
Hough Forest-Based Facial Expression Recognition
from Video Sequences

Gabriele Fanelli, Angela Yao, Pierre-Luc Noel, Juergen Gall, and Luc Van Gool

BIWI, ETH Zurich
VISICS, K.U. Leuven

{gfanelli,yaoa,gall,vangool}@vision.ee.ethz.ch,
noelp@student.ethz.ch

http://www.vision.ee.ethz.ch,
http://www.esat.kuleuven.be/psi/visics

Abstract. Automatic recognition of facial expression is a necessary step to-
ward the design of more natural human-computer interaction systems. This work
presents a user-independent approach for the recognition of facial expressions
from image sequences. The faces are normalized in scale and rotation based on
the eye centers’ locations into tracks from which we extract features representing
shape and motion. Classification and localization of the center of the expression
in the video sequences are performed using a Hough transform voting method
based on randomized forests. We tested our approach on two publicly available
databases and achieved encouraging results comparable to the state of the art.
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1 Introduction

Computers, already part of our lives, will never seamlessly blend in until they are able
to communicate with people the same way as we do. This means that machines should
be able to sense and reproduce affective behavior, i.e., understand the user’s feelings
and react accordingly.

Facial expressions represent one of the most important ways for humans to transmit
and recognize feelings and intentions. Since the seminal work of Darwin [1], the field
has fascinated psychologists, neuroscientists, and lately also computer scientists. Paul
Ekman’s studies in the 1970’s [2] suggested that all emotions belong to a rather small
set of categories. These “basic” emotions (anger, disgust, fear, happiness, sadness, and
surprise) are expressed by the same facial movements across different cultures, and
therefore represent an appealing choice when designing automatic methods for facial
expression classification.

The ability for a computer system to sense the user’s emotions opens a wide range of
applications in different research areas, including security, law enforcement, medicine,
education, and telecommunications [3]. However, it is important not to confuse human
emotion recognition from facial expression recognition: the latter is merely a classifi-
cation of facial deformations into a set of abstract classes, solely based on visual infor-
mation. Indeed, human emotions can only be inferred from context, self-report, phys-
iological indicators, and expressive behavior which may or may not include facial ex-
pressions [4].
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There are two main methodological approaches to the automatic analysis of facial
expressions [5]: Judgment-based approaches attempt to directly map visual inputs such
as images or video sequences into one of a set of categories, while sign-based ap-
proaches describe facial expressions by means of coded facial actions, e.g., methods
based on Ekman’s Facial Action Coding System [6], which represent face deformations
by activations of a set of Action Units corresponding to facial muscles movements.

This paper presents a judgment-based method for the classification of facial expres-
sions into one of the basic emotion labels. Having seen the success of Hough transform-
based methods for object detection [7–11] and action recognition [12], we investigate a
Hough transform voting approach applied to the task of facial expression recognition.
After having localized and normalized the faces with respect to the eyes’ centers, the
image sequences are arranged into cuboids, or, extending the notation of [12], expres-
sion tracks. These are a representation of the face which is invariant to location, scale,
and (in-plane) rotation. On the tracks, classification is performed by casting votes for
the expression label and temporal center of the expression.

To our knowledge, this is the first time that a Hough-voting approach is applied
to the task of facial expression recognition. As in [12], the voting is performed by a
forest of random trees, or Hough forest [9], and a mapping is learnt between densely
sampled spatio-temporal features and the center of the expression in the video sequence.
The trees are trained in a multi-class fashion and can therefore discriminate between
different classes simultaneously. The leaf nodes can vote for each class and represent a
discriminative codebook sharing features across classes.

Compared to the task of action recognition from video [12], facial expressions (even
when posed) present more subtle differences and are therefore more difficult to classify.
Additions to [12] include the normalization of the tracks with respect to rotation and
the use of more discriminative shape features. In the experiment section, we thoroughly
evaluate our system on standard databases of facial expressions. Our results are compa-
rable to state-of-the-art methods, which supports our idea that Hough-voting approaches
are promising tools for advancing in the field of automatic facial expression recognition.

2 Related Work

Suwa et al. [13] were the first to attempt at automatically recognizing facial expressions
in 1978. Since then, the new field of research has seen a steady growth, gaining mo-
mentum in the 1990’s thanks to the advances in algorithms for face detection and the
availability of cheaper computing power, as the surveys of [5] and [14] show.

