
HOW A NONASSOCIATIVE ALGEBRA REFLECTS THE PROPERTIES

OF A SKEW POLYNOMIAL

C. BROWN AND S. PUMPLÜN

Abstract. Let D be a unital associative division ring and D[t;σ, δ] be a skew polynomial

ring, where σ is an endomorphism of D and δ a left σ-derivation. For each f ∈ D[t;σ, δ]

of degree m > 1 with a unit as leading coefficient, there exists a unital nonassociative

algebra whose behaviour reflects the properties of f . These algebras yield canonical

examples of right division algebras when f is irreducible. The structure of their right

nucleus depends on the choice of f . In the classical literature, this nucleus appears as the

eigenspace of f , and is used to investigate the irreducible factors of f . We give necessary

and sufficient criteria for skew polynomials of low degree to be irreducible. These yield

examples of new division algebras Sf .

Introduction

The investigation of skew polynomials is an active area in algebra which has applications

to coding theory, to solving differential and difference equations, and in engineering, to name

just a few. For instance, linear differential operators (where σ = id) and linear difference

operators (where δ = 0) are special cases of skew polynomials.

Let D be a unital associative division ring and R = D[t;σ, δ] a skew polynomial ring,

where σ is an endomorphism of D and δ a left σ-derivation. Suppose f ∈ D[t;σ, δ] has degree

m. Using right division by f to define a multiplication on the set of skew polynomials of

degree less than m, this set becomes a unital nonassociative algebra we denote by Sf . The

algebra Sf generalizes the classical quotient algebra construction when factoring out a two-

sided ideal generated by a right invariant skew polynomial f . When choosing f and R in

the right way, it can be also seen as a generalization of certain crossed product algebras

and some Azumaya algebra constructions. First results on the structure of the algebras Sf

which initially were defined by Petit in [30] have appeared in [30, 31, 5, 6, 35, 36, 34]. First

applications to coding theory have appeared for instance in [37, 38, 39].

Recently, a computational criterion for deciding whether a bounded skew polynomial is

irreducible was developed in [17]. The method heavily relies on being able to find the zero

divisors in the right nucleus of Sf (although the simple algebra employed there, called the

eigenspace of f , is not recognized as the right nucleus of Sf in that paper). The method

is only applicable for certain set-ups when the input data S, σ and δ are effective and

computable, but it demonstrates the importance of developing a better understanding of the

algebras Sf and their algebraic structure. Independently, effective algorithms to compute
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the eigenspace (and thus the right nucleus of Sf , again not recognized as such) for the special

case that R = Fq(x)[t;σ, δ] can be found in [14], and for R = Fq[t;σ] in [13], [40]. In all cases

the eigenspace is a crucial tool to understand the decomposability of the skew polynomial

f .

This paper consists of two parts. The first one considers the structure of the right nucleus

of the algebras Sf , establishing how it reflects the type of the skew polynomial f it is defined

with, but also the important role irreducible polynomials play in the construction of classes

of nonassociative unital (right) division algebras.

The second part looks at skew polynomials of low degree as well as the polynomial f(t) =

tm− a, and when these polynomials are irreducible in D[t;σ, δ], in order to obtain examples

for the construction of (right) division algebras.

After establishing the basic terminology in Section 1, we define Petit algebras in Section 2

and collect some results on their right nuclei in Section 3. We investigate when the algebras

Sf are right (and not left) division algebras in Section 4. A necessary condition for Sf

being a right division algebra is that the polynomial f is irreducible. We then collect some

irreducibility criteria for polynomials of low degree and the polynomial f(t) = tm − a in

both R = D[t;σ] and R = D[t;σ, δ] in Sections 5 and 6, including the special case where D

is a finite field.

We point out that there exists some kind of Eisenstein valuation criteria to test a skew

polynomial over a division ring for reducibility, using some (noncommutative) valuation

theory for skew polynomial rings [11, 18]. We believe our criteria are more tractable for the

types of skew polynomials we consider. Moreover, some results on twisted polynomials over

algebraically and real closed fields have been obtained in [2] and [32, 33].

Most of this work is part of the first author’s PhD thesis [4] written under the supervision

of the second author.

1. Preliminaries

1.1. Skew polynomial rings. Let S be a unital associative ring, σ a ring endomorphism of

S and δ : S → S a left σ-derivation, i.e. an additive map such that δ(ab) = σ(a)δ(b) + δ(a)b

for all a, b ∈ S. Then the skew polynomial ring R = S[t;σ, δ] is the set of skew polynomials

g(t) = a0+a1t+· · ·+ant
n with ai ∈ S, with term-wise addition and where the multiplication

is defined via ta = σ(a)t+ δ(a) for all a ∈ S [29]. That means,

atnbtm =
n
∑

j=0

a(∆n,j b)t
m+j

for all a, b ∈ S, where the map ∆n,j is defined recursively via

∆n,j = δ(∆n−1,j) + σ(∆n−1,j−1),

with ∆0,0 = idS , ∆1,0 = δ, ∆1,1 = σ. Therefore ∆n,j is the sum of all monomials in σ and

δ of degree j in σ and degree n− j in δ [20, p. 2]. If δ = 0, then ∆n,n = σn.

For σ = id and δ = 0, we obtain the usual ring of left polynomials S[t] = S[t; id, 0]. Define

Fix(σ) = {a ∈ S |σ(a) = a} and Const(δ) = {a ∈ S | δ(a) = 0}.
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For f(t) = a0 + a1t + · · · + ant
n ∈ R with an 6= 0 define deg(f) = n and deg(0) = −∞.

Then deg(gh) ≤ deg(g)+deg(h) (with equality if h has an invertible leading coefficient, or g

has an invertible leading coefficient and σ is injective, or if S is a division ring). An element

f ∈ R is irreducible in R if it is not a unit and it has no proper factors, i.e if there do not

exist g, h ∈ R with 1 ≤ deg(g), deg(h) < deg(f) such that f = gh.

1.2. Nonassociative algebras. Let R be a unital commutative ring and let A be an R-

module. We call A an algebra over R if there exists an R-bilinear map A × A 7→ A,

(x, y) 7→ x · y, usually denoted simply by juxtaposition xy, the multiplication of A. An

algebra A is called unital if there is an element in A, denoted by 1, such that 1x = x1 = x

for all x ∈ A. We will only consider unital algebras.

For an R-algebra A, associativity in A is measured by the associator [x, y, z] = (xy)z −

x(yz). The left nucleus of A is defined as Nucl(A) = {x ∈ A | [x,A,A] = 0}, the middle

nucleus as Nucm(A) = {x ∈ A | [A, x,A] = 0} and the right nucleus as Nucr(A) = {x ∈

A | [A,A, x] = 0}. Nucl(A), Nucm(A) and Nucr(A) are associative subalgebras of A. Their

intersection Nuc(A) = {x ∈ A | [x,A,A] = [A, x,A] = [A,A, x] = 0} is the nucleus of A.

Nuc(A) is an associative subalgebra of A containing R1 and x(yz) = (xy)z whenever one

of the elements x, y, z is in Nuc(A). The commuter of A is defined as Comm(A) = {x ∈

A |xy = yx for all y ∈ A} and the center of A is C(A) = Nuc(A) ∩ Comm(A) [41].

A nonassociative ring A 6= 0 (resp., an algebra A 6= 0 over a field F ) is called a left division

ring (resp., algebra), if for all a ∈ A, a 6= 0, the left multiplication with a, La(x) = ax, is

a bijective map, and a right division ring (resp., algebra), if for all a ∈ A, a 6= 0, the right

multiplication with a, Ra(x) = xa, is a bijective map. An algebra A 6= 0 over a field F is

called a division algebra if for all a ∈ A, a 6= 0, both the left and right multiplication with a

are bijective. A division algebra A does not have zero divisors. If A is a finite-dimensional

algebra over F , then A is a division algebra over F if and only if A has no zero divisors [41].

