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ABSTRACT

Environmental variations induced by industrialization and climate change partially explain the 

increase in prevalence and severity of allergic disease. One possible mechanism is the increase 

in allergen production leading to more exposure and sensitization in susceptible individuals. 

House dust mites (HDMs) are important sources of allergens inducing asthma and rhinitis, 

and experimentally they have been demonstrated to be very sensitive to microenvironment 

modifications; therefore, global or regional changes in temperature, humidity, air pollution 

or other environmental conditions could modify natural HDM growth, survival and allergen 

production. There is evidence that sensitization to HDMs has increased in some regions of the 

world, especially in the subtropical and tropical areas; however, the relationship of this increase 

with environmental changes is not so clear as has reported for pollen allergens. In this review, 

we address this point and explore the effects of current and predicted environmental changes 

on HDM growth, survival and allergen production, which could lead to immunoglobulin E 

(IgE) sensitization and allergic disease prevalence. We also assess the role of adjuvants of IgE 

responses, such as air pollution and helminth infections, and discuss the genetic and epigenetic 

aspects that could influence the adaptive process of humans to drastic and relatively recent 

environmental changes we are experiencing.
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INTRODUCTION

The effects of environmental changes on our planet (for example climate change) have 

become more evident in governments and public health authorities during the last few 

years. Complex, multifactorial diseases such as allergic disease have been increasing during 

the last decade and there are reasons to believe that global and regional changes could be 

important determinants.1 Since symptoms of allergic disease are induced and triggered 

by allergens, it is possible that climate and other environmental influences on asthma 

prevalence are due to modifications of the persistence, quality and intensity of allergen 

exposure,2 leading to an increase in allergic responses and clinical symptoms. House dust 

mite (HDM) allergens are important risk factors for asthma3,4; indeed, they are the main 

risk factor for this disease in tropical regions.5,6 However, in contrast to pollen and fungal 

allergy,7-9 the impact of global environmental changes on natural HDM growth and allergen 
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production has not been completely evaluated. Also, it remains to be defined if there is an 

increase in sensitization to HDM allergens and its possible relationship with global or local 

environmental changes. To better understand these problems, this review starts with a brief 

presentation of immune responses to allergens and then explores: (1) the epidemiological 

trends toward HDM sensitization and mite-induced allergic symptoms; (2) the current and 

projected influence of environmental changes on HDM exposure; (3) the role of adjuvants 

of the immunoglobulin E (IgE) response to HDMs; and (4) the potential role of the genome 

and epigenome in adaptation to environmental changes. Regarding the potential and 

demonstrated impact of climate change on allergic diseases associated to pollen allergen 

exposure, several reviews are available.1,10

GENERAL ASPECTS OF IMMUNE RESPONSES TO HDM 
ALLERGENS

Adaptive immunity pathways

In genetically susceptible individuals, immune responses to allergens are mainly based on 

specific IgE and type 2 cytokines, such as interleukin (IL)-4, IL-5 and IL-13. Specific IgE 

primary responses to allergens are exclusively produced through the adaptive pathways 

of immunity. After sensitization, re-exposure to allergens initiates the IgE-dependent 

inflammatory cascade, which involves additional cells and ILs that actively participate in 

inflammatory reactions. Under shared environments and levels of exposure, only a small 

proportion of people have this response; therefore, genetic factors have been extensively 

investigated to conclude that they play an important role in Th2 immunity. It is well 

known that environmental conditions determine not only the adaptive Th2 response to 

allergens, but also the inception of allergic diseases.11,12 Although the association of HDM 

allergen concentration with IgE sensitization is not always positive,13,14 theoretically high 

environmental levels of these allergens will increase the probabilities that genetically 

susceptible individuals inhale them and become sensitized. The following factors, 

sometimes acting concomitantly, modulate the IgE primary response and sensitization 

process: the level of exposure (which in turn depends on protein production by the mite, 

permanence in the house dust and the air, and effects of other enzymes upon the allergen), 

persistence of exposure, age of exposed individuals, boosting the IgE responses by conditions 

such as air pollution or helminth infections, and stimulation of Th1 response by bacterial 

and other products. The impact of environmental changes on these factors might modify the 

frequency and strength of allergen sensitization; therefore, some of them will be assessed in 

this review.

