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ABSTRACT In this paper, we present a new method for forecasting power consumption. Household power
consumption prediction is essential to manage and plan energy utilization. This study proposes a new
technique using machine learning models based on the stationary wavelet transform (SWT) and transformers
to forecast household power consumption in different resolutions. This approach works by leveraging self-
attention mechanisms to learn complex patterns and dynamics from household power consumption data. The
SWT and its inverse are used to decompose and reconstruct the actual and the forecasted household power
consumption data, respectively, and deep transformers are used to forecast the SWT subbands. Experimental
findings show that our hybrid approach achieves superior prediction performance compared to the existing
power consumption prediction methods.

INDEX TERMS Household power consumption, transformers, stationary wavelet transform, time series
forecasting.

I. INTRODUCTION
Electric energy consumption has recently risen worldwide,
driven by economic advancements and increasing popula-
tion [1]. According to the 2019 World Energy Outlook
released by International Energy Agency (IEA), the world-
wide electricity demand increases at 2.1% per year to 2040,
double the stated policies scenario’s primary energy produc-
tion rate. Therefore, the total final energy consumption is
expected to rise from 19% in 2018 to 24% in 2040 [2].
The housing market accounts for 27% of global electric-
ity demand and significantly affects aggregate electricity
usage [3]. Because electricity is used simultaneously during
the production at the power plant, it is necessary to fore-
cast energy consumption in advance for a reliable power
supply [4]. Over the last few decades, a growing number
of models have been developed to predict building energy
consumption [4]–[9]. In what follows, we review some of the
recently published papers in the literature.

The associate editor coordinating the review of this manuscript and

approving it for publication was Amjad Anvari-Moghaddam .

Forecasting energy consumption is a challenging time
series prediction problem. Intelligent sensors collect data
that may contain redundancy, missing values, outliers, and
uncertainties [6]. Moreover, it is hard to predict electrical
energy consumption using traditional forecasting techniques
since energy usage has erratic trend components, including
regular seasonal patterns [4], [10]. Appropriate operating
approaches should be implemented in energy control schemes
to maximize buildings’ energy efficiency [7]. Therefore,
various forecasting techniques have been recently proposed
to predict energy consumption. Energy consumption fore-
casting has been studied using a variety of different tech-
niques that can be divided into conventional and artificial
intelligence (AI) models [8]. Wei et al. [8] have reviewed
128 models in 116 published studies used to forecast energy
consumption; among them, 62.48% are AI-based models.
We have divided energy consumption forecasting systems
into three primary categories, statistical models, machine
learning models, and hybrid models.

Statistical techniques were used mainly in the past to
predict energy demand. For example, in [9], the seasonal
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autoregressive integrated moving average (SARIMA) model
was compared to the neuro-fuzzy model for forecasting elec-
tric load. Both linear regression (with one predictor and
multiple predictors) and quadratic regression models were
applied to the hourly and daily energy consumption of the
research household [11]. Also, in [12], the multiple regres-
sion approach together with a genetic engineering technique
were proposed to estimate the administration building’s daily
energy use. Both models’ significant drawbacks include the
unavailability of occupancy data and the reality that none
of these models have been studied to estimate comparable
buildings’ energy usage. Bootstrap aggregating autoregres-
sive integrated moving average (ARIMA) and the exponen-
tial smoothing methods have been used to forecast energy
demand for different countries [13]. Generally, the statistical
techniques showed their weakness in long-term forecasting
and capturing the nonlinear behavior of the energy consump-
tion data.

Furthermore, computational approaches have shown lim-
ited prediction performance due to the non-stationarity nature
and serious trends in the energy demand; therefore, many
prediction models have been tested using machine learn-
ing methods to improve the forecasting quality [14]–[16].
For instance, Liu et al. [17] have developed a support vec-
tor machine (SVM) model to forecast and analyze public
buildings’ energy consumption. Driven by the solid nonlin-
ear supporting vector regression capacities, Chen et al. [18]
proposed a model that forecasts the electrical load based
on the ambient temperature. Energy consumption has been
forecasted based on evaluating the usage of aggregated people
dynamics in [19]. An artificial neural network-based cuckoo
search learning algorithm was proposed to forecast the elec-
tricity consumption of the organization of petroleum export-
ing countries (OPEC) [20]. Pinto et al. [21] proposed an
ensemble learning model containing three machine learning
algorithms: random forests, gradient boosted regression trees,
and Adaboost to forecast energy consumption. Nevertheless,
current machine learning approaches severely suffer from
overfitting as the dynamic correlation between variables is
challenging, and data characteristics change over time. It is
hard to ascertain long-term and reliable usage when overfit-
ting happens.

