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HIGHLIGHTS

• The roles of binders in both sulfur host-based and sulfur host-free systems are considered for polymer composite frameworks in 

lithium-sulfur batteries.

• The applications of the existing and potential multifunctional polymer composite frameworks are summarized for manufacturing 

lithium-sulfur batteries.

ABSTRACT Extensive efforts have been devoted to the design of micro-, nano-, 

and/or molecular structures of sulfur hosts to address the challenges of lithium–sulfur 

(Li–S) batteries, yet comparatively little research has been carried out on the binders 

in Li–S batteries. Herein, we systematically review the polymer composite frame-

works that confine the sulfur within the sulfur electrode, taking the roles of sulfur 

hosts and functions of binders into consideration. In particular, we investigate the 

binding mechanism between the binder and sulfur host (such as mechanical inter-

locking and interfacial interactions), the chemical interactions between the polymer 

binder and sulfur (such as covalent bonding, electrostatic bonding, etc.), as well as 

the beneficial functions that polymer binders can impart on Li–S cathodes, such 

as conductive binders, electrolyte intake, adhesion strength etc. This work could 

provide a more comprehensive strategy in designing sulfur electrodes for long-life, 

large-capacity and high-rate Li–S battery.
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1 Introduction

The recent increases in global population and worldwide 

development continue to put an upward pressure on the 

demand for energy [1]. As the majority of energy is still pro-

duced through the combustion of fossil fuels, this increased 

demand for energy continues to raise global greenhouse gas 

emissions, which is the driving force behind climate change 

[2]. To reduce the environmental impacts associated with 

society’s demands for energy, a transition away from fossil 

fuel-based energy to more renewable sources must be real-

ized. With regard to grid scale energy generation, solar and 

wind power have made inroads into global energy infrastruc-

ture but are hindered by their intermittent energy supply [3]. 

http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-019-0249-1&domain=pdf
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A further uptake of electric vehicles (EVs) could also put 

downward pressure on the emissions arising from fossil fuel 

combustion for transportation, however for this to be realized 

on a larger scale, the travel range of EVs must be improved 

[4]. Current generation lithium ion batteries (LIBs) have 

been successfully applied in both grid scale energy storage 

as well as EVs, but the limitations of this mature technol-

ogy are beginning to show. The high cost of LIBs is limiting 

their widespread application as grid scale storage devices, 

and their limited energy densities cap the travel range of EVs 

[5]. To counteract these shortfalls, researchers in the field are 

investigating more cost-effective and energy-dense recharge-

able batteries. Lithium–sulfur (Li–S) batteries are a promis-

ing alternative to current generation LIBs, as their associated 

electrochemistry delivers an energy density up to 5 times 

higher than current cells [6]. Additionally, the active materi-

als in Li–S cells are cheaper and more abundant than their 

traditional LIB counterparts. However, Li–S cells have hin-

drances in their commercial application due to their limited 

conductivity, volume expansion, and rapid capacity fading 

[7]. The most common method to address these concerns is 

through the rational design and implementation of nanostruc-

tured sulfur hosts, toward which a great deal of research has 

been focused [8]. In comparison, the design and implementa-

tion of novel polymeric binders has been largely overlooked 

in Li–S cells [9] and has only recently started to capture the 

attention of researchers, as shown in recent reviews [10–12], 

yet approaches investigating the entire cathode structure are 

lacking. To consolidate the current research in the field and 

provide future research directions, this review investigates 

the role of polymeric binders in the construction of polymer 

composite frameworks (PCFs). To begin with, we summarize 

the general binding mechanism in LIBs and then introduce 

the current challenges and solutions in Li–S batteries. Finally, 

we investigate the role of polymeric binders in host@PCFs, 

followed by a discussion on the role of binders in host-free 

PCFs, and finish with a review of multifunctional binders in 

PCFs, as shown in Fig. 1. 

2  Polymeric Binders in LIBs

2.1  General Binding Mechanism

As the electrodes in LIBs are a composite electrode contain-

ing the active material and conductive additives, polymeric 

binders are employed to ensure intimate contact between 

the electrode components and the current collector is main-

tained over extended cycling. Before an in-depth review of 

binders in Li–S batteries is carried out, a brief summary of 

the adhesion mechanism is provided. Broadly speaking, an 

electrode slurry can be fabricated by combining a binder 

solution and the desired active materials. During this step, 

the solution can fully wet the surface pores of the particles. 

Once the slurry is coated and dried, adhesion throughout the 

polymer composite framework is achieved. This adhesion 

can be thought to arise via two mechanisms, mechanical 

interlocking and interfacial forces, as shown in Fig. 2 [13].

2.1.1  Mechanical Interlocking

D.E. Packham has provided an interesting history into the role 

of mechanical interlocking in adhesion theory [14]. Mechanical 

interlocking arises when a binder solution penetrates the pores 

of a particular surface (or surfaces) and is subsequently hard-

ened. As the binder solution solidifies in situ a solid, embedded 

film remains in the pores of the material, leading to adhesion. 

The strength of this adhesion is influenced by the roughness of 

a particular surface, which allows for a higher area for bonding 

[15], as well as the nature of the adhesive itself [16].

Fig. 1  Three polymer composite frameworks (PCFs) in Li–S batter-
ies; sulfur host@PCFs, sulfur host-free PCFs, and multifunctional 
PCFs for sulfur cathodes in Li–S Batteries
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2.1.2  Interfacial Interactions

Various adhesive mechanisms which occur at the interface 

between the adhesive and the active material surface have 

been proposed [17]. The mechanisms which are most com-

monly encountered in LIBs adhesion are those that include 

intermolecular forces, electrostatic forces, and covalent 

bonding which occur at the binder/surface interface. In 

the case of intermolecular forces, the adhesive strength 

between two materials can be improved if the ever pre-

sent Van der Waals forces are supplemented by hydrogen 

bonding between the binder and substrate [18]. Similarly, 

further improvements in adhesive strength can be achieved 

if either electrostatic [19] or covalent bonds [20] occur 

at the interface. For a more comprehensive introduction 

to the forces that occur both at the interface and within a 

binder itself we refer readers to our recent review, which 

investigates the matter more thoroughly [13].

2.2  Challenges of Traditional Binders

Fluorine containing polymers have experienced remark-

able success when applied in energy storage devices such 

as batteries [13], supercapacitors [21], and fuel cells [22], 

and are the current status quo for binders in energy stor-

age devices. Polyvinylidene fluoride or polyvinylidene dif-

luoride (PVDF) (Scheme 1) is mainly produced by emul-

sion or suspension polymerization [11] and is the most 

widely used binder in battery electrodes due to its rela-

tive chemical inertness and stability over a wide voltage 

window [23]. Polytetrafluoroethylene (PTFE) (Scheme 1), 

another fluoro-polymer, has also found success in energy 

storage devices, particularly in supercapacitors due to its 

more superior tolerance to alkaline conditions compared 

with PVDF [24]. However, its inferior mechanical/adhe-

sive properties have led to the dominance of the PVDF 

binder in battery systems. As PVDF is the most common 

binder in batteries, its limitations are the most relevant and 

are briefly discussed below.

2.2.1  Chemical Stability

Although wildly successful and chemically stable over a 

wide range of conditions, PVDF still causes operational 

concerns due to its chemistry. During high temperature 

operation, PVDF can react with lithium metal (or lithiated 

graphite) to form LiF [25]. Furthermore, under “abuse-con-

ditions” such as over-charge/discharging, short circuits, etc., 

unwanted reactions with PVDF can cause thermal runaway 

which leads to safety concerns [26]. Finally, PVDF has been 

shown to cause accelerated degradation of active materials 

at contact points under elevated temperatures [27].

2.2.2  Adhesion Strength

The polymer backbone of PVDF consists of alternating 

 CH2 and  CF2 species which, according to the aforemen-

tioned binding theory, delivers adhesion through mechanical 

Binder

Current collector

Mechanical

interlocking

Interfacial

forces

Conductive

additive

Active

material

Fig. 2  The roles of polymeric binders in a typical LIB
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interlocking and Van der Waals forces. Although the C–F 

bond in PVDF is highly polar due to fluorine’s electronega-

tivity, the polymer arranges itself so that the dipole moments 

cancel each other out [28]. Therefore, PVDF cannot produce 

strong interfacial interactions (i.e., hydrogen bonding, elec-

trostatic interactions, or covalent bonds) toward the active 

materials or current collector, and, as a result, the stronger 

bonding mechanisms mentioned previously do not present 

themselves in PVDF-based electrodes. What is more, PVDF 

is prone to swelling in common LIB electrolytes, which can 

lead to the migration of the electrolyte between the binder/

substrate interface [29], which reduces the intimate contact 

between electrode components required for strong bonding. 

Thus, it proves difficult for the PVDF binder to maintain a 

stable electrode structure over extended cycling.

2.2.3  Environmental, Health and Cost Concerns

PVDF is a rather costly synthetic polymer which is only 

soluble in volatile and toxic organic solvents, with the most 

commonly used solvent being N-methyl pyrrolidine (NMP) 

[30]. A shift toward aqueous-soluble binders could not only 

lower costs but could also reduce the associated health haz-

ards and environmental impact associated with the manufac-

turing and recycling of secondary cells.

3  Working Mechanisms and Challenges 

of Li–S Batteries

3.1  Li–S Battery Working Mechanism

A typical Li–S cell contains a composite sulfur cath-

ode (containing sulfur, conductive additive, and binder), 

lithium metal anode, separator, and organic electrolyte. 

As discharge begins,  Li+ ions migrate from the anode to 

the cathode so that the reduction of elemental sulfur can 

begin. A multi-step electrochemical reaction takes place 

with two associated voltage plateaus, as shown in Fig. 3 

[31].

The voltage plateau at 2.4–2.15 V corresponds to the 

formation of long-chain polysulfides  (Li2Sx; x = 4–8). 

As the long-chain polysulfides are soluble in organic 

electrolyte, this portion of the electrochemical reaction 

involves a solid to liquid phase conversion of the active 

material and supplies ≈ 418 mAh  g−1 toward the total dis-

charge capacity [8]. Upon further lithiation, the long-chain 

polysulfides are converted to short-chain polysulfides 

 (Li2Sx; x = 1–2) which are insoluble in the electrolyte and 

precipitate at the cathode surface, providing the remain-

ing ≈ 1254 mAh  g−1 for a total of 1672 mAh  g−1 specific 

capacity which roughly corresponds to an energy density 

of 2600 Wh  kg−1 (based upon the complete formation of 

 Li2S) [31].

3.2  Challenges and Strategies of Li–S Batteries

The limitations of conventional LIBs have led researchers to 

investigate higher energy density storage options [6]. Li–S 

batteries, one of the most promising options, have received 

well deserved attention, with over 1000 research papers pub-

lished on this topic since 2015 [9]. Such devoted attention to 

this system is aimed at solving the inherent problems with 

the Li–S cell, which are briefly introduced below.

3.2.1  Low Electronic and Ionic Conductivity of Sulfur

It is well established that sulfur cathodes suffer from low 

electron and ion transportation due to the insulating nature 
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Fig. 3  A typical charge/discharge profile for a Li–S battery. Repro-
duced with permission from Ref. [31]. Copyright 2017 John Wiley 
and Sons



Nano-Micro Lett. (2019) 11:17 Page 5 of 44 17

1 3

of both sulfur and its discharge product,  Li2S, which results 

in poor rate kinetics and low sulfur utilization [32]. What is 

more, upon discharge a passivating layer of  Li2S can form 

on the cathode surface, further reducing the cell’s capac-

ity [33]. In Li–S cells, the low conductivities are typically 

addressed through the implementation of conductive sulfur 

hosts within the cathode [34, 35]. Additionally, to gain a bet-

ter theoretical understanding of the ionic transport mecha-

nisms within battery components, researchers have turned 

to DFT calculations [36].

3.2.2  Volume Expansion of Sulfur

Another challenge in Li–S cells pertains to the volume 

expansion experienced by the active materials during dis-

charge [37]. Upon complete lithiation, the elemental sulfur 

undergoes a volume expansion of ≈ 70% [38], which can 

cause internal stresses within the electrode and results in 

electrode pulverization and capacity decay [39]. The volume 

fluctuations of the active materials are typically combated 

by the rational design and implementation of nanostructured 

sulfur hosts in the Li–S cathode [5].

3.2.3  The Shuttle Effect of Polysulfides

The most significant challenge relating to Li–S batteries is 

dubbed the “shuttle effect” (or shuttle phenomenon) [40]. 

