of the 60 annotated DHN genes. The dehydrins preceded by

red arrows were differentially expressed (lgFCvalue > 1, p-adjusted value

< 0.05) in the severe stressed condition (one arrow) or in both the mild

stress and the severe stress conditions (two arrows). The 6L cluster

containing 25 DHN genes (CoDReG_6_581_01) is expanded. Blue

lines connect homoeologous genes, and dotted blue lines connect genes

with an unassigned phylogenomic relationship. 6B dehydrin genes had

the highest expression levels. b Clustering of DHN genes based on their

expression patterns across all available experiments at www.wheat-

expression.com (clustering on the left) and homoeolog analysis

(clustering on the right). Columns indicate low-level tissue grouping;

the three columns on the right represent the samples examined in this

study. Colored lines (right) connect homoeologs
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QTLs, providing a strategy to prioritize breeding targets in

wheat. This work, alongside the new genomic resources in

wheat, provides a focus for breeding of drought-tolerant wheat

cultivars by exploiting the genome architecture of gene clus-

ters and the opportunity to adjust the interactions within gene

networks through genomics-informed breeding.

Experimental methods

Field sampling, physiological data collection, and

hyperspectral and thermal image data collection and process-

ing The field experiment was carried out using the hexaploid

wheat cultivar Triticum aestivum cv. BChinese Spring,^ follow-

ing standard wheat agronomical practices in the South of Spain

(Seville province) at two different locations, Ecija (37° 32′ 17″

N, 5° 06′ 57″W) andCarmona (37° 30′ 29″N, 5° 34′ 42″W).At

Carmona, two different watering regimes were imposed: mild

stress (MS) and irrigated (I), while rainfed conditions (SS) were

maintained at Ecija. Irrigation and agricultural practices followed

the local standard practices on rainfed (Ecija) and irrigated

(Carmona) farms. The first irrigation at Carmona took place at

day of year (DOY) 72 for both MS and I blocks (28 mm). A

second irrigation at Carmona was made the day before sampling

(DOY 119), but only for the irrigated (I) block (28 mm). By the

sampling date, the accumulated precipitation was 317.4 mm for

Ecija and 571.2 mm for Carmona. The meteorological condi-

tions were very similar at the two locations, which enabled us to

compare results between them (Fig. S1).

Physiological analyses and RNA-Seq sampling of the flag

leaf (three biological replicates per plot) were carried out at grain

filling (15 dpa, Zadoks stage Z77; Zadoks et al. 1974), simulta-

neously with high-resolution RGB, hyperspectral and thermal

remote sensing imagery using an airborne platform (Fig. 1).

Physiological water status assessment (Fig. 1a, b) and nitrogen

status sampling of the flag leaf were carried out in the field to

characterize the three watering regimes. Leaf water potential

(LWP; MPa) was measured using a pressure chamber (Model

600, PMS Instrument Company, Albany, USA) on three sunlit

flag leaves per plot. The assimilation rate and stomatal

Relative position of expressed genes in range of chromosomes

lg2 Fold Change

< -1.0  -1.0    0.0  +1.0 > +1.0

Fig. 6 Transcriptional changes affecting several drought-responsive

genes within a 50-Mb genomic region on the long arm of group 5

chromosomes. Differential expression under field drought of genes on

group 5 chromosomes (below) and enlarged drawing of the locations of

genes in the carotenoid pathway (PSY3, NCED), as well as dehydrin

(DHN), VRN1, and UDP glucose-6-dehydrogenase (UGDH). Each

chromosome is represented by two bands of vertical lines associated

with mild stress (upper band) and severe stress (lower band). Vertical

lines correspond to individual genes with the color indicating

expression with respect to the irrigated control. Green and blue lines

connect homoeologs on the short and long arms of the chromosome,

respectively
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conductance were measured with a portable photosynthesis mea-

surement system (LCpro-SD, ADC Bioscientific Ltd., Herts,

UK). Leaf reflectance was measured with a Polypen RP400

(Photon Systems Instruments, Drasov, Czech Republic) on ten

sunlit leaves per plot. The leaf optical reflectance data were used

to calculate the Photochemical Reflectance Index (PRI) and the

Carotenoid Index (CAR) (Gamon et al. 1992; Zarco-Tejada et al.

