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Abstract

We present a novel method for mouth localization in the context of multimodal

speech recognition where audio and visual cues are fused to improve the speech recog-

nition accuracy. While facial feature points like mouth corners or lip contours are com-

monly used to estimate at least scale, position, and orientation of the mouth, we propose

a Hough transform-based method. Instead of relying on a predefined sparse subset of

mouth features, it casts probabilistic votes for the mouth center from several patches in

the neighborhood and accumulates the votes in a Hough image. This makes the localiza-

tion more robust as it does not rely on the detection of a single feature. In addition, we

exploit the different shape properties of eyes and mouth in order to localize the mouth

more efficiently. Using the rotation invariant representation of the iris, scale and orien-

tation can be efficiently inferred from the localized eye positions. The superior accuracy

of our method and quantitative improvements for audio-visual speech recognition over

monomodal approaches are demonstrated on two datasets.

1 Introduction

Speech is one of the most natural forms of communication and the benefits of speech-driven

user interfaces have been advocated in the field of human computer interaction for several

years. Automatic speech recognition, however, suffers from noise on the audio signal, un-

avoidable in application-relevant environments. In multimodal approaches, the audio stream

is augmented by additional sensory information to improve the recognition accuracy [22].

In particular, the fusion of audio and visual cues [19] is motivated by human perception,

as it has been proven that we use both audio and visual information when understanding

speech [16]. There are indeed sounds which are very similar in the audio modality, but easy

to discriminate visually, and vice versa. Using both cues significantly increases automatic

speech recognition performance, especially when the audio is corrupted by noise.

To extract the visual features, a region-of-interest [18], a set of feature points [27], or

lip contours [14], need to be localized. Although the lip contours contain more information

about the mouth shape than the appearance within a bounding box, they do not necessary en-

code more information valuable for speech recognition, as demonstrated in [21]. In addition,

extracting a bounding box is usually more robust and efficient than lip tracking approaches.
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(a) (b)

Figure 1: a) Facial points like mouth corners (blue dots) are sensitive to occlusions. b) Our

Hough transform-based approach localizes the center of the mouth (red dot) even in the case

of partial occlusions. The ellipse indicates the region of interest for speech recognition.

While standard approaches extract mouth corners to estimate scale, position, and orien-

tation of the mouth, we propose a Hough transform-based method for mouth localization.

A certain feature point or patch might be difficult to detect due to occlusions, lighting con-

ditions, or facial hair, therefore our method accumulates the votes of a set of patches into

a Hough image where the peak is considered to be the mouth center. This facilitates the

localization of the mouth even when a facial feature like a lip corner cannot be detected, as

shown in Figure 1. To make the process faster, we exploit the different shape properties of

eyes and mouth: a) being the shape of the iris unique and rotation invariant, it can be very

efficiently localized using isophote curvature [25]. b) Knowing the approximate orientation

and scale of the face from the eye centers, the various shapes of the mouth can be learned

using randomized Hough trees [6]. Without the eye detection, scale and orientation would

have to be handled by the mouth detector, yielding higher computational cost.

2 Related Work

Audio-visual speech recognition (AVSR) has been pioneered by Petajan [19] and it is still

an active area of research. Most approaches focus on the mouth region as it encodes enough

information for deaf persons to achieve a reasonable speech perception [24]. In order to fuse

audio and visual cues, we employ the commonly used multi-stream hidden Markov models

(MSHMM) [29], but other approaches could be used, based for example on artificial neural

networks [11], support vector machines [7], or AdaBoost [28].

As visual features, lip contours [14], optical flow [9], and image compression techniques

like linear discriminant analysis (LDA), principal component analysis (PCA), discrete cosine

transform (DCT), or discrete wavelet transform (DWT) [22], have been proposed. Within

monomodal speech recognition (lip reading), snakes [3] and active shape models [12, 15]

have been intensively studied for lip tracking. Most of these approaches assume that a

normalized mouth region can be reliably extracted, which is addressed in this work. Lip

contours-based methods do not encode all possible geometric information (like the tongue),

therefore space-time volume features have been proposed for lip-reading in [17]. In order to

build these macro-cuboïd features, it is again necessary to reliably extract the mouth regions.
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Figure 2: Overview of our AVSR system. The visual pipeline is shown at the top: face track-

ing, eye detection and tracking, mouth localization on images scaled and rotated according to

the eye positions. At the bottom right, the features extracted from the stream of normalized

mouth images and from the audio signal are fused allowing the actual speech recognition.