Likewise, many deep sequential learning neural networks
have been established to forecast electricity use. A recurrent
neural network model was used to predict medium-to-long
term electricity consumption profiles in commercial and res-
idential buildings at one-hour resolution predictions [22].
A pooling-based recurrent neural network (RNN) approach
has been proposed to address the over-fitting issue by increas-
ing data diversity and volume [23]. An RNN architecture with
long-short term memory (LSTM) cells was used to forecast
energy load in [24]. A model based on LSTM networks was
also proposed in [25] to forecast regular energy consumption.
In addition, an advanced optimization method focused on the
bagged echo state network (ESN) and improved by a differen-
tial evolution algorithm was proposed in [26] to approximate

energy usage. The performance of deep extreme learning
machines was investigated for energy consumption prediction
in residential buildings [27]. The proposed model outper-
formed other artificial neural and neuro-fuzzy networks.

To achieve adequate predictability based on the weak
knowledge and lack of a multitude of historical evidence in
energy consumption, Gao et al. [28] suggested using two
deep learning models, a sequence-to-sequence model and
a two-dimensional attention-based convolutional neural net-
work model. Deep learning models can extract the crucial
and hidden features needed for accurate prediction, even from
non-stationary data with dynamic features and/or different
biomarkers. However, conventional deep learning models
have difficulties identifying the spatiotemporal properties
pertinent to energy use [4].

Several variables, such as the market cycle and regional
economic policies, have a significant impact on energy
usage. Therefore, it is very challenging that a single intel-
ligent algorithm would suffice [29]. Thus, combining effi-
cient pre-processing techniques and feature learning models
for forecasting power consumption has a great poten-
tial for improving prediction performance. For instance,
the stacked autoencoders and extreme learning machines
were used to efficiently extract the energy consumption-
related features and achieve more robust prediction perfor-
mance in [5]. AdaBoost ensemble technology was hybridized
with a neural network, support vector regression machine,
genetic programming, and radial basis function network
to better forecast energy consumption [30]. The hybrid
SARIMA-metaheuristic firefly algorithm-least squares sup-
port vector regression model was used to forecast energy
consumption in [8].

Well-known artificial intelligence methods have been used
to evaluate energy use in single and ensemble situations.
An in-depth study and examination of the hybrid model,
integrating forecasting and optimization approaches, were
discussed. A thorough analysis revealed that the combi-
nation configuration is more reliable than the single and
assembly models. A hybrid convolutional neural network -
LSTM (CNN-LSTM) model has been established for elec-
tricity forecasting [4], [31]. The CNN was used to extract
the features, and the LSTM layer was used to deal with
the temporal behavior of the time series data. A predictive
model of energy consumption using LSTM and sine cosine
optimization algorithm was proposed [32]. Hu et al. [33]
combined echo state network, bagging, and differential evolu-
tion algorithm to forecast energy consumption. Logarithmic
Mean Divisia Index, empirical mode decomposition, least-
square support vector machine, and particle swarm optimiza-
tion were hybridized to forecast energy consumption [34].
Kaytez [35] proposed forecasting energy consumption using
the least-square SVM (LSSVM) and an autoregressive inte-
grated moving average.

A mixture of three deep reinforcement learning mod-
els, including asynchronous advantage Actor-Critic, deep
deterministic policy gradient, and recurrent deterministic
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policy gradient, was introduced in [36] to address nonlin-
ear and complex energy consumption forecasting results.
An ensemble model was proposed in [37], in which the
energy consumption data was divided into stable and stochas-
tic elements. A hybridmodel based onARIMA, artificial neu-
ral network, and the combined Particle Swarm Optimization
Support Vector Regression, was proposed and used for load
and energy forecasting [38]. Complete ensemble empirical
mode decomposition with adaptive noise and machine learn-
ingmodel–extreme gradient boosting was proposed to predict
building energy consumption [39]. A hybrid model has been
proposed by combining CNN with multilayer bi-directional
LSTM [40]. The hybrid energy-based sequential learning
predictionmodel that used a coherent structure for the reliable
energy usage prediction was brought forward using CNN and
Gated Recurrent Units (GRU) [1]. The Stationary wavelet
transform (SWT) was combined with the ensemble LSTM to
forecast energy consumption [41].