2013a). Steady-state leaf chlorophyll fluorescence yield (Leaf F)

was also monitored in ten sunlit leaves using a FluorPen FP1000

(Photon Systems Instruments, Drasov, Czech Republic).

The field plots represented three stress conditions [irrigated,

and two drought stress levels (mild and severe stress)], as con-

firmed and quantified by physiological measurements and re-

mote sensing analyses from both farm sites (Fig. 1a, b). Remote

sensing indicators of water and nitrogen status inMediterranean

conditions were computed following Gonzalez-Dugo et al.

2015 (Crop Water Stress Index (CWSI)), Zarco-Tejada et al.

2013b (SIF via the FLD2 method), and Herrmann et al. 2010

(TCARI1510).

RNA extraction, sequencing, and DGE analysis Three flag leaf

biological replicates were taken from the central part of the

central row in each cv. BChinese Spring^ plot under severe

stress (SS), mild stress (MS), and irrigation (I). Flag leaf tissue

(Zadoks stage Z77) was frozen in dry ice in the field and kept

at − 80 °C until RNA extraction using the RNA-easy Plant

Mini Kit from Qiagen, following the manufacturer’s instruc-

tions. RNA integrity was checked in an Agilent 2100

Bioanalyzer and all samples had a RNA Integrity Number

(RIN) greater than 7, except the third replicate of the irrigated

plot (sample 9). Several RNA extractions were carried out for

this sample, but the RIN remained at an unacceptably low

level (4.5). Nevertheless, the sample was sequenced, as there

was no possible replacement.

PolyA directional libraries were constructed using a

NEBNext® Ultra™ Directional RNA Library Prep Kit for

Illumina, following the manufacturer’s recommendations,

with the following modifications: fragmentation size was

reduced to 12 s for samples IAS_CS1 to IAS_CS8 and to

8 s for sample IAS_CS9, to obtain a sufficient fragment size

for the paired-end sequencing. The libraries were construct-

ed and sequenced by Fundación Parque Científico de

Madrid, in an Illumina NextSeq 500 run in 2 × 75 paired-

end format (v2 reagents), according to the manufacturer’s

instructions.

RNA-Seq raw paired-end reads in stranded mode were

submitted to the NCBI Sequence Read Archive platform with

the study accession code SRP119300 and BioProject

PRJNA412622. This platform contains nine libraries corre-

sponding to the three levels of drought stress analyzed (i)

SRS2563966-IAS_CS1to3 (severe stress), (ii) SRS2563967-

IAS_CS4to6 (mild stress), and (iii) SRS2563968-

IAS_CS7to9 (irrigated).

Quality assessment was carried out using FastQC software

(version 0.11.3) to evaluate read quality. A particularly high

rRNA contamination was identified in library SRX3240768-

IAS_CS9 (~ 40% % ribosomal content), which agrees with

the GC deviation and increased duplication levels found in

library SRX3240768-IAS_CS9 quality assessment. From

then on, library SRX3240768-IAS_CS9 was discarded from

further analyses.

Differential gene expression analyses of the RNA-Seq data

were carried out using RefSeqv1 gene models (IWGSC

2018), through two bioinformatic pipelines. The first

consisted of Kallisto (version 0.43.0) and the R library sleuth

(version 0.28.1), whereas the second pipeline was based on

STAR and the R library DESeq2 (version 1.14.1). The gene

set surpassing the p-adjustedQ value threshold 0.05 for any of

the pipelines at any stress condition comprised 3687 genes

and was used for all subsequent analyses. The number of

genes DE in both pipelines applying the thresholds |lg2FC,

β| > 1.0 and p-adjusted Q value < 0.05 was 979. Principal

component analysis (PCA) was carried out using the library

DESeq2 in R, showing a high inter-replicate variability (Fig.