The initial face localization and normalization step, common to virtually all ap-
proaches to facial expression recognition from video, serves to achieve a representation
of the face invariant to scale, translation, in-plane rotation, and illumination conditions.
The literature is rich with approaches which normalize the images based on the location
of the face [15], of the eyes [16], or thanks to facial features tracking methods [17, 18].
After the normalization stage, the remainder of an automatic facial expression recog-
nizer consists of feature extraction and classifier design. Features need to minimize
variation within the expression classes while maximizing the variation between differ-
ent classes. Features can be computed from geometric measurements, e.g., from the
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locations of specific points tracked on the face throughout the sequence [17, 19]. Alter-
natively, image-based features can be extracted from texture patches covering either the
whole face (holistic) or specific subregions of it (local). Commonly employed feature
extraction methods from facial textures and their temporal variations include optical
flow [20, 21], Gabor filter responses [16, 22], and Linear Binary Patterns [23, 24].
For the actual classification, AdaBoost and its combination with Support Vector Ma-
chines have recently gained a lot of attention [16, 25]. Other popular approaches include
nearest-neighbor searches [15] and Hidden Markov Models [17, 19, 24].

Trees and forests have been previously used for action recognition, but only as in-
dexing structures for performing efficient nearest-neighbor searches [26, 27]. Follow-
ing [12], we build a holistic, image-based method for recognizing facial expressions
which uses a random forest to learn the mapping between 3D video patches and votes
in a Hough space for the label and the temporal location of the expression.

3 Voting Framework for Facial Expression Recognition

Having seen the successful application of random forests and Hough voting to action
recognition [12], we investigate its performance on the task of recognizing facial ex-
pressions. In order to introduce the basics of the method, we assume our data to be
already arranged into expression tracks, i.e., the face images are cropped and aligned as
shown in Fig. 1(a). Section 4 provides insights on how this normalization is performed.

3.1 Training

We start from the assumption of having a set of training expression tracks available for
each class c ∈ C. Training sequences are annotated for the expression label and the tem-
poral location of the apex in the track. In order to learn the mapping between patches
from the expression tracks and a voting space, we use the Hough forest method [9].
Previously developed for 2D single-class object detection, Hough forests have recently
been extended to handle multi-class detection in the spatio-temporal domain and ap-
plied to the task of action recognition [12].

Randomized Hough forests are composed of a set of random trees. A tree T is con-
structed from a set of patches {Pi = (Ii, ci,di)} randomly sampled from the training
sequences. Pi is a 3D patch (e.g. of 20 × 20 × 3 pixels) sampled from the expression
track as illustrated by the colored cuboids in Fig. 1. Ii are the multi-channel features
extracted at a patch, i.e., Ii =

(
I1i , I

2
i , ..., I

F
i

) ∈ R
4, where each Ifi is feature channel

f at patch i and F is the total number of feature channels. ci is the expression label
(ci ∈ C) and di is a 3D displacement vector from the patch center to the center of
the expression in the sequence. Figure 1 shows an expression track (a) and sample 3D
patches extracted from it (b), voting for both the expression class and the center of the
expression in the sequence.

During training, the trees are built recursively starting from the root, as in the stan-
dard random forest framework [28]. Each non-leaf node is assigned a binary test based
on the patch appearance I; depending on the test’s result, the training patches are split
into the children nodes. The process is iterated until a leaf is created, either from reach-
ing a maximum tree depth or from reaching a minimum number of remaining patches.
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Fig. 1. Hough voting in the case of expression recognition. (a) Sample facial expression track. (b)
Sample 3D patches drawn from the track, voting for the expression label and its spatio-temporal
center.

As tests, we use simple comparisons of two pixels at locations p ∈ R
3 and q ∈ R

3 in
feature channel f with some offset τ . For node B, the corresponding test tB is defined
as:

tB,f,p,q,τ (I) =
{
0 if If (p) < If (q) + τ
1 otherwise

(1)

Similar to [12], each binary test is assigned in order to either optimize class-label or
center offset uncertainty. To this end, a set of binary tests

{
tk
}

is generated at each
node, with random values for f , p, q and τ , and evaluated on all the patches arriving
at that node. The optimal test (the minimizing class label or center offset uncertainty in
the split of the patches) is then chosen and assigned to the node.