Innate immunity pathways

Historically, the word allergen has been associated with a specific-IgE inducer or reactor. 

Thus, non-infectious inducers and IgE-binding components are generally considered 

allergens, which does not mean they have the same pro-inflammatory properties. Allergenic 

activity can be increased if the allergen can induce inflammation by other pathways, in 

addition to specific IgE. In fact, several innate non-IgE mediated inflammatory mechanisms 

have been reported, including the ability to bind adjuvants or to stimulate the innate 

immunity via toll-like receptors and other receptors of the bronchial epithelium.15-19 Der p 1 

and Der p 2 are good examples of molecules with high allergenic activity probably because of 

their ability to stimulate both the innate and adaptive pathways of allergic responses.
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EPIDEMIOLOGICAL TRENDS OF HDM SENSITIZATION

Since in the tropics HDM allergy is so frequent, it is worth investigating if recent environmental 

changes are affecting the sensitization there. The tropics are regions of the Earth surrounding 

the Equator, delimited in latitude by the Tropic of Cancer in the Northern Hemisphere and the 

Tropic of Capricorn in the Southern Hemisphere. In some regions, the tropical environment 

can extend beyond these parallels by the effect of oceanic streams and other geographical 

characteristics. These conditions provide the ideal warm and humid environment (25°C to 

30°C and a relative humidity of 70%) for the growth and multiplication of HDMs. There are 

differences in the distribution of HDM species; for instance, Blomia tropicalis is prevalent in 

the tropics and subtropics,20-26 while Dermatophagoides farinae and Dermatophagoides pteronyssinus 

reproduce at cooler temperatures and are inhabitants of homes worldwide.27 Lower winter 

temperatures in combination with heated homes reduce D. pteronyssinus rather than D. farinae 

because the latter is more resistant to reduced levels of relative humidity (RH) and can resist 

periods of drought, thereby it is more frequently observed in homes from the northeastern 

regions of North America, Northern Europe and Korea.28

Allergic diseases have increased worldwide, especially in tropical regions of Asia-Pacific, 

Africa and Latin America. Several hypotheses have been proposed to explain these trends,29 

but one interesting observation is increased IgE sensitization to HDMs in communities 

where allergies have been traditionally low prevalent. IgE reactivity to HDM allergens has 

been evaluated since the early 1990s in different regions of the world. Differences in study 

design, definition of sensitization (skin prick test vs.in vitro IgE determination),30 age range 

of patients (pediatric vs. adults), geographic location (urban vs. rural) and the clinical 

definitions of patients, precluded a systematic comparison on IgE sensitization frequencies 

over time. IgE sensitization to B. tropicalis among patients with respiratory allergies and 

asthma was already high (> 70%) in Brazil, Colombia, Cuba and Singapore in the early 1990s 

as it is so nowadays. However, the most remarkable changes in the characteristics of HDM 

fauna and sensitization rates have been detected in the subtropics and temperate areas 

including Taipei City in Taiwan,31 Southern China and India.32 It is possible that economic 

development influences these trends as suggested by the differences in HDM sensitization 

between rural and urban areas.

Due to their rapid industrialization, it is in urban developed regions of Asia where the increase 

in HDM sensitization has been more pronounced. Figures of HDM sensitization in China, 

Taipei, Indonesia and Korea reach about 80% to 90% in patients with respiratory allergies.33 

IgE sensitization to HDMs goes in parallel with the level of urbanization as shown in a study 

reporting positive IgE to D. pteronyssinus in 49.7% of individuals in rural Taiwan compared to 

60% to 80% in Taipei City. Similarly, Guangzhou (China) underwent a process of urbanization 

in recent years, which together with a subtropical climate provided appropriate conditions 

for HDMs to grow and reproduce, led to 80% frequency of HDM sensitization and potentially 

influenced the increasing trends of allergic diseases in that country.34

Increased rates of HDM sensitization are also prominent in urban areas of Africa, acting 

as a major risk factor in children living in affluent localities.35 HDMs are also important 

sensitizing allergens in deserted places, with sensitization rates of 76% in asthmatic patients 

and 62.3% of rhinitis patients from Kuwait.36,37 In contrast, the rates of HDM sensitization 

have decreased from 63.2% to 45.9% between 1992 and 2002 in Zagreb, while ragweed 

sensitization has significantly increased.38
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In addition to increasing rates, in the last 2 decades there has been a shift in the patterns of 

sensitization toward HDM species. In Singapore, B. tropicalis was the most prevalent HDM 

in 1999,21 but a study in 2005 revealed that Dermatophagoides species induced higher rates 

of sensitization in Singaporean children.39 However, it has also reported a remarkable bias 

toward IgE sensitization to HDM allergens in Singaporean adults with more equilibrated 

rates between Blomia and Dermatophagoides.6 For unclear reasons, Tyrophagus putrescentiae40 and 

