
Hourglass: An Infrastructure for Connecting

Sensor Networks and Applications

Jeff Shneidman, Peter Pietzuch, Jonathan Ledlie, Mema Roussopoulos, Margo Seltzer, Matt Welsh

Harvard University

{jeffsh, prp, jonathan, mema, margo, mdw}@eecs.harvard.edu

Harvard Technical Report TR­21­04

Abstract

The emergence of computationally-enabled sensors and the applica-
tions that use sensor data introduces the need for a software infrastruc-
ture designed specifically to enable the rapid development and deploy-
ment of applications that draw upon data from multiple, heterogeneous
sensor networks. We present the Hourglass infrastructure, which ad-
dresses this need.

Hourglass is an Internet-based infrastructure for connecting a wide
range of sensors, services, and applications in a robust fashion. In
Hourglass, a stream of data elements is routed to one or more appli-
cations. These data elements are generated from sensors inside of sen-
sor networks whose internals can be entirely hidden from participants
in the Hourglass system. The Hourglass infrastructure consists of an
overlay network of well-connected dedicated machines that provides
service registration, discovery, and routing of data streams from sen-
sors to client applications. In addition, Hourglass supports a set of
in-network services such as filtering, aggregation, compression, and
buffering stream data between source and destination. Hourglass also
allows third party services to be deployed and used in the network.

In this paper, we present the Hourglass architecture and describe

our test-bed and implementation. We demonstrate how our design

maintains streaming data flows in the face of disconnection, allows

discovery of and access to data from sensors, supports participants of

widely varying capabilities (servers to PDAs), takes advantage of well-

provisioned, well-connected machines, and provides separate efficient

communication paths for short-lived control messages and long-lived

stream-oriented data.

1 Introduction

Sensor networks present the opportunity to instrument and mon-

itor the physical world at unprecedented scale and resolution.

Deploying a large number of small, wireless sensors that can

sample, process, and deliver information to external systems

opens many novel application domains. Automobile navigation

systems could become aware of traffic conditions, weather, and

road conditions along a projected route. Buildings can be in-

strumented to permit firefighters and other rescuers to map ideal

egress routes based on the location of fire and structural damage.

Medics and physicians at the scene of a disaster can track patient

vital signs and transport victims in an efficient manner based on

bed and equipment availability at local hospitals.

A core challenge that emerges in this domain is that of the in-

frastructure that connects many disparate sensor networks to the

applications that desire data from them. To date, work in the sen-

sor network community has focused on collecting and aggregat-

ing data from specific networks with an associated base station.

The problem of delivering this data to external systems is typi-

cally left open. At the same time, work in continuous query (CQ)

systems [5, 6, 7, 16, 24] peer-to-peer overlay networks [30, 33]

and publish/subscribe systems [2, 3, 4, 9, 27, 31] offers a range

of techniques for similar application domains. However, these

approaches do not directly address the needs of capturing and

querying data from a large number of sensor networks with dif-

ferent data schemas, access mechanisms, and resource consider-

ations.

This paper focuses on the problem of developing an Internet-

based infrastructure that handles aspects of naming, discovery,

schema management, routing, and aggregating data from poten-

tially many geographically diverse sensor networks. We call this

infrastructure a data collection network (DCN). We describe the

design and implementation of Hourglass, a DCN test-bed based

on an overlay network of Internet-connected hosts that collab-

orate to provide a common interface for constructing pathways

from sensor networks to applications. In this context, a sensor

network might be a single node that collects data from a discrete

physical location or a large collection of nodes capable of com-

plex internal processing. In either case, the DCN supports data

flow between applications and multiple sensor networks from

different administrative domains with differing degrees of con-

nectivity.

The essential data model in Hourglass is a circuit, which can

be thought of as a set of network links that connect one or more

sensor network sources to one or more recipients of that data.

The circuit idea separates short-lived, small control messages

from long-lived, stream-oriented data. Control messages are

used to set up pure data channels that travel over multiple ser-

vices. This is a useful idea because different types of data mes-

sages can be routed and processed using different tools.

Data flowing along a circuit may be filtered, aggregated, com-

pressed, or temporarily buffered by a set of services that exist

in the Hourglass infrastructure. These primitives allow applica-

tions to construct powerful ensembles of sensor networks and

infrastructure services. Circuits are constructed with the aid of a

registry that maintains information on resource availability and a

circuit manager that assigns services and links to physical nodes

in the network.

Given that sensor networks or applications receiving data

from them may be mobile or connected through poor-quality

wireless channels, support for intermittent disconnection is a

critical requirement for a DCN. Hourglass is designed to han-

dle intermittent disconnection gracefully by instantiating buffer

services along links in a circuit that may cross a “connectivity

domain,” and by incorporating a reliability model that permits

either buffering or loss of data items being routed along a cir-

cuit.

It is also the case that other nodes in the network are well-

connected highly-powered nodes that offer significant computa-

tional and storage capacity. These nodes can provide complex

data processing services and stable routes in the network.

The rest of this paper is organized as follows. In Section 2

we describe related work in a number of areas both from the

sensor network and Internet-based distributed systems commu-

nities. Section 3 details the metropolitan-area medical data man-

agement framework that we carry through the paper as a con-

crete set of application requirements for Hourglass. Section 4

describes the Hourglass design in detail and Section 5 presents

our test-bed implementation. In Section 6, we evaluate the use of

Hourglass in a range of simulated application scenarios, showing

that the DCN provides an effective means of connecting many

sources of sensor data to many data recipients. Finally, Section 7

presents future work and Section 8 concludes.

2 Related Work

The application scenarios that we focus on for data collection

networks rely on sensor networks, middleware, distributed query

processing, and the work of many other self-contained research

disciplines. However, the union of these disciplines leaves sev-

eral significant research questions unanswered, because each of

these fields makes a set of assumptions that do not hold for these

scenarios. Here we outline related work in these areas.

2.1 Sensor networks

The field of sensor networking has received much attention in

recent years as a number of research groups have constructed

small computational and communication devices, such as the

Berkeley motes [15], capable of interfacing with physical sen-

sors. The research in this area has focused on how to construct

useful systems while coping with the resource constraints (e.g.,

low power, weak communication, limited processing and mem-

ory capabilities) of such devices.

Computation on the devices is used both to perform

application-specific processing and also to conserve critical re-

sources, such as communication bandwidth. For example, a

large number of data samples can be analyzed in situ, enabling

transmission of only the most critical data (e.g., “this object is

a tank and it has moved”) [13]. Research on specific problems

includes message-passing algorithms [14, 18], on-the-fly sensor

reprogramming [20], and query languages [22, 36].

The characteristic of most of this work to date is that it fo-

cuses on the wireless domain, assuming that once data has been

received by a wired base station, there is a direct path to de-

sired consumers of that data. This approach generally ignores

the issues associated with constructing logical flows from multi-

ple specialized sensor networks to distant applications; in effect

they “stop at the wire.” As we will see below, these assumptions

do not hold for the large class of applications we are considering.