This issue arises from the phase transformation of the active 

material that takes place during discharge, wherein the solid 

elemental sulfur is reduced to long-chain polysulfides (PSs) 

which are highly soluble in the common organic electrolytes 

found in Li–S cells. This formation of soluble long-chain 

polysulfides causes a concentration gradient to arise, which 

promotes the migration of these species toward the anode 

where they can undergo parasitic reactions, causing seri-

ous reduction in the discharge capacity and efficiency of the 

battery [41].

Initial attempts to curtail the PS shuttle involved the 

restriction of PSs through physical means, including surface 

coatings and the loading of sulfur into porous materials at 

the cathode, but more recent solutions include the chemi-

cal restriction of PSs [42]. Density functional theory (DFT) 

calculations have been utilized to investigate mechanisms by 

which PSs can be chemically anchored within the Li–S bat-

tery, including through the lithium bond [43], heteroatom-

doping (particularly N and O doping) [44], and transition 

metal sulfide bonding [45].

A wide variety of materials have recently been inves-

tigated which aim to suppress the PS shuttle by various 

means, as summarized in the recent reviews on polar materi-

als [46], metal oxide/sulfides [7, 47], organosulfur polymers 

[48], porous organic polymers [49], redox mediators [50], 

and flexible materials [51] for Li–S batteries. Most com-

monly, these chemical PS anchors are applied in the cathode 

of Li–S batteries which greatly improve Li–S performance 

[52–62]. Another successful approach to anchor the PSs and 

prevent their migration to the anode is through the use of 

functionalized interlayers and separators [34, 35, 49, 63–67]. 

Overall, anchoring the PS at either the cathode or the separa-

tor has greatly improved the capacity retention of Li–S cells 

over extended cycles.

3.2.4  Low Sulfur Loading and High Electrolyte/Sulfur 

(E/S) Ratio

There are two key considerations which must be addressed 

with regard to the sulfur loading in Li–S cells. The first 

relates to the sulfur weight fraction in the composite elec-

trode and the second relates to the areal sulfur loading. Fang 

et al. [31] suggest a sulfur weight fraction of over 70% in the 

active materials and an areal loading of over 5 mg cm−2 for 

a reliable Li–S cell. Over the last few years, great improve-

ments have been made with respect to both the sulfur load-

ing in the composite and the areal sulfur loading [34].

The electrolyte is another crucial component of the Li–S 

cell. The go to solution for electrolytes in Li–S batter-

ies has been liquid organic electrolytes [68], but recently 

researchers have turned their attention to solid electro-

lytes [69]. However, regardless of the electrolyte system 

chosen, another challenge with the Li–S cell is the exces-

sive amount of electrolyte used in the cells reported in the 

literature, resulting in a high electrolyte to sulfur (E/S) 

ratio in reported test cells. Oftentimes, an E/S ratio that is 

greater than 7 µL of electrolyte to 1 mg of sulfur is used 

to obtain a high sulfur utilization; however, an E/S ratio 
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of less than 4:1 is required so that the energy density of 

the Li–S cell can reach suitable levels [70]. Fang et al. 

[31] has shown that among literature which reports the 

E/S ratio of Li–S cells (which is already the minority of 

literature), over half use an E/S ratio of greater than 10:1, 

with only 3 achieving a ratio of 4:1 or lower. Liu et al. [34] 

has shown that little has changed with regard to the E/S 

ratio of Li–S cells in the literature over the past few years, 

more recently however, researchers are beginning to work 

on this problem [71].

3.2.5  Unstable Lithium Metal Anode

As mentioned earlier, the Li–S cell relies on a lithium metal 

anode, which is an attractive candidate for high-energy den-

sity batteries due to its superb theoretical capacity of ≈ 3860 

mAh  g−1 and low electrochemical potential of − 3.040 V 

versus the S.H.E. [72]. However, the Li metal anode suf-

fers from a practically infinite volume expansion, parasitic 

reactions with the organic electrolyte and PSs, as well as 

dendrite formation during cycling, resulting in an unstable 

solid electrolyte interphase (SEI) layer, electrolyte deple-

tion, and a decreased cycling efficiency [73, 74]. Attempts 

to rectify the problems caused by the lithium metal anode 

include the use of polymer protecting layers and artificial 

SEI layers, applied either ex situ, or formed in situ through 

the use of electrolyte additives [75]. Additional approaches 

include the fabrication of 3D host materials to house lithium 

metal [34, 35].

3.2.6  Safety of the Li–S Cell

In addition to the challenges regarding the performance of 

the Li–S cell, there are some significant safety concerns 

which must be overcome for successful Li–S commercializa-

tion. In addition to reducing cell efficiency, dendrite growth 

in Li metal anodes can pierce the separator and cause short 

circuits within the cell, resulting in thermal runaway and 

explosions [73]. Additionally,  LiNO3 is commonly used 

as an electrolyte additive to passivate the Li anode and 

inhibit PS shuttling; however, it is prone to extreme gassing 

in larger pouch cells [70], causing an increase in internal 

pressure resulting in a risk of explosion [34, 69]. Recent 

approaches, which are aimed at increasing the safety of Li–S 

cells, include the application of specially tailored liquid and 

solid electrolytes [69] as well as the inclusion of flame-

retardant materials within the cell [76, 77].

3.2.7  Polymer Composite Frameworks in Li–S Batteries

As mentioned earlier, a significant amount of research 

on the Li–S system has been focused toward the cathode 

host materials; however, the polymer binder, a crucial 

component of a high-performance cathode, is compara-

tively under researched [9]. In order to review the research 

progress in this area, we firstly classify the type of PCF 

based on the components present in the cathode. For the 

sake of this review, we define a host@PCF as a cathode 

constructed using sulfur, a sulfur host, conductive addi-

tives, and a polymeric binder. We discuss the role of the 

binders in host@PCFs in Sect. 4. Another PCF forgoes 

the traditional sulfur-host entirely and sulfur cathodes 

are fabricated simply through the combination of sulfur, 

conductive additives, and a binder. In this review, we dub 

these cathodes as host-free PCFs. The role of polymeric 

binders in host-free PCFs are reviewed in Sect. 5. Finally, 

researchers have turned to multifunctional binders to 

impart additional features into the Li–S cathode, which 

we review in Sect. 6.

4  Sulfur Host@Polymeric Composite 

Frameworks

4.1  Mechanical Interlocking Between Binders 

and Sulfur Host

A selection of hosts and binders in host-based Li–S batteries 

are listed in Table 1. It can be seen that the most commonly 

used binders are PVDF and PTFE. Due to the inertness of 

the polymers, the interaction between these polymers and 

sulfur is weak, however, because the polymer can penetrate 

and interlock the pores of the sulfur host, a relatively stable 

structure is obtained and the electrode can still deliver a 

good electrochemical performance for Li–S batteries [78, 

79].



Nano-Micro Lett. (2019) 11:17 Page 7 of 44 17

1 3

As mentioned earlier, a vast array of sulfur hosts has been 

investigated for the use in sulfur cathodes. Of these, the car-

bonaceous host materials are normally porous so that the 

binder can mechanically interlock the sulfur host, while the 

host can provide an efficient confining structure for sulfur. 

Morphologies of the host can include hollow carbon spheres 

[102], carbon nanotubes [103], graphene [104], and hierar-

chical porous carbons [105]. For example, Zhao et al. syn-

thesized a tube-in-tube carbon nanotube structure as a host 

for Li–S batteries while using. PVDF as a binder to fabricate 

a host@PCF structure, as shown in Fig. 4 [103]. Due to the 

good electrical conductivity and large pore volume of the 

porous carbon layers, the Li–S battery exhibited excellent 

electrochemical performance. The specific capacity still 

remained 918 mAh  g−1 at 500 mA g−1 after 50 cycles and 

647 mAh  g−1 at 2 A  g−1 after 200 cycles. It also delivered 

high capacity at high current density (550 mAh  g−1 at 6 A 

 g−1).

Similarly structured metal oxides [95], metal sulfides 

[97], and metal carbides [100] can provide sites for binder 

mechanical interlocking while simultaneously housing the 

sulfur-active materials. In-depth reviews on the design of 

sulfur hosts have already been provided by many research-

ers, which we direct readers to for further information [7, 34, 

35, 46–51, 106–110].

4.2  Combined Interfacial Forces in Polymer Composite 

Frameworks

In some cases, a host@PCF based on PVDF/PTFE can still 

deliver a good electrochemical performance due to the func-

tionality provided by the sulfur host, while these binders 

simply maintain electrode integrity through weak adhesive 

interactions. However, to further improve the stability of the 

electrode, binders with functional groups have been explored 

for Li–S batteries, especially for high sulfur loading cathodes 

where PVDF/PTFE binders become insufficient. The binders 

poly(acrylic acid) (PAA), carboxymethyl cellulose (CMC)/

styrene butadiene rubber (SBR), and sodium alginate (SA) 

contain abundant hydroxyl and/or carboxylate groups that 

are able to provide strong binding forces for the electrodes 

Table 1  PCFs via pure interlocking binding mechanism for Li–S bat-
teries

Binder Sulfur host References

PVDF Nitrogen-doped porous carbon [78]

PVDF Flower-shaped porous carbon [80]

PVDF Monolithic carbon [81]

PVDF Nitrogen-doped carbon nanofiber [82]

PVDF Hollow carbon nanofiber [83]

PVDF Carbon nanocube [84]

PVDF Nitrogen-doped porous carbon [85]

PVDF Porous carbon layer [86]

PVDF Mesoporous carbon [87–91]

PVDF Polypyrrole [92]

PVDF Carbon nanotube [93, 94]

PVDF Ti4O7 [95]

PVDF MnO2 [96]

PVDF Co9S8 [97]

PVDF Porous carbon aerogel [98]

PVDF Li2S/TiO2-impregnated hollow carbon 
nanofiber

[99]

PVDF Ti2C [100]

PTFE Porous carbon nanosheets [79]

PTFE Carbon sphere [101]

1

MWNTs MWNTs@SiO2@

P-SiO2/C18TMS

MWNTs@SiO2@

P-SiO2/C

TTCN S-TTCN

2 3 4

C18TMS Carbon Sulfur

1

MWNTs MWNTs@SiO2@

P-SiO2/C18TMS

MWNTs@SiO2@

P-SiO2/C

TTCN S-TTCN

2 3 4

C18TMS Carbon Sulfur

Fig. 4  Schematic illustration for the formation of S‐TTCN composite: (1) Uniform coating a solid  SiO2 layer and a porous  SiO2 layer embedded 
with  C18TMS molecules on MWNTs; (2) formation of porous carbon nanotube by carbonization of  C18TMS; (3) etching  SiO2 layers to obtain 
tube‐in‐tube carbon nanostructure (TTCN) with MWNTs encapsulated within hollow porous carbon nanotube; (4) sulfur infused into TTCN to 
fabricate S‐TTCN composite Reproduced with permission from Ref. [103]. Copyright 2014 John Wiley and Sons
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[13]. To obtain prolonged cycles for high-loading electrodes, 

the interaction between binders and hosts should be further 

enhanced. As shown in Table 2, many novel binders have 

been designed to synergistically work with the hosts.

For example, a PVDF binder was sufficient to maintain 

electrode integrity and obtain stable cycle performance when 

using a  Co9S8 host with a sulfur loading below 2.5 mg cm−2. 