B. tropicalis are not so predominant as before in developed Asian cities; probably, the decrease 

in hay, mold and agricultural societies is shifting the conditions toward the predominance of 

Dermatophagoides species. Similarly, in rural central Taiwan, the sensitization is more frequent 

to B. tropicalis than to D. pteronyssinus, which is predominant in urban Taipei.41

Differences in sensitization frequencies and the type of HDMs is recognized by young and old 

age groups, suggesting that environmental changes in the last decades may be affecting mite 

biology and thereby sensitization rates. For example, elderly subjects in Taiwan (over 70 years 

of age) have higher sensitization rates to T. putrescentiae (greater than that to D. pteronyssinus) 

compared to younger adults (< 40 years old).42 Other studies showed that this mite was the third 

most common in Korean homes,43 although its relevance seems to have changed overtime44,45 

and largely depends on the geographical region.46 Moreover, a comparative analysis of the 

sensitization rates to HDMs from 1980 to 2010 in Korea found that younger age groups (10-20 

years old) had HDM sensitization rates of 70% compared to 30% in the group above 60 years 

old.47 In addition, skin prick test reactivity to D. pteronyssinus (43.2%) significantly increased in 

the 1990s compared to the 1980s (33.4%), but did not differ between the 1990s and the 2010s.47 

HDM sensitization has also increased since 1994 in secondary schoolchildren from Guangzhou, 

China,48,49 although another study in the same region reported no difference in the overall 

prevalence of HDM sensitization (up to 85%) at 10-year intervals from January 2005 to December 

2014. This study also showed that HDM sensitization was higher in younger age groups (10-

19 years, 91.4%) than those above 50 years (68.5%).50 The fact that younger age groups had 

more IgE reactivity toward HDM allergens cannot totally be explained by immunosenescence, 

suggesting new patterns of HDM sensitization in emerging economies during the previous years.

THE CURRENT AND PROJECTED INFLUENCE OF 
ENVIRONMENTAL CHANGES ON HDM EXPOSURE

Factors affecting HDM growth and survival

Temperature

Evidence supports an increase in global temperature (https://climate.nasa.gov/).51 The most 

immediate consequence is that tropical environments will expand to latitudes beyond the 

Tropics of Cancer and Capricornus; thereby, more people will get exposed to HDM allergens. 

Other regions in higher latitudes, albeit still temperate, will experience milder and more 

humid winters which might increase HDM exposure.52 The effects of global warming have 

been identified by studies showing that high temperatures are associated with increased 

asthma symptoms53 and with increased risk of repeated hospital admission in children 

with asthma.54 Moreover, average annual temperature was the main outdoor factor that 

correlated with higher mite concentrations.55 Since HDM species have different preferences 

for temperature,56 it could be anticipated that climate change can exert their selection in 

some places. Temperature is known to affect hatching of HDM eggs57 and HDM allergen 

production.58 It is possible that climate change might affect mite metabolism and that new 

allergens may become very relevant as sensitizing sources.
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Increased temperature has also modified human lifestyles and made individuals spend more 

time indoors and use air conditioning which can in turn influence HDM exposure.

Humidity

Humidity is an important determinant of HDM growth and survival. According to the 

Intergovernmental Panel on Climate Change (IPCC, https://iaqscience.lbl.gov/cc-humidity), 

local increases and decreases in indoor air absolute humidity are expected as a result of 

climate change. Increased temperature can cause a rise in humidity, possibly influencing the 

growth and survival of HDMs. This effect could occur in temperate zones, where the increase 

in relative humidity during the whole year can augment the level and persistence of exposure. 