2.2 Continuous query processing

The Continuous Queries (CQ) work from the database commu-

nity offers in-network processing of streaming data in stable,

homogeneous networks [5, 6, 7, 24]. This community has ad-

dressed issues of operator placement, which is also important

in a DCN. TelegraphCQ aims to work in “unpredictable” situa-

tions: nodes can fail or query optimization information can be

incorrect; users can re-state their queries on the fly. However, the

criteria by which CQ systems place operators do not include the

possibility of intermittent connectivity. Whereas TelegraphCQ

and NiagraCQ move the data to a central processing point, Hour-

glass can act on data either at or close to the publishing node.

Additionally, these systems do not address the scalability chal-

lenge that we face, nor do they offer the wide range of data flow

semantics that are necessary in our target applications.

Most closely related to the notion of a data collection

network are systems such as IrisNet [8], PIER [16], and

Medusa/Aurora [7], which are intended to support distributed

queries over many disparate, real-time data sources using tech-

niques such as overlay networks and dynamic query operator

placement. In particular, Aurora [37] is a system designed to

support applications that monitor continuous streams of data.

While Aurora centralizes stream processing, Hourglass provides

a distributed framework for circuit construction. PIER uses a

DHT for tuple storage, spreading data around the network based

on the namespace and primary key. In contrast, Hourglass cre-

ates circuits, yielding a scalable infrastructure like PIER but

without the high latencies induced by PIER’s DHT architecture.

More broadly, the Hourglass approach differs from these sys-

tems in several key respects. First, we envision an extremely rich

set of services that can collect, filter, aggregate, and process sen-

sor data as it flows through a network; the DCN should not con-

strain the set of services to a small set of operators for a specific

query interface. Such an approach allows the system to evolve to

support a wide range of as-yet-unforeseen applications. Second,

Hourglass is designed to cope with mobility of sensor and ap-

plication endpoints and the resulting temporary disconnections

from the rest of the network. Third, Hourglass dynamically in-

corporates heterogeneous devices into the system. CQ systems

currently do not allow for this dynamic behavior, yet it will occur

in long-lived applications that Hourglass aims to address.

2.3 Publish/subscribe and peer-to-peer systems

Publish/subscribe systems are one way to provide efficient

content-based routing of messages to large numbers of sub-

scribers. The publish/subscribe community has addressed is-

sues such as congestion control [27], delivery semantics (e.g.,

exactly-once) [2], message efficiency and battery consumption

in mobile networks [38], and scalability of content-based pub-

lish/subscribe protocols [4]. In contrast, a DCN must address

intermittent connectivity of both data consumers and produc-

ers and provide in-network services, like buffering, based on the

stream’s semantics. Publish/subscribe inherently gives a multi-

cast service, but one which provides little facility for QoS moni-

toring and control. Because publishers are a level of indirection

away from subscribers, publish/subscribe does not easily permit

application-level feedback and quality of service (QoS) guaran-

tees. In contrast, Hourglass’s circuits allow for tuning QoS along

a datapath.

The P2P community has focused primarily on scale and

changes in system membership (churn), frequently at the ex-

pense of complex queries and a good naming system. While

churn is related to disconnection in Hourglass, the goals are

rather different. P2P systems typically strive to make the guar-

antee that when a node departs, the static data it was storing

is still available. The quality of these systems is frequently ex-

pressed as the quantity of maintenance traffic required to provide

these guarantees. Thus, P2P has tended to orient itself at routing

around point failures of nodes and links. In contrast, our goal is

to preserve the flow of data between two endpoints in the face

of temporary disconnection. Even while disconnected, an Hour-

glass participant may be generating data for which applications

are waiting, and we need to ensure that upon reconnection, the

new data are correctly transmitted in the system. Thus, a central

tenet of Hourglass is buffering rather than rerouting.

2.4 The Grid

The Grid initiatives have focused on naming and creating com-

mon interfaces for data and computation [10], as well as harness-

ing computational resources [32] and federating databases [26].

A data collection network faces similar problems; however, the

Grid approach generally assumes a stable and relatively high-

performance network infrastructure. In contrast, DCNs must

gracefully handle temporary disconnection as well as a range of

connection bandwidths to sensor networks and the application

endpoints receiving sensor data. A DCN encompasses a broader

and more diverse set of participants than a traditional Grid sys-

tem. While common interfaces are important, the critical issue

for DCNs is providing interfaces for which minimal functional-

ity can be implemented on resource-constrained devices, which

may require interfaces to be backed by sophisticated services on

more capable nodes.

2.5 Research challenges for data collection networks

The goal of a data collection network is to allow applications to

harness the functionality of many disparate sensor networks as

well as infrastructure-based services such as discovery, filtering,

aggregation, and storage. In many ways, the vision of a DCN is

to allow Internet-based applications and services to “reach out”

into the physical world of sensors that exhibit a wide variance

of capabilities and connectivity. Sensor networks, especially

those that are mobile and intermittently connected to the outside

world, represent ephemeral entities that pose real challenges for

existing Internet-based infrastructures. This paper addresses the

following set of core research questions that arise in this regime.

Intermittent connectivity: How does a DCN manage commu-

nications with mobile or poorly-connected entities that may ex-

hibit intermittent connectivity with the rest of the infrastructure?

How does the DCN ensure that the data flow is not disrupted

during disconnection.

Resource naming and discovery: How does a DCN infrastruc-

ture become aware of, and broker access to, a wide range of

sensor networks and services that may exist in different adminis-

trative domains, each with different interfaces and access rights?

Service composition: How do applications tie together a suite

of services for processing data flowing from sensor networks?

What is the model for mapping application data requirements

onto individual services, and how are those services instanti-

ated and managed? How do applications integrate application-

specific processing into an existing DCN?

Supporting heterogeneity: How does a DCN infrastructure

provide services in the presence of resource constrained devices

such as PDAs? What minimal functionality is needed by all par-

ticipants? How should it accommodate devices of varying capa-

bilities?

As an initial step towards answering these questions, we

present the Hourglass DCN infrastructure. Hourglass has the

following essential features:

1. Maintains streaming data flows in the face of disconnec-

tion;

2. Provides for discovery of resources that are not generally

Internet-accessible (e.g., sensor data);

3. Permits the participation of heterogeneous devices includ-

ing resource-constrained devices, such as PDAs;

4. Takes advantage of the fact that some nodes are almost al-

ways connected and provide significant computational and

storage capacity; and

5. Separates flow of short-lived, small control messages from

that of long-lived, stream-oriented data. The circuit is the

embodiment of this idea, in that control messages are used

to set up pure data channels that travel over multiple ser-

vices.

3 Application Framework

We describe two application scenarios we are using as our initial

test-bed to provide context for the architecture that we present in

Section 4. These applications derive from the world of medical

and emergency sensing, and while they provide a context for dis-

cussion, it is important to bear in mind that the architecture we

present is suitably general to support a much broader class of ap-

plications, such as environmental monitoring, seismic recording,

large-scale and epidemiological studies.

We are concerned with improving emergency medical ser-

vices in a metropolitan area, which may consist of numerous

hospitals, health care facilities, ambulance companies, and 911

dispatch services.

A sensor infrastructure can incorporate wireless vital sign

sensors (e.g., pulse oximetry, EKG, respiration) attached to pa-

tients; real-time sensors of traffic conditions and ambulance lo-

cation through GPS; hospital and availability of beds in the

emergency room; and the status of specialized facilities such as

trauma and burn centers.