However, when the electrodes were fabricated with higher 

sulfur loadings (2.5–4.5 mg cm−2), the use of a CMC/SBR 

binder was required to maintain the high capacity and stable 

cycles [97]. Another example is that Kim et al. [132] inves-

tigated PAA as a binder in host@PCF Li–S cathodes. The 

group combined sulfurized carbonized poly(acrylonitrile) 

(S-CPAN) as a sulfur host and PAA as a binder to form 

the framework. The PAA-based electrode delivered a higher 

specific capacity upon cycling compared with the PVDF-

based electrode, while also delivering a higher Coulombic 

efficiency (Fig. 5a, b). After 100 cycles, post-mortem analy-

sis of the electrode cross section under SEM revealed severe 

delamination in the PVDF-based framework (Fig.  5c); 

however, there was still intimate contact between the elec-

trode film and current collector when PAA was used as the 

binder (Fig. 5e). The surface of the PVDF-based electrode 

displayed large cracks, whereas the PAA-based electrode 

maintained its integrity. The group suggested that the struc-

tural integrity was maintained in the cathode due to hydro-

gen bonding occurring between the carboxylate groups of 

the PAA and the OH groups found on the carbonized PAN 

and current collector. This hydrogen bonding displays high 

elasticity and was able to maintain intimate contact between 

Table 2  PCFs composed of binders and sulfur hosts with additional interfacial binding forces in Li–S batteries

Binder Sulfur host References

CMC/SBR Meso@microporous carbon [111]

CMC/SBR Polypyrrole warped mesoporous carbon [112]

CMC/SBR Carbon nano fiber (CNF) [113]

CMC/SBR CNF [114]

CMC/SBR Co9S8 [97]

CMC Polyacrylonitrile [115]

CMC Hollow porous carbon sphere [116]

SA Hollow carbon nanorod [117]

SA Microporous carbon [118]

LA132 Nitrogen-doped carbon sphere [119]

LA133 Core–shell carbon sphere [120]

Poly(acrylic acid) (PAA) S-CPAN [132]

Poly(acrylonitrile-methyl methacrylate) FeS2 [121]

Poly(vinylpyrrolidone) (PVP)/poly(ethylene oxide) (PEO) CNF [122]

Nafion/PVP Porous carbon sphere [123]

Nafion Nickel sulfide/hollow carbon spheres [124]

PVP Porous carbon sheets [125]

Poly(ethersulfone) (PES) CNT [126]

Poly[(N,N-diallyl-N,N-dimethylammonium) bis(trifluoromethanesulfonyl)
imide] (PEB-1)

Nitrogen-doped mesoporous carbon [127]

Poly[(2-ethyldimethylammonioethyl methacrylate ethyl sulfate)-co-(1-vi-
nylpyrrolidone)] (D11)

Porous carbon sheets [125]

Poly(diallyldimethylammonium triflate) (PDAT) Porous carbon sheets [125]

Polyaniline (PANi) CNF/S [133]

Guar gum (GG) Poly(acrylonitrile) (PAN) [128]

Carbonyl β-cyclodextrin (C-β-CD) PAN [129]

Polycation β-cyclodextrin (β-CDp-N+) PANi [130]

Double-chain polymer (DCP) Carbon material [131]
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electrode components during the volume expansion/contrac-

tion of the S-CPAN upon cycling. Following this, an FEC 

additive was used to stabilize the lithium metal anode in the 

alkyl carbonate electrolyte, which enabled a capacity reten-

tion of 98.5% (≈ 1500 mAh  g−1) after 100 cycles at 0.5C.

Rao et al. [114] used a chemical deposition method to 

prepare a CNF-S composite. From there, they fabricated 

host@PCF cathodes using PVDF in NMP, poly(ethylene 

oxide) (PEO) in acetonitrile, and CMC/SBR (2:3) in 

water as binders, respectively. By observing the discharge 

profiles (Fig. 6), it was seen that the CMC/SBR and PEO-

based frameworks displayed a lower voltage plateau of 

around 2.0 V, compared with the PVDF-based frame-

work’s lower voltage plateau of 1.95 V, which suggests 

a greater degree of polarization in the PVDF-based cell. 

Upon extended cycling, the discharge capacities were 

586, 420, and 350 mAh  g−1 for the CMC/SBR, PEO, and 

PVDF-based batteries, respectively, which highlighted the 

superior capacity retention when CMC/SBR is used as a 

binder.
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Lacey et al. investigated the effects of binders and hosts 

in Li–S batteries. They fabricated an acceptably high sulfur 

loading cathode using their optimized polyvinylpyrrolidone 

(PVP):PEO binder [122]. They found that with a small addi-

tion of CNFs into the cathode, the homogeneity of the elec-

trode film was vastly improved (Fig. 7), which allowed for an 

increased sulfur loading up to 5 mg cm−2 without delamina-

tion of the electrode film.

The mechanical properties of the electrodes can also be 

enhanced by oppositely charged binders. Soft-pack Li–S 

batteries with an ultra-low binder content of 0.5 wt% were 

fabricated by Wang et al. [123]. The group used an innova-

tive layer-by-layer air spray method to synthesize a Nafion/

PVP (N/P)-based Li–S electrode (Fig. 8). The adhesion 

of the electrode film was examined via a peel test, which 

revealed the N/P binder delivered a stronger adhesion with 

0.5 wt% than the PVDF film with 10 wt% loading owing to 

the electrostatic interaction between the positively charged 

PVP and negatively charged Nafion. The as-fabricated pouch 

cells delivered a higher initial capacity and a slower capac-

ity decay compared with the PVDF batteries, even with the 

ultra-low binder loading.

Besides the strong binding forces, the binders are also 

expected to be multifunctional. Considering that, various 

functional binders have been explored for host-based sulfur 

electrodes, such as electronically and ionically conductive 

binders [115, 131]. For example, a polypyrrole (PPy)-based 

double-chain polymer binder was developed by Liu et al. 

[131]. 4,4ʹ- Biphenyl disulfonic acid (BSA) was capped with 

pyrrole before being polymerized on a CMC matrix. The 

incorporation of 6.4 wt% of the BSA/PPy into the CMC 

matrix reduced the resistance of the composite, in turn 

greatly increasing the conductivity of the cathodes fabri-

cated using this binder, while simultaneously providing 

anchoring sites for PS retention. A thick electrode with a 

sulfur loading of 9.8 mg cm−2 was fabricated and delivered 

a high areal capacity of 9.2 mAh  cm−2 even with a low elec-

trolyte to sulfur ratio of 5:1 (µL:mg).

Binders can also facilitate the ion transport across the 

electrolyte-host interface. Li et al. [127] introduced a poly-

electrolyte binder—poly[(N,N-diallyl-N,N-dimethylammo-

nium) bis(trifluoromethanesulfonyl)imide] (PEB-1) to sulfur 

30th

30th

20th

20th 20th

20th

10th

10th

30th

30th

CMC+SBR

10th

10th

2nd

2nd 2nd

2nd1st

1st 1st

1st

Charge
Charge

Discharge
Discharge

Capacity (mAh g−1)

0 200 400

P
o

te
n

ti
a

l 
v
s
. 

(L
i/
L

i+
)/

V

600 800 1000 1200

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

Capacity (mAh g−1)

0 200 400

P
o

te
n

ti
a

l 
v
s
. 

(L
i/
L

i+
)/

V

600 800 1000

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4
1200 1400

PVDF

(b)(a)

Fig. 6  Charge and discharge curves of a lithium/sulfur cell with a PVDF binder and b CMC + SBR binder at 0.05C. Reproduced with permis-
sion from Ref. [114]. Copyright 2012 Elsevier

CNF

1.87
mgs cm−2

1.96
mgs cm−2

2.05
mgs cm−2

2.03
mgs cm−2

2.07
mgs cm−2

1.95
mgs cm−2

Fig. 7  Photographs comparing the effect of a 3.5% w/w addition 
of carbon nanofibers to water-based slurries employing a PVP:PEO 
binder. Uniformity of sulfur loading is indicated for the coating with 
CNF. Reproduced with permission from Ref. [122]. Copyright 2017 
Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim



Nano-Micro Lett. (2019) 11:17 Page 11 of 44 17

1 3

cathode with nitrogen-doped mesoporous carbon (N-MC) 

hosts, as shown in Fig. 9. Due to the high ionic conductivity 

of PEB-1, the utilization of sulfur could be enhanced even 

in the depths of the mesoporous carbon. The Li–S batteries 

with high sulfur loading could deliver high capacities at a 

fast rate (1004 mAh  g−1 at 0.2C with a high mass loading of 

8.1 mg cm−2) and exhibit long cycle life, which is attributed 

to the large N-doped surface area of the N-MC and facile 

 Li+-ion transport in the electrode as aided by PEB-1.

To further improve the design of hosts for sulfur cathodes, 

free-standing structures can be realized. A free-standing 

CNF/S/polyaniline (PANi) cathode was introduced by Zhu 

et al. [133]. A S/CS2 solution was first used to impregnate a 

carbon nanofiber mat with sulfur before a coating of PANi 

was applied through an in situ polymerization process. The 

resultant electrode delivered a reversible discharge capacity 

of 953 mAh  g−1 after 300 cycles at 0.2C owing to the ability 

of the 3D architecture to accommodate the sulfur volume 

expansion/contraction during cycling. The energy density 

of the entire electrode was improved through the reduction 

in unnecessary electrode components.

Overall, the implementation of rationally designed sul-

fur hosts has made great strides in overcoming the techni-

cal challenges associated with Li–S cells. However, there 

has been comparatively little research into the cooperative 

effects realized by sulfur hosts and novel binders. Future pro-

gress could be made by further investigation into the com-

bination of sulfur hosts and novel multifunctional binders.

5  Sulfur Host‑Free Polymeric Composite 

Frameworks

Sulfur-host-free PCFs are fabricated without the use of a tra-

ditional sulfur hosts. As there is no sulfur host present, it is 

the responsibility of the polymeric binders in host-free PCFs 

to provide a stable electrode structure. This section reviews 

the research progress on host-free PCFs in Li–S batteries. A 

table overviewing the performances of host-free PCFs and 

their respective binders is provided in Table 3.

5.1  Natural Polymers

Natural polymers have been a staple in binder research 

since Kovalenko et al. [160] used alginate to fabricate high-

performance silicon anodes in LIBs. Natural polymers are 

abundant, environmentally friendly, aqueous-soluble, and 

are endowed with a high degree of functionality via their 

(a)

(b)

C/S composite Nafion@C/S PVP@C/S Nafion PVP

(d)

(c)

Aluminum

Fig. 8  Illustration of a the air spray process of cathode, b the sprayed cathode, c the layer-by-layer C/S composite, d the cross-link between 
Nafion and PVP. Reproduced with permission from Ref. [123]. Copyright 2015 American Chemical Society
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inherent functional groups. As such, natural polymers are an 

attractive option when fabricating host-free sulfur cathodes.

5.1.1  Gelatin

Gelatin is a water-soluble biological macromolecule and in 

an aqueous solution, and it delivers a sufficient viscosity to 

function as a binder in rechargeable battery electrodes [161]. 

Huang et al. [162] applied gelatin derived from bovine bones 

to form a bio-derived host-free cathode in Li–S batteries. 

When compared with an electrode fabricated with PEO, it 

was observed that the gelatin-based cathode displayed supe-

rior homogeneity of the sulfur and acetylene black conduc-

tive additive. The –COOH and –NH2 functional groups 

contained in gelatin allowed for a high adhesion among the 

electrode components and current collector. Furthermore, 

as these functional groups are highly hydrophilic, the result-

ant polymeric framework was substantially insoluble in the 

organic electrolyte, which resulted in a superior performance 

of the gelatin-based cathode [161].

Wang et al. [163] characterized a gelatin-based sulfur 

cathode at different stages of discharge via SEM and XRD 

analysis. SEM images take prior to first discharge (Fig. 10a) 

e
−e

−

e
−

e
−

e
−

e
−

PVDF N-MC + sulfur

(N-MC/S)

Polyelectrolyte

binder (PEB-1)

F F F F F F F F

(a)

n/4

n/4

Super P

PEB-1

Li2Sn

PEB-1/Li2Sn

TFSI

N N N N
_

TFSI
_

TFSI
_

TFSI

Li
+

Li
+

Li
+

_

++++

(b)

(c)

(d)

Aluminum current

collector high rate

Carbon nanofiber current

collector high loading

Li+-ion conduction

polysulfide trapping

No Li+-ion conduction

polysulfide dissolution

Fig. 9  Illustration of the fabrication of sulfur electrodes with PVDF or PEB-1 binder. a The cathode is comprised of sulfur-active materials 
loaded into N-doped mesoporous carbon (N-MC) hosts, “Super-P” as the conductive additive, and a polymer binder (PEB-1 or PVDF). b A con-
ventional sulfur cathode cast onto an aluminum current collector. c A highly loaded sulfur cathode cast onto a carbon nanofiber current collector. 
d Schematic illustrating the formation of complex ion clusters via anion metathesis, when PEB-1 encounters soluble polysulfides during Li–S 
cell cycling. Reproduced with permissions from Ref. [127]



Nano-Micro Lett. (2019) 11:17 Page 13 of 44 17

1 3

reveals a homogeneous distribution of sulfur, carbon, and 

pores throughout the polymeric framework. Figure 10b 

reveals the reduction in pore volume as elemental sulfur is 

reduced to long-chain polysulfides, with Fig. 10c reveal-

ing a further reduction in pore volume as the long-chain 

polysulfides are further reduced to the insoluble short-chain 

polysulfides. Upon full discharge (Fig. 10d), the  Li2S layer 

becomes denser with a further reduction in porosity across 

the electrode. After a full charge, the  Li2S layer is fully 

oxidized and the porous structure of the framework returns 

(Fig. 10e). The gelatin-based cathode obtained a capacity 

of 1235 mAh  g−1 at the first discharge and retained a capac-

ity of 626 mAh  g−1 after 50 cycles at a discharge current 

density of 0.4 mA cm−2, which the group attributed to the 

framework’s ability to retain a stable void structure after PS 

dissolution.

