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HOW ACCURATE IS THE STREAMLINE DIFFUSION

FINITE ELEMENT METHOD?

GUOHUI ZHOU

Abstract. We investigate the optimal accuracy of the streamline diffusion
finite element method applied to convection–dominated problems. For lin-
ear/bilinear elements the theoretical order of convergence given in the liter-

ature is either O(h3/2) for quasi–uniform meshes or O(h2) for some uniform
meshes. The determination of the optimal order in general was an open pro-
blem. By studying a special type of meshes, it is shown that the streamline
diffusion method may actually converge with any order within this range de-
pending on the characterization of the meshes.

1. Introduction

We consider a model scalar convection–dominated convection–diffusion problem
of the form

−ε∆u+ ux + u = f in Ω,(1.1.a)

u = 0 on ∂Ω.(1.1.b)

Here, Ω is a bounded domain in R2, e.g., the unit square, with boundary ∂Ω, while
0 ≤ ε� 1 is a small diffusion parameter.

The streamline diffusion finite element method (SDFEM) was proposed by
Hughes et al. [2] and Johnson et al. [4] in order to cope with the usual insta-
bilities caused by the convection term. It is capable of damping possible over– and
undershootings of the discrete solution near the discontinuities while preserving
higher order of convergence in regions where the solution is smooth. In fact, the
SDFEM with linear or bilinear elements converges in L2 with an order of O(h3/2)
on general quasi–uniform meshes (see Johnson [3]), while the standard upwinding
finite element method gives only O(h).

A local pointwise error estimate of order O(h5/4) was given by Johnson et al. [5],
which was later on improved by Niijima [7] to the order O(h11/8). Recently, it
was shown in Zhou and Rannacher [13] that on streamline–oriented meshes the
SDFEM even has the pointwise order of convergence O(h2| logh|). The situation
appeared somewhat confusing, as several test computations showed an unexpected
O(h2)–convergence, even on fairly general meshes.
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In this paper, we try to clarify this question by studying the SDFEM on a
special type of triangular meshes, which was introduced by Peterson [8] in the
context of the discontinuous Galerkin method. He showed that on such meshes
the order of convergence of the discontinuous Galerkin method is actually limited
to O(h3/2). By our analysis it turns out that a similar effect occurs also for the
SDFEM. We find an order of convergence in L2 that may vary between O(h3/2)
and O(h2) depending on a certain mesh parameter, while the pointwise error is
bounded by O(h3/2) independent of the mesh parameter. These phenomena are
confirmed by numerical tests. However, the extension of this result to quadrilateral
meshes remains open.

2. Review of some convergence results

First, we formulate the SDFEM and recall some well–known error estimates. Let
Πh = {e} be quasi–uniform partitions of the polygonal domain Ω into triangles or
(convex) quadrilaterals, where the largest diameter of all elements is denoted by h.
Here, “quasi–uniform” means that the area of each element is bounded from below
by Ch2 with some constant C independent of h. On these meshes we define the
finite element spaces

Vh =
{
W ∈ H1

0(Ω),W |e is linear for a triangle or bilinear for a quadrilateral
}
,

where the term “bilinear” is to be understood in the usual isoparametric sense.
The SDFEM may be viewed as a modification of the standard Galerkin finite

element method by using test functions of the form V + δVx, with some small
parameter δ of order O(h). Accordingly, the discrete problem reads: Find U ∈ Vh

such that

ε(∇U, ∇V ) + (Ux + U, V + δVx) = (f, V + δVx), ∀ V ∈ Vh.(2.1)

The term (ε∆U, δVx) is neglected in our case. Since the parameter ε is usually
very small or even zero, the bilinear form defined by the left-hand side of (2.1) is
only weakly positive definite, which causes problems in the local error analysis. To
overcome this difficulty, Johnson et al. [5] proposed to replace ε by an artificial
diffusion coefficient εm of size O(h3/2) to O(h2). Defining the bilinear form

B(U, V ) = δ(Ux, Vx) + εm(∇U, ∇V ) + (1− δ)(Ux, V ) + (U, V ),(2.2)

and the linear functional

L(V ) = (f, V + δVx),(2.3)

we write the SDFEM in the compact form

B(U, V ) = L(V ), ∀ V ∈ Vh.(2.4)