The k−means clustering based CNN-LSTM (kCNN-
LSTM) model was proposed to provide a precise forecast of
building energy consumption [42]. The k-CNN-LSTM was
found to achieve superior performance when compared to
other existing machine learning and deep learning energy
demand forecast models. In [43], Liu et al. developed a
hybrid model for the short-term predictions of residential
electricity consumption based on the Holt-Winters method
and Extreme Learning Machine (ELM) network. They also
compared their hybrid model with non-hybrid deep learning
models such as ELM and LSTM. For a training data set
of 50 days, the proposed model reduced the prediction error
rate by 53.39-87.98%. Another integrated approach, consist-
ing of feature extraction, optimization, and adaptive deep
neural networks (DNNs), was proposed in [44] to forecast
week-ahead hourly building energy consumption. The feature
extraction procedure was carried out through the k-means
clustering technique, while the DNN was the forecasting
engine of the proposed model. A genetic algorithm was also
deployed to identify the DNN architecture that yields supe-
rior prediction performance. The proposed hybrid predictive
model was implemented on an actual office building in the
UK, and it was found to achieve an 11.9-24.6% decrease
in the mean absolute percentage error when compared with
other DNNs of fixed architectures. In an attempt to provide
more robust forecasting of building energy consumption, the
authors of [45] proposed to use an LSTM recurrent neural
network together with an improved sine cosine optimization
algorithm. They also introduced a novel Haar wavelet-based
mutation operator to optimize the hyper-parameters of the
LSTM network and improve the divergence of the sine cosine
optimization method.

The proposed model showed accurate and reliable
predictions for short, mid, and long-term energy consumption
forecasting problems. In [46], another integrated machine
learning model was proposed to boost the prediction per-
formance of building energy consumption, and it showed
lower prediction error rates compared to individual machine

learning models. Similarly, a hybrid approach including
online search data for household power consumption fore-
casting was developed to increase forecasting accuracy [47].
To forecast residential electricity usage, an extreme learning
machine model optimized by the Jaya algorithm was pro-
posed, along with the selected search keywords. This hybrid
model showed the ability to better predict residential electric-
ity consumption.

Recently, transformer networks were introduced to resolve
the parallelization issue of the LSTM [48]. With the aid of
attention, the intermediate distance between the source and
the target sequences is no longer constrained. Rather than
producing a single context vector from the last hidden state
of the encoder, attention establishes shortcuts between the
input sequence and the whole source entry. For each output
element, the weights of these shortcuts can be customized.

This approach benefits from eliminating recursion,
so those parallel calculations help minimize the training
time and tackle the reduction in efficiency related to long-
term dependencies and the corresponding vanishing gradient
problem. Transformers have been successfully applied to
healthcare problems such as influenza-like illness predic-
tion [49]. In general, deep transformers have two limitations:
(1) they cannot represent greater than one fixed length of
relationships, and (2) the divisions do not generally follow
the limitations of the sequence and result in segmentation in
the context, which results in ineffective optimization [50].

In contrast to model-aligned sequences, transformer net-
works don’t handle input in a sequence-ordered way. Instead,
it analyses the whole series of information and utilizes mech-
anisms for self-service to learn dependencies in the sequential
data. Transformer-based models do indeed have the ability to
describe complicated time-series data dynamics that are dif-
ficult for conventional sequence models such as RNNs [49].

For individual homes, energy consumption patterns are
usually erratic due to many causes like weather and holi-
days. Therefore, the use of methodologies based solely on
energy consumption data to forecast energy use is unreli-
able. Univariate time-series data analysis, such as household
energy consumption prediction, is challenging evenwith deep
learning models [41]. Thus, integrating other observations
(whether the observed point is an anomaly, change point,
or part of the patterns) may help improve the prediction
performance [51]. The similarities between the different data
encoding variables in transformers (e.g., queries and keys) are
calculated based on their point-specific values without explic-
itly considering local contexts [52]. This weakness could
be addressed either by introducing new attention algorithms
replacing the classical self-attention of the original trans-
former, e.g., Spring Time Warping Matrix [52], or providing
more information about the surroundings of the observed
point to the transformer externally [41]. This later approach
forms the basis of the proposed method in this paper. In this
paper, we propose to use SWT as an efficient pre-processing
technique that decomposes a given signal into sub-signals
with high and low frequencies, which offers an efficient
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FIGURE 1. (a) The proposed deep transformer SWT model for the household power consumption forecasting, (b) the transformer encoder/decoder,
(c) Time2Vec block.

representation of the signal’s content and behavior. Next,
we use transformer networks to predict SWT sub-bands.
Hence, the novelty of this work is in the development of a
hybrid approach for household energy consumption forecast-
ing based on SWT and transformers [48].

