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ABSTRACT

Occupancy monitoring (i.e. sensing whether a building or
room is currently occupied) is required by many building au-
tomation systems. An automatic heating system may, for ex-
ample, use occupancy data to regulate the indoor temperature.
Occupancy data is often obtained through dedicated hardware
such as passive infrared sensors and magnetic reed switches.
In this paper, we derive occupancy information from elec-
tric load curves measured by off-the-shelf smart electricity
meters. Using the publicly available ECO dataset, we show
that supervised machine learning algorithms can extract occu-
pancy information with an accuracy between 83% and 94%.
To this end we use a comprehensive feature set containing 35
features. Thereby we found that the inclusion of features that
capture changes in the activation state of appliances provides
the best occupancy detection accuracy.
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INTRODUCTION

Home and building automation systems may help to save en-
ergy and contribute to the occupants’ level of comfort [24].
To this end, such systems often need to determine the occu-
pancy state of a building or room – i.e. to estimate whether
the residents are present or not. In a residential setting, for
instance, an automatic heating system monitors occupancy
to keep the building at a comfortable temperature whenever
the residents are at home. At the same time, the system
avoids unnecessary energy waste by allowing the temperature
to drop whenever the household is unoccupied [2, 20, 21].

Current building automation systems typically use dedicated
sensing devices such as passive infrared (PIR) sensors and
reed switches to provide occupancy monitoring capabili-
ties [1, 21, 29]. Recent results also show the feasibility of
opportunistically using network logins and GPS trackers to
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monitor occupancy [10, 17, 20, 24]. In such systems, sen-
sor readings are often combined to increase the overall oc-
cupancy detection accuracy. For instance, the system pre-
sented in [2] combines door-mounted magnetic reed switches
and PIR sensors to compensate for the poor accuracy obtained
when only PIR sensors are used. The number and type of sen-
sors included in an occupancy monitoring system typically
result from a trade-off between the required occupancy de-
tection accuracy and the overall cost and complexity of the
system. For this reason, commercial smart thermostats for
the residential environment often only include a single PIR
sensor. This restricts their ability to accurately monitor the
occupancy throughout the building and results in erroneous
control decisions. As a result, users of such smart thermostats
often turn off automatic control to regain authority over the
system [32].

In this paper, we discuss and quantitatively evaluate the suit-
ability of digital electricity meters to be used for occupancy
monitoring in residential buildings. Being already present –
or about to be installed – in millions of households world-
wide, the installation, use and maintenance of smart meters
does not impose additional costs on the residents. The oppor-
tunistic use of existing sensors thus increases the occupancy
monitoring capabilities and therefore the acceptance of build-
ing automation systems.

The fact that electricity consumption measurements might in-
dicate the presence of residents in a household is intuitive
and has already been observed earlier [18, 23]. However
there does not yet exist a comprehensive, quantitative analysis
of the accuracy achievable using electricity meters to detect
household occupancy. This is mainly due to the lack of data
sets containing both electricity consumption measurements
and ground truth occupancy data. To overcome this problem,
we have collected and published1 a data set that contains both
electricity consumption measurements and occupancy infor-
mation [4]. The data set includes records of the electricity
consumption of both the whole household and of selected ap-
pliances. The data is available for five different households
and for a period of more than six months.

In our previous work [18], we report a preliminary analysis of
this data set and show that digital electricity meters are suit-
able to be used as occupancy sensors. In this paper, we build
and improve upon our previous work and present a detailed
analysis of supervised machine learning approaches to detect
occupancy from electricity consumption data. We make the
following contributions:

1http://vs.inf.ethz.ch/res/show.html?what=eco-data. See also [4].

http://vs.inf.ethz.ch/res/show.html?what=eco-data


• Exhaustive analysis of the feature space: To investi-
gate which characteristics of the load curve best reveal
occupancy, we extend the feature set of our preliminary
work [18] from 10 to 35 features. To deal with the ex-
tended feature set, we employ dimensionality reduction, in
particular principal component analysis (PCA) and feature
selection. We show that features capturing appliance state
changes are best suited for occupancy detection.

• Improved classification performance: We consider a set
of seven classifiers (instead of 4 in our previous work) and
show that the enlarged feature space in conjunction with
dimensionality reduction achieves classification accuracies
up to 94%.

• Feasibility analysis with regards to smart heating: By
analysing the ability of our approach to monitor occupancy
transitions, we evaluate the feasibility of using digital elec-
tricity meters to provide occupancy data for controlling a
smart thermostat.

RELATED WORK

The approaches most related to our work can be found in
the fields of building occupancy detection, nonintrusive load
monitoring and analysis of electricity consumption data.

Building occupancy detection

Several authors have focussed on the design, deployment
and evaluation of approaches to detect occupancy both in
commercial and residential buildings. A good overview of
existing approaches for occupancy detection is provided by
Nguyen and Aiello [24]. One observation made by the au-
thors is that only a small fraction of the approaches presented
in the literature have been evaluated in real deployments. The
authors thus stress “a vital need” to verify conceptual results
in “real-life installations” [24]. Recent work shows results
from such real-life deployments [1, 7, 8, 21].

However, most occupancy monitoring systems require ded-
icated hardware and are evaluated over a short time horizon
only. While some authors combine PIR sensors with reed
switches [1, 21, 29], several authors have also combined PIR
sensors with call monitoring [7] or microphones [25], while
another solution requires dedicated camera networks [8].
Lu et al. instrumented eight homes with PIR sensors and
reed switches for a duration varying from one to two
weeks depending on the household. In a similar approach,
Agarwal et al. describe the control of a heating, ventilation
and cooling (HVAC) system in a university building [1].
These approaches are similar to our work because they
investigate and quantitatively evaluate the use of specific
sensors to detect occupancy. However, instead of relying on
a dedicated infrastructure, we explore the possibility of using
off-the-shelf digital electricity meters – which are becoming
mandatory in many countries [26] – to reduce the need for
additional hardware. Furthermore, our analysis relies on
data collected over significantly longer periods of time than
previous work.