By allowing this information to be queried, filtered, and re-

layed to display terminals, handheld computers, or laptops car-

ried in an ambulance or in the hospital, health care providers

can obtain a real-time view of the status of patients, location of

ambulances, and the status of medical facilities. This vision is

shared by a number of projects that are focusing on optimizing

community health care for disaster response [1, 11, 19].

While there are many different applications one might con-

struct on such a system, we describe two briefly.

3.1 In-Hospital Communication

Currently, in a hospital, critical patient events or “codes” often

trigger an announcement over the hospital’s PA system, e.g.,

“Code Blue in Ward 3.” To retain patient confidentiality, little

information about the specific event is broadcast, so such broad-

casts usually trigger a collection of doctors to race to the location

cited. Instead, in the Hourglass-enabled hospital, sensors are at-

tached to a patient and publish data such as vital signs about that

patient into the Hourglass infrastructure. Doctors’ PDAs can

register interest in the vital signs of their patients. Application-

specific services in the infrastructure process this data and can

trigger a direct alert to the specific doctor (or doctors) whose

patient is in danger. Such an alert is transmitted directly to the

physician’s PDA. When the physician leaves the hospital, her

PDA continues to receive updates about the patient’s status so

she can monitor the patient even as she moves to the location of

her private practice.

3.2 Emergency Dispatch

The Greater Boston area is supported by sixty-eight [21, 29]

independent ambulance companies and twenty-six [28] “acute

care” hospitals. Currently, ambulance operators are responsi-

ble for selecting the destination to which to transfer a patient,

subject to availability in the surrounding area emergency rooms.

This dispatch is conducted in a somewhat ad-hoc, manually in-

tensive manner.

In the world we envision for sensor-based emergency care,

ambulances are equipped with a number of medical sensors that

can be affixed to patients and that communicate with PDAs car-

ried by the EMTs. The sensors and PDAs also communicate data

to laptop-class computers in ambulances. Emergency rooms’

(ER) resource availability, i.e., number of available beds, pres-

ence of particular medical specialists, etc., are managed by sys-

tems in the ER.

The Hourglass infrastructure provides a mechanism by which

an Emergency Dispatch application receives data about patients

in the ambulances as well as data about characteristics of Emer-

gency Rooms. Such a Dispatch application might also receive

data from non-medical organizations such as the Department of

Transportation systems that provide up-to-the-second traffic re-

ports, which can also be factored into dispatch decisions.

As EMTs from the various ambulances treat patients, the Dis-

patch application synthesizes data from the ambulances and ERs

to direct patients to the hospital that is both geographically close

and has the capabilities to provide services for the patient in

question. For example, a patient suffering a heart attack would

be directed by the Dispatch application to a heart catheritization

lab facility, which may be further away than the nearest com-

munity hospital. Alternatively, the Dispatch application might

direct the ambulances based on ER bed availability. If the near-

est ER is refusing new admissions, a different facility would be

selected.

As ambulances travel to and from medical emergency sites,

their wireless connections may be sporadic if they move in and

out of range of wireless base stations. The Hourglass infrastruc-

ture should support mechanisms for detecting and notifying ap-

plications (such as the Dispatch application) when this happens.

Moreover, the infrastructure should re-construct the flow of data

from the ambulance to the interested Dispatch application when

the ambulance is within range again.

With these applications in mind, we now present the Hour-

glass architecture and then our particular instantiation of that ar-

chitecture.

4 Hourglass Architecture

In this section we describe the architecture of Hourglass. Many

of the design decisions we have made in Hourglass stem from

three fundamental requirements.

First, in a data collection network certain nodes are Internet-

connected with reliable high speed links, whereas others are ac-

cessible only over low-bandwidth, unreliable wireless links (e.g.,

to an ambulance). The Hourglass architecture must be able to

cope with this heterogeneity of connectivity and explicitly sup-

port the disconnection of wireless nodes.

Second, data producers and some data services are com-

pletely hidden within application-specific or proprietary sensor

networks. We wish to provide access to data and services in

these networks, but also wish to minimize the constraints that

we impose upon them.

Third, many applications, such as medical patient monitor-

ing, require the timely delivery of data to interested parties once

the data producers have been identified in the system. As a re-

sult, we separate control and data paths in the architecture and

ensure that the data flow mechanism is efficient.

The rest of this section is organized as follows. We first intro-

duce the components of the Hourglass infrastructure and explain

how data is routed from sensor networks to application that have

registered interest in the data through circuits. We then explain

how circuits are created and disconnected. Finally, we describe

how new services can be seamlessly added to the infrastructure.

4.1 Components

An example of an Hourglass system is given in Figure 1. It

consists of a number of components, which we will introduce

briefly here and then describe in more detail, below.

Data flow in Hourglass is based on a circuit, which is a data

path through the system that ensures that an application receives

the data in which it is interested. A circuit includes intermediate

services that perform operations on the data. Services are or-

ganized into distinct service providers that capture a single ad-

ministrative domain. Each service provider includes a circuit

manger, which is responsible for the set-up and management of

circuits, and a registry, which aids service discovery.

Hourglass services have well-specified interfaces that are

used to communicate with other services, the circuit manager,

and the registry for circuit establishment, data routing, circuit

disconnection, and service discovery. An existing entity can join

Application

Operator

Registry

Circuit

Manager

Registry

Circuit

Manager

Data

Producer

Non-Hourglass Sensor Network

Disconnected

Circuit Link

Service Provider 2

Service Provider 3

Registry

Circuit

Manager

Data Producer

(Proxy)

Service Provider 4

Consumer

Registry

Circuit

Manager

Service Provider 1

Figure 1: Example of an Hourglass system with one realized circuit. A circuit can be described by a set of circuit links between service providers
(SPs) and the schema of data traveling over these links.

an Hourglass system by implementing the core functionality re-

quired by these interfaces. Sensor networks and applications

may decide to attach to the Hourglass system through proxy ser-

vices in order to avoid the cost of running an Hourglass service

natively.

4.1.1 Circuit

A circuit is a fundamental abstraction that links a set of data

producers, a data consumer, and in-network services into a data

flow. A circuit enables applications to express their data needs

at a high level and pass the responsibility for creating data flows

to the DCN, thus simplifying the implementation of sensor data

applications. Data injected into the circuit by data producers is

processed by intermediate services and then delivered to data

consumers.

As illustrated in Figure 1, a circuit in Hourglass is a tree with

a data consumer as the root, and data producers as leaves. Data

flows towards the consumer of the circuit and is processed at in-

termediate nodes. Nodes in the circuit can refer to Hourglass

services in the system by including a service endpoint that binds

a given circuit node to an actual instance of a service. A service

endpoint could be implemented as an IP address and port num-

ber. Multiple circuits can share particular physical realizations

of the circuit links within a circuit, avoiding duplicate transmis-

sion of data that is used by more than one circuit. A circuit also

has a globally unique circuit identifier that is used to refer to it

throughout the system.

Circuits are established by the circuit manager according to

requests from applications. An established circuit is associated

with a lease and needs to be refreshed periodically, otherwise

it is removed from the system. Such a soft-state approach pre-

vents the build-up of stale circuit information after application

failures.