Our contributions are in particular as follows:
• We developed a hybrid SWT-Transformer model for
household power consumption time-series forecasting.
The developed transformer model forecasts the features
produced by the SWT. This combination helps tackle the
problem of irregular patterns in the univariate household
energy data. To the best of our knowledge, this is the first
time SWT and transformers are combined to develop an
efficient energy consumption predictive model.

• Experimental results, based on several energy consump-
tion datasets from real-world households, show that our
proposed SWT-Transformer approach can accurately
forecast household energy usage, achieving superior
prediction performance compared to existing methods.

II. THE PROPOSED MODEL
We propose a hybrid approach based on the stationary
wavelet transform and deep transformers for forecasting

household energy consumption. First, the initial univariate
energy input data is decomposed into sub-bands using the
SWT to extract the local trends and patterns. Second, the
deep transformer is adopted to forecast the next wavelet sub-
band. Finally, the inverse SWT is applied to the deep trans-
former outputs to reconstruct the predicted household energy
consumption. The overall proposed method is summarized in
Fig. 1a.

A. DATA DESCRIPTION
We use the open-source energy consumption data in five
separate family homes in London, UK (UK), under the project
name ’UK-DALE’ [53], to test the validity and strength of
the proposed model. To have a fair comparison with other
existing models, we used the same strategy and data used
in [29], [41], and [54]. They combined multiple entries of the
original data collected in 6-seconds intervals and converted it
to a dataset with a time interval of 5 minutes.

B. TRANSFORMER-SWT MODEL
Our hybrid energy consumption Transformer-SWT model
follows the original Transformer architecture [48], which
consists of time to vector, encoder, and decoder layers.
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The transformer is a deep learning architecture that exclu-
sively employs attention mechanisms for sequence-based
data processing. Therefore, it does not utilize recurrent and
convolutional layers that are widely used in sequence mod-
eling. Instead, it maintains an encoder design and employs
stacked multi-head self-attention and fully connected lay-
ers. Each encoder layer includes a multi-head self-attention
layer followed by two feedforward layers. Both multi-head
attention and feedforward layers are followed by dropout and
Add&Normlize layers.

The encoder consists of sub-encoders that handle the input
of each layer sequentially, while the decoder includes layers
that do the same with the output of the encoder. Each encoder
layer aims to create encodings of critical information on
which sections of the inputs are relevant to each other. The
encodings are sent to the next encoder layer. Every decoder
layer does the reverse, takes all the encodings, and uses them
to produce a series of outputs.

To this end, attention is used in each encoder and decoder
layer. For each input, attention measures and calls attention to
the pertinence of each input. The decoder layer is similar to
the encoder layer but uses one feedforward layer rather than
two. Encoder and decoder layers have feedforward networks
for further output processing and have residual connections
and layer normalization processes (Fig. 1b).

Each multi-head attention has three learnable weights, the
query weights Q, the key weights K, and the value weights
V [48]. Each attention head extracts a layer of ‘relevance’
between input parameters.

In more detail, the multi-head attention module of the
transformer performs its calculations in parallel. The atten-
tion module performs an attention mechanism several times
in parallel (Fig. 2). The independent attention outputs are
then concatenated and linearly transformed into the desired
dimension. Multi-head attention allows the transformer to
encode many associations and subtleties for each input vari-
able. A single attention module output is given by [48]:

Attention (Q,K ,V ) = softmax
(
QKT
√
dk

)
V (1)

where dk is the dimension of query and key vectors.
The multi-head attention score is the concatenation of the

output of h heads given by Eq. (1) multiplied with a learnable
projection parametersW , i.e.:

MultiheadAtt. = Concat (Att.1, · · · ,Att.h)W (2)

The number of parallel attention layers used in the proposed
model is h = 12.