S2a) when compared with a controlled environment experi-

ment dataset [NCBI SRA database: SRP045409 (Liu et al.

2015)] that was re-analyzed by applying our data filtering

and thresholds (Fig. S2b).

The first PCA component accounted for 60.4% of the var-

iance and correctly separated the three field drought stress

levels (Fig. S2a). The integrated PCA of our samples and

PEG-stressed samples (Fig. S2b) showed high separation for

component PC1 due to the different nature of the two exper-

iments (field stress vs. PEG drought shock in controlled con-

ditions, plus variety and tissue age differences). The second

component PC2 (explaining 19.5% of the variance, Fig. S2b)

separated the controls and the two drought stress levels for

both experiments, indicating common responses to drought

stress.

To obtain a physical visual overview of the expressed and

DE HC genes, in relation to the total genes in the wheat chro-

mosomes, their values were calculated for each 10-Mb win-

dow (Fig. S3). The DE genes were those reported by Kallisto/

sleuth or STAR/DESeq2, i.e., with |lg2FC| > 1.0 and p-adjust-

ed < 0.05, or |β| > 1.0 and Q value < 0.05, respectively. The

expressed genes considered are those with a TPM value above

0.5 in any sample of the control, or mild or severe stress levels.

The total genes are the number of RefSeqv1 HC genes located

in each 10-Mb window.

We also carried out a de novo DGE analysis of the publicly

available wheat PEG shock RNA-Seq dataset [NCBI SRA da-

tabase: SRP04549, (Liu et al. 2015)] using RefSeqv1 gene

models with our bioinformatic pipelines and thresholds, reveal-

ing common and specific genes (Fig. 2).

The carotenoid biosynthesis pathway genes (Fig. S7a) were

obtained using BlastKOALA (http://www.kegg.jp/blastkoala/)
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with different sets of genes. Gene enrichment analyses

(Table S2, S3) were carried out using a one-sided Fisher’s exact

test.

miRNA analysisRNA sequencing data from irrigated, mild, and

severe drought stress samples were aligned on IWGSC

RefSeq1 chromosome sequences with Tophat software (version

2.1.1). Aligned reads for each different condition were then

assembled with StringTie (version 1.3.3b), after which the tran-

scripts obtained from these assemblies were subjected to

miRNA identification. The comparison of the transcripts pro-

duced by each of the three conditions against a set of previously

identified miRNA sequences that were retrieved frommiRBase

(version 21, June 2014) (Kozomara and Griffiths-Jones 2011)

was performed using a two-step homology-based in silico

method, as previously described (Akpinar et al. 2015;

Alptekin and Budak 2017). Potential miRNAs with at most

one base mismatch different to known mature miRNAs were

identified using SUmirFind in-house script, available at GitHub

(https://github.com/hikmetbudak/miRNA-annotation).

Transcripts that were the candidate precursors for these

miRNAs were then extracted, subjected to fold prediction by

the UNAFold v3.8 algorithm (Markham and Zuker 2005) and

checked for pre-miRNA characteristics using our second in-

house SUmirFold script, also available at GitHub (https://

github.com/hikmetbudak/miRNA-annotation).

Finally, precursor sequences that satisfied the previous

criteria were subjected to additional evaluation: (i) no mis-

matches were allowed at Dicer cut sites, (ii) no multi-

branched loops were allowed in the hairpin containing the ma-

ture miRNA sequence, (iii) mature miRNA sequence was re-

quired to be located at the head portion of the hairpin, (iv) no

more than 4 and six mismatches were allowed in miRNA and

miRNA*, respectively (Akpinar et al. 2015; Alptekin and

Budak 2017; Lucas and Budak 2012). These analyses revealed

313, 375, and 318 uniquemature miRNA sequences in samples

of irrigated, mild stressed, and severe stressed plants, which

spanned 37, 35, and 39 miRNA families, respectively (Fig.