The energy form B(·, ·) is positive definite,

B(V, V ) ≥ |||V |||2, ∀ V ∈ H1
0(Ω),(2.5)

with respect to the energy norm given by

|||V |||2 = (εm + δ)‖Vx‖2 + εm‖Vy‖2 + ‖V ‖2.(2.6)

This implies that the discrete problem (2.4) possesses a unique solution U ∈ Vh

and that the stability of the scheme is guaranteed.
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Further, we have the quasi-orthogonality relation

B(u− U, V ) = Per(u, V ), ∀ V ∈ Vh,(2.7)

with the truncation error

Per(u, V ) = (ε∆u, δVx) + (εm − ε)(∇u,∇V ).

To obtain global L2–error estimates, we use the standard argument for finite
elements and introduce the linear/bilinear nodal interpolant Ihu of the solution u.
Clearly, there holds

|||u− Ihu||| ≤ C
(
δ1/2h+ ε1/2

m h+ h2
)
‖∇2u‖.

Setting V = Ihu− U ∈ Vh and using (2.5) and (2.7), we obtain

|||V |||2 ≤ B(V, V ) = B(Ihu− u, V ) +B(u− U, V ) = B(Ihu− u, V ) + Per(u, V ).

Further, using the estimates

B(Ihu− u, V ) ≤
(
|||Ihu− u|||+ δ−1/2‖Ihu− u‖

)
|||V |||(2.8)

≤ C
(
δ1/2h+ ε1/2

m h+ δ−1/2h2
)
‖∇2u‖|||V |||,

and

Per(u, V ) ≤ C
(
δ1/2ε‖uxx‖+ |ε− εm|‖∆u‖

)
|||V |||,

we conclude that

|||u− U ||| ≤ C
(
δ1/2h+ ε1/2

m h+ h2 + δ−1/2h2
)
‖∇2u‖

+C
(
δ1/2ε‖uxx‖+ |ε− εm|‖∆u‖

)
.

From this error estimate, we can infer that the optimal choice of δ is δ = O(h)
and that the artificial diffusion εm should satisfy εm ≤ Ch3/2, to avoid a loss of
accuracy. Then, we have the error estimate

|||u− U ||| ≤ Ch3/2‖∇2u‖,(2.9)

where the constant C does not depend on the diffusion coefficient ε. From this
result for the energy norm, we immediately obtain also the O(h3/2)–convergence
for the L2–norm ‖u− U‖. The usual improvement of this to the optimal order
of O(h2) by using a duality argument does not seem possible here, owing to the
singular perturbation character of the problem. This leaves a gap of O(h1/2) in the
order of convergence in the L2-norm.

In view of the above discussion, it seems that on general meshes the SDFEM
has the maximal order of convergence of O(h3/2). However, this may be improved
on certain structured meshes. For instance, let a quadrilateral mesh be oriented
in the streamline direction, i.e., parallel to the coordinate axes. For this, we recall
the error expansion for the bilinear interpolation in Lin [6]. For an element e, we
set E(x) = 1

2 ((x − xe)2 − h2
x(e)), F (y) = 1

2 ((y − ye)2 − h2
y(e)), where (xe, ye) is

the center of the element and 2hx(e) and 2hy(e) are the edge lengths in the x- and
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y-direction, respectively. Then, for V = Ihu− U there holds

δ((Ihu− u)x, Vx) = δ
∑
e∈Πh

∫
e

{
FVx −

1

3
(F 2)yVxy

}
uxyy dxdy

≤ Cδ
∑
e∈Πh

h2
y

∫
e

(|Vx|+ hy|Vxy|)uxyy dxdy

≤ Cδ1/2h2
y‖uxyy‖|||V |||,

and similarly,

εm((Ihu− u)y, Vy) ≤ Cε1/2
m h2

x‖uxxy‖|||V |||.
For estimating the convection term, we further require the mesh to be (almost)
uniform in the streamline direction. Then, there holds

((Ihu− u)x, V ) =
∑
e∈Πh

∫
e

(
1

6
(E2)xVx −

1

3
h2
xV

)
uxxx dxdy

+
∑
e∈Πh

∫
e

(
F (V −ExVx)− 1

3
(F 2)y(Vy −ExVxy)

)
uxyy dxdy

≤ Ch2
x‖uxxx‖‖V ‖+ Ch2

y‖uxyy‖‖V ‖

≤ C
(
h2
x + h2

y

)(
‖uxxx‖+ ‖uxyy‖

)
‖V ‖.