Note that, due to the heterogeneity of the environment, Hour-

<circuit>

<consumer endpoint="192.168.0.1:16800">

<operator topic="BostonEMSDispatch">

<outschema v="bems:dispatchDecision1.0"/>

<inschema0 v="bems:hospitalAvail1.0"/>

<producer topic="BostonHospAvail"

endpoint="192.168.15.4:16800"/>

<outschema v="bems:hospitalAvail1.0"/>

</producer>

<predicate company="HMSAmbulance"/>

</operator>

</consumer>

</circuit>

Figure 2: Example of a partially-realized circuit definition in the
Hourglass Circuit Description Language (HCDL). A consumer at ad-
dress 192.168.0.1:16800 wants data from a specific hospital endpoint
at 192.168.15.4:16800, after it has been processed by any service regis-
tered on the BostonEMSDispatch topic that matches the predicate
company="HMSAmbulance".

glass does not enforce a global data model for all circuits. In-

stead, a single circuit can combine different data models, such

as partially-structured or relational data, with a range of data

schemas, as long as the services involved are able to understand

each other, for example, by translating between data representa-

tions.

Circuit Definition. The structure of a circuit is specified in the

Hourglass Circuit Descriptor Language (HCDL). The HCDL is

an XML-defined language that applications use to define desired

circuits to be established by Hourglass. An HCDL circuit de-

scription can exist in three forms: the nodes of an unrealized

circuit are not tied to actual service instances in the system, a

partially-realized circuit contains some of the bindings, whereas

a fully-realized circuit includes all of the service endpoints for

the services used by the circuit. An unrealized circuit includes

constraints on the services that may be instantiated at a certain

node in the circuit. It is the task of the circuit manger to resolve

an unrealized circuit into a realized one subject to the constraints

imposed by the application. These constraints come in the form

of topic and predicate statements, which will be discussed in

Section 4.1.2.

An example of a partially-realized circuit defined in the

HCDL as created by a data-consuming application is given in

Figure 2. The example shows a circuit between a hospital

providing information about ER availability and a consumer

interested in the dispatch decisions concerning that hospital.

There are three components in the circuit: a consumer end-

point, the BostonEMSDispatch service, and a producer end-

point. The consumer endpoint has been instantiated at IP address

192.168.0.1:16800. The dispatch service takes its input from a

data producer (hospital) that has been instantiated at IP address

192.168.15.4:16800). The input and output schema for the dis-

patch service have been defined, but the service itself has not

been realized.

Circuit Disconnection. Often applications benefit from not

having to deal with temporary disconnection of distributed com-

ponents explicitly. In Hourglass, a circuit can hide the fact that

some circuit links are temporarily disconnected from the data

consumer. During disconnection, data can still flow through the

remaining parts in the circuit. For example, when a data pro-

ducer in an ambulance leaves the coverage area of the wireless

network, interested parties in hospitals will still receive patient

data from the remaining ambulances. However, depending on

application semantics, a data consumer may register to be in-

formed about the disconnection of data producers in its circuit,

which can then result in the failure or reconfiguration of the cir-

cuit.

The disconnection of circuit links is monitored by a heartbeat

infrastructure because TCP connection timeouts are too coarse-

grained for timely detection of disconnection. Heartbeat mes-

sages are exchanged between the nodes on a circuit link to detect

loss of communication between services. The heartbeat interval

dynamically adapts to the disconnection behavior of a circuit

link. Data messages are treated as implicit heartbeats to reduce

unnecessary load on the circuit.

4.1.2 Service

The nodes in a circuit are realized by Hourglass services. A ser-

vice can function as a pure data producer, a pure data consumer,

or both. Services that implement both the producer and con-

sumer role in a circuit are called operators. In the emergency

dispatch scenario introduced in Section 3, the ambulances and

the hospital availability services are data producers, whereas the

doctors in the hospital are data consumers. The ambulance dis-

patch service is an operator because it consumes data that comes

from the ambulances and the availability services and produces

data delivered to doctors.

A service must implement two functions to produce and con-

sume data to and from a circuit. A produce call takes a new

data item and inserts it into the circuit. A consume call-back

is invoked when a new data item was received by the service.

This interface makes the implementation of new services simple

because the complexity of having many circuits attached to a ser-

vice is hidden. The multiplexing of data to and from connected

circuits is handled entirely by an Hourglass service layer.

If the data entering the Hourglass system is coming from

a sensor network, individual sensors will not have enough re-

sources to implement an Hourglass data producer. In this

case, they interface with the rest of the data collection network

through a data producer proxy. The proxy functions as the entry

point for data from the wireless sensor network and implements

a private communication protocol with the sensor infrastructure.

In Figure 1, Service Provider 4, which could be a patient ward

with a attached wireless sensor network that produces vital sign

data, uses a data producer proxy to connect to Hourglass. In

contrast, the data producer in Service Provider 3 includes a na-

tive implementation of an Hourglass service because it is not

resource constraint.

The services in Hourglass range between generic services

that are useful to a wide-range of applications and application-

specific services, which are only meaningful to a single appli-

cation. Generic services may or may not be tied to a particular

data model. Examples for generic services are a buffer service, a

filter service for XML data, and a persistent storage service. An

ambulance dispatch service or a service to process EKG data to

identify a cardiac event are application-specific services. Next

we highlight the features of some generic services in more de-

tail.

Generic Services. A buffer service is responsible for buffer-

ing data during disconnection and delivering it to the rest of the

circuit after reconnection. It ensures that data sent over discon-

nected circuit links is not lost. To avoid data loss until discon-

nection has been detected by the heartbeat infrastructure and re-

ported back to the application, the buffer service keeps a running

buffer of data items that were sent through the circuit. When a

new circuit is created whose semantics require that it be resilient

in the face of disconnection, buffer services are inserted at wire-

less circuit links that are prone to disconnection by the circuit

manager.

A filter service restricts the data that flows through a circuit

according to a filter expression. This service depends on the data

model used in the circuit. For example, a filter service that pro-

cesses XML data can use an XPath expression [35] for filtering.

To reduce the bandwidth consumption of a circuit, filter services

should be located close to data producers. The circuit manager

can relocate filter services in order to optimize the efficiency of

a circuit.

Another generic service is a persistent storage service that

enables applications to keep a history of the data that flowed

through a circuit. It supports a data producer interface so that

consumers can replay past data along new circuits.

Topics and Predicates. Topics are a convenient way to par-

tition the space of available services in a data collection net-

work. A topic is a “mutually-agreed-upon” way to describe

semantically-related services. It is “mutually-agreed-upon” by

the entities wishing to publish the existence of, and subscribe to,

some service. Circuits can reference a topic in lieu of a service

endpoint, and the circuit manager and registry within Hourglass

will find a service endpoint that realizes this topic request.

The agreement to use a particular topic is not handled by

Hourglass; the idea is that sets of users of the system will agree

on appropriate topic names.

One previous system with a similar topic notion restricted the

topics to be geographically-based [8]. Such an approach makes

sense when services are tied to geographic locations and when a

system is used for one type of service, neither of which apply to

Hourglass.