Nonintrusive load monitoring (NILM)

A number of authors have looked into so-called nonintrusive
load monitoring (NILM) approaches to infer the disaggre-
gated (i.e. device-level) electricity consumption from aggre-
gate data. NILM is closely related to our approach as the
activation state of home appliances may give an indication
of the current activity of the occupants and thus the build-
ings occupancy. Froehlich et al. provide an overview of these
techniques in [9].

Early NILM research was led by George Hart, who used
device signatures based on step changes in the electricity
consumption to detect individual appliances [12]. However,
follow-up work has shown that current algorithms are only
able to reliably detect a few appliances (e.g. cooling appli-
ances or the washing machine) when the electricity consump-
tion is sampled at a granularity of 1 Hz [4]. Our results show
that these appliances are not suitable for occupancy monitor-
ing as their operation exhibits a low correlation with occu-
pancy.

More recent approaches make use of transient [27] or con-
tinuous [11] electrical noise on the power line to detect the
activation state of appliances. However, like the approach
by Hart, these require additional instrumentation and train-
ing. Froehlich et al. note that the calibration requires users
to “walk around the home, activating and deactivating each
device or appliance at least once” [9].

In contrast to most NILM approaches, our system only re-
quires the annotation of the occupancy state of the household.
While asking the user to supply these annotations is still bur-
densome, the effort is small when compared to calibrating all
appliances. In addition, the effort can be significantly reduced
by running a simple heuristic unsupervised occupancy detec-
tion (e.g. by comparing the current electricity consumption to
the mean of the nighttime consumption) and proposing pos-
sible ground truth occupancy schedules to the user.

Occupancy and the electric load curve

In [23], Molina-Markham et al. suggest that household ac-
tivities can be inferred from aggregate electricity consump-
tion data. They collected data at 1Hz from three homes over
two months and let occupants annotate which appliances they
have used at what time. The authors observed that there are
differences in the consumption data depending on whether
the occupants are present or absent. However, this observa-
tion is based on visual inspection of the electric load curves.
No quantitative analysis of the possibility of using aggre-
gate electricity consumption data to automatically detect oc-
cupancy is provided.

In a recent workshop publication we presented the results of
a preliminary analysis of an occupancy monitoring infras-
tructure relying on electricity consumption data [18]. At the
same workshop, Chen et al. discussed the potential of digi-
tal electricity meters to be used for performing non-intrusive
occupancy monitoring [6]. In particular, they presented a
threshold-based method to detect occupancy from aggregate
electricity consumption data. The authors evaluated their
method using data collected in two homes over a summer



week. We build upon this and our previous work by consid-
ering a large set of features including those used by Chen et
al. and base our analysis on a data set collected in five homes
and over a period of more than six months. While in [18] we
focussed on the description of the data set and the presenta-
tion of preliminary, encouraging results, this paper presents
a more detailed analysis of the potential of common digital
electricity meters to be used as occupancy sensors.

Other authors utilise device-level information to monitor
occupancy. Ming et al. suggest a zero-training algorithm
based on rough estimates of the participants’ working sched-
ules [16]. Their so-called “PresenceSense” approach es-
timates occupancy in an office environment using the av-
erage power, standard deviation and absolute maximum
power change of individual appliances measured by ACme
nodes [15]. In contrast to PresenceSense, our work requires
only the installation of a single digital electricity meter and
focusses on residential buildings.

ECO DATA SET

For our analysis we use the publicly available Electricity Con-
sumption and Occupancy (ECO) data set. To the best of our
knowledge, this data set is the largest one containing both
electricity consumption data and ground truth occupancy in-
formation2. We have collected this data in the period from
June 2012 to January 2013 – for a total of more than six
months – in five Swiss households. The characteristics of the
households (number of occupants, type of household, etc.)
are described in [18] and [4]. We refer to the households as
r1, r2, etc. to preserve their anonymity (we use the same
numbering as in [18]).

The samples of electricity consumption have been collected
every second using off-the-shelf digital electricity meters in-
stalled in the households. One sample represents the average
power (in watts) consumed by the household during the sec-
ond preceding the measurement. We refer to these records
as the aggregate electricity consumption as they refer to the
consumption of the whole household.

Fine-grained occupancy data is available for two periods, re-
ferred to as summer (July to September 2012) and winter
(November 2012 to January 2013). Before using this data
for our analysis, we perform the same pre-processing steps
described in [18] to eliminate erroneous ground truth data.
After this data cleaning phase, the number of days for which
ground truth data is available for households r1, r2, r3, r4 and
r5 are 39, 83, 57, 38 and 43 for the summer period; and 46,
45, 21, 48 and 31 for the winter period, respectively.

SYSTEM DESIGN

In residential buildings, a change in the overall electricity
consumption often provides an indication of occupancy as
many appliances are used to increase comfort and/or to re-
place manual labour. Figure 1 shows the electricity consump-
tion of a representative day for household r2 and the output of
a simple thresholding classifier. The latter assumes the house-
hold to be occupied whenever the current power is higher than
2Ground truth occupancy data has been entered manually by the res-
idents using tablet computers mounted near the main entrance.
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Figure 1: Example of an occupancy detection algorithm
based on mean thresholding.

the 24-hour mean. The performance of this classifier shows
that even a primitive strategy may detect occupancy. In this
paper, we build upon this observation by analysing how elec-
tric load curves can be used to monitor occupancy.