Humidity is a great limiting factor for HDM growth and has a profound influence on their 

reproduction.59,60 Mites absorb vital moisture from the air through their exoskeletons and 

supra coaxial glands, requiring high air humidity to prevent excessive water loss.61 HDMs 

depend on water activity (Aw), which is the RH at a surface. Also, in the critical humidity, 

water intake by passive and active mechanisms compensates for water loss. The RH is defined 

as the amount of water vapor in a given volume of air at a given temperature, expressed as the 

percent of the maximum possible for that temperature. A decrease in ambient RH (which 

is paralleled by an Aw drop) affects HDMs not only in laboratory settings but also in their 

natural environments. Optimal RH values for HDM growth have been found between 70%–

90%62; however, critical air humidity differs among mite species,63 for instance, 60%–65% 

for D. pteronyssinus, 47%–50% for D. farinae and 74%–80% for B. tropicalis.64 The environmental 

humidity affecting room microclimate is consequently the main reason why some species are 

predominant under different geographical conditions. For instance, D. pteronyssinus is more 

susceptible to desiccation than D. farinae. The lowest humidity/temperature HDMs can survive 

is 55%–74%/15°C–35°C; when humidity levels are less than 55%, dust mites will gradually 

dehydrate and die. This is the case for many homes where the winter is cold and dry, causing 

a low RH in the heated indoor air. Some studies in temperate areas suggest that maintaining 

an indoor RH of less than 51% during the humid summer season resulted in significant 

reductions in mite and allergen levels.65 Increased house humidity has been associated with 

increased prevalence of allergic and respiratory symptoms of asthma as well as IgE levels66 

and is a well-recognized risk factor for HDM allergy worldwide.

Human activities have already increased the moisture content of the atmosphere; in 

accordance with the Clausius–Clapeyron relationship, rising global temperatures will 

increase humidity (HadISDH - gridded global land surface humidity dataset - version 

4.0.0.2017f ).51 By measuring “wet bulb” temperature, which reflects the combined effects 

of heat and humidity by draping a water-saturated cloth over the bulb of a conventional 

thermometer, new information has been obtained about this topic. A study on projected 

“wet-bulb” temperatures shows that in the Southeastern United States, wet bulb 

temperatures of 28.8°C are rare, but by the 2070s and the 2080s this condition could happen 

25 to 40 days each year, being worse in Northern India, Central and Western Africa, Eastern 

China and South America. Also, by 2080 extreme wet bulb conditions could become 100 to 

250 times more frequent in the tropics and increases of 10%–15% humidity are projected 

across Eastern US, Northeastern India, Eastern China and West Africa (https://www.clim-

past.net/10/1983/2014/). A summary of the worldwide changes in surface relative humidity 

between 1973 and 2017 is presented in Fig. 1. Since HDMs have developed interesting 

humidity-oriented adaptations to survive in their natural environments (i.e. resistance to 

reduced RH or tolerance to desiccation), we can expect that anomalies in at least 5% in RH 

may impact HDM growth.
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If winters become milder, there will be more HDMs and possibly a shift in their species. For 

example, if the Northeast United States becomes warmer and more humid, such mites as Blomia 

tropicalis may extend their range northward in the United States. Changes in relation with humidity 

has already been detected in the study of Antens et al.,67 in which Der f 1 apparently became the 

most highly concentrated allergen in house dust between the beginning of the study in 1996 

and 8 years later. HDM sensitization has also been observed in tropical areas of high altitude68 

as well as in alpine temperate regions,69 so that it is feasible that with humidity changes some 

areas considered dry and at high altitude may become suitable for HDM distribution. Changes 

in humidity in northern latitudes will increase the numbers and species of HDMs. It is worth 

to mention that humidity has a critical influence on fungi and affect its interactions with HDM 

populations.70,71 Fungi digest lipids from protein substrates, and provide mites with vitamins and 

sterols that facilitate the assimilation of food by HDMs.72 In addition, it has been found that HDMs 

ingest fungi.73 However, if RH increases over 90%, there is the disproportionately growth of fungi 

leading to the mortality of HDM nymphs and reducing the lifespan of adult mites.
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Surface relative humidity in 1973 Surface relative humidity in 1991

Surface relative humidity in 2007 Surface relative humidity in 2017

Annual anomaly relative to 1981–2010 (%rh)

10.07.55.02.51.00.50.0−0.5−1.0−2.5−5.0−7.5−10.0

Fig. 1. Changes in worldwide relative humidity from 1973 to 2017 as reported by the HadISDH - gridded global land surface humidity dataset - version 4.0.0.2017f. 