Further,

(Ihu− u, V ) ≤ C
(
h2
x‖uxx‖+ h2

y‖uyy‖
)
‖V ‖.

Using these estimates, instead of (2.8), we now have

B(Ihu− u, V ) ≤ Ch2
(
δ1/2 + ε1/2

m + 1
)(
‖∇2u‖+ ‖∇3u‖

)
|||V |||.(2.10)

This gives us the estimate

|||Ihu− U ||| ≤ Ch2
(
δ1/2 + ε1/2

m + 1
)(
‖∇2u‖+ ‖∇3u‖

)
+C (δε‖uxxx‖+ |ε− εm|‖∆u‖) ,

from which we infer, for any choice of δ and for ε ≤ εm = Ch2, that

‖u− U‖ ≤ ‖u− Ihu‖+ |||Ihu− U ||| ≤ Ch2‖u‖H3(Ω).(2.11)

We note that for this global error estimate, no lower bounds for δ and εm are
needed. But for estimating the local L2–error or the pointwise error, the sizes of
δ and εm have to satisfy δ = O(hx) and εm = O(h2

y), see [13]. Such a supercon-
vergence result can also be established for three–directional triangular meshes by
using the techniques proposed in Blum et al. [1]. For the discontinuous Galerkin
method, similar superconvergence results were also achieved in Richter [9] under
some mesh conditions.

The first local pointwise error estimate for the SDFEM was given in [5],

|(u− U)(x0, y0)| ≤ Ch5/4| logh|3/2‖u‖H2(Ω0) + Chν ,(2.12)

for quasi–uniform meshes and for any ν ≥ 2, where

Ω0 =
{

(x, y) : x− x0 ≤ Ch| logh|, |y − y0| ≤ Ch3/4| logh|
}
.
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The proof is based on local bounds for the discrete Green functions. This pointwise
convergence result was later improved in [7] to

|(u− U)(x0, y0)| ≤ Ch11/8| logh|‖u‖H2(Ω0) + Chν .(2.13)

Already in [5], it was conjectured that the SDFEM should converge pointwise with
the order O(h3/2) or even O(h2). This could be confirmed in [13], at least on certain
structured meshes. On streamline–oriented and uniform meshes, the estimate (2.13)
was improved to

|(u− U)(x0, y0)| ≤ Ch2| logh|‖u‖H3(Ω0) + Chν ,(2.14)

with

Ω0 =
{

(x, y) : x− x0 ≤ Ch| logh|, |y − y0| ≤ Ch| logh|
}
.

This result not only improved on the order of convergence, but also reduced the
width of the dependence subdomain Ω0. The reduction of the crosswind smear to
O(h| logh|) was also given in [10] by a stencil analysis.

In [13], the SDFEM has been tested for various model problems on different
types of meshes. Surprisingly, in almost all cases an O(h2)–convergence was ob-
served, even though the uniformity condition on the mesh was violated. This led
to the impression that the SDFEM would indeed converge with the optimal order
of O(h2) on general quasi–uniform meshes. However, this was finally disproved by
a test calculation on a very special triangular mesh introduced in [8] for an in-
vestigation of the convergence property of the discontinuous Galerkin method for
convection problems. This special mesh violates the mesh condition proposed by
Richter [9]. This pathological mesh will be described in the next section and a
detailed theoretical analysis will be given, which explains the reason for the order
reduction in the SDFEM.

3. The SDFEM on a special mesh

We now investigate the convergence of the SDFEM on the special meshes pro-
posed in [8]. We start with a simple convection problem, a similar form of which
was also considered in [8],

uy + u = x2 in Ω,(3.1.a)

u(x, 0) = x2 for 0 ≤ x ≤ 1.(3.1.b)

The exact solution is u(x, y) = x2. The SDFEM is applied to this problem on
meshes as shown in Figure 1, where additional vertical lines are inserted, with
varying number m ≈ h−σ, 0 ≤ σ ≤ 1. For the mesh size h = 2−N , Table 1 shows
an unexpected reduction of the convergence order in L2, depending on the exponent
σ.