Following this, the group observed the electrochemical 

behavior of both the gelatin-based (SGA) and PEO-based 

(SPA) cathodes, as shown in Fig. 11 [134]. They observed 

that, for the gelatin-based cathode (Fig. 11a), the two distinct 

plateaus are present on the discharge profile even at a high 

current density of 1600 mA g−1, whereas for the PEO-based 

Table 3  Binders and their electrochemical performance in host-free PCFs

Binder Discharge capacity @ nth cycle C-rate References

Natural polymers

Gelatin 544 mAh g−1 @ 50 cycles ≈ 0.1C [134]

Sodium alginate 508 mAh g−1 @ 50 cycles ≈ 0.2C [135]

CMC/SBR (1:1) 580 mAh g−1 @ 60 cycles ≈ 0.05C [136]

Chitosan ≈ 950 mAh g−1 @ 20 cycles 0.1C (1st 3 cycles), 0.5C remaining cycles [137]

Gum Arabic 841 mAh g−1 @ 500 cycles 0.5C [138]

Guar Gum ≈ 600 mAh g−1 @ 400 cycles 1C [139]

Carrageenan ≈ 700 mAh g−1 @ 100 cycles 0.05C [140]

Starch ≈ 500 mAh g−1 @ 200 cycles 0.2C [141]

Synthetic polymers

Poly(vinylpyrrolidone) ≈ 1000 mAh g−1 @ 100 cycles 0.2C [142]

Poly(ethylene oxide) ≈ 650 mAh g−1 @ 50 cycles 0.2C [143]

poly(acrylamide-co-diallyldimethylammonium 
chloride)

652 mAh g−1 @ 100 cycles ≈ 0.05C (1st 6 cycles), ≈ 1C remaining cycles [144]

Poly(acrylic acid) 325 mAh g−1 @ 50 cycles 0.2C [145]

LA132 470 mAh g−1 @ 100 cycles 0.5C [146]

Poly(amidoamine) ≈ 640 mAh g−1 @ 100 cycles 0.05C (1st 2 cycles), 0.2C remaining cycles [147]

Poly(ethylenimine) 744.2 mAh g−1 @ 50 cycles 0.05C [148]

Poly[bis(2-chloroethyl) ether-alt-1,3-
bis[3(dimethylamino) propyl]urea] quaternized

885.1 mAh g−1 @ 50 cycles 0.05C [149]

Poly(diallyldimethylammonium triflate) ≈ 700 mAh g−1 @ 50 cycles 0.1C [125]

Polymeric ionic liquid 5 446 mAh g−1 @ 500 cycles 0.2C [150]

Thiokol 501 mAh g−1 @ 200 cycles 0.1C [151]

Ammonium polyphosphate 530 mAh g−1 @ 200 cycles 0.5C [77]

Composite binders

PVP:PEO (1:4) ≈ 1000 mAh g−1 @ 50 cycles 0.2C [152]

PEI:PVP ≈ 580 mAh g−1 @ 50 cycles 0.1C charge, 0.25C [153]

PEI:Gelatin 871.3 mAh g−1 @ 100 cycles 0.5C [154]

Cross-linked binders

SA/Cu2+ 758 mAh  g−1 @ 250 cycles 0.2C (1st cycle), 1C remaining [155]

Xanthan gum/Guar gum 724 mAh  g−1 @ 150 cycles 0.5C [156]

Amino functional group binder ≈ 400 mAh  g−1 @ 600 cycles 2C [157]

PEI/poly(ethylene glycol) diglycidyl ether 430 mAh  g−1 @ 400 cycles 1.5C [158]

PEI/epoxy resin 829 mAh  g−1 @ 1000 cycles 0.5C [159]
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cathodes, the distinct plateaus disappear at current densities 

greater than 800 mA g−1 (Fig. 11b), which suggests two dif-

ferent discharge mechanisms for the two cells. XRD analysis 

of both cells pre- and post-discharge supported this hypoth-

esis by revealing that in the gelatin-based cell, no elemental 

sulfur remained in the XRD spectrum, suggesting that all of 

the sulfur participated in the reaction which they accredited 

to the good dispersion properties of the gelatin-based com-

posite conductive binding framework. Although the gelatin-

based cathode retained both of the characteristic discharge 

plateaus at high current densities, the specific capacity for 

the entire discharge was only 29% of the expected theoretical 

capacity. The group postulated, as the first discharge region 

was relatively unchanged, that only a part of the dissolved 

long-chain PS was able to be fully reduced on the cathode 

surface due to already precipitated  Li2S restricting ionic 

transport for the remaining active material. To counteract 

this phenomenon, a freeze-drying method was employed 

to increase the porosity in the gelatin-based framework to 

provide more reaction sites for complete PS reduction. SEM 

analysis revealed an increased porosity of the as-fabricated 

electrode with a corresponding specific capacity increased 

to 733 mAh  g−1 when discharged at 1600 mA g−1.

Zhang et al. [164] further investigated the dispersion 

properties of gelatin-based host-free cathodes by control-

ling the pH of the aqueous electrode slurry to observe 

the influence on the homogeneity of the resultant elec-

trode. The group found that the cathode prepared at pH 

10 resulted in a more even dispersion of sulfur and con-

ductive additives across the framework when compared 

to the cathodes prepared at pH 8 and pH 5. They hypoth-

esized that the origin of this increase in dispersion in the 

framework was due to gelatin’s tendency to shift its con-

formation in solution when the pH is far from the isoelec-

tric point (IEP). This increase in homogeneity resulted 

in a superior performance from the cathode fabricated at 

pH = 10, which delivered an initial discharge capacity of 

1137 mAh  g−1, compared with the 1024 mAh  g−1 deliv-

ered by the pH 8 cathode and 1034 mAh  g−1 delivered by 

the pH 5 cathode. The pH 10 cathode mediated a more 

complete redox reaction of the active sulfur, as evidenced 

by the strong re-emergence of the sulfur peak on the XRD 

spectrum after first discharge/charge.

Jiang et al. [165] further improved the dispersion, adhe-

sion, and electrochemistry of gelatin-based host-free cath-

odes through the introduction of L-cysteine onto the gelatin 

biopolymer framework. The incorporation of L-cysteine into 

this framework helped to reduce the polarization of the as-

fabricated cathode, as evidenced by CV taken on the 1st and 

10th cycle (Fig. 12a). EIS analysis also revealed a reduced 

charge-transfer resistance for the L-cysteine modified elec-

trode (Fig. 12b), which the group attributed to the enhanced 
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Li2S layer

Sulfur

10 µm

(b)(a)

(d)(c) (e)

10 µm 10 µm 10 µm
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Fig. 10  SEM images of the porous sulfur cathodes during the discharge–charge process at the a original, b 6% discharge, c 36% discharge, d 
full discharge and e first charge. Reproduced with permission from Ref. [163]. Copyright 2009 Elsevier
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electronic network formed by the superior dispersion proper-

ties of the fabricated binding framework.

5.1.2  Sodium Alginate (SA)

The adhesion and dispersion properties of Na-alginate 

are well established; however, Bao et al. [135] found that 

polymeric frameworks based on Na-alginate can also initi-

ate chemical interactions with the sulfur-active material. 

The group used the relative decrease in the obtained FTIR 

spectrum to confirm the interaction between the alginate 

and sulfur, which they postulate is the reason for the 

improved discharge capacity and capacity retention when 

compared with the sulfur cathode fabricated with PVDF.

5.1.3  Carboxymethyl Cellulose (CMC)

CMC, derived from cellulose, is a low-cost, water-solu-

ble, and commercially available polysaccharide, which 

has found uses in medical applications, pharmaceuticals, 

cosmetics, and, most relevantly, as a thickener, dispersion 

aid, stabilizer, and binder in a verity of applications [166]. 

CMC can be used directly as a binder in the electrode 

manufacturing process but, due to its crystallinity, the 

electrodes fabricated in this matter are hard and rigid, and 

prone to cracking. As such, CMC is typically combined 

with styrene butadiene rubber (SBR) to increase the com-

posites elasticity. The CMC/SBR blend is an attractive 

alternative to the conventional PVDF binder and is already 

finding commercial success in the manufacturing of graph-

ite anodes for LIBs [23]. He et al. [136] applied a 1:1 blend 

of CMC/SBR to form a host-free PCF for Li–S batteries. 

The dispersion morphology of the electrode slurry was 

investigated via optical microscopy, as shown in Fig. 13. A 

clearly superior dispersion was obtained for the aqueous-

based CMC/SBR (Fig. 13a1) slurry when compared with 

that of the PVDF-based slurry in NMP (Fig. 13b1). The 

group supposed that the addition of CMC into the slurry 

allowed the carbon black to be dispersed effectively as the 

carboxylate groups of the CMC can give rise to an effec-

tive surface charge on the carbon black, stabilizing the 

dispersion through an electrostatic double-layer repulsion 

effect. They further analyzed the dispersion properties by 

measuring the zeta potentials of the electrode components 

and verified the strong electrostatic repulsive force. Fol-

lowing this, the group suggested that this homogeneous 

dispersion of the CMC/SBR could result in a more effec-

tive conductive framework, which was supported by the 

low internal and charge-transfer resistance of the CMC/

SBR-based composite determined by EIS analysis. As a 

result, the CMC/SBR-based cathode delivered a reversible 

capacity of 580 mAh  g−1 after 60 cycles at 100 mA g−1 

current density, far surpassing the reference electrode 

based on a PVDF binder.

5.1.4  Chitosan

Chitosan is an attractive natural polymer with a high nitro-

gen and hydroxyl content which is commonly sourced 
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from crab and shrimp shells [167]. Chen et  al. [137] 

applied chitosan as a chemical polysulfide anchor which 

was combined with acetylene black to form a host-free 

framework for Li–S batteries. Considerable improvements 

in the sulfur redox reversibility and cycling performance 

were achieved through the use of this binder, as evidenced 

by the higher reversible capacity displayed after cycling 

when compared with the gelatin-based cathode (Fig. 14). 

The authors attributed the higher upper plateau discharge 

capacities of the chitosan-based electrode to its polysulfide 

anchoring effect (Fig. 14c).
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5.1.5  Gum Arabic (GA)

Gum Arabic (GA) is a tree gum exudate which has been 

utilized for over 5000 years in a variety of applications, 

including as an adhesive for paint and during the ancient 

Egyptian embalming process [168]. More recently, GA 

has been used as a thickening and stabilizing agent [169]. 

It is a branched, complex polysaccharide polymer, con-

sisting of a main chain of β-D-galactopyranosyl, and 

side chains endowed with abundant carbonyl and nitro-

gen-containing functional groups [169]. Li et al. [138] 

adopted GA as a low-cost water-soluble binder to fabri-

cate a host-free framework, wherein the GA allowed the 

electrode slurry to possess a good dispersion of active 

materials which resulted in a homogeneous electrode 

with reduced electrochemical impedance. The as-fab-

ricated electrode delivered a high capacity of 841 mAh 

 g−1 over 500 cycles at 0.5C with a high sulfur loading 

of 4.4 mg cm−2. Nanoindentation analysis revealed the 

GA displayed superior flexibility when compared with 

the gelatin and PVDF-based electrodes, which allowed 

for better delamination tolerance. X-ray absorption spec-

troscopy (XAS) was used to verify the chemical bonding 

between the GA and sulfur, while FTIR was used to ver-

ify bonding between GA and PS (Fig. 15). This analysis 

revealed that not only can the GA strongly hold sulfur 

through the host-free framework, it can also retain PS 

which can prevent migration and parasitic reactions at the 

lithium metal anode.