A nonassociative ring A 6= 0 has no zero divisors if and only if Ra and La are injective for

all 0 6= a ∈ A.

Note that every algebra A is a right Nucr(A)-module and the left multiplication La is

Nucr(A)-linear for all 0 6= a ∈ A.

2. Nonassociative algebras obtained from skew polynomials

Let S be a unital associative ring and S[t;σ, δ] a skew polynomial ring where σ is injective.

2.1. Assume f(t) =
∑m

i=0 ait
i ∈ R = S[t;σ, δ] has an invertible leading coefficient am ∈ S×.

Then for all g(t) ∈ R of degree l ≥ m, there exist uniquely determined r(t), q(t) ∈ R

with deg(r) < deg(f), such that g(t) = q(t)f(t) + r(t), and if σ ∈ Aut(D), also uniquely

determined r(t), q(t) ∈ R with deg(r) < deg(f), such that g(t) = f(t)q(t) + r(t) ([4],[35,

Proposition 1]).

Let modrf denote the remainder of right division by f and modlf the remainder of left

division by f . The skew polynomials of degree less that m canonically represent the ele-

ments of the (left resp. right) S[t;σ, δ]-modules S[t;σ, δ]/S[t;σ, δ]f and S[t;σ, δ]/fS[t;σ, δ].
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Moreover,

Rm = {g ∈ S[t;σ, δ] | deg(g) < m}

together with the multiplication

g ◦ h =







gh if deg(g) + deg(h) < m,

gh modrf if deg(g) + deg(h) ≥ m,

is a unital nonassociative ring Sf = (Rm, ◦) also denoted by R/Rf .

If σ ∈ Aut(S), then Rm together with

g ◦ h =







gh if deg(g) + deg(h) < m,

gh modlf if deg(g) + deg(h) ≥ m,

is a unital nonassociative ring fS = (Rm, ◦) also denoted by R/fR. When the context is

clear, we will drop the ◦ notation and simply use juxtaposition for multiplication in Sf .

Sf and fS are unital nonassociative algebras over the commutative subring

S0 = {a ∈ S | ah = ha for all h ∈ Sf} = Comm(Sf ) ∩ S

of S, and

C(S) ∩ Fix(σ) ∩ Const(δ) ⊂ S0.

For all invertible a ∈ S we have Sf = Saf , so that without loss of generality it suffices to

only consider monic polynomials in the construction. If f has degree 1 then Sf
∼= S. If f is

reducible then Sf contains zero divisors.

In the following, we assume m ≥ 2 and call the algebras Sf Petit algebras as the construc-

tion goes back to Petit [30, 31] (who only considered division rings S). We will focus on the

algebras Sf , since the algebras fS are anti-isomorphic to Petit algebras [35, Proposition 3].

For 0 6= a ∈ Sf , left multiplication La is an S0-module endomorphism. Moreover, Ra is

a left S-module homomorphism for 0 6= a ∈ Sf .

Let f ∈ S[t;σ, δ] have degree m ≥ 2 and an invertible leading coefficient. Then Sf is a

free left S-module of rank m with basis t0 = 1, t, . . . , tm−1. Sf is associative if and only if

Rf is a two-sided ideal in R. If Sf is not associative then S ⊂ Nucl(Sf ), S ⊂ Nucm(Sf )

and

{g ∈ R | deg(g) < m and fg ∈ Rf} = Nucr(Sf ).

When S is a division ring, these inclusions become equalities. We have t ∈ Nucr(Sf ), if and

only if the powers of t are associative, if and only if tmt = ttm in Sf . If S is a division ring

and Sf is not associative then C(Sf ) = S0. Let f(t) =
∑m

i=0 ait
i ∈ S[t;σ] with a0 invertible.

If the endomorphism Lt (i.e. left multiplication by t) is surjective then σ is surjective. In

particular, if S is a division ring and f irreducible, then Lt surjective implies σ surjective.

Moreover, if σ is bijective then Lt is surjective [35, Theorem 4].

Since C(Sf ) = Comm(Sf ) ∩Nucl(Sf ) ∩Nucm(Sf ) ∩Nucr(Sf ), we have

S0 = {a ∈ S | ah = ha for all h ∈ Sf} = Comm(Sf ) ∩ S ⊂ C(Sf )

when Sf is not associative. If Nucl(Sf ) = Nucm(Sf ) = S this yields that the center

C(Sf ) = Comm(Sf ) ∩ S ∩Nucr(Sf ) = Comm(Sf ) ∩ S of Sf is identical to the ring S0.
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3. The right nucleus of Sf

In this Section, let D be a division algebra with center F , R = D[t;σ, δ] with σ any

endomorphism of D and δ any left σ-derivation. Let f ∈ R = D[t;σ, δ] be monic of degree

m ≥ 2 and D0 = {a ∈ D | ah = ha for all h ∈ Sf}.

The largest subalgebra of R = D[t;σ, δ] in which Rf is a two-sided ideal is the idealizer

I(f) = {g ∈ R | fg ∈ Rf} of Rf . The eigenring of f is then defined as the quotient

E(f) = I(f)/Rf = {g ∈ R | deg(g) < m and fg ∈ Rf}. This is also the right nucleus of the

algebra Sf [35, Theorem 4].

3.1. Some general observations. The right nucleus is important when finding right fac-

tors of f ; if Nucr(Sf ) contains zero divisors then f is reducible [30]. If u, v ∈ Nucr(Sf ) are

non-zero such that uv = 0, then the greatest common right divisor gcrd(f, u) is a non-trivial

right factor of f , see e.g. [35]. This was employed for instance in [17].

Moreover, if ft ∈ Rf then t ∈ Nucr(Sf ), hence the powers of t are associative in Sf . This

in turn implies tmt = ttm [35, Theorem 5]. Moreover, ft ∈ Rf if and only if t ∈ Nucr(Sf ),

if and only if the powers of t are associative, if and only if tmt = ttm [30]. This yields:

Lemma 1. Let f ∈ D[t;σ, δ]. If t 6∈ Nucr(Sf ) or f ∈ Rt then Sf does not have any

associative subalgebra that contains all powers of t.

In particular, if f is irreducible and t 6∈ Nucr(Sf ), then Sf does not have any associative

subalgebra that contains all powers of t (and then f cannot lie in D0[t]).

Proof. There exists a subset X of Sf which is a multiplicative group and contains all powers

of t, if and only if ft ∈ Rf and f 6∈ Rt [30, (8)], i.e. if and only if t ∈ Nucr(Sf ) and

f 6∈ Rt. Now suppose A is an associative subalgebra of Sf that contains all powers of t,

choose X = A and obtain that t ∈ Nucr(Sf ) and f 6∈ Rt.

If f is irreducible, we know that f 6∈ Rt. If, additionally, f ∈ D0[t] then D0[t]/(f) is a

subalgebra of Sf that contains all powers of t, a contradiction. �

Proposition 2. For all f ∈ D0[t], D0[t]/(f) is a commutative subring of Sf and

D0[t]/(f) = D0 ⊕ S0t⊕ · · · ⊕ S0t
m−1 ⊂ Nucr(Sf ).

If Nucr(Sf ) is larger than D0[t]/(f), then Nucr(Sf ) is not commutative.