Requiring this out-of-band agreement is not unusual. Con-

sider the telephone book as an analogy: looking up a name in

the yellow pages works even in the absence of explicit mutual

agreement. If one is looking for a wedding singer, one might

look under topics “Entertainment” or “Wedding Services”.

Note, however, that many different services can be found in

“Wedding Services”. Since many services may exist on a par-

ticular topic, finding a specific service is aided through the use

of predicates. Predicates are logical statements asserting some

service property, or feature of the data generated by this service.

For instance, in the telephone book example, a predicate could

take the form of dj music="80s".

When a service announces itself to the Hourglass system, it

affiliates with one or more topics and further describes itself us-

ing a set of predicates. When a partially- or unrealized HCDL

circuit descriptor is given to the circuit manager, it can contain

predicates that will be used to match services. This evaluation

is performed by the registry in response to a message from the

circuit manager.

In both the telephone book and in Hourglass, more than one

service may match the set of predicates and topics. In this case,

it is up to the circuit manager to decide which service to use. A

circuit manager could make this decision randomly or more in-

telligently, perhaps by load-balancing or picking geographically

close servers. (Quality of Service information is returned via the

registry.)

4.1.3 Service Provider

The services in Hourglass are arranged into service

providers (SPs). A service provider is comprised of one

or more Hourglass nodes. Each service provider is contained

in a single administrative domain and an SP enters and leaves

the Hourglass system as a unit. An SP must support a minimum

functionality in the form of a circuit manager and a registry

to join an Hourglass system. Even though the minimum

functionality required by a service provider is small, a set of

additional services is suggested. In particular, SPs that wish to

retain data across disconnection must provide a buffer service.

A filter service enables data consumers to restrict the data flow

at the source, thus potentially saving wireless bandwidth.

In general, service providers can be heterogeneous in size.

In the medical domain, an ambulance and the sensors associated

with it would comprise a single service provider that disconnects

when the ambulance goes out of range. A hospital or a dispatch

service might act as another service provider. In an ambulatory

monitoring application, the PDA carried by a patient could act

as a lightweight service provider that includes a data producer of

medical data. Four service providers are shown in Figure 1.

Some service providers are relatively stable in that they are

well-connected and rarely leave the system. Other SPs are less

stable and are expected to become disconnected. A service

provider is associated with a maximum disconnection interval.

Service providers with an interval of zero form the stable core

SPs of the Hourglass system and will only involuntarily discon-

nect due to failure. Recalling our target applications, hospitals

and dispatch services are examples of stable SPs, while laptops

in ambulances are examples of less stable SPs, as they are ex-

pected to periodically move out of connectivity range. When a

service provider is disconnected from the rest of the system, cir-

cuits among its local services can still be formed using the local

circuit manager and registry.

4.1.4 Circuit Manager

The circuit manager (CM) takes a circuit request in HCDL (see

Figure 2) as input and manages the circuit creation process.

The CM must take or create a fully-realized circuit descriptor

and instruct the appropriate service endpoints to form links to

each other, possibly with some implementation-specific recov-

ery mechanism if an error occurs. Once all links are formed, the

CM signals services to start data creation and processing.

In more detail, the CM’s job starts when given an HCDL doc-

ument. If the HCDL descriptor is not fully-realized, meaning

that at least one of the operators in the circuit has been described

abstractly rather than tied to a particular implementation point,

the CM must send a lookup request to the registry to get endpoint

addresses for these operators. As discussed in Section 4.1.2, a

list of service matches is returned to the CM, and one match-

ing service is picked. (If no match is found, the circuit creation

fails.)

The CM is capable of re-structuring a circuit request to better

fit current system usage. For instance, the circuit manager may

choose to insert a buffer service when a link appears to discon-

nect frequently and an application wishes not to lose data. (In

the future, these loss tolerances could be expressed in the HCDL,

though an implementation of the CM could use an alternate al-

gorithm to decide what it thinks an application can tolerate.) An

intelligent decision by a capable CM is possible since much of a

service’s QoS information, such as load and connectivity infor-

mation is known to that service, and this information is refreshed

at some service-specific frequency into the registry.

Every service provider must have a circuit manager so that

if an SP gets disconnected, it and other CMs could each act to

recover from a potential inconsistencies in state due to the dis-

connection.

Finally, a circuit manager is responsible for inserting the run-

ning circuit details into the registry under a special control topic

so that other circuit managers can find and optimize this circuit.

Intelligent circuit optimization is a subject of future work.

4.1.5 Registry

The registry is a distributed repository of information about the

various services and circuits. It is best described as a distributed

lookup service, and could be implemented in a number of ways

with a number of technologies [17, 23, 30, 33].

Service information is stored in the registry so that applica-

tions can locate interesting producer endpoints, and so that the

circuit manager can realize portions of a circuit. Existing circuits

are stored in the registry to allow circuit managers (optionally)

to optimize already running services.

Every service provider must have a registry. In addition to

the disconnection tolerance, this allows connected registries to

share the registry management tasks. For instance, if the registry

backing scheme is a distributed hash table, one can imagine the

registries coordinating to find the more stable members, and then

dividing topic ownership among these members.

In addition to performing topic management (which can in-

clude splitting the load, replication, etc.), the registry must pro-

vide predicate filtering. As described in Section 4.1.2, a cir-

cuit descriptor can constrain an unrealized entry with these logic

statements. When the circuit manager attempts to realize a ser-

vice, it forwards these predicates to the registry, which then must

perform a matching algorithm. An advanced registry could al-

low interesting predicate operators over a wide variety of data

types, whereas a minimal registry is required to support equality

on string and integer data types.

Because of the problem of node disconnection, and because

it should be possible for connected subsets of services to con-

tinue operating even after a disconnection, a registry must al-

ways store information for local services, in addition to what-

ever global responsibilities it may have.

4.2 Service Announcement

When a service is activated within a service provider, it must

declare its existence to the local registry. It does this with an

announce message, which must contain a communication end-

point, topic name, and a lease time declaring how long it should

stay registered in the system. (We use leases as a way of cleaning

up in case of long disconnection.)

In addition, a service announcement can contain predicates

that describe that service. These predicates should hold true for

the duration of the lease, and a service should try not to violate

these predicates when publishing data. (For instance, a data pro-

ducer backed by a sensor might declare itself always to publish

data from Cambridge. If a sensor is moved out of Cambridge

while the lease is still active, the stored registry information will

be incorrect.) For this reason, it is often important that an appli-

cation employs a filter service in their circuit to ensure that only

correct data is propagated, and it is possible that a registry entry

will be out of date.

Finally, the announcement can contain quality of service in-

formation, such as the service’s current load, uptime, etc. This

can be used by intelligent circuit managers to perform optimiza-

tion.

Once the service has announced itself to the registry, it must

periodically renew its lease with the registry, but is otherwise

ready to receive circuit connections.

4.3 Circuit Establishment

The establishment of a new circuit is initiated by an application.

To interact with Hourglass, the application has to implement an

Hourglass service. This happens either directly if the application

is hosted on a machine with sufficient resources, or indirectly by

using a proxy service that manages the Hourglass interaction on

behalf of the application. The protocol for circuit establishment

is illustrated in Figure 3.