5.1.6  Guar Gum (GG)

Guar gum (GG) is yet another commonly used and widely 

available biopolymer [170]. GG can also be used to fabri-

cate host-free frameworks for sulfur cathodes, as evidenced 

by Lu et al. [139]. When cycled at 1C, the resultant Li–S 

batteries delivered a reversible capacity of ≈ 600 mAh  g−1 

over 400 cycles. To explain the improved performance over 

the reference PVDF-based electrode, the group investigated 

the chemical and mechanical properties of the GG. FTIR 

analysis revealed the polar OH groups of the GG interact 

with both the sulfur and polysulfide species, which could 

have inhibited the shuttling effect, therefore increasing elec-

trode stability and cell performance. The material’s behavior 

toward the electrolyte was observed for both GG and PVDF. 

It was found that the GG displayed limited swelling in the 

electrolyte, whereas PVDF was easily swollen, which the 

group supposed lead to the degradation of the bonding and 

conductive pathways in the PVDF framework. Furthermore, 

the GG sample displayed better viscosity (when measured in 

a 1 wt% solution) and hardness than the PVDF sample, all of 

which were suspected reasons for the superior performance 

of the GG framework in Li–S cells.

Following this, Cheng et al. [171] conducted a thor-

ough investigation into how the rheological behavior of 

GG solutions changed with time, and the effects of these 

observations on the resultant dispersions of the electrode 

slurries. The group found that when an aqueous solu-

tion of GG was made, a gelatinous slurry (g-GG) was 
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obtained; however after 48 h, the viscosity of the solu-

tion decreases and a better fluidity is obtained in a pro-

cess called retrogradation (r-GG). FTIR spectroscopy was 

used to investigate this phenomenon, which revealed that 

the g-GG solution exhibited strong hydrogen bonding 

between the polymer and aqueous solvent; however, the 

r-GG solution preferred hydrogen bonding toward itself. 

Electrode slurries were constructed with both forms of GG 

and rheological analysis was conducted. The g-GG based 

slurry exhibited shear-thinning behavior, which suggested 

powder agglomerates were present; conversely, the r-GG 

slurry was more homogeneous. Consequently, electrodes 

fabricated from the r-GG slurry displayed better homo-

geneity and reduced agglomeration, as revealed by SEM 

analysis, which resulted in an increased electrochemical 

performance.

5.1.7  Carrageenan

Ling et al. [140] investigated a new method to achieve PS 

retention in Li–S batteries. By taking advantage of a nucle-

ophilic substitution reaction between the polymer binder 

and polysulfides, a strong polysulfide anchoring effect was 

realized. By considering the reaction mechanism, the group 

determined that a sulfate group could serve as a suitable leav-

ing group, therefore poly(vinyl sulfate) potassium salt (PVS) 

polymer was initially tried at a nucleophilic substitution 
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binder for Li–S batteries. Although a strong PS anchoring 

effect was observed in the time lapse UV–Vis spectra and a 

C–S bond was formed between the binder and PS, the insuf-

ficient mechanical properties left room for improvement in 

terms of cycling stability. This led the group to investigate 

carrageenan as a nucleophilic substitution binder for Li–S 

batteries. Carrageenan is an aqueous-soluble natural product 

polymer with abundant sulfate groups and, furthermore, has 

a high amount of hydroxyl groups which provides enhanced 

adhesive capabilities. As with the PVS polymer, the carra-

geenan binder strongly adsorbed PS through the formation 

of a C–S bond, as determined by XAS and XPS analysis. 

The carrageenan binder allowed for a sulfur cathode with 

a high sulfur loading of 24.6 mg cm−2, which delivered an 

areal capacity of 33.7 mAh  cm−2. The polysulfide retention 

was also demonstrated during cell operation using operando 

XAS measurements (Fig. 16). The cells were discharged at 

0.2C between 2.6 and 1.8 V, while the fluorescence spectra 

were observed. As can be seen in Fig. 16b, the polysulfide 

concentration (purple peak) quickly increases and plateaus 

as the discharge proceeds; however, the polysulfide dis-

solution in the carrageenan-based electrode remains low 

(Fig. 16c), highlighting successful PS shuttling mitigation.

5.1.8  Starch

Starch is also a natural biopolymer also with good mechani-

cal properties. Duan et  al. [141] subjected starch to a 
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gelatinization process before using the product to fabricate 

a host-free framework using only Super-P and commercial 

sulfur powder. The as-fabricated framework delivered a 

capacity retention of ≈ 90% at 0.2C after 200 cycles, which 

corresponds to a capacity decay of only 0.05% per cycle. 

SEM analysis revealed that before cycling, the starch-based 

framework displayed quite a severe degree of agglomera-

tion, which the authors ascribed to the greater wettability 

of Super-P and sulfur particles compared with the starch, 

however after 100 cycles the integrity of the framework 

remained intact. Conversely, the PVDF framework displayed 

cracks throughout the composite, resulting in electronically 

isolated sections of electrode. The authors attributed this 

stability to the minimal swelling of the gelatinized starch 

framework when the framework was exposed to the elec-

trolyte. This resistance to swelling allowed the structure to 

avoid the exfoliation of sections of the electrode. In short, 

natural polymers often display the necessary viscosity in 

solutions to form suitable binders and are often naturally 

endowed with specialized functional groups conducive to 

good host-free sulfur cathode function.

Overall, natural polymers have many inherent benefits. 

The aqueous-soluble and cheap natural polymers could be 

combined with sulfur hosts which are synthesized through 

cheap and green chemical methods to reduce the environ-

mental impact of Li–S cell fabrication while still obtain-

ing a high electrochemical performance. A relatively small 

amount of research has been carried out with multifunctional 

sulfur hosts combined with natural polymers, which may be 

a fruitful future research direction.

5.2  Synthetic Polymers

The wide range of available synthetic polymers have the 

advantage of being highly tailorable so that favorable 

mechanical properties and a strong binding force in host-

free PCFs can be achieved.

5.2.1  Poly(Vinylpyrrolidone) (PVP)

The crucial work by Seh et al. [142] provided the theoreti-

cal insight into how to achieve a strong chemical bonding 

mechanism between binders and polysulfides. The group 

used Ab initio simulations in the framework of density 

functional theory (DFT) to evaluate the interactions 

between various functional groups (R) and  Li2S on a vinyl 

polymer [–(CH2CHR)n–] framework (Fig. 17). They found 

that a lithium atom in  Li2S is capable of forming coordina-

tion-like bonds with electron-rich groups containing lone 

pairs of electrons on oxygen, nitrogen, halogens, etc. The 

strongest interaction was determined to be between  Li2S 

and carbonyl (>C=O) groups, found in esters, ketones, and 

amides, as shown in Fig. 17a. The group attributed this 

strong binding to the hard-acid properties of  Li+, which 

can interact with the hard oxygen donor atoms in the car-

bonyl groups to form a strong lithium-oxygen bond (Li–O). 

Conversely, the interaction between fluoroalkane groups 

and  Li2S are much weaker, which provides insight as to 

why the PVDF binder cannot act as a polysulfide anchor. 

Considering this, the group selected PVP to act as a mul-

tifunctional binder to construct a polymeric framework 

using  Li2S as an active material. Evidence of the strong 

interaction between the active material and the binder was 

provided by observing the high degree of dispersion in 

the electrode slurry, which the authors attributed to the 

strong adsorption of PVP onto the  Li2S particles, which 

stabilized the dispersion. Upon cycling at 0.2C, the as-

fabricated batteries retained 69% of their original capacity, 

corresponding to a low 0.062% capacity loss per cycle 

attributed to a strong PS retention effect. The group quan-

tified the PS anchoring effect by conducting inductively-

coupled plasma-optical emission spectroscopy (ICP-OES) 

analysis on the electrolyte after discharge, which showed 

that the PVP-based electrode showed consistently reduced 

amounts of sulfur in the electrolyte after 1, 5, 10, and 20 

cycles.

An interesting phenomenon regarding the solvent effects 

on slurry dispersions was investigated by Fu et al. [172]. The 

group found that by using acetic acid (AA) as a co-solvent, 

the dispersion properties of aqueous PVP and PAA slurries 

was substantially increased due to a chain opening effect. 

The co-solvent based slurries displayed an increased viscos-

ity, with a correspondingly enhanced porosity, uniformity, 

and mechanical properties of the electrodes fabricated by 

this approach. The PVP-based host-free cathode fabricated 

using the AA co-solvent approach delivered an initial dis-

charge capacity improvement of 220 mAh  g−1 over the PVP-

based framework cast from a pure water slurry. The long-

term cycling performance of the AA co-solvent approach 

was also improved, delivering a reversible capacity of 530 

mAh  g−1 after 100 cycles at 0.3 A  g−1.
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5.2.2  Poly(Ethylene Oxide) (PEO)

One of the primary considerations when fabricating host-

free PCFs with traditional binders, which swell or dis-

solve in the organic electrolyte, is that the void structure 

required to house the sulfur is lost during sulfur dissolu-

tion. As such, the interaction between the binder and the 

electrolyte in host-free cathodes is an important considera-

tion. This can be elucidated through the investigation of 

PEO as a binder in host-free frameworks [173, 174]. Lacey 

et al. [143] investigated the mechanisms by which PEO 

binders can improve sulfur cathode performance. As lower 

molecular weight polymers (i.e., PEG-20000) are soluble, 

and higher molecular weight PEO (Mw ≤ 4,000,000) swell 

in common liquid electrolytes, they considered it unlikely 

that PEO coatings can physically retard dissolved poly-

sulfides during cycling. Upon observing the voltage profile 

for the first cycle (Fig. 18a), they observed that the voltage 

peak at the beginning of the charge cycle, which has been 

attributed to cell polarization due to insoluble discharge 

product deposition, is removed entirely when PEO is used 

as a binder. After 50 cycles, the PEO-based composite 

conductive framework enables a high capacity retention 

with distinct upper and lower voltage plateaus during dis-

charge (Fig. 18b). They concluded that the PEO binder 

enabled an improvement in electrochemical reversibility 

and a suppression of passivation on the sulfur cathode due 

to the nature of PEO dissolution (or swelling) which modi-

fied the electrolyte system.

Further investigation into the swelling/dissolution phe-

nomenon of PEO binders was conducted by Zhang [144], 

who argued that polymeric frameworks which are based on 

polymer binders that dissolve or swell in common liquid 

electrolytes cannot maintain a stable void structure during 

sulfur dissolution and are thus unsuitable for Li–S cells 

with a long cycle life (Fig. 19).
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5.2.3  Poly(Acrylamide-co-Diallyldimethylammonium 

Chloride) (AMAC)

In response to this swelling/dissolution phenomenon 

observed with PEO binders, S.S. Zhang introduced a cati-

onic polyelectrolyte named poly(acrylamide-co-diallyldi-

methylammonium chloride) (AMAC) which is substantially 

insoluble in organic electrolytes but highly soluble in water 

[144].

The author attributed the enlarged second discharge pla-

teau to the retained pore structure after sulfur dissolution 

which allowed for easy deposition of  Li2S2 and  Li2S. To 

further illustrate this effect, the group partially discharged 

the PEO- and AMAC-based cathodes to 300 mAh  g−1 to 

achieve a total conversion of solid sulfur to soluble PS in 

order to observe the behavior of the composite conductive 

binding framework after PS dissolution. The partially dis-

charged cells were disassembled and washed with electro-

lyte before being stored in triglyme. Due to the gelation of 

the PEO-based cathode, many of the electrode components 

were stuck to the separator after disassembly, in contrast to 

the AMAC-based cathode which maintained its structural 

integrity after disassembly, as shown in Fig. 20. Further-

more, the AMAC-based cathode could withstand storage 

in the triglyme solvent for 48 h at 60 °C, which was not the 

case for the PEO-based electrode. These results revealed 

that the AMAC-based composite conductive binding frame-

work delivers a greater structural integrity and void struc-

ture compared with PEO-based composites. Electrochemical 

results reinforced this claim, with the AMAC-based cathode 

delivering a reversible capacity of 652 mAh  g−1 after 100 

Reference

PEO200k coating

PEGDME-500 additive

PEO4M binder

2.6

2.4

2.2

2.0

1.8

E
 v

s
. 

L
i/
L

i+
 (
V

)

0 200 400 600 800 1000 1200

Q (mAh g−1)

Reference

PEO200k coating

PEGDME-500 additive

PEO4M binder

2.6

2.4

2.2

2.0

1.8

E
 v

s
. 