Proof. Sf contains the commutative subring D0[t]/(f), where D0 = Const(δ) ∩ C(D) ∩

Fix(σ). This subring is isomorphic to the ring consisting of the elements
∑m−1

i=0 ait
i with

ai ∈ D0. In particular, we know that the powers of t are associative. By Theorem [35,

Theorem 4], this implies that t ∈ Nucr(Sf ). Clearly D0 ⊂ Nucr(Sf ), so if t ∈ Nucr(Sf )

then D0 ⊕D0t⊕ · · · ⊕D0t
m−1 ⊂ Nucr(Sf ), hence we obtain the assertion. The last part is

trivial then. �

If f ∈ D0[t] is irreducible in D0[t], then D0[t]/(f) is an algebraic field extension of D0 of

degree m contained in Nucr(Sf ). Thus if K is a finite field, δ = 0 and f irreducible, then

Nucr(Sf ) = F ⊕Ft⊕ · · · ⊕Ftm−1 = F [t]/(f), employing the fact that in this case we know

that the right nucleus has exactly |F [t]/(f)| elements [24].
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3.2. Right semi-invariant polynomials. We first investigate for which f the algebra D

is contained in the right nucleus of Sf . By [35, Theorem 4], this implies that either Sf is

associative or Nuc(Sf ) = D.

Recall that f ∈ R = D[t;σ, δ] is called right semi-invariant if for every a ∈ D there is b ∈

D such that f(t)a = bf(t) which is equivalent to fD ⊆ Df . Similarly, f is left semi-invariant

if Df ⊆ fD [26, 27]. Moreover, f is right semi-invariant if and only if df is right semi-

invariant for all d ∈ D× [26, p. 8]. Hence we only need to consider monic f . Furthermore,

if σ is an automorphism, then f is right semi-invariant if and only if it is left semi-invariant

if and only if fD = Df [26, Proposition 2.7]. Right semi-invariant polynomials canonically

arise in the theory of semi-linear transformations [21]. For a thorough background on right

semi-invariant polynomials see [26, 27].

If f is semi-invariant and also satisfies f(t)t = (bt + a)f(t) for some a, b ∈ D then f is

called right invariant which is equivalent to fR ⊂ Rf . If f is right invariant then Rf is

a two-sided ideal in R and conversely, every two-sided ideal in R is generated by a right-

invariant polynomial. That means R is not simple if and only if there is a non-constant

right-invariant f ∈ R. Moreover, assuming σ is an automorphism, R is not simple if and

only if there is a non-constant monic semi-invariant f ∈ R if and only if δ is a quasi-algebraic

derivation [27] (this last observation actually holds for any simple ring D).

Theorem 3. f ∈ R is right semi-invariant if and only if D ⊆ Nucr(Sf ). In particular, if

f is right semi-invariant, then either Nuc(Sf ) = D or Sf is associative.

Proof. If f ∈ R is right semi-invariant, fD ⊆ Df ⊆ Rf and hence D ⊆ E(f) = Nucr(Sf ).

Conversely, if D ⊆ Nucr(Sf ) = E(f) then for all d ∈ D, there exists q(t) ∈ R such that

f(t)d = q(t)f(t). Comparing degrees, we see q(t) ∈ D and thus fD ⊆ Df .

The second assertion follows by [35, Theorem 4]. �

Proposition 4. ([28, (9.21)]). Suppose σ is an automorphism of D, then the following are

equivalent:

(i) There exists a non-constant right semi-invariant polynomial in R.

(ii) R is not simple.

(iii) There exist b0, . . . , bn ∈ D with bn 6= 0 such that b0δc,θ +
∑n

i=1 biδ
i = 0, where θ is an

endomorphism of D and δc,θ denotes the θ-derivation of D sending x ∈ D to cx− θ(x)c.

Corollary 5. Suppose σ is an automorphism of D and R is simple. Then there are no

nonassociative algebras Sf with D ⊆ Nucr(Sf ). In particular, there are no nonassociative

algebras Sf with D ⊆ Nuc(Sf ).

Proof. R is not simple if and only if there exists a non-constant right semi-invariant poly-

nomial in R by Proposition 4, and hence the assertion follows by Theorem 3. �

Corollary 5 actually also holds when f ∈ S[t;σ, δ], where S is only a simple ring and σ

an automorphism of S [27, Theorem 5.2].

Recall that if S is a division ring, or if S is a simple ring and σ ∈ Aut(S), thenR = S[t;σ, δ]

is not simple if and only if δ is quasi-algebraic [27]. Recall also that σ is an automorphism

of D of finite inner order k if σk = Iu for some u ∈ D×. Using Theorem 3 we can rephrase
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the results [26, Lemma 2.2, Corollary 2.12, Propositions 2.3 and 2.4], [27, Corollary 2.6] on

right semi-invariant polynomials in terms of the right nucleus of the nonassociative algebra

Sf :

Theorem 6. Let f(t) =
∑m

i=0 ait
i ∈ R be monic of degree m.

(i) D ⊆ Nucr(Sf ) if and only if f(t)c = σm(c)f(t) for all c ∈ D, if and only if

(1) σm(c)aj =

m
∑

i=j

ai∆i,j(c)

for all c ∈ D and j ∈ {0, . . . ,m− 1}.

(ii) Suppose σ is an automorphism of D of infinite inner order. Then D ⊆ Nucr(Sf ) implies

Sf is associative.

(iii) Suppose δ = 0. Then D ⊆ Nucr(Sf ) if and only if

(2) σm(c) = ajσ
j(c)a−1

j

for all c ∈ D and all j ∈ {0, . . . ,m− 1} with aj 6= 0. Furthermore, Sf is associative if and

only if f(t) satisfies (2) and f(t) ∈ Fix(σ)[t] ⊂ Fix(σ)[t;σ].

(iv) Suppose σ = id. Then D ⊆ Nucr(Sf ) is equivalent to

(3) caj =

m
∑

i=j

(

i

j

)

aiδ
i−j(c),

for all c ∈ D, j ∈ {0, . . . ,m− 1}. Furthermore, Sf is associative if and only if f(t) satisfies

(3) and f(t) ∈ Const(δ)[t] ⊂ Const(δ)[t; δ].

(v) Suppose δ = 0 and σ is an automorphism of D of finite inner order k, i.e. σk = Iu for

some u ∈ D×. Then the polynomials g ∈ D[t;σ] such that D ⊆ Nucr(Sg) are precisely those

of the form

(4) g(t) = b

n
∑

j=0

cju
n−jtjk,

where n ∈ N, cn = 1, cj ∈ F and b ∈ D×. Furthermore, Sg is associative if and only if g(t)

has the form (4) and g(t) ∈ Fix(σ)[t] ⊂ Fix(σ)[t;σ].

3.3. Right B-weak semi-invariant polynomials. Let now B be a subring of D. We

can find conditions on f such that B is contained in Nucr(Sf ) by generalizing the definition

of right semi-invariant polynomials as follows: we say f ∈ D[t;σ, δ] is (right) B-weak semi-

invariant if fB ⊆ Df . Clearly any right semi-invariant polynomial is also B-weak semi-

invariant for every subring B of D. We call f ∈ R a (right) B-weak invariant polynomial if

f is right B-weak semi-invariant and f(t)t = (bt+ a)f(t) for some a, b ∈ B.

Note that when we have an extension of rings B ⊂ D, which induces an extension of skew-

polynomial rings B[t, σ, δ] ⊂ D[t, σ, δ] (i.e., σ|B = σ, δ|B = δ), every right semi-invariant

f ∈ B[t, σ, δ] is right B-weak semi-invariant in D[t, σ, δ], and every invariant f ∈ B[t, σ, δ] is

right B-weak invariant in D[t, σ, δ].
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Example 7. Let K be a field, σ be a non-trivial automorphism of K, L = Fix(σj) be the

fixed field of σj for some j > 1 and f(t) =
∑n

i=0 ait
ij ∈ K[t;σ]. Then

f(t)l =

n
∑

i=0

ait
ij l =

n
∑

i=0

aiσ
ij(l)tij =

n
∑

i=0

ailt
ij = lf(t),

for all l ∈ L and hence fL ⊆ Lf . In particular, f is L-weak semi-invariant.

Proposition 8. Let B be a subring of D.

(i) f is B-weak semi-invariant if and only if B ⊆ Nucr(Sf ).

(ii) If f is B-weak semi-invariant but not right invariant, then B ⊆ Nuc(Sf ) ⊆ D.