The Time2Vec [55], [56] is a learnable layer that is an
extended version of the original positional encoding of the
transformer. It allows learning the input frequencies rather
than using a fixed representation. We use this layer because
it is invariant to time rescaling and can capture periodic
and non-periodic patterns of the input signal (Fig. 1c). The

FIGURE 2. Multi-head attention. V, K, and Q are learned linear projections
of input data, and h is the number of parallel attention layers [48].

FIGURE 3. n levels decomposition with SWT.

Time2Vec operation implements the following equation [56]:

Time2Vec (τ ) [i] =

{
ωiτ + ϕi, if i = 0
= (ωiτ + ϕi) , if 1 ≤ i ≤ k

(3)

where, Time2Vec (τ ) [i] is the ith element of Time2Vec (τ )
that has k elements, = is a periodic function, and ωi and ϕi
are learnable parameters.

C. THE STATIONARY WAVELET TRANSFORM
The stationary wavelet transform (SWT) is a wavelet trans-
form algorithm proposed by Nason and Silverman [57] to
solve the shift-invariance and the non-redundancy issues in
the discrete wavelet transform [58]. SWT does not decimate
the initial signal. Instead, it changes the filters at each stage
by padding zeroes instead of utilizing the down-sampling
technique after implementing the low-pass or high-pass filters
on the signal [59]. The SWT sub-signals from the decompo-
sition has the same length as the initial signal, which creates
an appealing function compared to traditional wavelets. This
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TABLE 1. Comparison results of the proposed model with other existing machine learning models for forecasting household energy consumption in
five-minute intervals.

TABLE 2. Comparison results of the proposed model with other existing machine learning model for forecasting household energy consumption in
10-minute intervals.

feature makes SWT an optimal choice for data used in neural
networks and allows for more accurate knowledge of the
corresponding approximation and detail coefficients. SWT
also demonstrated low-cost computing [60]. We, therefore,
adopted SWT to analyze the energy consumption time-series

data, produce distinguishable low- and high-frequency com-
ponents, called approximations and details, and then provide
such components as an input to the transformer.

The SWT approximation sub-band reflects the general
trend of the time-series, while the detail sub-band indicates
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FIGURE 4. A selected portion from the validation part for two houses to show the performance of the proposed method for
forecasting 5 minutes step size.

minor series variations. The SWT breaks down the time
series with a hierarchical combination of low-pass and high-
pass wavelet filters, enabling the separation of high and low
frequencies.

The decomposition is seen as a dyadic tree shape [61].
Fig. 3 gives an illustration of one-dimensional signal
decomposition at n-level using SWT. For a given signal
u(t) of length N , SWT decomposes u(t) into two coeffi-
cients: approximation A1(t) and detail D1(t). Besides, the
approximation coefficients A1(t) are split down into two
pieces using up-sampled low and high-pass filters.

This procedure is repeated until achieving the nth decom-
position level. We tested the different decomposition levels
andwavelet families.We experimentedwith different wavelet
families and different decomposition levels, and our experi-
ments demonstrate that Daubechies (db2) with three levels
show the best results, so we use them in all experiments.

D. MODEL EVALUATION CRITERIA
The mean squared error (MSE), the root mean squared error
(RMSE), the mean absolute error (MAE), and the mean
absolute percentage error (MAPE) are chosen as models
evaluation metrics. They are defined as follows:

RMSE =

√√√√ 1
N

N∑
k=1

(
yk − ŷk

)2 (4)

MAE =
1
N

N∑
k=1

∣∣yk − ŷk ∣∣ (5)

MAPE =
100%
N

N∑
k=1

∣∣∣∣yk − ŷkyk

∣∣∣∣ (6)

where yk is the k th sample value in y, ŷk is the kth forecasted
value, and N is the total number of samples.

FIGURE 5. Bar graph of the four best results of Table 1.

E. TRAINING
The deep transformer is used to forecast the SWT sublevels
signals based on the historical sublevels. Our experiments
use twelve lags from the SWT decomposed signal to fore-
cast the next SWT sublevels. Let us take U the SWT n
decomposition of the energy consumption time series U =
[An D1 D2 . . . Dn]. The Transformer input is fed with histori-
cal time series of decomposed household energy consumption
(U (t − 11),U (t − 10), . . .U (t)) to forecast the next SWT
levels U (t + 1), which can be described as

ŷ(t + 1) =
[
Ân(t + 1) D̂1(t + 1) D̂2(t + 1) · · · D̂n(t + 1)

]
.