When the training process is over, the leaves will store pcL (the proportion of patches
per class label which reached the leaf) and Dc

L (the patches’ respective displacement
vectors). Patches extracted from different classes arriving to the same leaf share the
same features. The proportion of patches per class label at a leaf note can be used as
class probabilities pcL which can indicate the degree of sharing among classes.

3.2 Facial Expression Classification

At classification time, patches are densely extracted from the test track and sent through
all trees in the forest. The patches are split according to the binary tests in the non-
leaf nodes and, depending on the reached leaf, cast votes proportional to pc for the
expression label and votes for the spatio-temporal center of each class c according to
a 3D Gaussian Parzen window estimate of the center set vectors Dc. Votes from all
patches are integrated into a 4D Hough accumulator, exemplified in the left part of
Figure 2 for a sequence expressing anger. The dark spots correspond to the probabilistic
votes that have been cast by the patches and accumulated in the four-dimensional space
(x and y location, time, and class label). As the track has already been localized in
space, we marginalize the votes into a 2D accumulator for only class label and time. The
local maximum in the remaining Hough accumulator finally leads to the classification
prediction, as displayed in Fig. 2, right. For a formal description of the voting process,
we refer the reader to [12].
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Time-scale invariance could be achieved by up-sampling or down-sampling the
tracks, and then applying the same Hough forest to label expressions displayed at dif-
ferent speeds. However, the system has some tolerance built in through the variation
in speed observed in the training data and we therefore did not consider multiple time
scales.

Fig. 2. Left: An example of a 4D Hough image, output of the voting for a clip displaying anger.
The dark dots represent clusters of votes. Right: Example Hough voting space reduced to the two
dimensions expression class and time. The maximum (in dark) is taken as the expression label
and temporal location.

4 Building the Expression Tracks

In order to arrange the data in the required normalized expression tracks, we align the
faces based on the locations of the eyes. Face are rotated and scaled so that the eyes
lie on the same horizontal line and have the same inter-ocular distance. The invariance
to rotation, an addition to the work of [12], is necessary for the task of expression
recognition, which are more subtle and harder to recognize than human actions. When
ground-truth annotation of the eye locations is not available, we employ a completely
automatic method, i.e., the first part of the system described in [11]: after tracking the
face by means of an online-boosting method [29], the eyes are localized thanks to their
unique shape [30] and tracked using a pair of Kalman filters. The automatic procedure
is shown in the left part of Figure 3.

4.1 Feature Extraction

For classification, simple features such as color, greyscale intensity, spatial gradients
along the x and y axis, and frame to frame optical flow, were used in [12]. In our
approach, inspired by the work of Schindler [31], we extract features separately repre-
senting the form and the motion of the face in the expression track. The information
about form comes from the responses of a bank of log-Gabor filters. In comparison to
standard (linear) filters, log-Gabor filters show an improved spectrum coverage with
fewer scales [32]. The response g at position (x,y) and spatial frequency w is:
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Fig. 3. Left: automatic face and eye tracking employed for the normalization of the facial images.
Right: example log-Gabor responses extracted from a normalized expressive face.

gw(x, y) =
1

μ
e−

log(w(x,y)/μ)
2 log σ , (2)

where μ is the preferred frequency and σ a constant used to achieve an even coverage
of the spectrum. We use a bank with 3 scales (μ ∈ {2, 4, 8} pixels) and 6 equally
spaced orientations (φ ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦}), keeping only the response’s
magnitude ‖gw(x, y)‖ as descriptor. Example responses of the filters applied to one
frame of an expression track are shown in the right part of Figure 3.

For the information regarding motion, dense optic flow is computed at every frame
by template matching, using the L1-norm, considering 4 directions. Assuming that our
expression tracks always start with a neutral face, we compute the optical flow both
with respect to the previous frame (frame2frame) and to the first frame of the track
(frame2first).

In order to increase robustness to translation and to reduce the dimensionality of the
feature space, both the shape and motion feature images are down-sampled by max-
pooling, also known as winner-takes-all [33]:

h(x, y) = max
(i,j)∈G(x,y)

[
g(i, j)

]
, (3)

where G(x, y) denotes the neighborhood of pixel (x, y). We use a window of size (3×3).