S6). In both drought stress-treated samples, miR5049,

miR1130, miR1436, and miR1122 families contained the four

highest numbers of identified miRNAs, where the members of

these four families constituted 54% and 49% of all identified

miRNAs from the samples collected from mild and severe

drought stress, respectively. Almost half of the identified

miRNAs (49.2%) from the irrigated control sample were in-

cluded in five miRNA families: miR1127 along with the four

families containing the highest miRNA numbers in drought

stress conditions, which indicates a similarity between the most

abundant miRNA families in the control and stress-treated sam-

ples (Fig. S6). The comparison of miRNAs between the three

samples (Table S5) revealed the miR1118, miR1136, and

miR9668 families as being expressed in both stress levels, but

not in control conditions. By contrast, the miR1139, miR9666,

and miR9776 families were expressed only in control condi-

tions. In addition, whereas only the miR9654 family was spe-

cific to mild stress, five miRNA families (miR1125, miR397,

miR5067, miR9772, and miR9781) were specific to severe

stress. TwomiRNA families, miR437 andmiR5200, were iden-

tified from both irrigated control and severe stress levels, but

not from mild stress-treated samples, which might be an indi-

cator that some cellular mechanisms are being turned off when

the plant first encounters drought, then turned on again while

the level of stress increases. Moreover, despite being identified

in different copy numbers, 29 miRNA families were expressed

in all three conditions. The expression of miR1122, miR1130,

miR1137, and miR1436 increased greatly in both stress levels

when compared to the control, and miR1127, miR398,

miR5175, and miR5181 were highly downregulated in condi-

tions of stress.

To find the molecular mechanisms that these miRNAs reg-

ulate, target gene analysis was performed using the IWGSC

RefSeqv1.0 gene models (Table S6). The prediction of poten-

tial target transcripts of the mature miRNAs identified was

conducted using the psRNATarget online web-tool (http://

plantgrn.noble.org/psRNATarget/) (Dai and Zhao 2011).

These target transcripts were compared with a set of known

Viridiplantae protein sequences using BLASTx and function-

al annotations were performed with Blast2GO software. The

results revealed 669 miRNA-target pairs that contained 162

unique CDS sequences are targeted by 30 unique mature

miRNAs under control conditions. MiRNAs identified from

mild drought stress were potentially involved in 670 miRNA-

target interactions, and 153 unique coding sequences were

targeted by 25 unique miRNA sequences in these interactions.

Finally, the prediction of miRNA targets in severe drought

stress indicated the presence of 687 miRNA-target pairs con-

taining 206 unique coding sequences and 31 unique mature

miRNAs. The GO enrichment from the terms described in

Ramírez-González et al. (2018) for the miRNA targets was

calculated using GoSeq (Young et al. 2010) (Table S7).

Analysis of co-expressed genes We extracted the set of genes

surpassing the p-adjustedQ value threshold 0.05 for any of the

pipelines under any watering regime (3687 genes) and applied

self-organizing maps (SOM) to classify them into groups or

modules with similar expression (Törönen et al. 1999). For

each gene, we had eight TPM values, three for severe stress,

three for mild stress, and two for irrigated control; these values

were reduced to only three by calculating the average TPMs in

each stress level. To apply the SOM analysis, the dimensions

of the grid were specified using the variance values given by a

PCA; the resulting ratio, 1.64, suggested a size of 5 × 8.

Figure S7A shows the resulting SOM analysis using the R

package kohonen version 3.0.4, including the cluster dendro-

gram of the resulting 40 classification units. To select the final

number of modules, we decided to trace a line through the
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dendrogram so the number of units in each branch crossed by

the line was balanced (see Fig. S7a). Therefore, the whole set

of genes was divided into five clusters (Fig. 3 left).