Deriving features from the electric load curve

In order to infer occupancy from the raw electricity consump-
tion data, we identify features of the electric load curve that
are indicative of occupancy. A good indication of occupancy
are appliance state changes triggered by the interaction of
an occupant (e.g. an occupant turning on the television or
stove) [23]. For this reason, we focus on identifying features
that relate to the operation of occupancy-relevant appliances
and allow to directly infer occupancy from the aggregate elec-
tricity consumption.

In order to identify such features, we compare the day-time3

(6 a.m. to 10 p.m.) electricity consumption during occupied
periods to times when the household is unoccupied.

Table 1 summarises the selected features. All features are
computed at 15-minute intervals. Every day is represented
as a sequence of Ns time slots of length Ts. As the aggregate
electricity consumption is sampled at 1Hz, the interval length
of Ns = 15 means that each feature is computed on a 900-
element vector (i.e. Ts = 900). All features listed in Table 1
– apart from pprob, pfixed and ptime – are computed sep-
arately for each phase and the sum of all three phases. The
subscripts 1, 2 or 3 are used to indicate that a feature has
been computed on the data corresponding to phase 1, 2 or 3,
respectively. Likewise, the subscript 123 indicates a feature
computed on the combined consumption of all three phases.
In summary, we consider the features min, max, mean, std,
sad, cor1, onoff, range, pprob, pfixed and ptime com-
puted on the three electrical phases. Using these features we
aim to capture both the absolute value as well as the variabil-
ity of the electricity consumption.

Absolute value of the power consumption

The min, max and mean features denote the minimum, max-
imum and arithmetic average of each slot.

3The ECO data set does not contain ground truth data on sleeping
patterns, we thus leave the detection of sleep for future work.



Table 1: Features computed on the aggregate electricity consumption traces.

# Feature names Description

f1, f2, f3 min1, min2, min3 Minimum of the samples for phase 1, 2 and 3
f4 min123 Minimum of the samples for the sum of phase 1, 2 and 3
f5, f6, f7 max1, max2, max3 Maximum of the samples for phase 1, 2 and 3
f8 max123 Maximum of the samples for the sum of phase 1, 2 and 3
f9, f10, f11 mean1, mean2, mean3 Arithmetic average of the samples for phase 1, 2 and 3
f12 mean123 Arithmetic average of the samples for the sum of phase 1, 2 and 3
f13, f14, f15 std1, std2, std3 Standard deviation of the samples for phase 1, 2 and 3
f16 std123 Standard deviation of the samples for the sum of phase 1, 2 and 3
f17, f18, f19 sad1, sad2, sad3 Sum of absolute differences of the samples for phase 1, 2 and 3
f20 sad123 Sum of absolute differences of the samples for the sum of phase 1, 2 and 3
f21, f22, f23 cor11, cor12, cor13 Autocorrelation at lag 1 computed over the samples for phase 1, 2 and 3
f24 cor1123 Autocorrelation at lag 1 computed over the samples for the sum of phase 1, 2 and 3
f25, f26, f27 onoff1, onoff2, onoff3 Number of detected on/off events for phase 1, 2 and 3
f28 onoff123 Number of detected on/off events for the sum of phase 1, 2 and 3
f29, f30, f31 range1, range2, range3 Range of the samples for phase 1, 2 and 3
f32 range123 Range of the samples for the sum of phase 1, 2 and 3
f33 pprob Empirical probability of the slot to be occupied
f34 pfixed 1 (occupied) from 9 a.m. to 5 p.m., 0 (unoccupied) otherwise
f35 ptime Slot number (i.e. 1 – 65)

Variability of the power consumption

A high variability in the electricity consumption may pro-
vide an indicator of human activity. Significant changes in
the power consumption are often the result of human actions
(e.g. by operating the stove) or the operation of appliances
with varying consumption levels (e.g. a television set with
LED backlight). We chose the std (standard deviation), sad
(sum of absolute differences), cor1 (autocorrelation at lag
one) and onoff4 features as indicators of such variability.

Temporal dependence of occupancy

As building occupancy is also dependent upon the current
time of the day, we use the pprob, pfixed and ptime features
to model the temporal aspects of occupancy. pprob is the em-
pirical prior probability of a 15-minute slot to be occupied.
pprob is computed from the ground truth occupancy data. To
this end, only data from the training set is used. pfixed is a
“dummy” prior probability that assumes the household to be
always unoccupied between 9 a.m. and 5 p.m. on weekdays
and to be always occupied on weekends. ptime is the num-
ber of the current slot and thus directly introduces a notion
of time. Slots are numbered from 1 to 65, with the first slot
corresponding to the period between 6 a.m. and 6:15 a.m. and
the last one to the time between 10 p.m. and 10:15 p.m.

Classifiers

In order to use a building’s electricity consumption to moni-
tor occupancy one requires a mapping from the feature space
(e.g. a mean consumption of 100W) to occupancy classes
(i.e. [feature] → {home, away}). In supervised ma-
chine learning, this mapping function – the classifier – is in-
ferred from labelled training data. The training data is used to

4On/off events occur when an appliance is switched on or off. We
detect these events using a simple heuristic: If the difference be-
tween a sample and its predecessor is bigger than a threshold ThA
and this difference remains higher than ThA for at least ThT seconds,
an on/off event is detected. We set ThA = 30W and ThT = 30 s.

iteratively refine the classifier to maximise the number of ex-
amples (i.e. [[feature], class] tuples) correctly as-
signed by the classifier. To make sure that the classifier is
not overfitting the data (i.e. it does capture the underlying re-
lationship between features and classes rather than the noise
in the data), we divide the data into training and test sets.
Thereby, the test set provides an unbiased test of the perfor-
mance of the classifier on previously unseen data. A number
of learning algorithms to build classifiers have been suggested
in the literature. The learning algorithms used in this paper
are support vector machines (SVMs), K-nearest neighbours
(KNNs), Gaussian mixture models (GMMs), hidden Markov
models (HMMs) and a simple thresholding (THR) approach.