Proof. (i) If f ∈ R is B-weak semi-invariant, fB ⊆ Df ⊆ Rf and hence B ⊆ Nucr(Sf ).

Conversely, if B ⊆ Nucr(Sf ) then for all b ∈ B, there exists q(t) ∈ R such that f(t)b =

q(t)f(t). Comparing degrees, we see q(t) ∈ D and thus fB ⊆ Df .

(ii) If f is B-weak semi-invariant but not right invariant, the assertion follows from (i) and

[35, Theorem 4]. �

Proposition 9. Let B be a subring of D and f ∈ R be a right B-weak invariant polynomial.

Then

B ⊕Bt⊕ · · · ⊕Btm−1 ⊂ Nucr(Sf ).

Proof. (i) If f ∈ R is a right B-weak invariant polynomial then B ⊂ Nucr(Sf ) by Proposition

8. Since f(t)t = (bt+a)f(t) for some a, b ∈ B, we have ft ∈ Rf which implies t ∈ Nucr(Sf ),

hence the powers of t are associative. This in turn implies tmt = ttm ([35, Theorem 5]

and [30]). Now Nucr(Sf ) is an associative subalgebra of Sf , thus B ⊕ Bt⊕ · · · ⊕ Btm−1 ⊂

Nucr(Sf ). �

We then obtain results similar to Theorem 6 (i), (iii) and (v) for B-weak semi-invariant

polynomials:

Proposition 10. Let f(t) =
∑m

i=0 ait
i ∈ D[t;σ, δ] be monic of degree m and B a subring

of D.

(i) f is B-weak semi-invariant if and only if f(t)c = σm(c)f(t) for all c ∈ B, if and only if

(5) σm(c)aj =

m
∑

i=j

ai∆i,j(c)

for all c ∈ B, j ∈ {0, . . . ,m− 1}.

(ii) Suppose δ = 0. Then f is B-weak semi-invariant if and only if σm(c)aj = ajσ
j(c) for

all c ∈ B, j ∈ {0, . . . ,m− 1}.

(iii) Suppose σ = id. Then f is B-weak semi-invariant if and only if

(6) caj =
m
∑

i=j

(

i

j

)

aiδ
i−j(c)

for all c ∈ B, j ∈ {0, . . . ,m− 1}.
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Proof. (i) We have

(7) f(t)c =

m
∑

i=0

ait
ic =

m
∑

i=0

ai

i
∑

j=0

∆i,j(c)t
j =

m
∑

j=0

m
∑

i=j

ai∆i,j(c)t
j

for all c ∈ B, hence the tm coefficient of f(t)c is ∆m,m(c) = σm(c), and so f is B-weak

semi-invariant if and only if f(t)c = σm(c)f(t) for all c ∈ B. Comparing the tj coefficient

of (7) and σm(c)f(t) for all j ∈ {0, . . . ,m− 1} yields (5).

(ii) When δ = 0, ∆i,j = 0 unless i = j in which case ∆j,j = σj . Therefore (5) simplifies to

σm(c)aj = ajσ
j(c) for all c ∈ B, j ∈ {0, . . . ,m− 1}.

(iii) When σ = id we have

tic =

i
∑

j=0

(

i

j

)

δi−j(c)

for all c ∈ D by [20, (1.1.26)] and thus

(8) f(t)c =

m
∑

i=0

ait
ic =

m
∑

i=0

ai

i
∑

j=0

(

i

j

)

δi−j(c)tj =

m
∑

j=0

m
∑

i=j

(

i

j

)

aiδ
i−j(c)tj

for all c ∈ B. Furthermore f is B-weak semi-invariant is equivalent to f(t)c = cf(t) for

all c ∈ B by (i). Comparing the tj coefficient of (8) and cf(t) =
∑m

i=0 cait
i for all c ∈ B,

j ∈ {0, . . . ,m− 1} yields (6). �

4. (Right) division algebras obtained from Petit algebras

Petit algebras can be used to find classes of algebras that are right but not left division

algebras.

Let D be a division algebra with center F and R = D[t;σ, δ]. We say f ∈ R is bounded if

there exists 0 6= f∗ ∈ R such that Rf∗ = f∗R is the largest two-sided ideal of R contained

in Rf . The element f∗ is determined by f up to multiplication on the left by elements of

D×. If f ∈ R is irreducible then E(f) is a division ring [30, p. 13-07].

Remark 11. If σ is an automorphism and f is bounded, then f is irreducible if and only

if E(f) = Nucr(Sf ) is an associative division algebra [15, Proposition 4] which sums up

classical results from [22]. The condition that f is bounded is necessary here, as is shown

in [15, Example 3] where f ∈ Q(x)[t; d/dt] is reducible in the differential operator ring

Q(x)[t; d/dt], but Nucr(Sf ) is a division algebra. For instance, if D is a finite field and

δ = 0, all polynomials are bounded and hence f is irreducible if and only if E(f) is a finite

field [13, Theorem 3.3].

The argument leading up to [30, Section 2., (6)] implies that Sf has no zero divisors if

and only if f is irreducible, which is in turn equivalent to Sf being a right division ring (i.e.,

right multiplication Ra in Sf is bijective for all 0 6= a ∈ Sf ):

Theorem 12. ([30, (6)], but without a full proof). Let f ∈ R have degree m and 0 6= a ∈ Sf .

(i) Ra is bijective is equivalent to 1 being a greatest common right divisor of f and a (i.e.,

Da(t) +Df(t) = D).

(ii) Sf is a right division algebra if and only if f is irreducible, if and only if Sf has no zero
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divisors.

(iii) If f is irreducible then La is injective for all 0 6= a ∈ Sf .

Proof. (i) Let 0 6= a ∈ Sf . Since Sf is a free left D-module of finite rank m and Ra is left

D-linear, Ra is bijective if and only if it is injective [19, Chapter IV, Corollary 2.14], which

is equivalent to ker(Ra) = {0}. Now Ra(z) = za = 0 is equivalent to za ∈ Rf , which means

we can write

ker(Ra) = {z ∈ Rm | za ∈ Rf}.

Furthermore, R is a left principal ideal domain, which implies za ∈ Rf if and only if

za ∈ Ra ∩ Rf = Rg = Rha, where g = ha is the least common left multiple of a and

f . Therefore za ∈ Rf is equivalent to z ∈ Rh, and hence ker(Ra) 6= {0}, if and only

if there exists a polynomial of degree strictly less than m in Rh, which is equivalent to

deg(h) ≤ m− 1.

Let b ∈ R be a right greatest common divisor of a and f . Then deg(f) + deg(a) =

deg(g)+deg(b) = deg(ha)+deg(b) by [20, Proposition 1.3.1], and so deg(b) = deg(f)−deg(h).

Thus deg(h) ≤ m − 1 if and only if deg(b) ≥ 1. We conclude ker(Ra) = {0} if and only if

deg(b) = 0, if and only if 1 is a right greatest common divisor of f(t) and a. In particular,

Sf is a right division algebra if and only if Ra is bijective for all 0 6= a ∈ Sf , if and only if

1 is a right greatest common divisor of f(t) and a for all 0 6= a ∈ Sf , if and only if f(t) is

irreducible.

(ii) If f is irreducible then La and Ra are injective for all 0 6= a ∈ Sf (i), therefore Sf has

no zero divisors. The converse of the last equivalence statement is trivial.

(iii) If Rh is bijective this automatically implies that Lh is injective, for all 0 6= h ∈ Sf . �

Lemma 13. If f ∈ R is right invariant, then Sf is associative and a division algebra if and

only if f is irreducible.