In our case, the goal is to forecast one step, and this does not
require feeding the decoder with predicted output. Therefore,
we ditch the decoder part altogether.

We used the RMSProp optimizer [14], as a learning algo-
rithm to train our model using the parameters: η = 0.001 and
β = 0.999. The model is regularized using a dropout rate of
0.1 for each sub-layer in the encoder layer, which contains
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FIGURE 6. Selected portion from the validation part for two houses to show the performance of the proposed method for forecasting 10 minutes step
size.

a multi-attention sub-layer, a feedforward sub-layer, and a
normalization sub-layer. The number of query weights Q, key
weights K, and value weights V used is 256.

III. RESULTS AND DISCUSSIONS
This study aims to forecast household energy consumption
for several time scales. The same problem, i.e., energy con-
sumption prediction, has been addressed in several recent
studies [29], [41], allowing comparison with the literature
performance. We use the same data as in [54] that consists
of five separate houses datasets collected by the UK-DALE
project for the whole year of 2015 [55]. From the whole
dataset (comprising 36000 samples from each house), we use
two-thirds of the samples for training and the remaining
one-third of the samples for validation. As described in
section II.C, each energy consumption data sample is decom-
posed into three levels, producing three approximation and
three detail sub-signals. The deep transformer is then used
to forecast the coefficient representing the next predicted
sample from SWT coefficients representing the previous
12 samples, i.e., the approximation and details. Finally,
we reconstruct the signal using the inverse SWT to compute
the forecasted household energy consumption. The results of
the proposed hybrid prediction model are compared with the
following state-of-art methods: the persistent method [14],
ARIMA [63], the multilayer perceptron (MLP) network [64],
SVM [65], LSTM [59], CNN-LSTM [29], the hybrid
SWT-LSTM [41], and the deep transformer [49].

The proposed architecture has been implemented in Ten-
sorflow with Keras backend [67], [68]. The coefficients of
SWT approximation and detail sub-bands were standardized
to have zero arithmeticmean and standard deviation of 1. This
pre-processing step helps speed up the training of deep neural
networks.

The prediction results for the time steps of 5 minutes,
10 minutes, 20 minutes, and 30 minutes are presented in

FIGURE 7. Bar graph of the four best results of Table 2.

tables 1, 2, 3, and 4, respectively. Table 1 shows the obtained
results for the case of 5 minutes step. We can see that all
other strategies underperform our model and for all metrics.
According to the data provider, houses 1 and 3 are relatively
more active, whereas houses 2, 4, and 5 are less volatile [41].
We show a selected timestamp from the validation part houses
1 and 2, representing both categories, using our model and
deep transformer in Fig. 4.

One can see that our model forecasts better energy con-
sumption than the transformer-based model solely without
SWT, which predicts the global and the local features of
energy consumption. Fig. 3 demonstrates that the proposed
approach well forecasts the irregular energy consumption
pattern in the case of 5 minutes forecasting. Fig. 4 presents
the bar graph of the four best models of Table 1, which
are in decreasing order, CNN-LSTM, deep transformer,
LSTM-SWT, and transformer-SWT. Our model improves the
average RMSE, MAE, and MAPE values by 48%, 47% and,
51%, respectively, compared to the LSTM-SWT model [41]
that produces the nearest results.
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FIGURE 8. Selected portion from the validation part for two houses to show the performance of the proposed method for forecasting 20 minutes
step size.

Results for forecasting 10 minutes timestep are given in
Table 2, in which we can see that our model outperforms
all the other models by at least 59%, 56%, and 53% in
RMSE, MAE, and MAPE, respectively. The performance of
the proposed model is shown in Fig. 6 and Fig. 7. In Fig. 6,
we plot the actual energy consumption and the two forecasted
outputs based on our model and the deep transformer that
present the nearest result we have run, in this case. Fig. 7
shows the bar graph of the four best results in Table 2: MLP,
deep transformer, LSTM-SWT, and our model.

The results for the cases of forecasting 20 and 30 minutes
times steps are presented in tables 3 and 4. Again, we can see
that our model achieves superior prediction performance of
total energy consumption.