SVMs are widely-used supervised learning models and algo-
rithms that perform linear and non-linear classification. For
the implementation of the SVM classifier we employed the
LIBSVM library by Chang and Lin [5].

A KNN is a non-parametric model for classification which
classifies an example using a majority vote on the classes
of its k most similar neighbours. This means it does
not require an explicit learning phase. We used the
ClassificationKNN classes from the Matlab Statistics
Toolbox to implement our KNN classifier. We empirically
determined k = 1 and use the Euclidean distance measure to
obtain the nearest neighbours.

The limited size of the ECO data set prohibits us from build-
ing empirical multivariate probability density functions for a
combination of all features. To alleviate this problem, we
use GMMs, which allow to approximate these by a weighted
sum of individual Gaussian component distributions [28].
The GMMs are built by iteratively refining the parameters
of its k Gaussian component distributions to fit the input
data. To avoid overfitting, we chose a suitable k by min-
imising the Akaike information criterion (AIC) [3]. The
AIC penalises a larger number of components while reward-
ing goodness of fit. For the implementation we chose the
gmdistribution class from the Matlab Statistics Tool-



box. The training data is used to create GMMs for both the
occupied an unoccupied distribution. The classification of un-
known data is performed by maximum-likelihood (i.e. com-
paring the likelihood of the sample belonging to either distri-
bution).

The hitherto presented classifiers are stateless – i.e. they do
not take into account the previous occupancy state. Occu-
pancy, however, is stateful. In fact, during any particular 15-
minute interval a household is most likely to stay in its current
state. An occupancy monitoring system should thus focus
on detecting occupancy transitions (from occupied to unoccu-
pied and vice versa). To investigate such a stateful occupancy
monitoring system, we use a HMM classifier which relates
its hidden states (i.e. occupied, unoccupied) to emissions (i.e.
the observed features of the electricity consumption) using
matrices of emission and transition probabilities. The transi-
tion matrix contains the probability of staying in or moving
out of any state for all states. To obtain the matrix of emission
probabilities we first construct a 2-dimensional GMM of the
first principal component and the ptime feature (i.e. the slot
number) for both the occupied and unoccupied states, respec-
tively. The discrete emission probabilities are then obtained
by numerally evaluating the integral of the GMMs over a ma-
trix of 30× 16 bins.

From Figure 1 we conjecture that a high electricity consump-
tion may have a positive correlation with occupancy. To in-
vestigate whether a simple classifier may use this correlation,
we implemented the THR classifier which computes the mean
for each feature vector during all unoccupied times. It then
uses these means as thresholds to label a feature as occupied.
To obtain the final classification, the THR classifier computes
a majority vote over all features of a particular interval.

Dimensionality reduction

The 35 features introduced in Table 1 allow us to capture var-
ious characteristics of the electric load curve. However, while
some classifiers may utilise the full feature set, others perform
best on a subset of these features. Indeed, for each classifier
there exists an optimal subset of features that maximises its
performance [30]. To find these subsets and to limit the fea-
tures to the most descriptive ones, we used sequential forward
selection (SFS) and principal component analysis (PCA).

Feature selection

The optimal set of features may be found by performing
a brute-force evaluation of all possible combinations [30].
Alas, the complexity of such an exhaustive search grows ex-
ponentially with the number of features. In this paper, we
consider the sequential forward selection (SFS) [30] algo-
rithm to heuristically identify reasonable subsets of features.

Listing 1 shows the pseudocode for the sequential forward
selection (SFS) algorithm. The first iteration serves to find
a single feature x that maximises a performance metric J .
At each subsequent iteration, SFS considers, in turn, the in-
clusion of the remaining features. For each iteration k, the
feature maximising J is included in the feature set Yk. This
procedure is stopped whenever the remaining features have
been exhausted or a (user-specified) number of features m

Listing 1: Sequential Feature Selection (SFS).

1 X = [x0 . . . xn]; // Set of all features
2 Y = {∅}; // Best feature set of length k
3 m; // Maximum number of features
4
5 while(k ≤ |X| && k ≤ m) {
6 // Inclusion of best feature
7 x

+ = argmax
x 6∈Yk

[J(Yk + x)];
8
9 Yk = Yk + x

+
;

10 k = k + 1;
11 }
12 return Ym

has been reached. We do not impose a limit on the number
of features (e.g. m = 35) and use the occupancy detection
accuracy (as defined in the next section) as the performance
metric J .

Principal component analysis

The features defined in Table 1 contain a certain degree of
redundancy. The max and min features, for example, are
closely related to the range feature. This redundancy makes
choosing the best subset of features using SFS difficult. In
fact, combining similar features into a single feature may
be more descriptive of the data. Such a transformation is
achieved by principal component analysis (PCA). PCA trans-
forms the original features into a set of linear combinations
(i.e. components). Usually, the first few components often
account for most of the variance in the input data. In order to
reduce the input of the classifier and to remove redundant fea-
tures, we thus restrict the number of components to the first
L components that account for at least 95% of the variance of
the input data.