Maps were downloaded from https://www.metoffice.gov.uk/hadobs/hadisdh/.

https://www.metoffice.gov.uk/hadobs/hadisdh/


The increasing rates of HDM sensitization in the Asia Pacific region and other developing 

areas of South America seem to be also associated with the rapid changes in urbanization 

and lifestyle.74 Residential environment improvements acquired with economic development 

provide a better habitat not only for humans but also for HDMs. Urbanization also introduced 

changes in behavioral aspects that lead humans to spend more time indoors, altogether 

promoting HDM exposure. A rise in humidity in indoor air can affect the growth of HDM 

and allergen production; thereby, factors modifying the control of the indoor environment 

such as air conditioning (AC), ventilation systems, and building materials will be critical in 

facilitating HDM exposure and sensitization. With increased population and energy costs, 

the human individual area in urbanized major cities tends to reduce. Building strategies have 

changed to make smaller and tighter homes, often resulting in higher indoor humidity and 

reduced indoor air quality. Cooking devices in poorly ventilated spaces create water vapor 

that also affects indoor air. Moreover, the use of AC is increasing, and some studies suggested 

that they remove water vapor and reduce indoor humidity. Indeed, maintaining indoor RH 

between 35% and 50% decreases HDM growth. Patients living in households without AC 

are at increased risk of mold sensitization and polysensitization75; however, it depends on 

the system and the characteristics of the household. Those with evaporative systems in low 

socioeconomic homes have shown to increase humidity and to promote dust mite growth.76 

AC can also increase indoor dampness by leakage of water in walls and carpets as well as 

by creating condensation in walls and windows. The overall results of moisture and water 

accumulation may lead to HDM and mold growth.

Factors affecting HDM allergen production

As occurs in other living beings, mite metabolism and homeostasis largely depend on the 

environment; therefore, changes in diet, quality of air and water, temperature, and humidity 

or exposure to infectious agents could modify the level of gene expression of different cell 

components, some of them allergenic for humans. Several examples are given below (Table 1).

Proteases

HDMs have enzymes with protease activity, and those allergenic are most abundant.77 Group 

1 allergens are cysteine protease (e.g. Der p 1), and groups 3, 6 and 9 are serine proteases 

with different substrate affinity. HDMs feed on sloughed skins as well as other sources 

such as commensal bacteria and fungi. Mite proteases seem to be mainly related to food 

digestion and are abundant in the digestive tract and fecal pellets.78 Mite speciation is 

markedly evident in protease gene content and expression.77 For example, cysteine proteases 

are 100 times more abundant in Dermatophagoides genus compared to other important 

mites including storage mites that feed on grains and dried fruits. Although B. tropicalis has 
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Table 1. Factors affecting HDM-allergen production

Allergens Type of effect

Proteases Digestive enzymes degrading fungal cell walls; they may be overexpressed with the 

increase of indoor mold proliferation.

Lipid binding proteins Innate immune sensors that can increase following high fungus exposure.

Chitin-related proteins Because of mold proliferation, their expression can be increased due to their roles in 

immunity and digestion.

Glutathione transferases Chronic exposure to diesel exhausted particles increases their transcription.

Helminth infections promote sensitization to HDM GST due to cross-reactivity with 

parasite homologs.

Structural proteins Flooding may increase household pests (i.e. cockroaches) helminths and mosquito 

exposure. Sensitization may increase by high exposure to cross-reactive molecules 

(i.e. tropomyosins).