3 Overview

The pipeline of our AVSR system is depicted in Figure 2. The first necessary step is face

detection, where we use the algorithm proposed by Viola and Jones [26]. To cope with

appearance changes, partial occlusion, and multiple faces, we employ an online-boosting

tracker [8] that uses the currently tracked patch and its surroundings respectively as positive

and negative samples for updating the internal classifier. Assuming the face to be nearly

frontal, the bounding box returned by the tracker allows us to estimate the rough positions

of the eyes by using anthropometric relations. The scale and in-plane rotation of the face

are then estimated by filtering the positions of the detected irises (Section 4.1). With this

information at hand, we crop the lower part of the face image and normalize it such that

the mouth is horizontal and has a specific size, thus being able to run the mouth detection

(Section 4.2) at only one scale and rotation, speeding up drastically the computation time.

Finally, features are extracted from the stream of normalized mouth images and from the

audio signal in order to recognize the spoken words (Section 5).

4 Normalized Mouth Region Extraction

4.1 Eye Localization

We use the method of Valenti et. al. [25] for accurate eye center localization, based on

isophote curvature. The main idea relies on the radial symmetry and high curvature of the

eyes’ brightness patterns. An isophote is a curve going through points of equal intensity, its

shape being invariant to rotations and linear changes in the lighting conditions.
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For each point p in the image, a displacement vector is computed as:

D(x,y) = −
Lx

2 +Ly
2

Ly
2Lxx −2LxLxyLy +Lx

2Lyy

(Lx,Ly), (1)

where Lx and Ly are the image derivatives along the x and y axes, respectively. The value of

an accumulator image at the candidate center c = p+D is incremented by the curvedness of

p in the original image, computed as

√

Lxx
2 +2Lxy

2 +Lyy
2. In this way, center candidates

coming from highly curved isophotes are given higher weights.

Knowing that the pupil and the iris are generally darker than the neighboring areas, only

transitions from bright to dark areas are considered, i.e., situations where the denominator of

equation (1) is negative. The eye center is finally located by mean shift.

The above method fails when the iris is not visible, e.g., due to closed eyes or strong

reflections on glasses. When tracking a video sequence, this can lead to sudden jumps of the

detections. Such errors propagate through the whole pipeline, leading to wrong estimates of

the mouth scale and rotation, and eventually worsening the overall AVSR performance. To

reduce these errors, we smooth the pupils’ trajectories using two Kalman filters, one for each

eye center. The prediction of the eye position for the incoming frame is used as the center of

the new region-of-interest for the pupil detection.

4.2 Mouth Localization

Hough transform-based methods model the shape of an object implicitly, gathering the spa-

tial information from a large set of object patches. Thanks to the combination of patches

observed on different training examples, large shape and appearance variations can be han-

dled, as it is needed in the case of the mouth, greatly changing its appearance between the

states open and closed. Furthermore, the additive nature of the Hough transform makes these

approaches robust to partial occlusions. For localization, the position and the discriminative

appearance of a patch are learned and used to cast probabilistic votes for the object cen-

ter as illustrated in Figure 3 a). The votes from all image patches are summed up into a

Hough image (Figure 3 b), where the peak is used to localize the mouth region (Figure 3 c).

The whole localization process can thus be described as a generalized Hough transform [2].

The so-called implicit shape model (ISM) can be modeled either by an explicit codebook as

in [13] or within a random forest framework [6]. An approach similar to [13] was employed

for facial feature localization in [5]. Since the construction of codebooks is expensive due to

the required clustering techniques and the linear matching complexity, we follow the random

forest approach where learning and matching are less computationally demanding.

A random forest consists of several randomized trees [1, 4] where each node except for

the leaves is assigned a binary test that decides if a patch is passed to the left or right branch.