We then performed GO term enrichment analysis of the

genesbelonging to eachmodule.The abundanceofGOterms

in the automatic annotation revealedmany enriched terms (p

value < 0.05 using the R libraryGoSeq v1.26.0), whichwere

represented through a Tree Map using the REVIGO web

application (Supek et al. 2011). To reduce the complexity

of these Tree Maps, a GO Slim term enrichment analysis

was carried out for each SOM module (Modules 1 to 5, see

Fig. 3 left) and for all the DE genes under severe stress (re-

ported by both Kallisto/sleuth and STAR/DESeq2, Fig. S8).

The originalGOannotation (IWGSC2018)was processed to

narrow it down toGOSlim termsonly; then, in a first step, the

GO Slim terms associated with stresses were added (as de-

scribed in Ramírez-González et al. 2018). Finally, as a sec-

ond step, in accord with the drought-oriented nature of this

study and to obtain more specific data, the GO term associ-

ated to response to water (GO: 0009415) was added. The

term enrichment was performed with Cytoscape version

3.5.1 (visualization) and its BiNGO plugin version 3.0.3

(analysis).

To study the behavior of the homoeolog genes in the context

of the five modules created, i.e., to find out whether all the three

homoeologs in ABD behaved similarly and fell in the same

module, we retrieved all of the pure triads (those with

homoeologs in the A, B, and D subgenomes in the form

1:1:1) containing at least one gene in the original set of 3687.

The result was a set of 1470 triplets with 4410 genes. From

them, the genes not belonging to the original set had to be fit

manually into the most suitable module. However, the behavior

of some of themwas ambiguous and they did not clearly fit into

any particular module; in these cases, a probabilistic neural

network (PNN; R library version 1.0.1) was used to assign a

module to each of them; in general, the PNN provided less

significant results than the manual classification because it does

not use specific knowledge from the problem being resolved.

Once every gene of every triplet had been assigned a SOM

module, the similarity of behavior could be obtained.

Figure S7b shows that 57.7% of the triplets had three

homoeologs belonging to the same module; the three

homoeologs belonged to three different modules in only 4.7%

of cases; for the other triplets, only one of the homoeologs

behaved differently.

The weighted gene correlation network analysis (WGCNA)

was carried out using CEMiTool version 1.4.0 (Russo et al.

2018) and WGCNA version 1.63 (Langfelder and Horvath

2008) applying variance stabilizing transformation (VST) to

61 samples (listed in Table S9) whose TPM values were ob-

tained through Kallisto. The WGCNA obtained 30,180 genes

with p < 0.1 distributed into 19 modules. These modules and

their genes (Supplementary Table file SM1) were used as input

for BiNGO obtain GO terms with enrichment at p < 0.05 using

the biological process ontology. The annotation file used with

BiNGO contained the HC and LC genes and their associated

GO Slim terms enhancedwith stress andwater stress GO terms.

The most relevant overrepresented GO Slim terms (p < 0.05

using Benjamini and Horchberg FDR) from both the SOM

and WGCNA analyses are shown in Fig. 4.

Clusters of drought-responsive genes Using the RefSeqv1

gene models, all gene clusters made up of, at least,

three HC genes with the same functional annotation

within a 1-Mb window in each chromosome were iden-

tified and filtered according to the following criteria,

adapted from the ARID [genomic regions hosting com-

pact clusters of genes which are anhydrobiosis-related

and accumulate transcripts upon desiccation] and cluster

of desiccation-associated genes [CoDAG, (Costa et al.

2017)] gene cluster definitions:

(i) the set of genes contains homoeologs in the three

subgenomes

(ii) their localization in the genome is not necessarily related

to that of the potential ancestor of the expanded set of

genes; and

(iii) at least one gene from the cluster is differentially

expressed in field drought stress conditions (p < 0.05),

and more than 50% of the genes in the cluster are DE in

any of the available drought experiments (either field

drought or under PEG treatment (Liu et al. 2015)) at (p

< 0.05).