HDM, house dust mite; GST, glutathione transferases.



relatively lower cysteine protease activity, serine protease activity is 10 times greater than 

observed in Dermatophagoides spp.79 Of note, even closely related mites, such as D. farinae and 

D. pteronyssinus, use different serine protease genes for the digestive process. D. pteronyssinus 

produces a collagenolytic enzyme, Der p 9, which is absent in D. farinae due to its low gene 

expression.78,80 As general interpretation, protease expression in HDMs is fine-tuned with the 

nutritional composition of their natural feeding sources. In this sense, it is expected and also 

experimentally supported that mite diet may modify Der p 1 abundance.81

Among the projected adverse consequences of climate change is the increase of 

meteorological events such as hurricanes and cyclones. Regarding indoor air quality, a 

negative impact of these disasters is the growth of molds from flooding and water-damaged 

dwellings. As HDMs share their habitats with different fungal species and interact with them 

in different ways, fungus growth could increase HDM protease production, since they are 

required to degrade fungal cell walls.82 This could explain the fact that under experimental 

cultures, Der p 1 content in extracts prepared from mites grew in yeast-free medium 

were lower.81 The effect of temperature seems to act in the opposite way on controlled 

environments where only this factor is modified. During the exponential growth phase of 

HDM cultures, Der p 1 accumulated 1.38 times faster at 20°C than at 25°C.81

Lipid binding proteins

Lipid-binding proteins account for 20%–30% of HDMs and this biological property may 

be an adjuvant of allergenic activity.83 In addition, they activate Toll-like receptor (TLR)-2 or 

TLR-4 mediated pathways promoting inflammatory pathways in epithelial cells.15,16,84,85 Der p 

2 has a strong affinity for lipopolysaccharide (LPS).84 Group 7 allergens are like mammalian 

LPS-binding proteins, although Der p 7 has affinity to another lipid ligand from bacteria 

and to the fungal lipopeptide polymyxin B.86 Due to their resemblance with innate immunity 

components from higher vertebrates, it is believed that they represent pathogen sensors 

in mites, as occurs in Drosophila melanogaster, where NPC2 proteins bind bacterial cell wall 

components and participate in immune signal pathways.87 Group 14 allergens include the 

vitellogenin/apoliphorin family. In bees, they are allergenic and display antimicrobial and 

anti-fungal activities related with their lipid binding function.88 Expression of vitellogenin is 

highly susceptible to external pressures; for example, in lipid-rich diets Der p 14 was found as 

the unique gene significantly overexpressed.89 Regarding the effect of climate change on lipid 

binding allergens, the best supported hypothesis is that a higher burden of fungi in indoor 

environments (due to higher air humidity) could increase the expression of certain lipid 

binding allergens considering that some fungal species are pathogenic for HDM. As observed 

in mammals, up-regulation of innate sensors after exposure to pathogens may also occur 

in mites. Batard et al.81 observed that Der p 2 expression was reduced on yeast-free medium. 

Temperature also increases group 2 expression; Der p 2 accumulates 1.41 times faster at 25°C 

than at 20°C.81

Chitin-related proteins

Chitin is a rigid polysaccharide polymer from the exoskeleton of fungi and arthropods, and 

it is also part of the peritrophic matrix that surround fecal pellets. It seems to modulate the 

immune response of mammals.90-93 Chitinases are hydrolytic enzymes required for the growth 

and morphogenesis of fungi and arthropods, including mites; however, in higher vertebrates, 

they protect against chitin-rich pathogens. Also, to digest fungi, mites require to degrade 

chitin. For the chitinase and chitinase-like allergen groups 15 and 18, their chitin-binding 

activity have been confirmed, but there is no experimental evidence about their chitinolytic 
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functions.18 Assuming that an increase in humidity leads to higher burden of fungi in indoor 

environment,94 it may be possible that the expression of chitin-related proteins increases due 

to their roles in immunity and digestion.

Glutathione transferases

Three HDM allergens have been reported as mu-like glutathione transferases (GST). As 

observed in different invertebrates, exposure to toxic compounds increases GST gene 

expression. It has been observed that chronic exposure to diesel exhausted particles 

increases Der p 8 transcription as detected by reverse transcription polymerase chain 

reaction. In this context, it is possible that air pollution increases GST expression as 

observed with pollen allergens.95 This impact is also dependent on how indoor air quality 

is affected by external contamination. Another possibility is related to the increased risk of 

helminthiases reported in floodingareas,96 it has been reported that GST proteins may cross-

react among mite and helminths.97

HDM structural proteins

Among invertebrates, several structural proteins have been found to be allergenic, showing 

a high degree of sequence homology. Best studied are the tropomyosins, a group of cross-

reactive allergens from different sources: HDM, cockroaches, nematodes, mosquitoes and 

crustaceans.98-100 Different environmental changes may increase the risk of sensitization to 

tropomyosins. Aedes aegyptiis spreading to areas where it has previously been undetected. A 

parallel risk of flooding is the increase in pests such as cockroaches and helminths.96