 Consumer

 Operator

 Producer

 Circuit

Manager

 Registry

L
o
o
k
u
p
(p

ro
d
u
c
e
r)

P
ro

d
u
c
e
r E

n
d
p
o
in

t

C
re

a
te

 C
ir
c
u
it

L
o
o
k
u
p
(o

p
e
ra

to
r)

O
p
e
ra

to
r E

n
d
p
o
in

t
L
in

k
 C

irc
u
it

P
in

g

L
in

k
e
d
 C

ir
c
u
it S

ta
rt D

a
ta

 F
lo

w

D
a
ta

P
in

g D
a
ta

2

6

7

8

9

54

31

Figure 3: Process of Circuit Establishment

The data consumer that wishes to establish a new circuit first

creates an unrealized HCDL description of the desired circuit.

Then, the data consumer must retrieve a suitable set of data pro-

ducers for the circuit from the registry (step 1). The data con-

sumer passes a query to the registry and receives a result set of

matching data producers back (step 2). In case this set is too

large, the query can be refined iteratively with stricter matching

predicates. The consumer may also decide to realize some of the

operators in the circuit to particular instances of Hourglass ser-

vices in the system. The data consumer now updates the circuit

definition to include the data producers and contacts the circuit

manger with a circuit creation request that includes the partially-

realized circuit definition in step 3.

It is the responsibility of the circuit manager to realize the

remaining services without service endpoints in the circuit. It

does this through lookups to the registry (steps 4–5). After the

circuit description is fully-realized, the circuit manager contacts

the involved services (step 6). The services receive relevant sub-

sets of the full circuit description and form circuit links to their

parent and children (step 7). After that, the services report the

successful creation of circuit links back to the circuit manager in

step 8. After verifying that all circuit links for the circuit were

established, the circuit manager initiates the flow of data in that

circuit (step 9).

During the lifetime of the circuit, the data consumer has to pe-

riodically refresh the circuit with the circuit manager to prevent

the expiration of its lease. Note that the application is shielded

from the complexity of dealing with the circuit set-up by inter-

acting with the circuit manager instead of individual services.

4.4 Data Routing

Data items are routed from producers to consumers along the

paths created by circuits. A data item is associated with list of

circuit identifiers of the circuits that it follows. This connection-

based routing approach makes the routing decision at each node

trivial, resulting in a low latency overhead for data dissemination

in Hourglass.

By default, a produced data item will follow all connected

circuits of a service. However, an Hourglass service has the op-

tion of exercising control over the association of data items with

circuits by explicitly stating the list of recipient circuits identi-

fiers. The multiplexing of data items to circuits is done by the

Hourglass service layer. The service layer reuses physical con-

nections between services as much as possible. It also ensures

that a data item, which is associated with multiple circuits con-

nected to the same service endpoint, is only sent once through a

physical network link.

4.5 Circuit Disconnection

When a service provider is disconnected from the rest of the

Hourglass system, local services notice that the lack of heart-

beat messages on their circuit links. A service may initiate an

application-specific action, such as buffering data on the circuit,

when it detects disconnection. Upon reconnection, the normal

flow of data through the circuit can resume.

When the circuit manager loses connectivity to outside com-

ponents, it prevents local services from setting up circuits involv-

ing unavailable service providers. The creation of local circuits

within the SP is unaffected by disconnection, so that, for exam-

ple, a disconnected ambulance can still disseminate sensor data

from a local EKG to a monitoring station within the ambulance.

This means that a disconnected registry is also able to provide

information about local services and circuits and supports the

announcement of new local services. The local registry recon-

ciles its state with the global registry when the SP rejoins the

Hourglass network, as mentioned in Section 4.1.5.

5 Implementation and Test-Bed Environment

In this section, we describe the implementation of the Hourglass

system that we have developed and demonstrate how the design

decisions we have made address our target application character-

istics. The implementation is written in approximately 10, 000

lines of Java. It consists of a circuit manager, a registry, an ab-

stract service package that facilitates the implementation of new

services, and several concrete services, such as a buffer service, a

filter service, and various data producers and consumers. We im-

plemented our Hourglass prototype on top of ModelNet [34], an

emulation environment for large-scale distributed systems. This

enabled us to set up experiments with a significant number of

machines on a non-trivial network topology. It will also lead to

simple deployment in the future, as all communication already

travels over standardized channels. Next, we will describe the

implementation of the main Hourglass components.

The implementation of an Hourglass service has three layers,

1. an application layer that contains application-specific data

processing,

2. a service layer that implements generic Hourglass service

functionality, and

3. a messaging layer that is responsible for communication

via TCP connections.

The bottom two layers are provided by the abstract service

package and are reused between service implementations. Since

our implementation is constrained by the capabilities of Model-

Net and our physical hardware, our goal was to keep the number

of required threads and open TCP connections as low as possi-

ble. For this, we use asynchronous I/O for the messaging layer,

enabling us to handle a large number of connections with few

threads. The messaging layer also maintains a pool of open TCP

connections to other services, circuit managers, and registries

that can be reused on demand. Heartbeat messages verify the

liveness of these connections and generate an up-call into the

service layer when disconnection or failure has occurred.

For simplicity of implementation, our circuit manager and

registry are also implemented as Hourglass services, which un-

derstand a richer set of control messages. Our circuit manager

and registry are currently quite simple. Our CM, for instance,

does not perform any optimization, and must be given explicit

references to buffer services.

The registry is implemented using hashes of topic names.

On receiving an announcement, a registry adds the entry into

its local store and forwards the request to the node that is cur-

rently the root of the hash. Because nodes in the core are as-

sumed to exhibit low churn rate, we opted for low-latency one-

hop lookups [12]. Disconnected nodes not in the core forward

announcements when they become reconnected to the core and

they are not used as roots of topics. No sophisticated indexing

mechanisms are employed by the registry implementation for

predicate matching of requests in the current system.

ModelNet gives the illusion of many network client interfaces

connected to a network core. In our topologies, there are 50 vir-

tual routers in the core that can be configured to provide different

link characteristics such as latency, loss, and bandwidth limita-

tions. In addition, we were able to use ModelNet tools to in-

ject faults into the network in real-time during our experiments.

Thus, only through heartbeat messages were nodes able to dis-

cover that links had failed, as would be the case in deployment.

The core is run on a network of FreeBSD machines, to which

a number of Linux client machines are attached. Our environ-

ment contained eight IBM Blades each with two hyper-threaded

processors and four GB of RAM. All of the machines are con-

nected via a 1 gigabit switch. While each client is capable of

supporting many network interfaces and running many clients,

we ensured that all traffic between different address endpoints

running on the same physical host was routed through the core.

We also ensured that the physical network and core machines

were never saturated during our experiments, which would have

led to an artificial loss of packets.

6 Evaluation

We evaluate our system on two levels: The first, most basic cri-

teria is that our test-bed performs well enough to support inter-

esting experiments by us (and by future researchers), and that

our implementation algorithms scale well to reasonably large

experiments. As described in Section 3, our first implementa-

tion targets a metropolitan medical scenario. We expect that the

number of concurrent circuits to be in the thousands, the number

of services to be in the hundreds, and the number of services in

use by each circuit to be in the low single digits.