A total of 132 gene clusters contained field drought-

responsive genes (at least one), involving a total of 2493 genes.

From them, 51 clusters (including 915 genes) were considered

CoDReGs, as they fulfilled the above requirements. From the

3058 (2661 HC) differentially expressed genes in this work (ei-

ther in mild or severe stress using any pipeline), 141 of them are

located in CoDReGs. Of these, 70.7% are located in R1/R3

regions, 29.3% in the R2a/R2b regions and none in the centro-

mere. This is significant (χ2, p < 0.05 in a simple Fischer test), as

it represents a ratio of 2.4× in R1/R3 vs R2a/R2b, whereas the

proportion of HC genes in the genome is 1.21×. The CoDReG

distribution in the five SOM clusters is shown in Table S10.

Three CoDReGs present a complex structure, with two blocks

of genes in one chromosome: CoDReG 4_456_01 contains two

blocks in 4A; CoDReGs 3_712_01 and 6_005_01 contain two

blocks in the D chromosome.

The whole-genome comparison between rice (42,132 genes,

IRGSP 2005), barley (39,734 genes, Mascher et al. 2017),

Brachypodium (31,029 genes, The Internat ional

Brachypodium Initiative 2010), sorghum (36,388 genes,

Paterson et al. 2009), and hexaploid wheat (IWGSC 2018)

was performed individually for each of the wheat A, B, and D
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subgenomes (A 36,302 HC genes; B 36,738 HC genes; D

35,021 HC genes) using MCScanX with a threshold value =

10−5 and a size of synteny block = 10 genes (Wang et al. 2012).

Retaining only the 1:1 relationships in each comparison, 9663,

13,551, 10,567, and 9399 orthologous relationships were iden-

tified between the A genome and the rice, barley,

Brachypodium, and sorghum genomes, respectively.

Similarly, we obtained 9314 (rice); 13,542 (barley); 10,420

(Brachypodium); and 9080 (sorghum) orthologs for the B ge-

nome and 9567 ( r ice) ; 14,049 (bar ley) ; 10 ,821

(Brachypodium); and 9407 (sorghum) orthologs for the D ge-

nome. The results for the dehydrin gene family are shown in

Table S15. To investigate the roles of the 51 CoDReGs identi-

fied previously, we used the Q-TAROdatabase (http://qtaro.abr.

affrc.go.jp/), which revealed the chromosomal locations of

many QTLs in the rice genome and their contributions to

phenotypic variation (Yamamoto et al. 2012; Yonemaru et al.

2010). From the database, we extracted 111 QTLs containing

the term Bdrought tolerance^ distributed over the 12 rice chro-

mosomes. Comparing the QTL locations and the 51 CoDReGs

using the synteny relationships, we identified 28 of them as

conserved drought tolerance QTLs. These results, including

clusters, rice QTL locations, and synteny relationships, were

represented in circle form using Circos software (Krzywinski

et al. 2009) (Fig. S10). Gene enrichment on CoDReGs was

tested using one-sided Fisher’s exact tests (Fisher 1922: see

Table S3).

Dehydrin gene family analysis The 67 genes labeled as

encoding dehydrins by the IWGSC automatic annotation pro-

cess were retrieved from RefSeqv1 gene models (IWGSC

2018). We additionally performed a manual check and

curation. As a double check, a BLAST search for the K-

segment in the complete gene model retrieved 57 (50 HC +

7 LC) of the above genes. UniProt contained 58 (51 HC + 7

LC) wheat proteins from the above dehydrins and did not add

any additional DHN genes.

We started the manual curation with an analysis of the three

typical segments of wheat dehydrins (Malik et al. 2017). In pro-

portion to their length, we allowed 4, 3, or no mismatches for the

K-, Y-, and S-segments, respectively. This approach provided a

more detailed view compared to a BLAST-based analysis alone,

in order to represent the 67 putative DHN gene structures.