Fig. 8 shows comparison results between the proposed
model and the transformer without SWT for the prediction
of 20 minutes step size, in which we can see the improve-
ments provided by using the SWT. We have to note that,
in the cases of 20 and 30 minutes steps, the transformer alone
performs better than the hybrid models of CNN-LSTM [30],
as shown in the bar graph of Fig. 9.

Our model improves forecasting quality by 48%, 38%,
and 40% in RMSE, MAE, and MAPE values compared
to the LSTM-SWT model, which is the hybrid model that
presents the nearest results for the case of 20 minutes time
step.

For the case of the forecasting 30 minutes step, our model
improves the RMSE,MAE, andMAPE values by 65%, 57%,
and 38%, respectively.

IV. ANALYSIS
In this section, we study the robustness and performance
of the proposed model in different situations that could
happen in real-life situations, like noise, magnitude, and dips
disturbances. House 1 is the sample used in this analysis.

FIGURE 9. Bar graph of the four best results of Table 3.

We first injected noisy Gaussian signal with different values
of standard deviation σ to a signal from the testing dataset S
according to the following equation

Sn = S + σ · std (S) · Gaussian (0, 1) (7)

where std (S) is the standard of deviation of the testing signal,
Sn is the noisy signal, and Gaussian (0,1) is a Gaussian signal
with zero mean and unit standard deviation.

Forecasting results reported in Table 5 shows that the
performance of the model understandably decreases with
higher level of noise, but maintains a robust energy consump-
tion prediction performance under very high levels of noise
(e.g. σ = 2 and σ = 3).
Next, we studied the performance of the developed model

after injecting constant magnitude disturbances with different
durations, as depicted in Fig. 10. The injection was done
in both parts of the day (night and day). First, we applied

VOLUME 10, 2022 5179



L. Saad Saoud et al.: Household Energy Consumption Prediction Using SWT and Transformers

TABLE 3. Comparison results of the proposed model with other existing machine learning models for forecasting household energy consumption in
20-minute intervals.

TABLE 4. Comparison results of the proposed model with other existing machine learning models for forecasting household energy consumption in
30-minutes intervals.

a disturbance with a large magnitude during the night for
more than 4 hours of duration. Second, we injected a low-
high-low magnitude sequence of disturbances during the day
to see the model’s response to sudden electricity changes

(inexistence or very high usage of electricity). One can
observe that the model reacts to these disturbances and can
adequately forecast them even if the injected signals are
significantly different from usual energy consumption data.
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FIGURE 10. (a) Forecasting model without disturbance, (b) Model reaction to constant disturbances with different durations and magnitudes Four
hours of high magnitude, 1.5 hors of low magnitude, 1.5 hours of high magnitude, and 2.5 hours of low magnitude.

TABLE 5. Robustness of the proposed model checking for house 1.

V. LIMITATIONS
Despite the proposed model’s effectiveness, we still have two
limitations. First, it is a learning-based system and can fail
when faced with unknown circumstances. One possible way
to alleviate this issue is to dynamically update the model
with new training data to increase the size and variability of
input data. The second limitation is that the decomposition
method expects a regularly spaced signal, and this makes
signal reconstruction difficult in multistep prediction prob-
lems. The use of the recursive predicted output in the SWT
reconstruction may resolve this issue. Our future work will
focus on resolving these two issues.

VI. CONCLUSION
In this study, we have proposed a hybrid predictive model
based on SWT and deep transformers for reliable forecasting
of residential energy consumption. Our model forecasts the
local feature of the electrical energy consumption by using
SWT and modeling the local tends through the deep trans-
former. Comparison with other existing machine learning
models has shown the utility and superiority of the proposed
model. For three significant factors, the benefit of using our
model over other current models can be eligible.
• SWT can efficiently analyze the energy usage time-
series data. Thus, each aspect, trend, or biomarker in the
data can be captured more quickly and precisely.

• The deep transformer can predict different frequency
levels by SWT of energy consumption rather than

predicting the entire signal that includes all sub-
frequency signals.

• Taking the benefit of our approach, the hybrid model can
well catch the sophisticated features of energy usage and
produce more precise forecasting performance for the
four-time scales with an average improvement of more
than 45 % in RMSE.

As a general conclusion, electric energy forecasting has
important consequences for reliable power supply, effec-
tive operation, and electricity generation systems sustainabil-
ity. The proposed strategy would incorporate a forecasting
approach to reduce costs and control rising energy consump-
tion. The proposed approach might also mitigate economic
loss from unplanned activities of power plants.
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