The second, and more interesting evaluation, has to do with

functionality of our data collection network implementation. We

address this by implementing a sophisticated scenario from the

Connection Type Max. Supported Circuits

GPRS 12

Wireless 802.11b 2424

100-base-T LAN 32328

Figure 4: Maximum number of circuits that are supportable given a
connection type. This assumes an 80% link utilization and that heart-
beats are exchanged once every three seconds.

medical domain, and evaluate its operation under disconnection.

6.1 Scalability

Our goal in evaluating performance is a sanity check to run large

experiments. Our experimental methodology was to set up a

series of experiments in our test-bed running on the ModelNet

emulation, and verify that our implementation scaled as we in-

creased the size of the experiment. The absolute numbers given

in this section are meant to convey the overhead of our current

test-bed, which primarily comes from Java object serialization,

which we used for simplicity in development. As we will show,

the encoding overhead is acceptable.

Circuit setup and overhead is verifiably light. Figure 5 shows

the process of circuit creation, instrumented at points to show

elapsed time. For a minimal circuit creation, in which a con-

sumer knows and connects to a single producer endpoint, a con-

sumer sends a 4490-byte request to the circuit manager.

The circuit manager sends a linkCircuit messages to each par-

ticipant in the circuit. The minimal linkCircuit request is 1720-

bytes. A producer responds to the linkCircuit with a 3290-byte

linkedCircuit response. Once the circuit has been established,

the circuit manager sends a 3412-byte message to start the cir-

cuit, and data flows from the circuit to a consumer, perhaps via

one or more operators.

While the circuit is active, each set of endpoints on a cir-

cuit link exchange 464-byte heartbeat messages. The heartbeat

period is a tuneable parameter, but is on the order of several sec-

onds. Table 4 shows the maximum number of circuits that are

supportable given a connection type, including TCP overhead,

conservatively assuming that each circuit is disjoint.

6.2 Implementation Functionality

The previous section demonstrated that the Hourglass protocol is

rather lightweight both in terms of elapsed time and bandwidth

consumed. In this section, we focus on the unique properties of

Hourglass: maintaining data flow in the presence of disconnec-

tion and the ability to place services arbitrarily within circuits.

The implementation of a new Hourglass service is simple as it

only involves the implementation of a production and consump-

tion interface. For the following experiments, we implemented

an ambulance dispatch scenario in our test-bed, in which ambu-

lances are connected via wireless links to an ambulance dispatch

service. The ambulance dispatch service receives vital sign data

from patients in ambulances and makes a dispatch decision for

the ambulance depending on hospital availability information,

coming from a number of hospitals. The patient data is then sent

to the allocated hospital, while the ambulance is in transit. Note

that it is important that ambulances are dispatched and patient

 Consumer

 Operator

 Producer

 Circuit

Manager

C
re

a
te

 C
ir
c
u
it

L
in

k
 C

irc
u
it

P
in

g

L
in

k
e
d
 C

ir
c
u
it S

ta
rt D

a
ta

 F
lo

w

D
a
ta

P
in

g D
a
ta

Timing
48ms

55ms
68ms

139ms
144ms (~160ms + data

creation time)

Figure 5: This figure shows the logical structure of a simple circuit
creation including the latency breakdown for each component of the
process. Numbers are an average over 500 circuit creations, with a low
data variance. An application creates a circuit by contacting the circuit
manager. The circuit manager creates links between each set of adjacent
services in the circuit. (Any unknown circuit nodes are realized with
the registry, an optional step that is not shown. If required, the registry
request/response adds a computation delay that is linear in the number
of services registered in this registry and a communication delay that
is linear in the number of matching services.) The circuit components,
once coordinated with each other, report their ready status to the circuit
manager, which then triggers data flow through the circuit.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 20 40 60 80 100 120 140

C
ir
c
u

it
 L

a
te

n
c
y
 i
n

 m
s

Time in s

Links Disconnected

Disconnection Detected

Links Reconnected

Reconnection Detected

Figure 6: In this microbenchmark experiment, 2 circuits are created
by doctors in two different hospitals. After around 72 seconds into the
experiment, all links to ambulances are taken down. This is detected by
the buffer service, which stores ambulance patient data until the links
are restored at around 108 seconds. Whereas disconnection detection
occurs quickly due to our heartbeat protocol, the reconnection is depen-
dent on TCP’s reconnection strategy, which is part of the TCP/IP stack
implementation.

data delivered even when some ambulances are disconnected

from the system. Buffer services in the ambulances ensure that

no data is lost during periods of disconnection. The circuits in

this scenario are set up by doctors on duty in the hospital. All es-

 0

 50

 100 100%

50%

0%

 150

 200

 250

 0 50 100 150 200 250 300

M
e

s
s
a

g
e

s

F
ra

c
tio

n
 o

f C
o

n
n

e
c
te

d
 W

ire
le

s
s
 L

in
k
s

Time in s

Figure 7: This experiment demonstrates disconnection behavior on a
slightly larger scale than that of Figure 6. This system consists of 6 cir-
cuits created by doctors to 3 ambulances. Like the previous figure, the
circuit manager has inserted buffer services running in each of the am-
bulance service providers. Unlike the previous figure, here ambulances
are brought in and out of the system (shown in the lighter line read on
the right-hand axis.) The darker line plotted against the left-hand axis
shows the messages queued in the system as links go down and come
back up. At time t = 46s, the first link goes down and the first buffer
service starts to fill. The remaining links to other ambulances soon fol-
low, causing the slope of the messages queued line to increase. Over
time, on re-connections, the buffers dump their data to the consumer.
At time t = 242s, all ambulances are once again in range. Because
of TCP back-off, it takes the system about 25s to discover the final
re-connection, and all data is finally dumped. buffer services

tablished circuits re-use the data connections to ambulances and

can be expressed as concise HCDL XML documents.

7 Future Work

Our prototype system addresses only a few of the important

research problems in this domain; much remains to be done.

Currently, we perform little optimization during circuit manage-

ment; however, this is a rich area of research. In the abstract,

circuit optimization is similar to the problem of query optimiza-

tion in a distributed database system. Conventional database

query optimization techniques typically rely upon a great deal

of global knowledge about the system, and this is neither present

nor practical in our scenario. Our participants are (potentially)

in separate administrative domains and are subject to changes in

workload that arise from a variety of different sources (e.g., CMs

may be operating at a large number of SPs and a single SP pro-

viding a hot service might suddenly become overloaded). Cre-

ating and recreating circuits to provide reliable data and quality

of service guarantees will be an interesting challenge.

Although we target the Hourglass architecture for global

scale, our current implementation faces severe limitations. For

example, having all filter services resolve to a single location in

the registry is both inefficient and impractical. We expect that in-

corporating hierarchical SPs (SuperSPs) that can act as a single

SP will address this problem and allow us to scale significantly.

Our current circuit semantics are designed for long-lived,

streaming data. However, there are applications that can ben-

efit from short-lived message exchanges. We will try to unify

these semantic differences by including efficient content-based

routing algorithms for datagrams [25] in addition to circuit es-

tablishment.