EVALUATION

Figure 2 shows the setup of our classification system using
feature selection and principal component analysis, respec-
tively. In both cases, the raw consumption data is first divided
into 15-minute slots from which the features are extracted.
For each slot, the feature data is combined with its ground
truth label to create an example for classification. These ex-
amples are then divided into test and training sets using cross-
validation. During the training phase, the behaviour differs
between SFS and PCA. PCA finds the most descriptive fea-
tures, and then restricts the classifier to use these features
only. PCA thus finds a transformation W of the input data
and identifies the first L components. In contrast to SFS, the
testing phase for PCA is performed on the transformed data.

Performance measures

If we are only interested in whether a household is occupied
or unoccupied, occupancy classification can be regarded as
a binary problem. Thus, we refer to instances of correctly
classifying an occupied household as a true positive classifi-
cation (tp). Similarly, we refer to a correct classification of
an unoccupied period as a true negative classification (tn).
False positive (fp) and false negative classifications (fn) then
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Figure 2: Setup of the evaluation for SFS feature selection and principal component analysis (PCA).

denote incorrect occupied or unoccupied classifications, re-
spectively. In the following, we use this notation to derive
several performance criteria.

Classification accuracy

The classification accuracy gives a measure of how often the
classification is correct. For a classifier c it is thus computed
as the number of correct classifications divided by the total
number of classifications:

Accc =
tp+tn

tp+tn+fp+fn .

To obtain a suitable baseline for the classification accuracy,
we introduce the maximum-likelihood classifier Prior that as-
signs data points to the class of the majority of data points
in the training set. Since the occupancy exceeds 50% in all
households5, Prior is the probability of a household being
occupied.

However, as the classification accuracy does not take into ac-
count the relative cost of misclassifications, it may only par-
tially describe a classifier’s performance. This problem is
summarised by Witten et al. “[An] evaluation by classifica-
tion accuracy tacitly assumes equal error costs” [31]. If the
objective is to control a smart heating system, for instance,
a false negative classification (i.e. occupants are wrongly as-
sumed to be away) may erroneously lead to the system low-
ering the temperature setpoint. On a cold day, this may result
in severe thermal discomfort for the occupants.

Furthermore, an unbalanced class distribution (i.e. very high
or low occupancy) may cause misleading classification accu-
racies. Households r4 and r5 are occupied over 90% of the

5It lies between 63% (r2, winter) and 95% (r4, winter).

time. Thus, for these, even the Prior classifier achieves clas-
sification accuracies exceeding 90%.

Matthews correlation coefficient

A reliable occupancy monitoring system correctly detects
both occupied (tp) and unoccupied (tn) states. To test the
performance of our proposed system we thus also computed
the Matthews correlation coefficient (MCC) of our classifi-
cation results [22]. The MCC provides a balanced measure
even for heavily skewed input data. A coefficient of +1 rep-
resents a perfect prediction. The opposite (i.e. a value of −1)
is assumed if no single instance was classified correctly. The
MCC of a classifier c is calculated as:

MCCc =
tp×tn−fp×fn√

(tp+fp)(tp+fn)(tn+fp)(tn+fn)
.

False negative and false positive rate

False negatives (fn) occur when an occupied household is
falsely labelled as unoccupied. In certain scenarios, such
as a heating control application, these errors are particularly
grave. They may result in discomfort as the temperature
is lowered automatically – even though the occupants are
present. We use the false negative rate (FNR) to quantify the
number of such misclassifications. The FNR of a classifier
c is defined as the number of false negatives divided by all
unoccupied intervals (true and false negatives):

FNRc =
fn

fn+tn
.

Falsely labelling an unoccupied household as occupied re-
sults in a false positive classification. False positives reduce
the efficiency of a heating control system as they trigger it to
raise the temperature while the building is unoccupied. The
frequency of these errors is denoted by the false positive rate



(FPR). The FPR of a classifier c is defined as the number of
false positives divided by all occupied intervals (true and false
positives):

FPRc =
fp

fp+tp
.

Cross-validation

We randomly divide the data ten times into different, equi-
sized training and testing sets. For each of these runs, the
training set is used to train the classifiers and the testing set
is used to evaluate their performance. Afterwards, the roles
of the sets are switched and the process repeated. So in to-
tal, classification is performed 20 times. The two-fold cross-
validation tries to avoid that a specific allocation of data into
training and testing sets creates artefacts in the results. The
use of ten runs also allows for an assessment of the stability of
the feature selection6 – i.e. to analyse if different training data
yield different feature sets. The overall performance is com-
puted as the average of the performance over the 20 rounds
of classifications.

Classification limited to daytime hours

During the night, the electricity consumption is usually less
indicative of occupancy. Since we also do not have ground
truth data on sleep patterns, we restrict occupancy classifica-
tion to the time between 6 a.m. and 10.15 p.m.

Cross validation at day-granularity

For each classification, the HMM classifier requires the previ-
ous occupancy state – e.g. at 9.15 a.m. it requires knowledge
about the occupancy at 9 a.m. To facilitate this, the input data
is assigned to training and testing sets at day-granularity.

RESULTS

In this section, we use the features derived from the aggre-
gate electricity consumption to quantitatively evaluate the oc-
cupancy monitoring performance. We have implemented the
SVM, KNN, THR, GMM and HMM classifiers as well as the
Prior classifier for baseline comparison. The classifiers es-
timate the occupancy state for each time slot from the set of
features computed on the aggregate electricity consumption.
To reduce the dimensionality of the feature space, we evalu-
ate the SFS feature selection algorithm and PCA. The used
method is indicated by the appendices “-SFS” or “-PCA”,
where applicable (e.g. SVM-SFS denotes the usage of the
SVM classifier trained using SFS feature selection).