Proof. Suppose f is right invariant. Then Sf is associative by [35, Theorem 4]. If f is

reducible then Sf is trivially not a division algebra. Conversely, if f is irreducible the maps

Rb are bijective for all 0 6= b ∈ Sf by Theorem 12. This implies the maps Lb are also

bijective for all 0 6= b ∈ Sf by [7, Lemma 1B], and so Sf is a division algebra. �

This implies a generalization of Theorem [35, Theorem 4]:

Theorem 14. Let f(t) =
∑m

i=0 ait
i ∈ D[t;σ] be monic and a0 6= 0. Then for every

j ∈ {1, . . . ,m− 1}, Ltj is surjective if and only if σ is surjective. In particular, if σ is not

surjective then Sf is not a left division algebra.

Proof. We first prove the result for j = 1: Given z =
∑m−1

i=0 zit
i ∈ Sf , we have

Lt(z) = t ◦ z =

m−2
∑

i=0

σ(zi)t
i+1 + σ(zm−1)t ◦ t

m−1

=

m−1
∑

i=1

σ(zi−1)t
i + σ(zm−1)

m−1
∑

i=0

ait
i.

(9)

⇒: Suppose Lt is surjective, then given any b ∈ D there exists z ∈ Sf such that t ◦ z = b.

The t0-coefficient of Lt(z) is σ(zm−1)a0 by (9), and thus for all b ∈ D there exists zm−1 ∈ D
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such that σ(zm−1)a0 = b. Therefore σ is surjective.

⇐: Suppose σ is surjective and let g =
∑m−1

i=0 git
i ∈ Sf . Define

zm−1 = σ−1(g0a
−1
0 ), zi−1 = σ−1(gi)− zm−1σ

−1(ai)

for all i ∈ {1, . . . ,m− 1}. Then

Lt(z) = σ(zm−1)a0 +

m−1
∑

i=1

(

σ(zi−1) + σ(zm−1)ai
)

ti =

m−1
∑

i=0

git
i = g,

by (9), which implies Lt is surjective.

Hence Lt surjective is equivalent to σ surjective. To prove the result for all j ∈ {1, . . . ,m−

1} we show that

(10) Ltj = Lj
t ,

for all j ∈ {1, . . . ,m − 1}, then it follows σ is surjective if and only if Lt is surjective if

and only if Lj
t = Ltj is surjective. In the special case when D = Fq is a finite field, σ is

an automorphism and f is monic and irreducible, the equality (10) is proven in [24, p. 12].

A similar proof also works in our context: suppose inductively that Ltj = Lj
t for some

j ∈ {1, . . . ,m − 2}. Then Lj
t (b) = tjb modrf for all b ∈ Rm. Let Lj

t (b) = b′ so that

tjb = qf + b′ for some q ∈ R. We have

Lj+1
t (b) = Lt(L

j
t (b)) = Lt(b

′) = Lt(t
jb− qf) = t ◦ (tjb− qf)

= (tj+1b− tqf) modrf = tj+1b modrf = Ltj+1(b),

hence (10) follows by induction. �

Recall that for δ = 0, Lt is a pseudo-linear transformation, i.e. Lt(ah(t)) = σ(a)Lt(h(t))

for all a ∈ S, h(t) ∈ Sf , and that Lh = h(t)(Lt) =
∑m−1

i=0 aiL
i
t for h(t) =

∑m−1
i=0 ait

i. If f

is irreducible, then Lt is irreducible, that means the only Lt-invariant subspaces of the left

D-module Dm are {0} and Dm, as pointed out in [24].

Corollary 15. Suppose σ is not surjective and f ∈ D[t;σ] is irreducible. Then Sf has no

zero divisors and is a right division algebra but not a left division algebra. In particular, Sf

is an infinite-dimensional D0-algebra.

The following result was stated but not proved by Petit [30, (7)]:

Theorem 16. Let f ∈ D[t;σ, δ] be such that Sf is either a finite-dimensional D0-vector

space or a right Nucr(Sf )-module which is free of finite rank. Then Sf is a division algebra

if and only if f is irreducible.

Proof. When Sf is associative the assertion follows by Lemma 13 so suppose Sf is not asso-

ciative. If f is reducible, Sf is not a division algebra. Conversely, suppose f is irreducible,

so that Sf is a right division algebra by Theorem 12. Let 0 6= a ∈ Sf be arbitrary, then La

is injective for all 0 6= a ∈ Sf by Lemma 12. We prove La is surjective, hence that Sf is also

a left division algebra:

(i) If Sf is a finite-dimensional D0-vector space then La is clearly surjective by [19, Chapter

IV, Corollary 2.14], since La is F -linear.
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(ii) Suppose Sf is a free right Nucr(Sf )-module of finite rank, then E(f) is a division ring.

Furthermore, La is right Nucr(Sf )-linear. Therefore La is again surjective by [19, Chapter

IV, Corollary 2.14]. �

Theorem 17. Let σ be an automorphism of D, B be a subring of D such that D is a free

right B-module of finite rank, and f ∈ D[t;σ, δ] be B-weak semi-invariant. Then Sf is a

division algebra if and only if f is irreducible. In particular, if σ is an automorphism of D

and f is right semi-invariant then Sf is a division algebra if and only if f is irreducible.

Proof. If f is reducible then Sf is not a division algebra. Conversely, suppose f is irreducible.

Then Sf is a right division algebra by Theorem 12 so we are left to show Sf is also a left

division algebra. Let 0 6= a ∈ Sf be arbitrary and recall La is injective by Lemma 12. Since

f is B-weak semi-invariant, B ⊆ Nucr(Sf ) which implies that La is right B-linear. Sf is a

free right D-module of rank m = deg(f) because σ is an automorphism. Since D is a free

right B-module of finite rank then also Sf is a free right B-module of finite rank. Thus [19,

Chapter IV, Corollary 2.14] implies La is bijective as required. �

Theorem 18. Let f ∈ R = D[t;σ, δ] be irreducible. Then f is bounded if and only if Sf is

free of finite rank as a Nucr(Sf )-module. In this case, Sf is a division algebra.

Proof. The first part of the statement is [8, Theorem 4]. Since f irreducible, Sf is a right

division algebra and La is injective for all 0 6= a ∈ Sf as observed in [30, Section 2., (7)]. The

second part then follows from the fact that Sf is free of finite rank as a Nucr(Sf )-module,

which means the injective Nucr(Sf )-linear map La is also surjective. �

For σ = 0 this is [37, Theorem 2].

Corollary 19. Let f ∈ R = D[t;σ, δ] be irreducible.

(i) Let σ be surjective and D = Nucr(Sf ). Then f is bounded and Sf is a division algebra.

(ii) Let f be bounded, then Sf is a division algebra.

Proof. (i) If σ is surjective then Sf is a right D-module, free of rank m. Since D = Nucr(Sf ),

Theorem 18 yields the assertion.

(ii) is trivial. �

If σ is an automorphism, R = D[t;σ, δ] has finite rank over its center if and only if D is

of finite rank over Ct = {a ∈ F | at = ta} if and only if all polynomials of R are bounded

and if for all f of degree non-zero, deg(f∗)/deg(f) is bounded in Q (f∗ being the bound of

f) [9, Theorem IV]. Since Ct = Const(δ) ∩ Fix(σ) = D0 ⊂ F we conclude:

Proposition 20. Assume R = D[t;σ, δ], σ is an automorphism, and one of the two following

equivalent conditions hold:

(i) R = D[t;σ, δ] has finite rank over its center;

(ii) D has finite rank over D0.

Then every f ∈ R is bounded. In particular, if f is irreducible then Sf is a division algebra.

For σ = 0, this is [37, Proposition 3].
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Suppose now that σ is an automorphism. Then Sf is a free right D-module of rank m and

since La is Nucr(Sf )-linear for any non-zero a ∈ Sf , in this case Sf is a division algebra for

an irreducible f if D ⊂ Nucr(Sf ) or if there is a subalgebra B ⊂ D such that B ⊂ Nucr(Sf )

and D has finite rank as a right B-module (these conditions were not stated in [30, p. 13-14]

but seem necessary). We obtain:

Proposition 21. Suppose that σ is an automorphism and f is irreducible.