Random forests are trained in a supervised way, and the trees are constructed assigning each

leaf the information about the set of training samples reaching it, e.g., the class distribu-

tion for classification tasks. At runtime, a test sample visits all the trees and the output is

computed by averaging the distributions recorded during training at the reached leaf nodes.

Learning Each tree in the forest is built based on a set of patches {(Ii,ci,di)}, where Ii

is the appearance of the patch, ci the class label, and di the relative position with respect to

the mouth center, computed from the annotated positions of the lip corners and outer lips’

midpoints. For mouth localization, we use patches of size 16× 16 (Figure 3 a) where the
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(a) (b) (c)

Figure 3: a) For each of the emphasized patches (top), votes are cast for the mouth center

(bottom). While lips (yellow) and teeth (cyan) provide valuable information, the skin patch

(magenta) casts votes with a very low probability. b) Hough image after accumulating the

votes of all image patches. c) The mouth is localized by the maximum in the Hough image.

appearance I is modeled by several feature channels I f , which can include raw intensities,

derivative filter responses, etc. The training patches are randomly sampled from mouth re-

gions (positive examples) and non-mouth regions (negative examples), where the images are

normalized according to scale and orientation. The samples are annotated with the binary

class label c ∈ {p,n} and the center of the mouth in the case of positive examples.

Each tree is constructed recursively starting from the root. For each non-leaf node, an

optimal binary test is selected from a set of random tests evaluated on the training patches

that reach that node. The selected test splits the received patches into two new subsets which

are passed to the children. The binary tests t(I )→{0,1} compare the difference of channel

values I f for a pair of pixels (p,q) and (r,s) with some handicap τ:

t f ,p,q,r,s,τ(I ) =

{

0, if I f (p,q)− I f (r,s) < τ

1, otherwise.
(2)

A leaf is created when the maximal depth of the tree, e.g. 15, or the minimal size of a

subset, e.g. 20, are reached. Each leaf node L stores information about the patches that have

reached it, i.e., the probability pmouth

(

I
)

of belonging to a mouth image (the proportion of

positive patches that have reached the leaf) and the list DL = {di} of corresponding offset

vectors. The leaves thus build an implicit codebook and model the spatial probability of the

mouth center x for an image patch I located at position y, denoted by p
(

x|I (y)
)

. Such

probability is represented by a non-parametric density estimator computed over the set of

positive samples DL and by the probability that the image patch belongs to the mouth:

p
(

x|I (y)
)

=
1

Z
pmouth

(

I
)

(

1

|DL|
∑

d∈DL

1

2πσ2
exp

(

−
||(y−x)−d||2

2σ2

)

)

, (3)

where σ2I2×2 is the covariance of the Gaussian Parzen window and Z is a normalization

constant. The probabilities for three patches are illustrated in Figure 3 a).

Since the quantity in (3) is the product of a class and a spatial probability, the binary tests

need to be evaluated according to class-label uncertainty Uc and spatial uncertainty Us. We

use the measures proposed in [6]:

Uc(A) = |A| ·Entropy({ci}) and Us(A) = ∑
i:ci=p

(di − d̄)2, (4)
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where A = {(Ii,ci,di)} is the set of patches that reaches the node and d̄ is the mean of the

spatial vectors di over all positive patches in the set1. For each node, one of the two measures

is randomly selected with equal probability to ensure that the leaves have both low class and

spatial uncertainty. The optimal binary test is selected from the set of randomly generated

tests tk(I ) by

argmin
k

(

U⋆({Ai| t
k(Ii)=0})+U⋆({Ai| t

k(Ii)=1})
)

(5)

where ⋆ = c or s, i.e., by the quality of the split.

Localization In order to localize the mouth in an image, each patch I (y) goes through

all the trees in the forest {Tt}
T
t=1, ending up in one leaf, where the measure (3) is evaluated.

The probabilities are averaged over the whole forest [1, 4]:

p
(

x|I (y);{Tt}
T
t=1

)

=
1

T

T

∑
t=1

p
(

x|I (y);Tt

)

. (6)

These probabilistic votes are then accumulated in a 2D Hough image, see Figure 3 b)2. The

location where the generalized Hough transform gives the strongest response is considered

to be the center of the mouth (Figure 3 c).