L
i/
L

i+
 (
V

)

0 100 200 300 400 500 600 700

Q (mAh g−1)

(b)

(a)

Fig. 18  Voltage profiles for the reference and PEG/PEO-modified 
cells at C/5 for a the 1st cycle and b 50th cycle. Reproduced with per-
mission from Ref. [143]. Copyright 2013 Royal Society of Chemistry

Sulfur Carbon

AMAC

PEO

Fig. 19  Schematic structure of the sulfur cathode before and after PS 
dissolution. Reproduced with permission from Ref. [144]. Copyright 
2012 The Electrochemical Society

Electrode
Electrode

PEO AMAC

SeparatorSeparator

Fig. 20  Visual pictures of separator and sulfur cathode after the Li/S 
cell was discharged to 300 mAh g−1 sulfur and the cathode was stored 
in triglyme at 60 °C for 48 h. Reproduced with permission from Ref. 
[144]. Copyright 2012 The Electrochemical Society



Nano-Micro Lett. (2019) 11:17 Page 23 of 44 17

1 3

cycles compared with 384 mAh  g−1 for the PEO-based cath-

ode. This work highlights the importance of the interaction 

between the electrolyte and binder, especially during the 

fabrication of host-free sulfur cathodes.

5.2.4  Poly(Acrylic Acid) (PAA)

PAA, a mechanically robust, water-soluble polymer was first 

investigated by Zhang et al. [145] as a polymeric binder in 

Li–S batteries. Not only did the PAA-based cathode deliv-

ered a higher discharge capacity than the PVDF-based cell, 

it also displayed an almost twofold increase in the reduction 

current and threefold increase in the oxidation current when 

observing the CV (Fig. 21), which suggests better reaction 

kinetics within the PAA electrode. The group suggested 

the strong binding strength helped to stabilize the electrode 

framework, restrain polysulfides, and prevent delamination 

of the electrode.

5.2.5  LA132

LA132, a flexible, water-soluble, highly adhesive copolymer 

containing acrylonitrile, acrylate, and acrylamide, was inves-

tigated as a binder in Li–S batteries by Hong et al. [175]. 

The dispersions of electrode slurries using SA, CMC, and 

LA132 were compared (Fig. 22), and it was found that the 

LA132-based slurry provided the best dispersion after being 

left overnight. This corresponded to a more homogenous 

and stable cathode, which allowed for a higher discharge 

capacity over 50 cycles. Pan et al. [146] demonstrated that 

a cathode fabricated with a 5 wt% loading of LA132 binder 

could even outperform a cathode using 10 wt% of PVDF.

5.2.6  Poly(Amidoamine) (PAMAM)

Poly(amidoamine) (PAMAM) is a highly branched synthetic 

polymer referred to as a dendrimer, which possess a central 

core, repeating interior branch cells, and terminal functional 

groups [176]. Bhattacharya et al. [147] compared various 

PAMAM dendrimers with different functional groups as 

aqueous-soluble binders for Li–S batteries. Most impor-

tantly, the cathodes based on PAMAM dendrimers with 

hydroxyl (G4OH), 4-carboxymethylpyrrolidone (G4CMP), 

and carboxylate (G4COONa) functionality enabled a high 

sulfur loading above 4 mg cm−2, comparatively greater than 

the reference CMC/SBR-based cathodes (2.34 mg cm−2). 

As predicted by Seh et al.’s work [142], the previously 

mentioned PAMAM dendrimers with carbonyl functional 

groups enabled chemical anchoring of PSs within the cath-

ode framework, as evidenced by XPS analysis. Not only that 

the dendrimers also display an internal porous structure in 

the range of 2 nm, which could physically trap PS, resulting 

in a dual-approach PS restriction at the cathode. All things 

considered, the PAMAM dendrimer framework enabled a 

high sulfur loading in the composite (> 68 wt%), a high areal 

capacity (4.32 mAh  cm−2), and a capacity retention of ≈ 640 

mAh  g−1 after 100 cycles.PAA sulfur cathode
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5.2.7  Poly(Ethylenimine) (PEI)

Poly(ethylenimine) is an amine containing polymer which 

has been used as a chemical PS trap in Li–S batteries [177]. 

Zhang et al. [148] used PEI as both a binder and PS anchor 

to form a host-free framework. A high sulfur loading of 

8.6 mg cm−2 was achieved throughout the composite, which 

delivered a reversible capacity of 744.2 mAh  g−1 after 50 

cycles. UV–Vis and XAS analysis revealed direct evidence 

of electrostatic interaction between the amino groups in the 

PEI with PS intermediates, resulting in a reduction in PS 

shuttling and a subsequent improvement in the electrochemi-

cal performance. Wang et al. [178] subsequently modified 

PEI polymer with methyl iodide  (CH3I), which resulted in an 

even greater PS anchoring ability; thus, a further improved 

electrochemical performance was obtained.

5.2.8  Polycationic Binders

An electrostatic confinement of polysulfide intermediates 

was realized through the use of a cationic polymer binder by 

Ling et al. [149]. The poly[bis(2-chloroethyl) ether-alt-1,3-

bis[3(dimethylamino) propyl]urea] quaternized (PQ) binder, 

endowed with quaternary ammonium cations (Fig. 23), 

binds with the soluble polysulfide  (Li2S6) with an energy 

of 1.89 eV, but is lower than the covalent bonding energy 

thus providing an electrostatic interaction. The retention 

abilities of the PQ binder were evaluated experimentally 

through time lapse UV–Vis spectroscopy, which found that 

the PQ binder is able to reduce the amount of polysulfides 

in the solution through electrostatic interaction, whereas the 

concentration in the PVDF experiment remains unchanged. 

Electrochemical characterization revealed the PQ displayed 

good separation of discharge plateaus and delivered a high 

areal capacity of 9 mAh  cm−2 with a sulfur loading of 

7.5 mg cm−2.

Two representative cationic binders for Li–S bat-

teries were investigated by Su et  al. [125]. The group 

used poly[(2-ethyldimethylammonioethyl methacrylate 

ethyl sulfate)-co-(1-vinylpyrrolidone)] (D11) and 

poly(diallyldimethylammonium triflate) (PDAT), syn-

thesized through an anion exchange reaction between 

poly(diallyldimethyl ammonium chloride) and silver triflate 

 (CF3SO3Ag) as shown in Fig. 24, and compared the electro-

chemical performance with a PVP-based Li–S cell. D11 and 

PDAT were chosen due to their positively charged nitrogen 

atom, while PVP contains an uncharged nitrogen, so that the 

role of a positively charged nitrogen in PS anchoring could 

be investigated. Both the D11- and PDAT-based Li–S cells 
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delivered an improved cycling performance compared with 

the PVP-based cell. Although the D11-based cell delivered 

a similar initial discharge capacity compared to the PVP, its 

capacity retention over 50 cycles was improved. The PDAT 

binder-based electrode delivered both an increased initial 

discharge capacity as well as an improved capacity reten-

tion over both the PVP- and D11-based electrodes; thus, the 

PDAT binder was further examined. Short duration poly-

sulfide adsorption tests (i.e., <1 min) revealed the PDAT 

binder composite displays a superior anchoring effect, which 

was confirmed by UV–Vis spectroscopy. Furthermore, XPS 

analysis of the lithiated electrodes revealed a superior sulfur 

utilization for the PDAT-based electrode. The group con-

cluded that polycation containing binders can mediate a 

stronger PS sequestration.

Liao et al. [179] investigated the effect of the chosen coun-

ter anions on poly(diallyldimethylammonium) (PDADMA)-

based binders for Li–S batteries. The chosen counter anions 

in this case were:  Cl−,  PF6
−,  BF4

−, and  TFSI−. The group 

found that the PDADMA with the latter 3 counter anions 

could successfully anchor PS, whereas the PDADMA with 

a  Cl− counter anion was ineffective at PS trapping. The 

 TFSI− anion based binder delivered the lowest capacity 

decay and lowest polarization while maintaining the best 

cycling stability.

5.2.9  Polymeric Ionic Liquids (PILs) Binders

Five different polymer ionic liquids (PILs) were investigated 

as cathode binders in Li–S batteries by Vizintin et al. [150]. 

Of particular interest was PIL4 (Fig. 25), which enabled a 

discharge capacity of 1015 mAh  g−1 after 3 cycles, 657 mAh 

 g−1 after 200 cycles, and 446 mAh  g−1 after 500 cycles. The 

group found that between the 50th and the 200th cycle, the 

ratio between the capacity of the upper voltage discharge 

plateau (Qhigh) and the total discharge capacity (Qtotal) 

increased, which they related to a more efficient reduction of 

sulfur to  Li2S4 during prolonged discharge-charge cycling. 

To obtain possible reasons for the increased cycling per-

formance, post-mortem SEM analysis was carried out. The 

PVDF and PIL electrodes in the discharged state displayed 

a different morphology, which the authors suggested was 

due to an increased uptake of ionic compounds by the PIL 

binder, thus mediating a more uniform mixing and retention 

of sulfide species within the PIL binding framework. This 

was supported by submerging the PIL4 in a PS solution, 

which noticeably swelled and formed a white gel. Overall, 

the authors attributed the increased cycling performance 

of the PIL4 by its ability to provide sufficient adhesion, 

improve sulfur redox and dispersion, and trap polysulfide 

during swelling/deswelling cycles thus reducing volume 

change-induced stress throughout the framework.

5.2.10  Thiokol

Thiokol, a type of synthetic polysulfide rubber, was also 

adopted as functional binder for restricted polysulfide shut-

tling in Li–S batteries by Liu et al. [151]. The group pro-

posed that the Thiokol could act as a kind of polysulfide 

scissor which could reduce the amount of long-chain PS, 
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thereby reducing the PS shuttle. A similar mechanism was 

also reported when dithiothreitol was used as an electrolyte 

additive [180]. The thiokol-based binder is insoluble in the 

electrolyte which, as mentioned earlier, results in a stable 

structure during cycling [144]. As a result, the thiokol-based 

cathode delivered an initial discharge capacity of 819 mAh 

 g−1 at 0.1C and achieved a capacity retention of 61.1% after 

200 cycles.

5.2.11  Ammonium Polyphosphate (APP)

The binder materials reviewed thus far have been based on 

organic polymer backbones; however, the work by Zhou 

et al. [77] demonstrates this does not necessarily have to be 

the case. The group used the inorganic polymer ammonium 

polyphosphate (APP), a commercially available food addi-

tive, emulsifier, and fertilizer as a multifunctional binder in 

Li–S cathodes. In contrast to traditional polymers based on 

an organic C–C backbone (which cannot mediate PS anchor-

ing), the backbone of the APP polymer can indeed initiate 

polysulfide trapping due to its polar nature. Evidence of the 

PS retention by the APP binder was provided by way of 

adsorption experiments and UV–Vis spectroscopy, which 

revealed a strong decrease in polysulfide concentration when 

exposed to APP polymer. DFT calculations were conducted 

using a range of polysulfide species  (Li2Sx where x = 1, 2, 4, 

and 8), which showed that the APP binder delivered binding 

energies in the range of 2.16 to 2.30 eV, much higher than 

the PVDF binder can achieve (0.58 to 0.74 eV). Further 

evidence for the APPs superior polysulfide retention was 

given by the stability of the open circuit voltage (OCV) over 

a 30-day period. The voltage of the APP binder-based Li–S 

cell showed almost no decrease in OCV, whereas the PVDF-

based cell’s voltage dropped from 2.42 to 2.29 V, suggesting 

the reduction of sulfur to PS had begun. When electrochemi-

cal testing was carried out, the APP binder allowed for an 

active material loading of 5.6 mg cm−2 to be achieved, which 

delivered a reversible discharge capacity of 530 mAh  g−1 

after 200 cycles at 0.5C. The group also carried out burning 

time tests which showed the flame-retardant properties of 

the APP binder could increase the safety of Li–S cells, as 

shown in Fig. 26.

In summary, synthetic polymers have been remarkably 

successful in improving the mechanical properties, sulfur 

loading, and PS anchoring abilities in PCFs. Future works 

with synthetic polymers could aim to improve the E/S ratio 

of Li–S cells as well as improve safety through the inclusion 

of flame-retardant materials.

5.3  Composite Binders

Composite binders can be synthesized by combining two 

different polymers, which may result in a synergistic per-

formance which is greater than the sum of their parts. For 

example, Lacey et al. [152] investigated a combination of 

PVP and PEO as a binder for Li–S cathodes. The group 

found that a 1:4 mixture of PVP:PEO delivered the highest 

capacity after 50 cycles at 0.2C, outperforming both pure 

PEO- and pure PVP-based electrodes as well as a 2:3 CMC/

SBR-based electrode.