(i) If D ⊂ Nucr(Sf ) then Sf is a division algebra.

(ii) If there is a subalgebra B ⊂ D such that B ⊂ Nucr(Sf ) and D is free of finite rank as

a right B-module then Sf is a division algebra.

Proof. Sf is a right D-module and left multiplication La is Nucr(Sf )-linear, so in particular

D-linear. Since f is irreducible, La is injective for all nonzero a ∈ Sf . If D ⊂ Nucr(Sf )

then Sf is a free right D-module of rank m, and if there is a subalgebra B ⊂ D such that

B ⊂ Nucr(Sf ) and S is free of finite rank as a right B-module, then Sf is a free right

B-module of finite rank. Thus La is bijective for all nonzero a ∈ Sf . �

5. Irreducibility criteria for some polynomials in R = D[t;σ]

Let D be a division algebra over F and f(t) = tm −
∑m−1

i=0 ait
i ∈ R = D[t;σ].

5.1. There are already several irreducibility criteria for f available in the literature. We

start by collecting some that are useful for constructing (right) division algebras Sf for the

convenience of the reader.

We first determine the remainder after dividing f(t) on the right by t − b where b ∈ D.

By [20, p. 15ff] we have (t− b)|rf(t) is equivalent to

(11) amNm(b)−

m−1
∑

i=0

aiNi(b) = 0

where Ni(b) = σi−1(b) · · ·σ(b)b for i > 0 and N0(b) = 1, i.e. to this remainder being zero.

When σ is an automorphism of D, we can also determine the remainder after dividing

f(t) on the left by (t− b), b ∈ D: Similarly to [20, p. 15ff] we have

ti − bσ−1(b) · · ·σ1−i(b) = (t− b)
(

ti−1 + σ−1(b)ti−2+

σ−1(b)σ−2(b)ti−3 + . . .+ σ−1(b)σ−2(b) · · ·σ1−i(b)
)(12)

for all i ∈ N. Multiplying (12) on the right by σ−i(ai), and using ait
i = tiσ−i(ai) gives

ait
i − bσ−1(b) · · ·σ1−i(b)σ−i(ai)

= (t− b)
(

ti−1 + σ−1(b)ti−2 + . . .+ σ−1(b)σ−2(b) · · ·σ1−i(b)
)

σ−i(ai).

Summing over i, we obtain

f(t) = (t− b)q(t) +Mm(b)−

m−1
∑

i=0

Mi(b)σ
−i(ai),

for some q(t) ∈ R where M0(b) = 1, M1(b) = b and Mi(b) = bσ−1(b) · · ·σ1−i(b) for i ≥ 2.

We immediately conclude:
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Proposition 22. Suppose σ is an automorphism. Then (t−b)|lf(t) if and only if Mm(b)−
∑m−1

i=0 Mi(b)σ
−i(ai) = 0.

Corollary 23. Suppose σ is an automorphism and f(t) = tm − a ∈ D[t;σ]. Then f(t) has

a left linear divisor if and only if it has a right linear divisor.

Proof. Let b ∈ D, then (t − b)|rf(t) is equivalent to σm−1(b) · · ·σ(b)b = a by (11), if and

only if cσ−1(c) · · ·σ1−m(c) = a where c = σm−1(b), if and only if (t− c)|lf(t) by Proposition

22. �

Theorem 24. [30, (17), (18)] (i) f(t) = t2 − a1t− a0 ∈ D[t;σ] is irreducible if and only if

σ(b)b− a1b− a0 6= 0

for all b ∈ D.

(ii) Suppose σ is an automorphism. f(t) = t3−a2t
2−a1t−a0 ∈ D[t;σ] is irreducible if and

only if

σ2(b)σ(b)b− σ2(b)σ(b)a2 − σ2(b)σ(a1)− σ2(a0) 6= 0

and

σ2(b)σ(b)b− a2σ(b)b− a1b− a0 6= 0

for all b ∈ D.

Corollary 25. Suppose σ is an automorphism, then f(t) = t3 − a ∈ D[t;σ] is irreducible if

and only if σ2(b)σ(b)b 6= a for all b ∈ D.

Proof. By Corollary 23, f(t) has a right linear divisor if and only if it has a left linear

divisor. Therefore f(t) is irreducible if and only if (t− b) ∤r f(t) for all b ∈ D, if and only if

σ2(b)σ(b)b 6= a for all b ∈ D by (11). �

Lemma 26. Let f(t) ∈ R = D[t;σ] and suppose f(t) = q(t)g(t) for some q(t), g(t) ∈ R.

Then f(bt) = q(bt)g(bt) for all b ∈ D0 = F ∩ Fix(σ).

Proof. Write q(t) =
∑l

i=0 qit
i, g(t) =

∑n
j=0 gjt

j , then

f(t) = q(t)g(t) =

l
∑

i=0

n
∑

j=0

qit
igjt

j =

l
∑

i=0

n
∑

j=0

qiσ
i(gj)t

i+j ,

and so we obtain for all b ∈ D0:

q(bt)g(bt) =

l
∑

i=0

qi(bt)
i

n
∑

j=0

gj(bt)
j =

l
∑

i=0

n
∑

j=0

qiσ
i(gj)b

i+jti+j

=

l
∑

i=0

n
∑

j=0

qiσ
i(gj)(bt)

i+j = f(bt).

�

Theorem 27. [3, p. 344] Let σ be an endomorphism of D, f(t) = tm − a ∈ R = D[t;σ]

and suppose D0 = F ∩ Fix(σ) contains a primitive mth root of unity ω. If g(t) ∈ R is a

monic irreducible polynomial dividing f(t) on the right, then the degree d of g(t) divides m

and f(t) is the product of m/d polynomials of degree d.



SKEW POLYNOMIALS AND NONASSOCIATIVE ALGEBRAS 15

For a proof of Theorem 27 see [4]; the special case where σ is an automorphism of order

m is shown in [12, Proposition 3.7.5].

Theorem 27 implies [1, Lemma 10], cf. also [36, Theorem 6 (iii)], which improves [30,

(19)]:

Theorem 28. Suppose m is prime, σ is an endomorphism of D and D0 = F ∩ Fix(σ)

contains a primitive mth root of unity. Then f(t) = tm − a ∈ D[t;σ] is irreducible if and

only if it has no right linear divisors, if and only if

a 6= σm−1(b) · · ·σ(b)b

for all b ∈ D.

Proof. Let g(t) ∈ D[t;σ] be an irreducible polynomial of degree d dividing f(t) on the right.

Without loss of generality g(t) is monic, otherwise if g(t) has leading coefficient c ∈ D×,

then c−1g(t) is monic and also right divides f(t). Thus d divides m by Theorem 27 and

since m is prime, either d = m, in which case g(t) = f(t), or d = 1, which means f(t)

can be written as a product of m linear factors. Therefore f(t) is irreducible if and only if

(t− b) ∤r f(t) for all b ∈ D, if and only if a 6= σm−1(b) · · ·σ(b)b, for all b ∈ D by (11). �

5.2. Skew polynomials of degree four. Suppose σ is an automorphism of D and f(t) =

t4 − a3t
3 − a2t

2 − a1t − a0 ∈ R = D[t;σ]. Then either f(t) is irreducible, f(t) is divisible

by a linear factor from the right, from the left, or f(t) = g(t)h(t) for some g(t), h(t) ∈ R of

degree 2. In (11) and Proposition 22 we computed the remainders after dividing f(t) by a

linear polynomial on the right and the left. We now compute the remainder after dividing

f(t) by t2 − ct− d on the right, with c, d ∈ D. To do this we use the identities

(13) t2 = (t2 − ct− d) + (ct+ d),

(14) t3 = (t+ σ(c))
(

t2 − ct− d
)

+
(

σ(d) + σ(c)c
)

t+ σ(c)d,

and

t4 =
(

t2 + σ2(c)t+ σ2(d) + σ2(c)σ(c)
)(

t2 − ct− d
)

