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ABSTRACT: Estimating the amplitudes and decay rate constants of exponentially de-
caying signals is an important problem in NMR. Understanding how the uncertainty in the
parameter estimates depends on the data acquisition parameters and on the “true” but
unknown values of the exponential signal parameters is an important step in designing
experiments and determining the amount and quality of the data that must be gathered to
make good parameter estimates. In this article, Bayesian probability theory is applied to
this problem. Explicit relationships between the data acquisition parameters and the “true”
but unknown exponential signal parameters are derived for the cases of data containing one
and two exponential signal components. Because uniform prior probabilities are purposely
employed, the results are broadly applicable to experimental parameter estimation.
© 2005 Wiley Periodicals, Inc. Concepts Magn Reson Part A 27A: 73–83, 2005
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INTRODUCTION

Exponential signals occur in many facets of magnetic
resonance and other physical and biological science

arenas. Accurate estimation of the parameters charac-
terizing exponential signal models is difficult. Be-
cause the problem is important and of broad impact,
the literature is replete with reports describing various
approaches to exponential parameter estimation.
Though a comprehensive survey is beyond the scope
of this manuscript, the interested reader is referred to
a number of recent reviews and references therein
(1–4). Missing from this literature is the formulation
of (i) specific Bayesian parameter estimators for mul-
tiple parameter exponential signal models and (ii)
informative concise closed-form expressions for the
uncertainties in the parameter estimates; uncertainty
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expressions that offer insight and guidance to the
experimentalist. This article seeks to fill this gap
through application of Bayesian probability theory.
Specifically, we derive the Bayesian parameter esti-
mators for multiple exponential signal models and
concise insightful expressions for the uncertainty in
the Bayesian parameter estimates. Because uniform
prior probabilities are purposely employed, the results
are broadly applicable to experimental parameter es-
timation. Traditionally, this problem is solved using
the Cramer Rao lower bound. A brief discussion com-
paring our Bayesian approach with the Cramer Rao
lower bound is provided later in this article.

Bayesian probability theory (5–8) is a powerful
tool for parameter estimation (9–22) and can be used
to estimate parameters in situations in which most
other techniques fail. For example, the discrete Fou-
rier transform fails when estimating frequencies in
nonuniformly sampled data, yet probability theory
generalizes the discrete Fourier transform and gives
good parameter estimates in this situation (20). Prob-
ability theory can also be used for model selection
(23, 24), and this application is rapidly becoming one
of its major uses in our laboratory. Just as important,
probability theory can be used to derive the depen-
dence of the estimated parameters on the data acqui-
sition parameters and on the “true” but unknown
signal parameters (9, 25). In this article, we apply
probability theory as extended logic in this latter
capacity and explicitly demonstrate how the multiple
parameter estimates—the estimated amplitudes and
decay rate constants—depend on the “true” signal
parameters, signal-to-noise ratio, data sampling inter-
val, and total number of data values in two scenarios:
data containing one and two exponential signal com-
ponents.

To do these calculations, we first apply Bayesian
probability theory to derive the posterior probability
for the parameter to be estimated. Next, we postulate
a functional form for the data. Finally, using the
posterior probability and the functional form for the
data, we make an estimate (mean � standard devia-
tion) for the parameters appearing in the exponential
model. Because we are using Bayesian probability
theory, there is a different, unique, calculation for
each parameter in each model considered. We con-
sider models containing one and two exponential sig-
nals, so there are a total of six different calculations,
two calculations for the single exponential and four
for the biexponential, that must be performed. Fortu-
nately, in the biexponential case, the posterior prob-
abilities are symmetric under exchange of labels on
the exponential components. Because of this symme-
try, we can derive the parameter estimates for the

second component by a simple relabeling of the esti-
mates from the first component. Nonetheless, there
are four unique calculations to perform. For the single
or monoexponential model, these calculations are
straightforward and described in detail in Appendix
A. The calculations using the two or biexponential
model are lengthy and are outlined in Appendix B. In
the following section, we summarize the results from
these calculations.

SUMMARY OF RESULTS

In deriving these results, three approximations were
made: high signal-to-noise ratio data (so that the pro-
jection of the model onto the noise can be ignored),
uniform data sampling (so that certain sums can be
approximated), and signal decays to three or more
e-foldings during the data sampling interval (so that
the calculations give simple, intuitive results). For
data containing a single exponential, the estimate
(mean � standard deviation) of the decay rate con-
stant, � is given by

���est � �̂ �
�

Â
�8�̂3�T [1]

where Â and �̂ are the “true” amplitude and decay rate
constant in the data, �T is the sampling interval
between two consecutive data points and � is the
standard deviation of the prior probability assigned to
represent what is known about the noise and is as-
sumed known and equal to the true standard deviation
of the noise. Similarly, the estimated value of the
amplitude, A, is given by

� A�est � Â � ��2�̂�T. [2]

In both cases, as the noise goes to zero, the parameter
estimates go smoothly to the “true” values of the
parameters. Each parameter estimate depends on the
sampling interval. The sampling interval is the total
data acquisition time divided by the number of data
values, N, so the precision of each estimate improves
by the square root of N criteria. In addition, the
uncertainty of each estimate depends on the “true”
decay rate constant of the signal. Consequently, the
more rapidly the signal decays, the poorer the esti-
mates become for the amplitude and decay rate con-
stant. However, the dependence on the “true” decay
rate constant is much stronger for the uncertainty in
the estimated decay rate constant than for the esti-
mated amplitude. For the estimated decay rate con-
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stant, one can increase the precision of the estimate in
two ways: increase the signal-to-noise ratio or acquire
more data during the time period in which the signal
is present (i.e., make �T smaller). For the estimated
amplitude, a similar result holds for acquiring more
data but not for increasing the signal-to-noise ratio.
To reduce the uncertainty in the estimated amplitudes,
the noise level must be reduced; the relative or frac-
tional uncertainty depends on the signal-to-noise ratio
but the uncertainty in the amplitude estimate does not
depend on the “true” amplitude of the signal.