First, we discuss the overall occupancy detection perfor-
mance in terms of accuracy, FNR, FPR and MCC. We then
evaluate the performance of the different classifiers and the
results of the feature selection. We conclude this section
with discussion on the suitability of monitoring building oc-
cupancy using electricity consumption data in a smart heating
scenario.

Overall occupancy detection performance

For each household, we use C to denote the classifier achiev-
ing the highest accuracy (i.e. AccC). To put AccC into con-
text, we also evaluate the false positive (FPRC) and false
6Feature selection is actually performed using an additional two-
fold cross-validation on the training data (cf. Figure 2).
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Figure 3: Best accuracy (AccC) and corresponding perfor-
mance measures in percent over all classifiers.

negative rates (FNRC) achieved by C. Figure 3 shows the
performance in terms of AccC, FPRC and FNRC for all five
households in the (a) summer and (b) winter data sets.

In households r1 to r3, the best classifier C outperforms
the Prior accuracy as determined by the maximum-likelihood
classifier during both summer and winter. The best result is
obtained in r2 where AccC is on average 29% higher than the
Prior accuracy. Here, the mean accuracy of the summer and
winter periods is 93%. This results, on average, in approx-
imately one hour misclassified per day. At the same time,
FNRC is 6% on average. Thus, a low fraction of intervals
is misclassified as unoccupied. The average FPRC is 8%,
which means that C incorrectly assumes the building to be
unoccupied for 38 minutes on average per day.

In households r1 and r3, the best classifiers achieve a ten per-
cent improvement over the Prior baseline (AccC = 85% for
r1 and AccC = 81% for r3). In contrast to r1, however, the
classifications come with a potential of discomfort caused by
their false negative rate. In household r1, we observe a FNR
of 15%; meaning that 110 minutes are falsely classified as
unoccupied while the participants were actually at home. In
household r3, one hour and 35 minutes are misclassified as
unoccupied as FNRC = 14%.

In households r4 and r5, the accuracy of the best classifier
C does not significantly exceed the performance of the Prior.
In contrast to r1 to r4, these two households have very high
(i.e. around 90%) occupancy levels. The reasons for the in-
ability of the classifiers to outperform the Prior classifier may
not be conclusively established as we lack detailed data on
the behaviour of the occupants. We assume, however, that the
results can in part be explained by the behaviour of the occu-
pants. The high occupancy in r4 and r5 means that there may
be periods where a building is occupied while no electrical
appliances are in operation. For the classifier, these periods
look identical to those encountered when the building is ac-
tually unoccupied. Furthermore, as the buildings are almost
always occupied, the number of such inactive periods is likely



Table 2: Classification accuracy (expressed as percentages)
for each household and algorithm in summer and winter.

SFS PCA

SVM KNN THR SVM KNN GMM HMM Prior

# Summer

r1 80 76 77 83 80 78 83 75
r2 91 88 76 92 89 76 90 65
r3 78 76 71 83 79 70 82 71
r4 90 90 85 91 88 70 87 90
r5 90 88 81 90 84 59 79 90

Winter

r1 82 78 83 84 81 79 87 73
r2 93 91 77 94 91 88 92 63
r3 70 71 66 78 76 59 71 71
r4 92 92 90 92 90 70 84 93
r5 82 80 77 85 79 63 74 82

to exceed the occupied periods. This would result in the clas-
sifier almost always classifying the home as occupied.

This problem is well-known in machine learning and may be
alleviated partially by undersampling the training data to ob-
tain an even split of occupied an unoccupied intervals [13,14].
The downside of this approach is that it may increase the
number of intervals misclassified as unoccupied, which im-
plies a higher false positive rate. We believe, however, that
the main objective of a smart heating system is to ensure com-
fort at all times. Therefore, such an approach is not feasible.
After all, very high occupancy households do not represent
viable targets for a smart heating system in the first place. The
high occupancy prevents the system to lower the temperature
over significant periods of time, resulting in little energy sav-
ings7. For the remainder of this paper, we list the results for
households r4 and r5 for completeness’ sake, but refrain from
including them in our analysis due to their limited suitability
to a smart heating scenario.

Performance by classifier

In the previous section we have discussed the best perfor-
mance over all classifiers. In this section, we analyse how the
classifiers perform relative to each other. To this end, Table 2
shows the classification accuracy for all combinations of clas-
sifiers and households for both the summer and winter data
sets. For each household, the best classifier(s) are indicated
in bold print. The table shows that, overall, the SVM-PCA
classifier is the best classifier in terms of classification accu-
racy, outperforming the other classifiers in seven out of ten
cases. It achieves an average accuracy of 86% for households
r1 to r3. The main reason for this is that it adopts well to the
non-linearity of the feature space. The HMM classifier per-
forms best for household r1 in winter and performs equally
well as the SVM-PCA classifier in summer. Its average ac-
curacy for households r1 to r3 is 84%. The worst performing
classifier is the simple THR-SFS classifier. It only achieves
an average accuracy of 75%, outperforming the Prior by 5%
only.

The results in Table 2 show that the use of PCA to reduce the
dimensionality of the features outperforms feature selection
with the SFS algorithm. While SVM-SFS comes close to the

7The relationship between energy savings and occupancy is further
explored in [19].

Table 3: Matthews correlation coefficient for each house-
hold and algorithm in summer and winter.