+
(

σ2(c)σ(c)c+ σ2(d)c+ σ2(c)σ(d)
)

t+ σ2(d)d+ σ2(c)σ(c)d.
(15)

If we define

M0(c, d)(t) = 1, M1(c, d)(t) = t, M2(c, d)(t) = ct+ d

M3(c, d)(t) =
(

σ(d) + σ(c)c
)

t+ σ(c)d,

M4(c, d)(t) =
(

σ2(c)σ(c)c+ σ2(d)c+ σ2(c)σ(d)
)

t+ σ2(d)d+ σ2(c)σ(c)d,

then multiplying (13), (14) and (15) on the left by ai and summing over i yields

f(t) = q(t)
(

t2 − ct− d
)

+M4(c, d)(t)−
3

∑

i=0

aiMi(c, d)(t)

for some q(t) ∈ R. Thus the remainder after dividing f(t) on the right by t2 − ct− d is

M4(c, d)(t)−

3
∑

i=0

aiMi(c, d)(t),

which evidently implies:
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Proposition 29. f(t) = t4 − a3t
3 − a2t

2 − a1t − a0 ∈ R = D[t;σ]. (t2 − ct − d)|rf(t) is

equivalent to

σ2(c)σ(c)c+ σ2(d)c+ σ2(c)σ(d)− a3
(

σ(d) + σ(c)c
)

− a2c− a1 = 0,

and

σ2(d)d+ σ2(c)σ(c)d− a3σ(c)d− a2d− a0 = 0.

Propositions 22 and 29 together with (11) yield:

Theorem 30. f(t) = t4 − a3t
3 − a2t

2 − a1t− a0 ∈ R = D[t;σ] is irreducible if and only if

(16) σ3(b)σ2(b)σ(b)b+ a3σ
2(b)σ(b)b+ a2σ(b)b+ a1b+ a0 6= 0,

and

σ3(b)σ2(b)σ(b)b+ σ3(b)σ2(b)σ(b)a3+

σ3(b)σ2(b)σ(a2) + σ3(b)σ2(a1) + σ3(a0) 6= 0,
(17)

for all b ∈ D, and for every c, d ∈ D, we have

(18) σ2(c)σ(c)c+ σ2(d)c+ σ2(c)σ(d) + a3(σ(d) + σ(c)c) + a2c+ a1 6= 0,

or

(19) σ2(d)d+ σ2(c)σ(c)d+ a3σ(c)d+ a2d+ a0 6= 0.

I.e., f(t) is irreducible if and only if (16) and (17) and ((18) or (19)) hold.

Proof. f(t) is irreducible if and only if (t− b) ∤r f(t) for all b ∈ D, (t− b) ∤l f(t) for all b ∈ D

and (t2 − ct− d) ∤r f(t) for all c, d ∈ D. Therefore the result follows from (11), Propositions

22 and 29. �

Lemma 31. Let f(t) = t4 − a ∈ R. Suppose (t − b)|rf(t), then f(t) = (t + σ3(b))(t2 +

σ2(b)σ(b))(t− b) and f(t) = (t2 + σ3(b)σ2(b))(t+ σ(b))(t− b) are factorisations of f(t). In

particular, (t+ σ(b))(t− b) = t2 − σ(b)b also right divides f(t).

Proof. Multiplying out these factorisations gives t4 − σ3(b)σ2(b)σ(b)b which is equal to f(t)

by (11). �

Hence if f(t) = t4 − a has a right linear divisor then it also has a right quadratic divisor

and Theorem 30 simplifies to:

Corollary 32. f(t) = t4 − a ∈ R is reducible if and only if

σ2(c)σ(c)c+ σ2(d)c+ σ2(c)σ(d) = 0 and σ2(d)d+ σ2(c)σ(c)d = a,

for some c, d ∈ D.

Proof. By Corollary 23, f(t) has a right linear divisor if and only if it has a left linear

divisor. Moreover if f(t) has a right linear divisor then it also has a quadratic right divisor

by Lemma 31, therefore f(t) is reducible if and only if (t2 − ct− d)|rf(t) for some c, d ∈ D.

The result now follows from Proposition 29. �
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5.3. Examples in Fph [t;σ]. Let K = Fph be a finite field of order ph for some prime p

and σ be a non-trivial Fp-automorphism of K. This means σ : K → K, k 7→ kp
r

, for some

r ∈ {1, . . . , h− 1}. Here σ has order n = h/gcd(r, h) and Gal(K/Fix(σ)) = 〈σ〉. Algorithms

for efficiently factorising polynomials in Fph [t;σ] exist, see [13] or more recently [10].

Lemma 33. gcd(ph − 1, pr − 1) = pgcd(h,r) − 1.

Proof. Let d = gcd(r, h) so that h = dn. We have

ph − 1 = (pd − 1)(pd(n−1) + . . .+ pd + 1),

therefore ph − 1 is divisible by pd − 1. A similar argument shows (pd − 1)|(pr − 1). Suppose

that c is a common divisor of ph − 1 and pr − 1, this means ph ≡ pr ≡ 1 mod (c). Write

d = hx+ ry for some integers x, y, then we have

pd = phx+ry = (ph)x(pr)y ≡ 1 mod (c)

which implies c|(pd − 1) and hence pd − 1 = gcd(ph − 1, pr − 1). �

Given k ∈ K×, we have k ∈ Fix(σ) if and only if kp
r
−1 = 1, if and only if k is a (pr −1)th

root of unity. There are gcd(pr − 1, ph − 1) such roots of unity in K, thus

|Fix(σ)| = gcd(pr − 1, ph − 1) + 1 = pgcd(r,h)

by Lemma 33 and so Fix(σ) ∼= Fq where q = pgcd(r,h).

Proposition 34. (i) Suppose n ∈ {2, 3}, then f(t) = tn − a ∈ K[t;σ] is irreducible if and

only if a ∈ K \ Fix(σ).

(ii) Suppose n is a prime and n|(q − 1). Then f(t) = tn − a ∈ K[t;σ] is irreducible if and

only if a ∈ K \ Fix(σ).

In particular, in both (i) and (ii), there are precisely ph−q irreducible polynomials in K[t;σ]

of the form tn − a for some a ∈ K.

Proof. (i) f(t) is irreducible if and only if
∏n−1

l=0 σl(b) = NK/Fix(σ)(b) 6= a for all b ∈ K by

Theorem 24 or Corollary 25, where NK/Fix(σ) is the field norm. It is well-known that as K

is a finite field, NK/Fix(σ) : K
× → Fix(σ)× is surjective and so f(t) is irreducible if and only

if a /∈ Fix(σ). There are ph − q elements in K \ Fix(σ), hence there are precisely ph − q

irreducible polynomials of the form tn − a for some a ∈ K.

(ii) Fix(σ) ∼= Fq contains a primitive nth root of unity because n|(q − 1) [23, Proposition

II.2.1]. The rest of the proof is similar to (i) but uses Theorem 28. �

Let a, b ∈ K and recall (t − b)|r(t
m − a) is equivalent to a = σm−1(b) · · ·σ(b)b = bs by

(11) where s =
∑m−1

j=0 prj = (pmr − 1)/(pr − 1). Suppose z generates the multiplicative

group K×. Writing b = zl for some l ∈ Z yields (t− b)|r(t
m − a) if and only if a = zls. This

implies the following:

Proposition 35. Let f(t) = tm − a ∈ K[t;σ] and write a ∈ K as a = zu for some

u ∈ {0, . . . , ph − 2}.

(i) (t− b) ∤r f(t) for all b ∈ K if and only if u /∈ Zs mod (ph − 1).

(ii) If m ∈ {2, 3} then f(t) is irreducible if and only if u /∈ Zs mod (ph − 1).
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(iii) Suppose m is a prime divisor of (q − 1), then f(t) is irreducible if and only if u /∈

Zs mod (ph − 1).