Remark 1. The computational results shown in Table 1 suggest that the order of
convergence should depend on the number σ of inserted lines like

‖u− U‖ ≤
{
Ch2−2σ/3 for 0 ≤ σ ≤ 3

4 ,
Ch2σ for 3

4 ≤ σ ≤ 1.
(3.2)

In Table 2, the corresponding order of convergence in L∞ seems independent
of m. The order of pointwise convergence is reduced to O(h3/2) even if only one
vertical line is inserted. However, in both cases, the superconvergence is again
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Figure 1. The original mesh and two modified meshes withm = 3
and m = h−1

Table 1. The L2–error and convergence order for problem (3.1)

N 3 4 5 6 7 8 9

m = h−1 4.12e-3 1.07e-3 2.73e-4 6.88e-5 1.73e-5 4.33e-6 1.08e-6
order 1.95 1.97 1.99 1.99 2.00 2.00

m ≈ 0.25h−1 4.91e-3 1.48e-3 4.59e-4 1.55e-4 5.10e-5 1.52e-5 4.20e-6
order 1.73 1.69 1.57 1.60 1.75 1.86

m ≈ h−3/4 4.40e-3 1.36e-3 3.96e-4 1.32e-4 4.34e-5 1.52e-5 5.39e-5
order 1.69 1.78 1.58 1.60 1.51 1.50

m ≈ h−1/2 4.98e-3 1.48e-3 4.28e-4 1.18e-4 3.55e-5 1.13e-5 3.63e-6
order 1.75 1.79 1.86 1.73 1.65 1.64

m ≈ h−2/5 4.91e-2 1.38e-3 3.67e-4 1.04e-4 3.06e-5 9.04e-6 2.75e-6
order 1.83 1.91 1.82 1.76 1.76 1.72

m = 1 4.62e-3 1.21e-3 3.11e-4 8.00e-5 2.06e-5 5.32e-6 1.38e-5
order 1.93 1.96 1.96 1.96 1.95 1.95

Table 2. The maximum error and convergence order for problem (3.1)

N 3 4 5 6 7 8 9

m = h−1 6.41e-3 1.64e-3 4.16e-4 1.05e-4 2.63e-5 6.58e-6 1.65e-6
order 1.97 1.98 1.99 2.00 2.00 2.00

m ≈ 0.25h−1 9.85e-3 3.06e-3 9.32e-4 3.60e-4 1.21e-4 3.69e-5 1.04e-5
order 1.69 1.72 1.37 1.57 1.71 1.83

m ≈ h−3/4 1.00e-2 2.64e-3 9.01e-4 3.08e-4 1.01e-4 3.69e-5 1.35e-5
order 1.92 1.55 1.55 1.61 1.45 1.45

m ≈ h−1/2 9.63e-4 3.06e-3 9.06e-4 3.42e-4 1.32e-4 5.05e-5 1.87e-5
order 1.65 1.76 1.41 1.37 1.39 1.43

m ≈ h−2/5 9.85e-4 2.78e-3 8.17e-4 3.38e-4 1.32e-4 5.04e-5 1.87e-5
order 1.83 1.77 1.27 1.36 1.39 1.43

m = 1 8.73e-4 2.47e-3 8.17e-4 3.38e-4 1.33e-4 5.04e-5 1.87e-5
order 1.82 1.60 1.27 1.35 1.40 1.43

recovered for the extreme case m = h−1. Note that this mesh is still not a complete
crisscross mesh. Figure 2 shows the error behavior for problem (3.1).
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Figure 2. The error behavior of the SDFEM with m = 3 and
m = h−1 for problem (3.1)

The above effect crucially depends on the orientation of the mesh. To demon-
strate this, we consider another “rotated” problem on the same meshes,

ux + u = y2 in Ω,(3.3.a)

u(0, y) = y2 for 0 ≤ y ≤ 1,(3.3.b)

with the exact solution u(x, y) = y2. The computational results show that in this
case the error is not affected by the inserted lines and the convergence order is
O(h2) in both norms. In the next section, we will try to explain the reasons for
these phenomena.