5 Experiments

We trained and tested our facial expression recognition system on the Cohn-Kanade
database [34] and the MMI database [35]. Both datasets contain videos of posed facial
expressions, with subjects facing the camera and under controlled lighting conditions.
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The Cohn-Kanade database consists of greyscale video sequences of 100 university
students, 65% of which were female. The videos always start with a neutral face and
end at the apex, i.e., the maximum intensity of the expression. For our study, we selected
sequences which can be labeled as one of the basic emotions and which are longer than
13 frames, for a total of 344 videos depicting 97 subjects, each performing 1 to 6 facial
expressions.

Fig. 4. Sample frames extracted from sequences depicting surprise in the Cohn-Kanade database
(top) and MMI database (bottom). Note how the MMI database contains not only the transition
from the neutral face to the apex of the expression, but also the offset leading back to the neutral
state at end of the sequence.

The MMI database [35] is a constantly growing, web-searchable set of color videos
containing both posed and spontaneous emotions. We selected the subset of (posed)
videos labeled as one of the six basic emotions, while discarding all others labeled only
in terms of Action Units. The resulting set is comprised of 176 videos of 29 people
displaying 1 to 6 expressions. The subjects differ in sex, age, and ethnic background;
moreover, facial hair and glasses are sometimes present. The main difference between
the MMI and Cohn-Kanade databases is that the MMI sequences do not end at the
expression’s apex, but return to a neutral face. An example sequence from both dataset
is shown in Figure 4, with the Cohn-Kanade at the top and MMI database at the bottom.

As explained in section 4, both databases have been aligned to the eye center lo-
cations. For the Cohn-Kanade database, ground truth manual annotations are provided
by [36], while no such labeling is available for the MMI database, on which we use
the eye tracking method of [11]. In both cases, the facial images are normalized to an
inter-ocular distance of 25 pixels, resulting in 45× 55 pixels images. Expression tracks
need to be labeled with both spatial and temporal center of the expression. The center in
the image plane is assumed to correspond to the center of the face. The temporal center
should ideally be located at the expression apex, therefore we take the last frame for the
Cohn-Kanade database and the middle frame in the case of the MMI database. We train
and test on all frames from the Cohn-Kanade dataset, which has an average sequence
length of 18 frames, while selecting only 20 frames in the middle of each sequence for
the MMI database, which has an average length of 79 frames.

For all of the following experiments, we performed subject-independent 5-fold cross
validations, i.e., making sure that the same subjects did not occur in both training and
test sets, and present here the results averaged over all five iterations. Forests always
contained only 5 trees; indeed, adding more trees improved the results only slightly.
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Fig. 5. Left: Influence of the patch size on the overall recognition rate. Larger, rectangular patches,
give the best results. Right: Recognition accuracy as a function of the number of (20 × 50 × 2)
patches sampled from each sequence during training.

Fig. 6. Left: Confusion matrix for the Cohn-Kanade database. Expressions such as disgust and
surprise are well recognized, while most of the confusion arises from the anger/disgust and
fear/happiness classes. Right: Recognition rate for the Cohn-Kanade database, as a function of
the percentage of occlusion.

Among the parameters of our proposed method are the size and shape of the patches.
We ran some experiments varying the patches’ spatial size and shape, while keeping the
number of patches fixed to 100 and the temporal dimension to 2 frames. In Figure 5,
left, the bars represent the recognition rate as a function of the size and shape of the
sampled patches, as achieved on the Cohn-Kanade database. As can be noted, larger
patches produce better results than smaller ones and rectangular shapes outperform
squared ones. The best results (86.7%) are achieved with 20× 50 patches, i.e., vertical
rectangles covering almost half of the face.

Increasing the number of training patches per sequence did not influence much the
recognition accuracy. Figure 5, right, shows that the accuracy increases only when mov-
ing from 100 to 200 patches, while it actually slightly decreases when more patches are
used. We also tested the influence of the temporal length of the patches, but did not ex-
perience significant changes in the expression recognition accuracy. All results shown
in the rest of the section are achieved by sampling 200 patches of size 20× 50× 2.

Figure 6 left shows the confusion matrix obtained by our method when applied to
the Cohn-Kanade dataset. On average, we recognize the correct expression 87.1% of
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Table 1. The results of our method are comparable with other works on automatic expression
recognition. The accuracy is given for each expression class separately and on average.