Proof. (i) (t− b) ∤r f(t) for all b ∈ K if and only if a = zu 6= zls for all l ∈ Z, if and only if

u /∈ Zs mod (ph − 1).

(ii) f(t) has a left linear divisor if and only if it has a right linear divisor by Corollary 23.

Therefore if m ∈ {2, 3} then f(t) is irreducible if and only if (t− b) ∤r f(t) for all b ∈ K and

so the assertion follows by (i).

(iii) If m is a prime divisor of (q − 1) then Fix(σ) ∼= Fq contains a primitive mth root of

unity. Therefore the result follows by (i) and Theorem 28. �

Corollary 36. (i) There exists a ∈ K such that (t− b) ∤r (tm − a) for all b ∈ K if and only

if gcd(s, ph − 1) > 1.

(ii) [30, (22)] Suppose m ∈ {2, 3} or m is a prime divisor of (q − 1). Then there exists

a ∈ K× such that tm − a ∈ K[t;σ] is irreducible if and only if gcd(s, ph − 1) > 1.

Proof. There exists u ∈ {0, . . . , ph − 2} such that u /∈ Zs mod (ph − 1), if and only if s does

not generate Zph−1, if and only if gcd(s, ph−1) > 1. Hence the result follows by Proposition

35. �

Corollary 37. Suppose p ≡ 1 mod m.

(i) There exists a ∈ K such that (t− b) ∤r (tm − a) for all b ∈ K.

(ii) If p is an odd prime, then there exists a ∈ K× such that t2 − a ∈ K[t;σ] is irreducible.

(iii) If m = 3, then there exists a ∈ K× such that t3 − a ∈ K[t;σ] is irreducible.

(iv) Suppose m is a prime divisor of (q − 1), then there exists a ∈ K× such that tm − a ∈

K[t;σ] is irreducible.

Proof. We have

s mod m =

m−1
∑

i=0

(pri mod m) mod m = (

m−1
∑

i=0

1) mod m = 0,

and ph ≡ 1 mod m. This means m|s and m|(ph − 1), therefore gcd(s, ph − 1) ≥ m and so

the assertion follows by Corollary 36. �

6. Irreducibility criteria for polynomials of degree two and three and for

tm − a in D[t;σ, δ]

In this Section we generalize some results from Section 5 to polynomials in R = D[t;σ, δ],

where D is a division ring with center F and σ an endomorphism of D. We recursively

define a sequence of maps Ni : D → D, i ≥ 0, by

N0(b) = 1, Ni+1(b) = σ(Ni(b))b+ δ(Ni(b)),

i.e., N1(b) = b, N2(b) = σ(b)b+ δ(b), . . .

Let f(t) = tm −
∑m−1

i=0 ait
i ∈ R. Then (t− b)|rf(t) is equivalent to

(20) Nm(b)−

m−1
∑

i=0

aiNi(b) = 0
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[25, Lemma 2.4].

If σ is an automorphism of D, we can also view R = D[t;σ, δ] as a right polynomial

ring. In particular, this means we can write f(t) = tm −
∑m−1

i=0 ait
i ∈ R in the form

f(t) = tm −
∑m−1

i=0 tia′i for some uniquely determined a′i ∈ D. To find the remainder after

left division of f(t) by (t− b), we recursively define a sequence of maps Mi : D → D, i ≥ 0,

by

Mi+1(b) = bσ−1(Mi(b))− δ(σ−1(Mi(b))), M0(b) = 1,

that is M0(b) = 1, M1(b) = b, M2(b) = bσ−1(b)− δ(σ−1(b)), . . .

Proposition 38. Suppose σ is an automorphism of D. Then (t − b)|lf(t) is equivalent to

Mm(b)−
∑m−1

i=0 Mi(b)a
′

i = 0. In particular, (t− b)|l(t
m − a) if and only if Mm(b) 6= a.

Proof. We first show tn − Mn(b) ∈ (t − b)R for all b ∈ D and n ≥ 0: If n = 0 then

t0 −M0(b) = 1− 1 = 0 ∈ (t − b)R as required. Suppose inductively tn −Mn(b) ∈ (t − b)R

for some n ≥ 0, then

tn+1 −Mn+1(b) = tn+1 − bσ−1(Mn(b)) + δ(σ−1(Mn(b)))

= tn+1 + (t− b)σ−1(Mn(b))− tσ−1(Mn(b)) + δ(σ−1(Mn(b)))

= tn+1 + (t− b)σ−1(Mn(b))−Mn(b)t− δ(σ−1(Mn(b))) + δ(σ−1(Mn(b)))

= (t− b)σ−1(Mn(b)) + (tn −Mn(b))t ∈ (t− b)R,

as tn−Mn(b) ∈ (t− b)R. Therefore tn−Mn(b) ∈ (t− b)R for all b ∈ D, n ≥ 0 by induction.

As a result, there exists qi(t) ∈ R such that ti = (t−b)qi(t)+Mi(b), for all i ∈ {0, . . . ,m}.

Multiplying on the right by a′i and summing over i yields

f(t) = (t− b)q(t) +Mm(b)−

m−1
∑

i=0

Mi(b)a
′

i,

for some q(t) ∈ R. �

Theorem 39. (i) f(t) = t2 − a1t− a0 ∈ D[t;σ, δ] is irreducible if and only if σ(b)b+ δ(b)−

a1b− a0 6= 0 for all b ∈ D.

(ii) Suppose σ is an automorphism of D and f(t) = t3 − a2t
2 − a1t− a0 ∈ D[t;σ, δ]. Write

f(t) = t3 − t2a′2 − ta′1 − a′0 for some unique a′0, a
′

1, a
′

2 ∈ D. Then f(t) is irreducible if and

only if

(21) N3(b)−

2
∑

i=0

aiNi(b) 6= 0 and M3(b)−

2
∑

i=0

Mi(b)a
′

i 6= 0,

for all b ∈ D.

Proof. (i) f(t) is irreducible if and only if it has no right linear factors, if and only if

N2(b)− a1N1(b)− a0N0(b) = σ(b)b+ δ(b)− a1b− a0 6= 0,

for all b ∈ D by (20).

(ii) f(t) is irreducible if and only if it has no left or right linear factors, if and only if (21)

holds for all b ∈ D by (20) and Proposition 38.

�
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We can thus generalize Theorem 28:

Theorem 40. Suppose m is prime, char(D) 6= m and F ∩Fix(σ) contains a primitive mth

root of unity ω. Then f(t) = tm − a ∈ D[t;σ, δ] is irreducible if and only if Nm(b) 6= a for

all b ∈ D.

Proof. Recall that δ(bn) =
∑n−1

i=0 σ(b)iδ(b)bn−1−i for all b ∈ D, n ≥ 1 by [16, Lemma 1.1]

and so

0 = δ(1) = δ(ωm) =

m−1
∑

i=0

σ(ω)iδ(ω)ωm−1−i =

m−1
∑

i=0

ωiδ(ω)ωm−1−i

=
m−1
∑

i=0

δ(ω)ωm−1 = δ(ω)ωm−1m,

where we have used ω ∈ F ∩ Fix(σ). Therefore ω ∈ Const(δ) because char(D) 6= m, hence

also ωi ∈ Const(δ) and so (ωt)i = ωiti for all i ∈ {1, . . . ,m}. Furthermore if b ∈ D, then

(t − b) ∤r f(t) is equivalent to Nm(b) 6= a by (20). The proof now follows exactly as in

Theorem 24. �

Corollary 41. Suppose char(D) 6= 3, σ = id and F ∩Fix(σ) contains a primitive third root

of unity. Then f(t) = t3 − a ∈ D[t; δ] is irreducible if and only if

N3(b) = b3 + 2δ(b)b+ bδ(b) + δ2(b) 6= a,

for all b ∈ D.
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