FACTORS ADJUVATING THE IGE RESPONSE TO HDM

Air pollution

Air pollution has been one of the most detrimental environmental changes since industrial 

revolution; its characteristics and effects on increasing allergic sensitization and symptoms 

have been reviewed elsewhere.11 Several pollutants can induce bronchial inflammation 

and modify the immune responses,101,102 (Table 2) sometimes increasing the Th2 allergic 

reactivity.103,104 For example, co-exposure to DEPs can enhance the allergic response and 

HDM-induced airway hyperresponsiveness.105 In addition, residue oil fly ash, another 

component of the ultrafine fraction of particulate matter, also induces allergic pulmonary 

inflammation and acts as adjuvant of the allergic response to HDMs.106,107 A significant 

increase in the transcription of allergens Der p 3, Der p 8 and Der p 21 was observed after 

exposing mites to a high concentration of diesel exhaustparticles.95 Moreover, the co-
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Table 2. Factors adjuvating the IgE response to HDMs

Factor Type of effect

Air pollution Co-exposure with diesel exhausted particles enhances type 2 immunity to HDM allergens.

Residual oil fly ash induces allergic pulmonary inflammation and acts as adjuvant of 

allergic response to HDMs.

Co-exposure of NO2 with Der p 1 increases inflammatory cytokine production.

The indoor pollutant hexabromocyclododecane enhances antigen presentation and 

activation of dendritic cells.

Helminth infections Partial control of helminth infections reduces their immunomodulatory effects.

Slight helminthiases promote type 2 immune responses.

High cross-reactivity between HDM and helminth allergens.

Non-specific boosting of HDM-specific IgE by helminth products.

Re-infection after deworming programs boosts type 2 responses.

IgE, immunoglobulin E; HDM, house dust mite; NO2, nitrogen dioxide.



exposure to 0.1 ppm NO2 and Der p 1 significantly increased both IL-6 and IL-8 release,108 

which suggests that air pollution can increase the inflammatory properties of some allergens. 

Indoor pollutants might also influence HDM allergenicity as reported that simultaneous 

exposure to HDMs and hexabromocyclododecane can enhance the antigen presentation and 

maturation/activation of dendritic cells.109

Helminth infections

Regarding allergic diseases, helminth infections have a dual effect: during severe infections 

they induce immunosuppression of the Th2 response and diminish allergic symptoms. In 

contrast, when they are light, with low parasitic load, they increase allergic responses.110 

Helminth infections are going progressively controlled in most regions, even in developing 

countries, where they remain as public health problems. In many urbanized regions, 

improved hygienic measures have led to reduced parasite burden and this directly correlates 

with increased IgE sensitization to HDM allergens as detected by skin prick tests and in vitro 

IgE tests. The reduction of the immunomodulatory effects of parasitic infections (especially 

those by soil transmitted helminths) might boost IgE reactivity to HDMs. This means that the 

main global current immunologic effect of helminthiases is stimulating Th2 responses. The 

mechanisms include the high level of cross-reactivity between HDM and helminth (e.g. Ascaris 

lumbricoides) allergens97,98 and non-specific boosting of HDM-specific IgE by still unknown 

helminth products.110-112 Deworming studies have shown that monthly anthelmintic treatment 

of children for 18 months caused an increase in the prevalence of skin test reactivity to 

HDMs in Venezuela113 and that treatment with praziquantel and mebendazole every 3 

months for 30-months was associated with an increase in the incidence of skin reactivity 

to HDMs in Gabon.114 A more recent study also confirmed that positive skin test results to 

HDMs increased from 18.7% to 32.7% after albendazole treatment in Flores Indonesia.115 

Interestingly, a 2-fold increase in allergen sensitization was observed in Ethiopian 

immigrants after 1 year in Israel, particularly for HDMs.116

THE ROLE OF THE GENOME AND EPIGENOME ON 
ADAPTATION TO ENVIRONMENTAL CHANGES

The environment is the great modifier of genome and epigenome, and most of the adaptation 

to environmental changes involves these cellular components. The current human genome 

is the result of a long evolutionary process, where environment-induced mutations have led 

to highly polymorphic DNA sequences. Also, acting upon the genome, the environment can 

select previously established genotypes. For example, in a population heavily exposed to 

HDMs, the possibilities of finding genotypes predisposing to high-IgE responsiveness are 

greater and then the prevalence of HDM sensitization will increase. This is probably what has 

occurred in the tropics, where HDM exposure is high and permanent, but could happen in 

temperate zones if HDM exposure increases by the reasons describe above (Fig. 2).