SFS PCA

SVM KNN THR SVM KNN GMM HMM

# Summer

r1 0.40 0.35 0.35 0.52 0.46 0.49 0.60

r2 0.81 0.73 0.45 0.84 0.76 0.55 0.79
r3 0.46 0.42 0.32 0.61 0.49 0.44 0.61

r4 0.14 0.15 0.19 0.35 0.35 0.32 0.45

r5 / 0 0.05 / 0.11 0.13 0.19

Winter

r1 0.50 0.42 0.55 0.58 0.53 0.55 0.70

r2 0.84 0.81 0.51 0.88 0.82 0.75 0.84
r3 0.18 0.21 0.14 0.46 0.41 0.20 0.32
r4 0.10 0.09 0.19 0.15 0.20 0.22 0.26

r5 0.11 0.24 0.07 0.35 0.32 0.25 0.31

Table 4: False negative rate (expressed as percentages) for
each household and algorithm in summer and winter.

SFS PCA

SVM KNN THR SVM KNN GMM HMM

# Summer

r1 9 15 14 10 14 22 16
r2 8 10 11 7 9 30 9
r3 16 17 21 15 16 36 20
r4 1 2 9 2 7 31 11
r5 0 2 12 0 9 42 17

Winter

r1 8 12 8 9 13 23 14
r2 6 7 15 5 7 15 9
r3 13 13 21 13 16 45 24
r4 1 1 5 1 4 30 14
r5 2 11 9 3 14 39 23

results of SVM-PCA in household r2, SFS is outperformed
by PCA in all 5 households. We further analyse the features
selected by SFS in the next section and discuss possible ex-
planations for these results.

The results are similar if the MCC is used as a performance
measure. Table 3 shows again that PCA outperforms SFS fea-
ture selection in all 5 households. Among the classifiers us-
ing PCA, we see that the performance of the HMM classifier
approaches that of the SVM-PCA classifier. Both classifiers
have an average MCC of 0.64 for households r1 to r3. While
HMM achieves the highest MCC for r1, SVM-PCA performs
similarly or better in households r2 and r3. The performance
gap between the HMM and SVM-PCA classifiers in r1 can
be explained by a more even split between false positives and
false negatives which is rewarded by the MCC.

False negatives (i.e. a building falsely declared unoccupied)
are important due to their impact on the occupant’s thermal
comfort. Table 4 shows the FNR for all combinations of
classifiers and households. As in the previous tables, bold
print indicates the best (i.e. lowest) values. The table shows
that it may not be advisable to choose the classifier solely
based on the classification accuracy (or MCC). We previously
noted that AccC was 85% for household r1. This result was
achieved by the HMM classifier8. However, by choosing the
HMM classifier we incur an average FPR of 15%. If we use

8The accuracy of HMM classifier slightly exceeds that of the SVM-
PCA classifier. This is not visible in Table 2 due to rounding errors.
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(b) Winter.

Figure 4: Number of times a specific feature has been chosen
as part of the feature subset selected by the SFS algorithm for
a particular household and classifier. A darker colour indi-
cates a feature was chosen more frequently.

the SVM-PCA classifier instead, the FPR can be reduced to
10% at the expense of only a 1% reduction in accuracy.

Features best describing occupancy

In this section we analyse the features chosen by the SFS al-
gorithm. Figures 4a and 4b show – for the summer and winter
periods, respectively – the number of times a particular fea-
ture has been chosen by SFS. The rows show for each of the
35 features listed on the x-axis, the number of times it has
been chosen for a particular household and classifier.

Figures 4a and 4b show that in successive runs of the SFS fea-
ture selection, different features are being chosen for the same
households. Furthermore, no feature is chosen consistently
over all households. A possible explanation for this behaviour
is that there is a high correlation between individual features.
The range feature, for example, is computed from the ab-
solute difference between the min and max features. Like-
wise, the sad and onoff are closely related. While sad
computes the sum over all deltas of the electricity consump-
tion, the onoff feature counts the number of occurrences
of a specific delta. Due to this similarity, small variations
in the classification accuracy resulting from the variance in
the dataset rather than the descriptiveness of a particular fea-
ture cause different features to be selected. Incidentally, this
may also explain the good performance of PCA. Through the
combination of similar features and the selection of the first
components, redundant information is ignored.

The min, max, mean, std, sad, cor1, onoff and range
features are computed on the three phases as well as the sum
of all phases resulting in 32 features overall (cf. Table 1). Fig-
ures 4a and 4b show the number of occurrences of these fea-
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Figure 5: Combined features chosen by SFS (r2, SVM).
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Figure 6: Ground truth (GT) and occupancy transitions for an
exemplary classification of 195 intervals (3 days) of r2.

tures for each phase. To analyse a feature’s descriptiveness
irrespective of the phase it was computed on, Figure 5 shows
the cumulative probability of each particular feature for the
summer (Figure 5a) and winter (Figure 5b) data sets. Over-
all, the onoff feature is chosen most often by the SFS fea-
ture selection. For the summer data set it is used in all runs.
In the winter it is used in over 90% of the runs. The next
most frequent features differ between the summer and winter
data sets. While in winter, the max and min features follow
the onoff feature, in summer the std and range come in
second and third place.

From Figures 4a, 4b and 5 we can see that in summer, more
features are chosen than during the winter. Figure 5 shows
that in summer, the first six features are chosen in more than
75% of the runs. During the winter only the first feature ex-
ceeds a 75% probability of being chosen. The two data sets
also differ in the frequency of the time features (i.e. pprob,
pfixed and ptime). During the winter, the frequency of the
time features approximately halves compared to the summer.
A possible explanation is that these add information about
the correlation between occupancy and the current time of
day. During the summer in Switzerland, the sun rises before
6 a.m. and sets after 9 p.m., resulting in less energy spent on
lighting. Thus when the electricity consumption alone (e.g. in
the morning) is not sufficient for monitoring occupancy, the
time features may provide a fallback.