Jung et  al. [153] utilized a small amount of 

poly(ethyleneimine) (PEI) to form a PVP-based composite 

binder. The PEI functions as a cationic dispersant which can 

stabilize aqueous dispersions as well as increase the adhe-

sion of paints, inks, and pigments on different surfaces. The 

work showed that by increasing the PEI loading in the elec-

trode slurry from 0.25 to 2.5%, the resultant viscosity of the 

5% PVP solution increased from 14 to 120 cP, providing a 

suitable slurry for electrode coating while also increasing the 

frameworks stability in the electrolyte. These characteristics 

allowed the PVP/PEI composite binder to deliver a higher 

electrochemical performance compared with a framework 

based on PVP alone.

Ahktar et al. [154] fabricated a composite binder (GPC) 

by combining PEI and gelatin. Gelatin was chosen due to 

its established dispersion and adhesion properties, and PEI 

was utilized for its PS trapping ability. Interestingly, when 

subjected a PS solution, the GPC binder displayed better 

PS trapping than either of the individual components of the 

composite, as verified by UV–Vis spectroscopy. Owing to 

the adhesion, strong dispersion, and PS anchoring, the GPC 

based electrode delivered a reversible capacity of 871.3 mAh 

 g−1 at 0.2C after 100 cycles.

Kim et al. [181] investigated the effect different binders 

had on the resultant porosity of Li–S cathodes. The group 

fabricated composite binders using CMC:PTFE, PVA:PTFE, 

and various Mw PVP before conducting BET measurements 

on the product. The average pore diameters in different cath-

odes were found to be around 20 and 0.05 µm, regardless 

of the type of binder; however, the electrodes with PTFE 
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binders displayed an increased specific surface area (SSA). 

Upon electrochemical investigation, the group found that 

the PTFE:CMC based framework delivered a higher operat-

ing voltage and a sulfur utilization approaching 70%, which 

they suspected was due to the lower interfacial resistance in 

accordance with the increased surface area.

5.4  Cross‑Linked Binders

Further improvements into the mechanical properties of 

binders can be realized through a cross-linking mecha-

nism. Liu et al. [155] fabricated a robust network binder 

through a ionic cross-linking effect using SA and  Cu2+ 

ions. As mentioned previously, the oxygen rich groups on 

polymeric binders can mediate a coordination like inter-

action toward the  Li+ ions in polysulfides, however this 

work found that a more efficient PS anchoring effect can be 

realized through direct interaction between the polysulfide 

anions and cations in the polymer binder (i.e.,  Cu2+). As 

evidenced by DFT calculations, the strongest polysulfide 

constraint are obtained when a synergistic electronega-

tive and electropositive anchoring is achieved (Fig. 27). 

Adsorption tests along with UV–Vis spectroscopy con-

firmed the strong anchoring effect of the SA/Cu2+ binder, 

which corresponded to an increase in electrochemical per-

formance. The Li–S cell based on the SA/Cu2+ framework 

delivered an 83% capacity retention over 100 cycles, a 

discharge capacity of 758 mAh  g−1 after 250 cycles at 
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1C, and when the rate performance was evaluated, the 

cell delivered an outstanding capacity of 586 mAh  g−1 at 

6C. This work shows the electropositive/electronegative 

approach toward polysulfide anchoring can show favorable 

retention.

A mechanically robust composite guar gum and xan-

than gum (XG) binder was developed by Liu et al. [156], 
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as shown in Fig. 28. Xanthan gum, similar to guar gum, is a 

natural polysaccharide biopolymer; however, the side chains 

in the XG polymer contain acetic and pyruvic acid residues 

(Fig. 28b) [182]. Hydrogen bonding occurs between the XG 

polymer and “smooth” regions (i.e., areas along the polymer 

backbone with no galactose residues) of the GG polymer, 

and as a result a mechanically robust biopolymer network is 

synthesized (Fig. 28c). The group examined the intermolec-

ular interactions of the network through FTIR spectroscopy 

(Fig. 28e), which indicated the interaction had occurred, 

with the optimal ratio between the GG and XG determined 

to be 3:1 (GG:XG). The mechanically robust binding frame-

work, with abundant functional groups from both polymers, 

allowed for an ultra-high sulfur loading of 19.8 mg cm−2 

to be achieved, which delivered an areal capacity of 26.4 

mAh  cm−2.

Chen et al. [157] created a 3D hyperbranched polymer 

network through the copolymerization of PEI and hexameth-

ylene diisocyanate (HDI) to form the amino functional group 

(AFG) binder (Fig. 29). The covalent bonding between the 

PEI and HDI was verified though 13C NMR spectroscopy 

and XPS analysis. This covalent network enabled the AFG 

binder to be stretched >70% without damage (Fig. 29d). 

When electrodes were fabricated using the AFG binder, they 

delivered a 91.3% capacity retention over 600 cycles at 2C. 

Following this, the group conducted a series of experiments 

to explain the low capacity fading. In situ UV–vis spectros-

copy was used qualitatively monitor the discharge prod-

ucts and found that the polysulfides were released from the 

PVDF-based electrode far faster than from the AFG-based 

cell. DFT analysis was also carried out, which revealed con-

siderable binding between the amino groups in the AFG 

backbone.

Although it possessed interesting physical and electro-

chemical properties, the AFG binder was insoluble in com-

mon solvents used in electrode slurries. This prompted the 

Chen et al. [158] to further develop a cross-linked PEI and 

poly(ethylene glycol) diglycidyl ether (PEGDGE) compos-

ite binder, named PPA, which was hydrophilic and thus 

water soluble. The PPA binder displayed excellent adhesion 
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strength and was strong enough to support up to a 100 g 

weight, unlike PVDF, which was unable to support any 

weight. As a result of its excellent adhesion and chemi-

cal polysulfide anchoring, the Li–S batteries based on this 

cross-linked binder delivered outstanding electrochemical 

performances.

Yan et al. [159] introduced a robust network structure 

based on PEI and epoxy resin (ER). The group tailored the 

ratio between the framework components and found that 

a ratio of PEI:ER between 1:1 and 1:4 delivered a binder 

with unnoticeable deformation toward the electrolyte after 

7 days submersion. UV–Vis spectroscopy was carried out to 

observe the binder’s polysulfide anchoring ability, with the 

peak relating to polysulfides approaching zero. The mechani-

cal properties of the PEI/ER binder with different compo-

nent ratios were also examined. A 1:1 ratio delivered a rela-

tively low tensile strength of 1.5 MPa, which the author’s 

attributed to insufficient cross-linking, however when the 

ratio was increased to 1:2 a tensile strength of 22.3 MPa 

was obtained, which increased to 27.5 and 29.6 MPa for 

1:3 and 1:4 based composites, respectively. Electrochemical 

testing revealed the PEI/ER1:2 binder delivered a discharge 

capacity of 829 mAh  g−1 after 1000 cycles at 0.5C, which 

was increased to 937 mAh  g−1 after 1000 cycles with the 

inclusion of a PEI/ER/Super-P interlayer.

Composite and cross-linked binders excel when two or 

more outstanding properties of individual materials are 

synergistically utilized. Further improvements in the overall 

performance, loadings, electrolyte content, and safety of 

Li–S cells could be realized through the rational combina-

tion of composite/cross-linked binders and a relevant sulfur 

host.

6  Multifunctional Polymer Composite 

Frameworks

The research reviewed thus far typically utilizes polymeric 

binders to form robust networks which can retain the sulfur 

and electrode components. However, multifunctional binders 

can fulfil more than one role in the composite. For example, 

electronically conductive binders can fill the role of both 

binder and conductive additive. Though some of the papers 

in this section mention multifunctional polymers in host@

PCFs, the research into multifunctional binders in host-free 

PCFs is emphasized in this section. A table containing the 

electrochemical performances of multifunctional PCFs is 

included in Table 4.

6.1  Electronically Conductive Binders

It is a well established fact that sulfur as well as the insoluble 

PS discharge products are electronic and ionic insulators, 

which leads to the utilization of conductive carbon hosts 

and additives to promote conductivity across Li–S cathodes. 

Therefore, it is unavoidable that the capacity according to 

Table 4  Binders and their electrochemical performance in multifunctional PCFs

Binder Discharge capacity @ nth cycle C-rate References

Electronically conductive binders

PAA/PEDOT:PSS 833 mAh  g−1 @ 80 cycles 0.5C [183]

PEDOT:PSS/Mg2+ ≈ 810 mAh  g−1 @ 250 cycles 0.5C [184]

Polyaniline (PANi) 439 mAh  g−1 @ 50 cycles ≈ 0.07C [185]

Polypyrrole (PPy)/polyurethane ≈ 1000 mAh  g−1 @ 100 cycles 0.33C [186]

Poly(9,9-dioctylfluorene-co-fluorenone-co-methylb-
enzoic ester)

≈ 800 mAh  g−1 @ 150 cycles 0.1C [187]

Ionically conductive binders

Li-Nafion ≈ 540 mAh  g−1 @ 100 cycles 0.2C [115]

Li-Nafion/PVP/nano silica ≈ 800 mAh  g−1 @ 350 cycles 1C [188]

Sulfonated poly (ether ether ketone) ≈ 300 mAh  g−1 @ 300 cycles ≈ 0.6C [189]

PEO/tannic acid 476.7 mAh  g−1 @ 1000 cycles 0.2C [190]

Redox-active binders

π-Stacked perylene bisimide 600 mAh  g−1 @ 150 cycles 1C [191]

Naphthalene–polyether ≈ 910 mAh  g−1 @ 30 cycles 0.2C [192]
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the mass of the entire cathode is reduced, as some of the 

composite mass goes toward promoting conductivity, while 

another portion is devoted to the adhesion and structural 

stability of the electrode (i.e., the binder). If both the con-

ductivity and adhesion could be provided by one electrode 

component, the mass loading of components, which do not 

contribute to the capacity of the electrode, can be reduced, 

thus a higher capacity according to the mass of the entire 

electrode could be realized. Conductive polymers may be 

able to fill this requirement with the works toward this aim 

reviewed below.

Poly(3,4-ethylenedioxythiophene) (PEDOT) can either 

be used directly, or more generally, as a composite poly-

mer with polystyrene sulfonate (PEDOT:PSS), as shown in 

Fig. 30, PEDOT:PSS consists of conjugated PEDOT with 

a positive charge and a negatively charged saturated PSS. 

In terms of practical application, PEDOT:PSS is the most 

successful conductive polymer, and has found uses in many 

electrochemical applications [193]. Recently, research-

ers focusing on Li–S batteries have applied PEDOT and 

PEDOT:PSS to Li–S cathodes in order to produce electroni-

cally conductive polymeric binding frameworks.

Wang et al. [194] first investigated PEDOT as a binder for 

sulfur cathodes in Li–S batteries. The group examined the 

electrochemical performance derived from this binder when 

commercial micrometric sulfur and prepared nanometric sul-

fur were used as active materials in two electrolyte systems 

(DOL:DME and PEGDME) and compared the performance 

obtained with a PVDF binder. The best electrochemical per-

formance was obtained when the cathode framework was 

synthesized with the commercial micrometric sulfur power 

and PEDOT binder in a PEGDME electrolyte, which the 

group ascribed to a reduced polysulfide dissolution and 

a more viscous electrolyte, which also reduced particle 

mobility.

Pan et  al. [183] investigated a water-soluble PAA/

PEDOT:PSS composite binder for Li–S batteries which 

delivered synergistic functions in high-performance Li–S 

cells. The PAA binder modified the electrolyte-electrode 

interface which improved reaction kinetics and also pro-

vided electrode adhesion, while the PEDOT:PSS provided 

chemical anchoring for PS retention as well as allowed for 

good electronic and ionic conductivity. The group varied the 

ratio between the multifunctional binder components, and 

found that a ratio of 2:3 (PAA to PEDOT:PSS) delivered the 

optimum performance. As a result, the polymeric conductive 

binding framework enabled an initial discharge capacity of 

1121 mAh  g−1, and a reversible capacity of 833 mAh  g−1 

after 80 cycles at 0.5C.

Later, an ionically cross-linked PEDOT:PSS/Mg2+ net-

work binder was developed by Yan et al. [184]. The  Mg2+ 

ions interacted with the free  SO2OH groups on the PSS 

backbone, which enabled a robust and conductive 3-D net-

work that could better withstand the volume expansion-

related stresses that the framework is exposed to during 

cycling. As a result, the PEDOT:PSS/Mg2+ network binder 

enabled an initial discharge capacity of 1097 mAh  g−1 with 

a 74% capacity retention after 250 cycles at 0.5C.