4. Error analysis for the special meshes

From the previous section, we see for V = Ihu− U that

|||V |||2 ≤ B(V, V ) = B(Ihu− u, V ) +B(u− U, V ) = B(Ihu− u, V ) + Per(u, V ).

Therefore, the error estimate for the SDFEM essentially reduces to the estimate
for the interpolation error term B(Ihu − u, V ). To estimate the convection term,
we need an error expansion lemma from Zhou and Lin [11].

Lemma 1. Let Ihu be the linear nodal interpolant of the function u on a triangular
element e and let V be any function in H1(e). There holds the expansion estimate

∫
e

(u− Ihu)Vy dxdy = −h
2

24

∮
∂e

( 3∑
i=1

λ2
iD

2
i u
)
V ny ds+O

(
h2‖u‖H3(e)‖V ‖e

)
,

(4.1)

where Di denotes the directional derivative along the side si of e whose length is
hi = λih.

Summing the expansion (4.1) over all elements, we obtain

((u− Ihu), Vy) = −h
2

24

∑
e∈Πh

∮
∂e

( 3∑
i=1

λ2
iD

2
i u
)
V ny ds+O

(
h2‖u‖H3‖V ‖

)
.(4.2)

Consider now one level of elements in the mesh shown in Figure 3, yn − 1
2h ≤

y ≤ yn + 1
2h. Suppose that a vertical line is inserted at x = xm. There are only

6 different types of elements to be analyzed, which are numbered by 1 to 6. By ~k

and ~l, we denote the directions (−1, 1) and (1, 1), respectively. For element e, we
denote by ∂el, ∂ek, ∂ex and ∂ey the sides parallel to the indexed directions.
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Figure 3. One level of elements

First, let us analyze the error in elements e1, . . . , e6. It is easy to see that on
elements e5 and e6 there holds

3∑
i=1

λ2
iD

2
i u = uxx +

1

2
ull +

1

2
ukk = uxx +

1

2
∆u,(4.3)

where we used the fact that the Laplace operator is invariant under rotations. On
elements e1 and e4, we have

3∑
i=1

λ2
iD

2
i u =

1

4
uxx +

1

4
uyy +

1

2
ukk =

1

4
∆u+

1

2
ukk,(4.4)

and on elements e2 and e3,

3∑
i=1

λ2
iD

2
i u =

1

4
uxx +

1

4
uyy +

1

2
ull =

1

4
∆u+

1

2
ull.(4.5)

Since the integrands on elements e9 and e10 are the same, the line integral on
the edge between elements e9 and e10 is zero. By the same argument, the line
integrals on the edges between e9 and e5 and between e10 and e6 vanish, too. In
other words, away from the inserted vertical lines, all line integrals disappear. Now,
we investigate the effect of the inserted vertical lines. For simplicity of notation, we
set T (xm, yn) =

⋃4
i=1 ei, ∂T1 = e1 ∩ e5, ∂T2 = e2 ∩ e6, ∂T3 = e3 ∩ e7, ∂T4 = e4 ∩ e8,

∂T12 = e1 ∩ e2, ∂T34 = e3 ∩ e4, ∂T13 = e1 ∩ e3, ∂T24 = e2 ∩ e4.
First, let us look at the line integral on the edge ∂T1. By subtracting (4.4) from

(4.3), this integral becomes

1√
2

∫
∂T1

(
uxx +

1

4
∆u− 1

2
ukk
)
V ds =

1√
2

∫
∂T1

(
uxx +

1

4
uxy
)
V ds.

It is not difficult to see that the line integral on the edge ∂T4 has the same integrand
as the above, but with negative sign. Subtracting (4.3) from (4.5), we have the line
integral on the edge ∂T2,

1√
2

∫
∂T2

(
− uxx −

1

4
∆u+

1

2
ull
)
V ds =

1√
2

∫
∂T2

(
− uxx +

1

4
uxy
)
V ds.