Several studies support a genetic predisposition to asthma117 and also to get IgE sensitized 

to HDM allergens.118 The susceptibility loci to HDM sensitization include alleles in the major 

histocompatibility complex (MHC) and other out-of-MHC genes.119-121 Since the distribution 

of susceptibility alleles differ among human populations, we may expect that some groups 

will be more affected by global changes in HDM exposure. Migration studies have revealed 

that East Asian populations may be more susceptible to allergy and especially to HDM 

sensitization.6,122 Some African-descent populations have also shown susceptibility alleles 
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for increased IgE levels123 that are of relevance in HDM responses.124 It is thought that global 

environmental changes will modify the distribution and allergenicity of HDMs, which may 

increase HDM sensitization by allowing new contexts of HDM exposure. These increased 

rates will be in part explained by individuals with an “underlying” predisposition that become 

newly-HDM sensitized. On the other hand, there are protective alleles that may render 

some individuals non-affected by new HDM exposure. The context of exposure will also be 

critical in determining susceptibility because mite allergen levels mediate gene-environment 

interactions.125 For instance, the association between polymorphisms in the IL4 gene and 

HDM sensitization depended on Der p 1 allergen levels in carpet dust samples.126

Since the epigenome is more susceptible to environment-induced modifications, particularly 

those induced by air pollution, it is expected that recent environmental changes could exert 

part of their effects through epigenetic modification. Epigenetic mechanisms have been 

associated with the pathogenesis of allergic diseases and IgE sensitization. Experimental 

work on HDM-induced epigenetic modifications has revealed several alterations in the 

bronchial tissue leading to inflammation and bronchial hyperreactivity. These studies 

have shown that the epigenome might influence the susceptibility to mite sensitization by 

modifying DNA methylation in B cells _ENREF_122,127 and the hypomethylation of the IL13 

gene.128 More interestingly, HDMs can induce epigenetic modifications in mouse models of 

airway inflammation, changing the methylation pattern of important genes such as PDE4D129 

and TGFB1.130 Whether these effects are consequence of the allergen-induced immune 

response or a direct action of HDM allergens remain to be defined; however, using an ex 

vivo model of inflammation in human bronchial epithelial cells, HDMs induce the same 

epigenetic modifications as does diesel exhaust,131 suggesting that HDMs, in addition to 
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Fig. 2. A general and simplistic view of multiple factors that could affect HDM growth, allergen exposure, 

sensitization and allergic symptoms. The final outcomes depend on the interaction between genetic, 

environmentally protective and risk factors. Although some environmental changes are global, the effects on 

HDM sensitization and symptoms in the near future are expected to be regional. 

HDM, house dust mite.



inducing IgE-mediated bronchial inflammation, can alter the epigenetic patterns of cells 

involved in bronchial homeostasis, inducing inflammation. Hence, environmental exposure 

affecting the epigenome or polymorphisms influencing the interaction between the genome 

and the epigenetic machinery may play a role in modulating the gene-environment signals 

that lead to mite sensitization. In addition, epigenetic modifications might be inherited 

by transgenerational mechanisms,132 which means that they could be accumulated among 

populations.133 The process of human adaptation to the multiple changes of environment 

is difficult to predict and deserves further research on many fields. This fundamental 

interrogate has started to be analyzed in bird populations.134

CONCLUSION

This review shows that recent environmental changes are probably affecting the level and 

frequency of HDM exposure, which could partially explain the increase in HDM sensitization 

and asthma symptoms in some countries and regions. Further epidemiological and 

experimental research is needed to confirm these effects and to design prevention programs. 

However, adequate control of human-induced harmful environmental changes is essential for 

stopping the increasing trends of allergic diseases.
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