The gene triad in chromosome 1 and a doublet of the LC

genes in chromosome 5 were discarded from further chromo-

somal analysis because they presented low BLAST quality

scores, showed an absence of the three DHN segments (K, Y,

and S), and did not have orthologs either in Oryza sativa or

Brachypodium distachyon. In addition, we did not include the

two LC genes located at the U chromosome because we could

not infer their correct chromosomal location. However, the two

remaining HC genes initially located at U chromosome could

be positioned on chromosome 6B and chromosome 6D using

the TGACv1 gene models (Clavijo et al. 2017). Figure S12

shows the gene structure of the remaining set of 60 genes used

for further analysis. They had an average of 1.97, 0.87, and 0.72

K-, Y-, and S-segments per dehydrin, respectively, with a me-

dian of 2, 1, and 1 in chromosomes 5 and 6, and 3, 2, and 1 in

chromosomes 3 and 4; dehydrins in chromosome 7 were miss-

ing the Y- and S-segments.

An update of dehydrin names was carried out as follows:

(i) The RefSeqv1 annotation provides the best BLAST hit

against several species (not including wheat). Starting

from such a hit, we obtained the associated entries in

EMBL/EBI and the corresponding names of dehydrins,

when available.

(ii) We paired the dehydrins being studied (using BLAST)

with those dehydrins known in UniProt, thus obtaining

their names, when available.

(iii) We compared both results, assigning the following

matching names: DHN33, DHN6, DHN2, DHN1,

DHN11, DHN4, DHN9.6, and DHN14.

(iv) DHN3 and DHN5 are similar to many genes on chro-

mosome 6. To avoid creating new numbers for them, we

assigned a sub-numbering: from DHN3.1 to DHN3.8

and from DHN5.1 to DHN5.4.

(v) We numbered the rest of dehydrins with new numbers

starting from 35 (the highest number already found

among dehydrins was 33, so we decided to start with a

round number). The names assigned ranged from

DHN35 to DHN38. The genes whose homoeology was

not clear were numbered with B.1^ or B.2^ as a suffix

(e.g., DHN38.1 and DHN38.2).

(vi) We adapted these names to comply with (McIntosh et al.

2013).

Each specific dehydrin gene name contains the name of its

dehydrin group, followed by the genome it belongs to: e.g.,

DHN4-A1, DHN4-B1, and DHN4-D1. If several genes in the

same group belong to the same genome, a new incremental

number is used, e.g., DHN3-B1 and DHN3-B2.

A cluster of dehydrins was found as a result of the

CoDReGs analysis (CoDReG 6_581_01), and it was studied

in depth. The location of wheat MQTLs on 6L chromosome

arms was compared to the 6L DHN cluster position of

CoDReG 6_581_01. Wheat MQTLs (Acuña-Galindo et al.

2015) were located by BLAST searches using their flanking

and representative marker sequences against RefSeqv1

(IWGSC 2018). Marker sequences were located online using

graingenes.org and t3sandbox.org. BLAST results were

filtered by (i) > 97% identity match; (ii) for SSR markers, for-

ward and reverse primers were required to have a match on the

right chromosome, be separated by less than 600 bp and have

different orientation (strand B1^ or B− 1^) in the BLAST

results.
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To identify putative regulators of dehydrin expression, we

used a genie3 (Huynh-Thu et al. 2010) network, which predicts

the downstream targets of TFs. The network was generated

using 850 RNA-Seq samples from diverse tissues, ages, culti-

vars, and stress conditions (see methods in Ramírez-González

et al. (2018)). In order to exclude weak interactions, we consid-

ered the top one million edges for further analysis. TFs were

annotated using the domain architecture inferred via a

phylogenomic approach (see methods in Ramírez-González

et al. (2018)). We were able to identify putative regulatory

TFs for 52 dehydrins, which included 228 TFs. We identified

significantly enriched TF families that target dehydrins com-

pared to all other downstream genes using χ2 tests.
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