5 Audio-Visual Speech Recognition

In order to fuse the audio and visual cues for speech recognition, we rely on the commonly

used multi-stream hidden Markov models [29]. Each modality s is described by Gaussian

mixtures, i.e., the joint probability of the multimodal observations O = (o1, · · · ,ot) and the

states Q = (q1, · · · ,qt) is given by:

p(O,Q) = ∏
qi

bqi
(oi) ∏

(qi,q j)

aqiq j
where b j(o) =

2

∏
s=1

(

Ms

∑
m=1

c js,mN(os; µ js,m ,Σ js,m)

)λs

, (7)

where aqiq j
are the transition probabilities, N(o; µ,Σ) are multi-variate Gaussians with mean

µ and covariance Σ, and c js,m are the weights of the Gaussians. The model parameters are

learned for each modality independently. The parameters λs ∈ [0,1] control the influence of

the two modalities with λ1 +λ2 = 1. As cues, we extract mel-frequency cepstral coefficients

from the audio stream and DCT features from the normalized mouth images where only the

odd columns are used due to symmetry [20, 22]. For both features, the first and second

temporal derivatives are added and the sets normalized as to have zero mean.

6 Experiments

We evaluate our system testing each component separately. First we assess the quality of

the scale and orientation estimated from the eye detection method, then we move on to the

mouth localization accuracy and compare our results with a state-of-the-art method for facial

feature points detection, finally we show the applicability of our system for an AVSR task.

1Entropy({ci}) = −c̄ log c̄− (1− c̄) log(1− c̄), where c̄ = |{ci|ci = p}|/|{ci}|.
2In practice, we go through each image location y, pass the patches I (y) through the trees, and add the discrete

votes pmouth

(

I
)

/|DL| to the pixels {(y−d|d ∈ DL} for each tree. The Gaussian kernel is then applied after voting.
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(a) (b)

Figure 4: a) Accuracy vs. eye distance error (scale). b) Accuracy vs. angle error (rotation).

The plots show the percentage of correctly estimated images as the error threshold increases.

Estimation of Scale and Orientation We run our tests on the BioID face database [23],

composed of 1521 greyscale images of 23 individuals, acquired at several points in time

with uncontrolled illumination, and at the resolution of 384x288 pixels. Subjects were often

photographed with their eyes closed, showing different facial expressions, and many of them

wore glasses. Manually annotated ground truth is provided for the pupils and for 18 other

facial points. We divide the database in four sets, training the mouth detector on three, testing

on the fourth, and averaging the results of all combinations.

As first experiment, we run the whole pipeline: we detect the face in each image (taking

the largest in case of multiple detections), then we detect the eyes in the two upper quar-

ters of the face rectangle and compute the errors for the eye distance (scale) and the angle

formed by the line connecting the eyes and the horizontal axis (rotation). Figure 4 shows

the accuracy for the two measures, i.e., the percentage of correct estimations as the error

threshold increases. In 4 a) the accuracy is plotted against the error between the detected

eye distance dEye and the ground truth dGT , as err = abs(dEye−dGT )
dGT

. In 4 b) the accuracy

is plotted against the error of the estimated angle in degrees. It is worth noting that, for 17

images (1.12% of the total), no face was detected at all; we do not consider those for the

analysis. Moreover, sometimes the face detector gave wrong results, getting stuck on some

clutter in the background; this partly explains the curve in Figure 4 a) never reaching 100%.

Mouth Localization Using again the BioID database, we evaluate the accuracy of the

mouth detection and compare our results to the output of the facial points detector (FPD)

of Vukadinovic and Pantic [27], for which the code is made available. As we localize the

mouth center rather than the corners, we compute the center from the four mouth corners

provided by the ground truth and the FPD. As already mentioned, face detection does not

always succeed; indeed the FPD failed in 9.67% of the cases. We only take into account

images where both methods detect a face, however, there are still some false detections

which increase the error variance. In order to decrease the influence of errors originated in

the eye detection part, we perform a second test concentrating on the mouth localization only,

using the ground truth of the eye positions. As the curve in Figure 5 a) shows, our method

outperforms the FPD for the mouth localization task, both in the “full detection” (face, eyes,

mouth), and “mouth only” type of experiment. Figure 6 shows some sample results; the

successes in the first row indicate that the full pipeline can cope with difficult situations like

the presence of glasses, facial hair, and head rotations, however, failures do occur, as shown

in the second row. We also run the “mouth only” test varying two parameters of the Hough-
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(a) (b)

Figure 5: a) Accuracy vs. mouth center localization error (in pixels) between Facial Point

Detector [27] (blue), our full pipeline (red), and the mouth localization given the eye position

from ground truth. b) Mouth localization error in pixels vs. stride and number of trees.