Polyaniline (PANi), in its acid-doped form, is an electron-

ically conductive polymer. However, the brittle PANi chain 

can hardly accommodate the stresses associated with vol-

ume variation of sulfur during cycling. In response to this, 

extended conducting PANi with good electrical conductivity 

was developed by Gao et al. [185] through an anion doping 

strategy. Sulfuric acid was employed to coordinate with the 

PANi chain in a m-cresol solvent to form the extended chain 

structure, which subsequently enabled a “cobweb” structure 

that efficiently bonded the active materials with sufficient 

space for electrolyte swelling and channels for ion trans-

fer, even under an intriguingly low binder dose of 2 wt%. 

Additionally, the positively charged conductive matrix and 

the heteroatoms also help to electrostatically and chemi-

cally adsorb polysulfides for inhibited shuttling behavior. 

Owing to these merits, a sulfur electrode based on cobweb 

PANi binder displayed a reduced internal resistance and 

faster reaction kinetics, corresponding to a ca. 104% and 

74% increase in the specific capacity at a current density of 
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122 and 610 mA g−1, respectively, when compared to the 

PVDF-based cathode.

Polypyrrole (PPy) is another conductive polymer which 

has been successfully applied to other LIB systems but has 

struggled to be implemented in Li–S cells due to its brit-

tleness, making its direct use difficult. To circumvent this, 

Milroy et al. fabricated a conductive, electroactive, and elas-

tic PPy/polyurethane (PU) multifunctional binder for a free-

standing and flexible Li–S cathode [186]. The PPyPU binder 

delivered dual benefits; an electronically conductive network 

deriving from the PPy with mechanical pliability from the 

PU, which can help to accommodate the severe volume 

change characteristic of sulfur cathodes. A high reversible 

discharge capacity of ca. 1000 mAh  g−1 was delivered after 

100 cycles at 3C rate owing to the prevention of premature 

electrode degradation by the PPyPU binder.

Poly(9,9-dioctylfluorene-co-fluorenone-co-methylbenzoic 

ester) (PFM) binder (Fig. 31a) is a specifically designed pol-

ymer with both carbonyl groups for chemical sulfur anchor-

ing and an enhanced electronic conductivity developed by 

Ai et al. [187]. In their study, the group chose representative 

polymer binders with specific functionality to compare with 

the PFM binder. PEDOT:PSS was chosen as an example 

binder which displays electronic conductivity, PVP was cho-

sen for its chemical PS anchoring ability, and PVDF was 

chosen as it has neither functionality. Upon investigating 

the obtained electrochemical performances, it can be noted 

that between the PEDOT:PSS and PVP-based electrode, 

the PEDOT:PSS electrode displays a comparatively higher 

initial discharge capacity but a faster capacity fading upon 

cycling, whereas the opposite is true for the PVP binder (i.e. 

a comparatively lower initial capacity but better capacity 
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retention). The group supposed that the electronic conduc-

tivity of PEDOT:PSS allowed for a greater degree of initial 

sulfur utilization, whereas the chemical bonding mediated by 

the PVP binder resulted in the improved capacity retention. 

The PFM binder combines both of these traits and as a result 

delivers the best electrochemical performance. Post-mortem 

SEM analysis of the top and bottom of the PFM electrodes 

reveal that in the fully charged state, the PFM binder ena-

bles the long-chain PS to be precipitated as elemental sul-

fur homogeneously throughout the entire electrode owing 

to combined effects of the carbonyl functional groups and 

the conductivity of the binder. Complete  Li2S precipitation 

is also mediated by the PFM binder owing to the strong 

affinity between the carbonyl groups and  Li2S as well as an 

increased amount of reaction sites for  Li2S precipitation, 

owing to the enhanced conductive surface of the multifunc-

tional PFM binding framework.

6.2  Ionically Conductive Binders

Ionically conductive binders can help overcome the low 

ionic conductivity of sulfur and its discharge product,  Li2S, 

so that sulfur utilization and mass transport can be improved 

within the electrode. The work using ionically conductive 

binders is reviewed below.

One such example is Nafion, a perfluorosulfonate ionomer 

(ionic polymer) which is most commonly used in proton 

exchange membranes [195]. The ion conducting proper-

ties of Nafion can be altered through cation exchange, as 

evidenced by Schneider et al. [115]. The group treated the 

commercial Nafion polymer with LiOH to carry out a cation 

exchange and examined the material as a binder for Li–S 

batteries (Fig. 32). Electrodes were fabricated using the Li-

Nafion as a binder with an additional Li-Nafion layer spray 

coated on the surface. The resultant batteries displayed an 

improved initial discharge capacity when compared to CMC 

and PTFE based cells, which indicates an improved sulfur 

utilization owing to the improved ionic conductivity of the 

Li-Nafion based cell.

Following this, Li et al. combined Li-Nafion, PVP and 

nanosilica as a multifunctional binder for high-performance 

Li–S batteries [188]. Each component of the binder contrib-

uted to improved cell performance. The Li-Nafion improved 

 Li+ supply for sulfur redox reactions. The PVP provided 

PS anchoring for a reduced shuttle effect, improved the 

mechanical properties of the composite, and enabled a good 

dispersion of active materials within the sulfur electrode. 

The impregnated nanosilica could provide further inhibit 

the shuttle effect due to the strong affinity toward its polar 

surface and polysulfides, while simultaneously introducing 

abundant interfaces within the electrode for improved elec-

trolyte wetting. Attributed to these favorable functionalities, 

the sulfur electrode based on the composite binder achieved 

a high sulfur utilization with initial discharge capacity of 

1373 mAh  g−1 at 0.2C, excellent sulfur redox kinetics with 

highly reversible capacity of 470 mAh  g−1 at a high current 

rate up to 5C, and superb cycling stability over 300 cycles 

at 1C. More recently, Gao et al. used a Li-Nafion resin as 

both the binder and solid electrolyte in Li–S cells [196]. 

An optimized loading of 40% Li-Nafion and 10% conduc-

tive additive allowed for a balance of ionic and electronic 

conductivity in the cathode, which delivered a reversible 

capacity of 895 mAh  g−1 at 1C with an 89% capacity reten-

tion after 100 cycles.

Cheng et al. developed a sulfonated poly (ether ether 

ketone) (SPEEK) polymer as functional binder for sulfur 

electrode [189]. The ether and benzene rings endowed the 

SPEEK with an appropriate combination of flexibility and 

stiffness, leading to good adhesion for electrode active mate-

rials, while the abundant carbonyl, sulfonyl, and benzene 

ring groups contributed to a strong electronegativity that 

repelled the dissolution and diffusion of polysulfide anions, 

thus facilitating the inhibition on polysulfide shuttling. As a 

result, the SPEEK based Li–S cell delivered a more stable 

performance after 300 cycles at a current density of 1000 

mA g−1 compared with the PVDF-based cell.

As mentioned earlier, the mechanical strength and adhe-

sive properties of PEO frameworks suffer from swelling/
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dissolution in organic electrolytes. Zhang et al. attempted to 

rectify this phenomenon by creating a 3D-cross-linked tan-

nic acid (TA)/PEO binder with enhanced ionic conductivity 

for Li–S cells [190]. The formation of the 3D network was 

realized through hydrogen bonding interactions between the 

TA and the PEO which could enable the TA/PEO frame-

work to provide strong adhesion even after submersion in 

the electrolyte. Electrochemical investigation revealed that 

the TA/PEO framework delivered a stable discharge capacity 

of 476.7 mAh  g−1 after an outstanding 1000 cycles, owing 

to the composite network binder’s PS anchoring ability and 

mechanical properties. Post-mortem SEM analysis of the 

cathodes revealed that the PEO- and PVDF-based elec-

trodes displayed a thick  Li2S layer deposited on the surface, 

whereas the TA/PEO electrode had a relatively uniform dis-

tribution of discharge products, which the authors suggest 

was due to a facile diffusion of lithium ions throughout the 

framework.

6.3  Redox‑Active Binders

A simple and straightforward strategy to achieve a reac-

tive binder is incorporating active sulfur into the binder 

structure, which can contribute additional capacity while 

maintaining good electrode integrity. Trofimov et al. [197] 

prepared bis-[3-(vinyloxyethoxy)-2-hydroxypropyl-] poly-

sulfides (BVPS) by reacting ethylene glycol vinyl glycidyl 

ether (EGVGE) with  Na2S4 in the presence of  NaHCO3 and 

a phase transfer catalyst triethylbenzylammonium chloride. 

The obtained BVPS contained 24.5% sulfur (n = 2, 3, where 

n represents the length of the polysulfide chain in the BVPS 

molecule) bridging the symmetric organic moieties, which 

was further copolymerized with elemental sulfur at 130 °C 

for 1 h to yield a polymer containing up to 32.6% sulfur 

(n = 4). The polymerization leads to the formation of cross-

linked polymers, which were used as the active binder for 

Li–S batteries. The obtained binder exhibited strong adhe-

sion that was able to retain a robust electrode even under low 

binder content of 5%. Meanwhile, the binder also contrib-

uted additional capacity due to the redox reactivity of the 

sulfur incorporated in the binder structure.

Imide-based organic compounds have recently been 

investigated as redox-active mediators in Li–S sys-

tems by Frischmann et al. [198]. The group then imple-

mented π-stacked perylene bisimide (PBI) as redox-active 

supramolecular polymer binders in order to overcome the 

ionic and electronic bottlenecks in sulfur cathodes [191]. 

The PBI binder offered self-healing properties which could 

reduce structural damage from the active material volume 

expansion upon cycling. By fabricating a PBI/PVDF com-

posite binder, the over-potential of the electrodes during 

discharge was minimized, as evidenced by a galvanostatic 

intermittent titration technique (GITT). The group then went 

on to further investigated a lithiated, redox-active, aqueous-

soluble PBI binder which showed further electrochemical 

improvements [199].

Hernández et al. [192] investigated three polyimide–pol-

yether composite redox-active binders for Li–S batteries 

(Fig. 33). Among the pyromellitic, naphthalene, and per-

ylene polyimides, the cell based on the naphthalene–poly-

ether composite binder showed a higher sulfur utilization 

and a lower polarization, and thus delivered the best electro-

chemical performance for a few reasons. The redox potential 

of the naphthalene–polyether coincided best with the sul-

fur redox potential, and, as a result, successfully facilitated 

charge transfer across the binding framework and sulfur 

interfaces in turn improving active mass utilization. The 

incorporation of PEO within the composite increased the 

solubility of the copolymer, making electrode fabrication 

easier, and during cycling enabled an improved mass trans-

port across the electrode while simultaneously limiting PS 

diffusion from the cathode. The resultant naphthalene–poly-

ether based electrodes delivered an initial capacity of 1300 

mAh  g−1 with a 70% capacity retention after 30 cycles at 

0.2C.

Overall, multifunctional PCFs can increase the perfor-

mance of a sulfur cathode relative to its entire mass by 

endowing a cell component which would have otherwise 

not contributed to the electrochemical function of a cell 

(beyond providing structural stability) with such abilities as 

electronic and ionic conductivity or redox activity. Further 

improvements could be achieved by combining these multi-

functional binders with relevant sulfur hosts for an increased 

performance.

7  Conclusions

Thus far, the majority of efforts to address the inherent 

challenges of Li–S batteries have been focused toward the 

design of micro-, nano-, or molecular structured sulfur hosts. 
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The function of binders and the widespread availability of 

multifunctional binders has been neglected. Recently, sul-

fur host-based cathodes which utilize the traditional PVDF 

binder have been the dominant research direction, however 

the role novel binders play in these cathodes is beginning to 

be explored. Briefly, by the careful selection of multifunc-

tional binders and sulfur hosts, the following benefits could 

be realized:

1. By combining natural polymers with hosts synthesized 
via green chemical routes, the overall environmental 
impact of Li–S cell fabrication could be reduced.

2. By combining synthetic binders, cross-linked binders, 
or composite binders with a suitable sulfur host, further 
improvements in sulfur loading, sulfur utilization, E/S 
ratio, and safety of the Li–S system could be achieved.

3. By using relevant multifunctional binders, the spe-
cific capacity of the Li–S cathode could be improved 

by reducing the amount of electrochemically inactive 
components.

These relatively new research directions could provide 

vast improvements in the future, although in the case of 

host-free PCFs, special attention must be paid to assure 

that the polymeric binder can not only initiate strong adhe-

sive forces between the electrode components, it must also 

be able to retain a stable void structure during sulfur dis-

solution. In short, binder research in Li–S batteries is an 

under explored and fruitful research direction.
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