The line integral on the edge ∂T3 has the same form, but with opposite sign. On
the line ∂T12, we have∫

∂T12

(
ukk − ull

)
V ds = −

∫
∂T12

uxyV ds,
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while on ∂T34 the integral just changes sign. Finally, we have ny = 0 along the
vertical line. Summing over all the elements, we thus obtain

((u− Ihu), Vy) = − h2

24
√

2

∑
T

(∫
∂T1

−
∫
∂T2

+

∫
∂T3

−
∫
∂T4

)
uxxV ds(4.6)

− h2

96
√

2

∑
T

(∫
∂T1

+

∫
∂T2

−
∫
∂T3

−
∫
∂T4

)
uxyV ds

+
h2

24

∑
T

(∫
∂T12

−
∫
∂T34

)
uxyV ds

+O
(
h2‖u‖H3‖V ‖

)
,

where here and below the summation for T runs over all crisscross elements T
defined above.

Now, we consider a special case with uxy ≡ 0. The second and the third term on
the right-hand side of the above expansion vanish. Next, we consider the crisscross
strip at x = xm. The pieces of line integrals of type ∂T1 and ∂T2 go zigzag from the
bottom to the top, with changing signs. Setting P2j = (xm, y2j) for j = 0, . . . , N
and P2j+1 = (xm − 1

2h, y2j+1), for j = 0, . . . , N − 1, we use the trapezoidal rule on
the equidistant intervals (Pi, Pi+1) to get∣∣∣∣∣
2N−1∑
i=0

∫ Pi+1

Pi

(−1)iuxxV ds

∣∣∣∣∣ ≤
∣∣∣∣∣h2

2N−1∑
i=0

(−1)i
(
uxx(Pi)V (Pi) + uxx(Pi+1)V (Pi+1)

)∣∣∣∣∣
+Ch2

2N−1∑
i=0

∫ Pi+1

Pi

|(uxxV )ss| ds

≤ Ch2

∫ P2N

P0

(|uxxs| |Vs|+ |uxxss| |V |) ds,

where P0 and P2N are located on the boundary ∂Ω at which V vanishes. The same
can be done for the line integrals of type ∂T3 and ∂T4. Using the inverse property,
we simplify the estimate:

|((u− Ihu), Vy)| ≤ Ch3
∑∫ P2N

P0

(
|uxxs|+ h|uxxss|

)
|V | ds+ Ch2‖u‖H3‖V ‖

≤ C
(
h2‖u‖H3 + h3‖u‖H4

)
‖V ‖.(4.7)

Similarly, we can expand the error

((u− Ihu), Vx) =
h2

24
√

2

∑
T

(∫
∂T1

+

∫
∂T2

−
∫
∂T3

−
∫
∂T4

)
uxxV ds

− h2

96
√

2

∑
T

(∫
∂T1

−
∫
∂T2

+

∫
∂T3

−
∫
∂T4

)
uxyV ds

+
h2

24

∑
T

(∫
∂T13

−
∫
∂T24

)
uxyV ds

+O
(
h2‖u‖H3‖V ‖

)
.

(4.8)

If we assume in this case that uxx ≡ 0, we can prove in the same way that

|((u− Ihu), Vx)| ≤ C
(
h2‖u‖H3 + h3‖u‖H4

)
‖V ‖.(4.9)
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Remark 2. The error estimates (4.7) and (4.9) show that the standard finite ele-
ment method for convection problems converges in the L2-norm with the order of
O(h2) on Peterson’s meshes for any number of inserted lines, even though it lacks
stability in the energy norm. A novice reader may be reminded that the standard
FEM is useless if there are boundary layers. Test computations also confirm this
superconvergence property. On the other hand, the test computations also show
that the condition uxy ≡ 0 or uxx ≡ 0 is not necessary for the above results.

To estimate the diffusion terms ((u− Ihu)x, Vx) and ((u− Ihu)y, Vy), we need
an error expansion result from [1], which is summarized in the following lemma.

Lemma 2. Let Ihu be the linear nodal interpolant of the function u on a triangular
element e and V be any function in Vh(e). There holds the error expansion

∫
e

(Ihu− u)µ Vν dxdy

=
h4

24A

3∑
i=1

∫
si

DiV
(
λ4
i+1n

i+1
µ ni+1

ν D2
i+1u− λ3

iλi+2n
i
µn

i+2
ν D2

i u
)
ds

+
h4

24A

3∑
i=1

∫
si

V
(
λ4
i+2n

i+2
µ ni+2

ν DiD
2
i+2u− λ3

iλi+1n
i
µn

i
νDi+1D

2
i u
)
ds

+
h6λ1λ2λ3

48A2

3∑
i=1

∫
e

λ3
in
i
µn

i
νD1D2D3DiuV dxdy

+O
(
h2‖u‖H4(e)‖V ‖e

)
,

(4.10)

where A denotes the area of the element e and Di denotes the directional derivative
along the side si whose length is hi = λih and on which the µ–component (x or y)
of the outer normal is niµ. The index i+ 1 is used mod (3).