Figure 6: Some examples of successes (top row) and failures (bottom row) of the system.

The bottom-left image shows a face detection failure.

based detector: the stride and the number of trees; the results in Figure 5 b) show that the

mean error (in pixel) remains low (around 2) even for a large stride and few trees.

Speech Recognition As the goal of our system is to automatically provide mouth images

for AVSR purposes, we test it on the CUAVE database [18], consisting of videos recorded in

controlled audio-video conditions, at 29.97fps interlaced, with a resolution of 740x480. Each

of the 36 subjects repeats the digits from “zero” to “nine” in American English. We concen-

trate on the subset of the database where subjects appear alone, keeping the face nearly

frontal, and use a mouth detector trained on the BioID database. The CUAVE videos are

deinterlaced and linearly interpolated to match the frequency of the audio samples (100Hz).

The power of AVSR is clear when the audio channel is unreliable, we therefore add white

noise to the audio stream. We train on clean audio and test at different levels of Signal to

Noise Ratios. To run the speech recognition experiments, we use the system of [10], without

the automatic feature selection part. For the audio-visual fusion, we keep the audio and video

weights λ1 and λ2 fixed for each test, and run several trials varying the weights from 0.00

to 1.00 in 0.05 steps, at the end we pick the combination giving the best recognition rate for

each SNR. The accuracy is defined as the number of correctly recognized words, C, minus

the number of insertions, I (false positives detected during silence), divided by the number

of words, N [29]. We split the 36 sequences in 6 sets and perform cross-validation by train-

ing on five groups while testing on the sixth and averaging the results of all combinations.
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Figure 7 a) shows the performance for a fixed number of visual features (80), at several SNR

levels. We compare to the results obtained from manually extracted mouth-regions, which

give the upper bound for the accuracy obtained with automatic extraction. The multimodal

approaches always outperform the monomodal ones, moreover, our automatic method for

mouth ROI extraction performs only slightly worse than the manual one. In Figure 7 b),

we show the accuracy of the recognizer when only video features are used as their number

increases: our approach performs best with 80 visual features (58.85%), while for greater

sets the performance decreases slightly.

(a) (b)

Figure 7: a) Word recognition rate for the audio-visual system using 80 visual features

at different SNRs, for automatically and manually extracted mouth images, compared to

monomodal results. b) Influence of the number of features in video-only speech recognition.

Processing Speed When analyzing videos on a 2.8 GHz machine, the presented system

(implemented in C++ without optimization efforts) runs at about 4fps. Most of the compu-

tation is concentrated in the mouth localization part, indeed the face plus eyes tracking parts

together run at 53fps. A sensible decrease in processing time with a low price in accuracy

can be achieved by loading a smaller number of trees and introducing a stride: for 10 trees

and a stride of 4, we achieve 15fps.

7 Conclusion

We have presented a novel and efficient method for mouth localization which provides the

accuracy needed for audio-visual speech recognition (ASVR). Our experiments show that it

outperforms a state-of-the-art facial points detector and that the achieved word recognition

rate for ASVR is near to the boundary obtained by employing manually cropped mouth

regions. In order to achieve nearly real-time mouth localization, scale and orientation of the

face are estimated from filtered irises’ detections. A further speed-up with a small price in

accuracy can be achieved by reducing the number of trees and sampling rate by introducing

a stride. The proposed method is not only relevant for AVSR but also for lip reading and

facial expression recognition where a normalized region-of-interest is usually required. The

approach is independent of the employed recognition system as it does not necessarily have

to be coupled with multi-stream hidden Markov models.
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