SUITABILITY FOR CONTROLLING A THERMOSTAT

Before we conclude the paper, we discuss the suitability and
limitations of using electricity meters to monitor occupancy
for a smart heating application.

Thus far, we have analysed the performance of the classi-
fiers for individual intervals. Thereby we have treated each



Table 5: RMSE between the number of actual occupancy
transitions per day and the predicted transitions; and ADOT
for each household and algorithm in summer and winter.

SFS PCA

SVM KNN THR SVM KNN GMM HMM ADOT

# Summer

r1 11.7 9.3 11.5 7.4 6.2 9.2 8.7 2
r2 3.6 3.9 12.4 3.4 3.8 6.3 3.7 2.5
r3 10.1 7.2 9.9 7.8 6.0 11.1 10.4 2.3
r4 9.2 8.7 11.2 6.5 5.6 20.1 9.1 1.8
r5 12.1 11.1 9.0 12.1 7.4 22.9 11.7 1.3

Winter

r1 8.4 8.5 8.5 7.9 9.8 14.0 9.1 1.1
r2 2.6 2.9 6.3 2.5 2.8 3.9 3.0 2.2
r3 5.3 5.9 5.6 4.0 5.2 8.2 3.1 1.9
r4 9.3 9.1 7.1 8.4 5.7 26.9 15.2 1.3
r5 13.8 8.1 9.1 10.3 5.3 12.3 6.9 2.1

interval independently. For the chosen metrics (i.e. classifi-
cation accuracy, MCC, FPR and FNR), each correct or in-
correct classification thus contributes with the same weight.
However, when the controller is notified that the building has
become occupied, it starts to heat to reach the comfort tem-
perature. The ability to correctly detect occupancy transitions
– i.e. changes in the occupancy state from occupied to unoc-
cupied and vice versa – is crucial to the system. As each
occupancy transition causes the controller to adapt its heat-
ing strategy, it is important not to over or under-estimate the
number of transitions. Figure 6 shows the occupancy tran-
sitions for the first 195 slots of household r2 for the SVM-
PCA, KNN-PCA GMM-PCA and HMM-PCA classifiers.
The ground truth data contains 10 state transitions (six oc-
cupied periods and five unoccupied periods). The SVM-PCA
classifier reproduces the occupancy transitions of the ground
truth data most closely. Apart from missing a short period of
occupancy on the first day, it shows the same number of tran-
sitions as the ground truth data. Owing to its stateful nature,
the HMM-PCA classifier misses two short occupancy periods
but otherwise follows the ground truth occupancy transitions.
The KNN-PCA and GMM-PCA classifiers significantly over-
estimate the number of occupancy transitions, rendering them
unsuitable for a smart heating controller.

To formalise this problem, we analyse the root mean square
error (RMSE) between the number of actual occupancy tran-
sitions per day and the transitions predicted by the classifiers.
In addition, we compute the average number of daily occu-
pancy transitions (ADOT). We define the ADOT of a classi-
fier c as:

ADOTc =

∑Total number of days

d=1
Number of transitions for day d

Total number of days
.

Table 5 shows that household r2 has the highest average num-
ber of daily occupancy transitions (ADOT) in the data set. Its
occupancy changes 2.4 times per day on average. For house-
hold r2, the SVM-PCA classifier most closely predicts the
true number of occupancy transitions with an average error
of 3 transitions. In the other households all classifiers sig-
nificantly overestimate the number of transitions. Thus, ad-
ditional smoothing in the controller is required to avoid un-
necessary switches. A possible remedy could be to wait a
pre-defined period before declaring the building unoccupied.
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Figure 7: Mean accuracy over 24 hours (r2, SVM, winter).

Limits to classification

Our results show that, for some households, the SVM-PCA
classifier’s performance may warrant its inclusion into a smart
heating system. However, the classification accuracy shows
that further improvements are possible. Figure 7 shows the
average classification accuracy of the SVM-PCA classifier
from 6 a.m. to 10 p.m. The upper graph shows that, while
for most of the day the accuracy (blue, solid line) stays close
to or above the average accuracy (red, dotted line), there is
a significant drop in the morning. The lower graph depicts
these misclassifications in more detail. Up to 8.30 a.m., the
SVM-PCA classifier overestimates occupancy. A potential
explanation is that the participants are more likely to forgo a
hot breakfast the earlier they leave the building. After 8.30
a.m., the situation reverses and the occupancy is underesti-
mated. This could be due to the occupants sleeping in on
weekends and a low utilisation of electrical appliances in the
morning hours.

While their performance may not be suitable for real-time oc-
cupancy monitoring in all households, digital electricity me-
ters can give a good overall indication of a building’s level of
occupancy. As these meters are increasingly deployed, their
ubiquity may be used to identify the households which would
benefit most from a smart heating system.

CONCLUSION

In this paper we addressed the problem of performing auto-
matic home occupancy detection using aggregate electricity
consumption data. Our results improve upon our previous,
preliminary work [18] and show that the use of smart
electricity meters allows to achieve an average occupancy
detection accuracy of up to 94%. We further showed that
due to the varying setup in different households, no single
feature set performs consistently well over all households. In
terms of individual features, however, a feature that captures
changes in the activation state of appliances (e.g. like the
onoff feature in our case) should be used. To increase the
occupancy monitoring performance, future work should look
at fusing electricity consumption data with other sensory data.
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