Using this expansion, we obtain through careful calculations that

((u− Ihu)x, Vx) = −h
2

24

∑
T

(∫
∂T12

−
∫
∂T34

)
Vxuxx dx(4.11)

+C‖V ‖
(
h‖u‖H3 + Ch2‖u‖H4

)
.

Combining this with the expansion (4.9), we have proved the following theorem.

Theorem 1. For the problem

−ε∆u+ ux + u = f in Ω,(4.12.a)

u = g on ∂Ω,(4.12.b)

with uxx ≡ 0, the Peterson meshes do not affect the superconvergence of the SD-
FEM:

‖u− U‖ ≤ Ch2
(
‖u‖H3 + h‖u‖H4

)
.(4.13)

Remark 3. As before, the test computations show that the condition uxx ≡ 0 is
not necessary for the superconvergence, it is only used for technical reasons.
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Now, we consider another model problem,

−ε∆u+ uy + u = f in Ω,(4.14.a)

u = g on ∂Ω,(4.14.b)

with ε ≥ 0. In the SDFEM we take δ = Ch and εm = Chα with 3
2 ≤ α ≤ 2. The

associated energy norm is

|||V |||2 = h‖Vy‖2 + hα‖Vx‖2 + ‖V ‖2.
Exchanging x with y in (4.10), we can get by a lengthy analysis

((u− Ihu)y, Vy) = −h
2

8

∑
T

(∫
∂T13

−
∫
∂T24

)
Vyuxx dy(4.15)

+
h2

24

∑
T

(∫
∂T12

−
∫
∂T34

)
Vx(3uxx − uyy) dx

+C‖V ‖
(
h‖u‖H3 + h2‖u‖H4

)
.

Since Vy is theoretically not continuous at the nodal point, we cannot use the
trapezoidal rule as before. We estimate as follows:

δ|((u− Ihu)y, Vy)| ≤ Ch2
∑
T

(∫
T

|Vy| |uxx| dxdy +

∫
T

|Vx| |3uxx − uyy| dxdy
)

+C‖V ‖
(
h2‖u‖H3 + h3‖u‖H4

)
.

By Ω1 we denote all the strips containing the inserted vertical lines. Noting that
each strip is only of width h, we have for a number m ≈ h−σ of vertical lines

meas(Ω1) = hm = Ch1−σ.

Using this, we obtain

δ|((u− Ihu)y, Vy)|

≤ Ch(5−σ)/2
(
‖Vy‖ ‖uxx‖L∞(Ω1) + ‖Vx‖ ‖3uxx − uyy‖L∞(Ω1)

)
+ C‖V ‖

(
h‖u‖H3 + Ch2‖u‖H4

)
≤ C

(
h2−σ/2‖uxx‖L∞(Ω1) + h(5−σ−α)/2‖3uxx − uyy‖L∞(Ω1)

)
|||V |||

+ C
(
h2‖u‖H3 + Ch3‖u‖H4

)
‖V ‖.

(4.16)

Together with the estimate (4.7), we have the following:

Theorem 2. For the model problem (4.14) with uxy ≡ 0, the SDFEM on Peterson’s
meshes admits the following error estimate:

‖u− U‖ ≤ C
(
h2‖u‖H3 + Ch3‖u‖H4

)
(4.17)

+C min

{ (
h2−σ/2‖uxx‖L∞(Ω1) + h(5−σ−α)/2‖3uxx − uyy‖L∞(Ω1) + hα‖uyy‖

)
h3/2‖∇2u‖

}
.