Our approach Yeasin[21] Buenaposada[15] Aleksic[17]
SURPRISE 97.3% 100.0% 100.0% 100.0%
HAPPINESS 98.9 % 96.6% 98.8% 98.4%
SADNESS 92.4% 96.2% 82.0% 96.2%
ANGER 62.2% 100.0% 78.4% 70.6%
FEAR 71.7% 76.4% 73.9% 88.2%
DISGUST 100.0 % 62.5% 87.9% 97.3%
AVERAGE 87.1% 90.9% 89.1% 93.6%

the time; in particular, disgust is always correctly recognized. Fear and anger are the
most confused labels, and are mainly mistaken for happiness, respectively disgust.

To assess the robustness of the method to partial occlusions, we removed (set to
zero) the information in each feature channel falling under a cuboid. The cuboids are
as long as the sequences, and cover a specific percentage of the image plane. For each
sequence, the cuboid location on the 2D image plane was randomly chosen. We ran
5 trials for each percentage of occlusion, and present the averaged results in Figure 6,
right. It can be noted how the performace decreases slowly as the occlusion becomes
greater. At 15% occlusion, the accuracy is still around 70%, falling below 50% only
when more than 30% of the face is removed. Sample frames help visualizing the amount
of occlusion introduced.

Fig. 7. Left: Average recognition accuracy on the Cohn-Kanade database plotted against the single
image features and their combinations. The optical flow between the current and the first frame
gives the best results, followed by the Gabor filter responses and the frame to frame optical flow.
Best results are achieved by the combination of all three kinds of features. Right: Accuracy for
each class label, as recognized from the tracks created thanks to the ground truth annotation (cyan
bars on the left) and automatically extracted by the eye tracker (magenta, right).

Table 1 lists our results next the performance of other methods which used the Cohn-
Kanade database and which published their recognition rates for each label. As can be
seen, the results are comparable.

In an attempt to assess the contribution of each feature channel to the recognition,
the left part of Figure 7 plots the accuracy achieved on the Cohn-Kanade database when
each feature is used separately and in all their possible combinations. As can be seen,
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Fig. 8. Left: confusion matrix for the MMI database. The higher rate of confusion with respect to
the results obtained on the Cohn-Kanade database can be partly explained by the fact that manual
annotations of the eye locations were not available. Right: Results obtained on the MMI database
using the set of features originally employed by [12], with the addition of frame to frame and
frame to first optical flow.

frame to first optical flow alone gives the best results, followed by log-Gabor responses
and by optical flow computed between consecutive frames. The combination of all three
features leads to the best results. In Figure 7, right, the performance for each class is
plotted, depending on whether the tracks were extracted using the manual ground truth
annotations of the eye locations (cyan bars on the left) or automatically, using the eye
tracker (magenta, on the right). Results clearly worsen when the fully automatic method
is employed, but not in the same extent for each class: surprise, happiness, and sadness
are less affected by errors in the tracking than the other classes.

When training and testing on the MMI database, again in a 5-fold cross-validation
fashion and with 200 patches of size 20× 50× 2, we get the confusion matrix shown in
Figure 8, left. There is a higher rate of misclassification compared to the results achieved
on the Cohn-Kanade database, especially for fear. This could be partly explained by the
fact that manual annotations of the eye centers were not available, but also by the lack
of a precise annotation of the expression center in the sequences. Also, the expressions
in the MMI database are more subtle than in the Cohn-Kanade dataset. On average,
our method achieves a recognition rate of 76% on the MMI database and, as far as
we know, we are the first ones to attempt at classifying the expressions directly (rather
than Action Units) on this dataset. The right side of Figure 8 shows the average results
obtained on the MMI sequences when using the features originally proposed by [12],
with the addition of the two kinds of optical flow. The poor results of the original feature
set serves as convincing support for the introduction of the log-Gabor filter responses,
as explained in section 4.1

6 Conclusions

In this paper, we investigated the use of a Hough forest voting method for facial expres-
sion recognition. Our system extends previous work aimed at action recognition to the
field of facial expression recognition, which are more subtle and hard to classify. We
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chose features encoding separately form and motion of the face, which allow us to cap-
ture the subtle differences in the facial expressions which a standard action recognition
system could not. We evaluated the system on two standard databases, Cohn-Kanade
and MMI, and achieved results comparable to the state of the art. Future work includes
the investigation of additional features and the application of the method to the recog-
nition of more naturalistic facial expression videos.
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