As is the case in most system designs, naming also presents

a new set of challenges. The current Hourglass naming scheme

(i.e., topic subscriptions) assumes a priori coordination between

data producers and data consumers. Although practical for our

current scale, this will break down under greater scalability and

more heterogeneous use. Attacking this without getting drawn

into trying to solve the full ontology and schema integration

problems will require carefully selected trade-offs.

8 Conclusions

We have presented the Hourglass infrastructure, which addresses

a number of challenges that must be overcome in order to enable

the widespread deployment of sensor network applications. We

have designed an architecture and testbed that maintain the po-

tentially long-lived logical flow of data between producers and

consumers in the face of intermittent connectivity and tremen-

dous variation in participant capabilities. The circuit manager

and registry together construct these logical data flows, provid-

ing access to data typically hidden within sensor networks, and

taking advantage of the differing connectivity qualities between

participants in the system. The architecture provides the ability

to inject generic or application-specific services into these log-

ical data flows efficiently and robustly. Many more open prob-

lems exist, but the Hourglass infrastructure provides a flexible

framework with sufficient functionality to enable exploration of

the next generation of research questions in this area.

References

[1] MobiHealth Project IST-2001-36006, EC programme IST.
http://www.mobihealth.org, 2002.

[2] S. Bhola, R. Strom, S. Bagchi, Y. Zhao, and J. Auerbach. Exactly-
once Delivery in a Content-based Publish-Subscribe System. In
2002 International Conference on Dependable Systems and Net-
works (DSN 2002), Bethesda, MD, June 2002.

[3] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and Evaluation
of a Wide-Area Event Notification Service. ACM Transactions of
Computer Systems, August 2001.

[4] R. Chand and P. Felber. A scalable protocol for content-based
routing in overlay networks. Technical Report RR-03-074, Institut
EURECOM, February 2003.

[5] S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin,
J. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman,
F. Reiss, and M. Shah. TelegraphCQ: Continuous Dataflow Pro-
cessing for an Uncertain World. In First Biennial Conference on
Innovative Data Systems Research (CIDR 2003), Asilomar, CA,
January 2003.

[6] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagraCQ: A Scalable
Continuous Query System for Internet Databases. In SIGMOD /
PODS 2000, Dallas, TX, May 2000.

[7] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. Zdonik. Scalable Distributed
Stream Processing. In First Biennial Conference on Innovative
Data Systems Research (CIDR 2003), Asilomar, CA, January
2003.

[8] A. Deshpande, S. Nath, P. Gibbons, , and S. Seshan. Cache-and-

Query for Wide Area Sensor Databases. In SIGMOD 2003, San
Diego, CA, June 2003.

[9] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The many
faces of publish/subscribe. In ACM Computing Surveys (CSUR),
2003.

[10] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid services for
distributed systems integration. IEEE Computer, 35(6), 2002.

[11] D. Gagliano and Y. Xiao. Mobile Telemedicine Testbed. Proceed-
ings of the American Medical Informatics Association (AMIA)
Fall Symposium, 1997. National Library of Medicine Project N0-
1-LM-6-3541.

[12] A. Gupta, B. Liskov, and R. Rodrigues. Efficient Routing for
Peer-to-Peer Overlays. In NSDI 2004, San Francisco, CA, March
2004.

[13] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Es-
trin, and D. Ganesan. Building efficient wireless sensor networks
with low-level naming. In Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP ’01), October 2001.

[14] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-
efficient Communication Protocols for Wireless Microsensor Net-
works. In Hawaii International Conference on System Sciences
(HICSS), Maui, Hawaii, January 2000.

[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pis-
ter. System architecture directions for networked sensors. In
ASPLOS-IX, November 2000.

[16] R. Huebsch, J. Hellerstein, N. Lanham, B. Loo, S. Shenker, and
I. Stoica. Querying the Internet with PIER. In VLDB’03, Berlin,
September 2003.

[17] Java Naming and Directory Interface (JNDI). http://java.
sun.com/products/jndi/.

[18] D. Johnson, D. Maltz, and J. Broch. DSR: The Dynamic
Source Routing Protocol for Multi-Hop Wireless Ad Hoc Net-
works. Addison-Wesley, 2001.

[19] V. Jones, R. Bults, and D. Konstantas. Healthcare pans: Personal
area networks for trauma care and home care. In Fourth Interna-
tional Symposium on Wireless Personal Multimedia Communica-
tions (WPMC), September 2001.

[20] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A Self-
Regulating Algorithm for Code Propagation and Maintenance in
Wireless Sensor Networks. In NSDI 2004, San Francisco, CA,
March 2004.

[21] Licensed Region IV Ambulance Services. http://www.

mbemsc.org/region/ambsvcs.htm.
[22] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The De-

sign of an Acquisitional Query Processor for Sensor Networks. In
SIGMOD 2003, San Diego, CA, June 2003.

[23] P. Mockapetris. Domain Name Standard: RFC 1034, November
1987.

[24] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,
G. Manku, C. Olston, J. Rosenstein, and R. Varma. Query Pro-
cessing, Resource Management, and Approximation in a Data
Stream Management System. In First Biennial Conference on
Innovative Data Systems Research (CIDR 2003), Asilomar, CA,
January 2003.

[25] G. Mühl, L. Fiege, F. Gärtner, and A. Buchmann. Evaluating Ad-
vanced Routing Algorithms for Content-Based Publish/Subscribe
Systems. In IEEE MASCOTS 2002, October 2002.

[26] Petascale virtual-data grids. http://www.griphyn.org/

projinfo/intro/petascale.php.
[27] P. Pietzuch and S. Bhola. Congestion Control in a Reliable Scal-

able Message-Oriented Middleware. In Middleware 2003, Rio de
Janeiro, Brazil, June 2003.

[28] Region IV Hospitals. http://www.mbemsc.org/region/
hosp.htm.

[29] Region IV Map. http://www.mbemsc.org/region/

map.htm.
[30] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized ob-

ject location, and routing for large-scale peer-to-peer systems. In
Middleware, Heidelberg, Germany, November 2001.

[31] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
SCRIBE: The design of a large-scale event notification infrastruc-
ture. In NGC 2001, UCL, London, November 2001.

[32] Seti@home. http://setiathome.ssl.berkeley.edu.
[33] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-

ishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of the ACM SIGCOMM ’01 Confer-
ence, August 2001.

[34] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker. Scalability and Accuracy in a Large-
Scale Network Emulator. In Proceedings of 5th Symposium on
Operating Systems Design and Implementation (OSDI), Boston,
MA, December 2002.

[35] W3C. XML Path Language Version 1.0 (W3C Recommendation),
November 1999.

[36] Y. Yao and J. E. Gehrke. Query Processing in Sensor Networks. In
First Biennial Conference on Innovative Data Systems Research
(CIDR 2003), Asilomar, CA, January 2003.

[37] S. Zdonik, M. Stonebraker, M. Cherniack, U. Cetintemel, M. Bal-
azinska, and H. Balakrishnan. The Aurora and Medusa Projects.
In Bulletin of the Technical Committe on Data Engineering,
March 2003.

[38] H. Zhou and S. Singh. Content based multicast (CBM) in ad hoc
networks. In Proceedings of the 1st ACM international sympo-
sium on Mobile ad hoc networking & computing, Boston, MA,
2000.