Remark 4. Test computations show that the SDFEM for problem (4.14) has the
superconvergence of order O(h2) if 3uxx−uyy ≡ 0. This means that the first term
on the right-hand side of (4.15) should have a better convergence order. In view
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of the error behavior for the model problems, Vy is continuous (which could not
be proven). Then one can indeed use the trapezoidal rule to get an estimate like
O(h2‖V ‖‖u‖H4).

Remark 5. Based on the consideration of the above remark, we can optimize the
choice of the artificial diffusion by taking α = (5− σ)/3. Then we can rewrite the
convergence result as

‖u− U‖ ≤
{
Ch(5−σ)/3 for 0 ≤ σ ≤ 1

2 ,
Ch3/2 for 1

2 ≤ σ ≤ 1.
(4.18)

Now, we consider a special mesh for σ = 1 in which m = h−1 exactly holds, i.e.,
we insert a vertical line at every nodal point on the x–axis in the original mesh. In
this case, we rewrite the expansion formula (4.15) (assuming that uyy ≡ 0)

((u− Ihu)y, Vy) =
h2

8

∑
T

(∫
∂T12

Vxuxx dx−
∫
∂T13

Vyuxx dy

)
+
h2

8

∑
T

(∫
∂T24

Vyuxx dy −
∫
∂T34

Vxuxx dx

)
+C‖V ‖

(
h‖u‖H3 + h2‖u‖H4

)
.

On integrating by parts in the x- and y-direction, respectively, and on noting that
V uxx is continuous at the nodal points, the nodal value V (xm, yn)uxx(xm, yn) aris-
ing from the integration disappears (see Figure 3 for notation). Thus, we obtain

((u− Ihu)y, Vy) =
h2

8

∑
T

(∫
∂T4

(V uxx)k ds−
∫
∂T1

(V uxx)k ds

)
+

h2

8

∑
T

(∫
∂T13

−
∫
∂T24

)
V uxxy dy −

(∫
∂T12

−
∫
∂T34

)
V uxxx dx

+ C‖V ‖
(
h‖u‖H3 + h2‖u‖H4

)
.

From Figure 1 for m = h−1 we see that all the sloping segments of type ∂T1 and ∂T4

make a line from boundary to boundary. Therefore, the first sum above disappears.
The second sum has the same estimate as the third term. Combined with the
estimate (4.7), this theoretically confirms the recovery of the superconvergence
property of the SDFEM.

Figure 4 shows the dependence of the convergence order in the L2-norm on the
mesh parameter σ for the numerical tests and for the theoretical analysis.
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Figure 4. Convergence order in the numerical tests and in the
theoretical analysis
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Finally, let us consider the pointwise error estimates. For each point (x0, y0) ∈ Ω,
we define the discrete Green function G ∈ V0

h by

B(V,G) = V (x0, y0), ∀ V ∈ V0
h.

Setting V = Ihu− U , we have

V (x0, y0) = B(V,G) = B(Ihu− u,G) + Per(u,G).

By virtue of a sharper estimate of the Green function G given in [13] and the
error expansions (4.8) and (4.11), we derive the following theorem.

Theorem 3. The SDFEM for problem (4.12) with uxx ≡ 0 admits the error esti-
mate

‖u− U‖∞ ≤ Ch2.(4.19)

For problem (4.14), we define

Ω0 =
{

(x, y) : y − y0 ≤ Kh| logh|, |x− x0| ≤ Kh| logh|
}
.(4.20)

The following results can be obtained from the error expansions (4.7) and (4.15)
by using the localizing technique in [13].

Theorem 4. For any ν ≥ 2, we can specify the constant K = K(ν) in (4.20) to fix
Ω0. Suppose that the number of inserted vertical lines is m ≥ 1 and that the exact
solution of problem (4.14) satisfies

uxy ≡ 0, u ∈W 4,∞(Ω0).

For (x0, y0) away from any of the vertical lines, the SDFEM admits the error esti-
mate

|(u− U)(x0, y0)| ≤ Ch2| logh|‖u‖W4,∞(Ω0) + Chν ,

and, for (x0, y0) near the vertical lines,

|(u− U)(x0, y0)| ≤ Ch3/2| logh|
(
‖uxx‖L∞(Ω0) + ‖3uxx − uyy‖L∞(Ω0)

)
+Ch2| logh|‖u‖W4,∞(Ω0) + Chν .
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