For data containing two exponential signal compo-
nents that both decay by at least three or more e-
foldings during the data acquisition period, the esti-
mates (mean � standard deviation) are given by

���est � �̂ �
�

Â � �̂ � �̂

�̂ � �̂�
2

�8�̂3�T [3]

for the estimated decay rate constant, and

� A�est � Â � �� �̂ � �̂

�̂ � �̂
� �2�̂�T [4]

for the estimated amplitude, where Â and �̂ are the
“true” amplitude and decay rate constant of one of the
exponential signal components, and B̂ and �̂ are the
“true” amplitude and decay rate constant of the other
signal component. The parameter estimates for B̂ and
�̂ are obtained by exchanging the role of the two
exponentials. Except for the bracketed ratio, which we
call the interaction ratio, these estimates are identical
to the single exponential case. Consequently, all of the
previous comments on how to improve the parameter
estimates apply to the biexponential case. The inter-
action ratio tells us how the presence of the additional
exponential component interferes with the estimation
process. If the “true” decay rate constants are as close
as a factor of 2, the uncertainty in the estimated decay
rate constants are a factor of 9 larger than the single
exponential case; whereas the uncertainty in the am-
plitude estimates are a factor of 3 larger.

DISCUSSION

We illustrate the results of this analysis using numer-
ical examples that replicate exactly the conditions
under which these formulas were derived. In these
examples, we generate several data sets, apply these
formulas, and then compare the results with the ap-
propriate posterior probabilities. These formulas and
the posterior probabilities assume that the standard

deviation of the noise is known. Consequently, we
assume � is known and arbitrarily set � � 0.1 in these
examples. The amplitude of the exponential signal
components will be 100 throughout most of the ex-
amples, so the signal-to-noise ratio of each compo-
nent is 1000:1.

The exact results, the posterior probabilities, are
obtained by computing the marginal posterior proba-
bility for each of the parameters of interest. In these
examples, we apply the formulas for the estimated
decay rate constants. We do not apply the formulas
for the estimated amplitudes. However, if the formu-
las for the decay rate constants behave as predicted,
the formulas for the amplitudes will also behave as
predicted. In data containing a single exponential, Eq.
[19] in the appendix was used to compute the poste-
rior probability for the decay rate constant. For biex-
ponential data, no closed-form solution exists for the
marginal posterior probability for one of the decay
rate constants. To compute this marginal posterior
probability, we first computed the joint posterior
probability for the decay rate constants, Eq. [37] in the
appendix, on a rectangular grid. Next, we normalized
this joint probability and then projected the two-di-
mensional grid onto each axis, i.e., we numerically
integrated the joint posterior probability to obtain the
needed marginal probability. The joint distribution
was evaluated on a fine grid to make the error in the
integrals about one part in 1,000.

First, we illustrate that the formulas correctly char-
acterize the estimation process. Suppose we have a
single exponential data set given by

d�ti� � 100 exp	
4ti� [5]

with sampling interval 0.005 seconds and 200 data
values. Under these conditions, Eq. [1] predicts that
the decay rate constant will be estimated to be

��1�est � 4 �
0.1

100
�8 � 64 � 0.005

� 4 � 0.0016. [6]

Next we compare this to the posterior probability
for the decay rate constant, shown as the sharp peak in
Fig. 1(A). When we computed this posterior proba-
bility, we also computed its mean and standard devi-
ation, obtaining

��1�est � 4.000 � 0.0016; [7]

a result identical to the predicted mean and standard
deviation.
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Next we illustrate what happens to the estimated
decay rate constant when a second exponential signal
component is present. In this case, we generated data
using

d�ti� � 100 exp	
4ti� � 100 exp	
8ti�. [8]

The same sampling time and number of data values
were generated. Note that the first component is iden-
tical to the component used in the previous example.
Using Eq. [3], we should be able to estimate the first
decay rate constant to

��1�est � 4 �
0.1

100
32�8 � 64 � 0.005

� 4 � 0.0144. [9]

Using these simulated data, Eq. [8], we computed the
marginal posterior probability for the first decay rate
constant, shown as the broad curve in Fig. 1(A). An
expansion of this posterior probability is shown as the
tall curve in panel (B). When we computed this mar-
ginal posterior probability density, we also computed
its mean and standard deviation,

��1�est � 4.000 � 0.0166, [10]

in good agreement with the predicted value. The ratio
of standard deviations, 0.0166/0.0016 � 10 is in good
agreement with the predicted factor of 9. Note that
Fig. 1(A) clearly demonstrates that the mere presence
of the second exponential is enough to appreciably
widen the posterior probability for the decay rate
constant, and thus make the parameter estimates much
worse than when only a single exponential is present.

One of the predictions derived from Eq. [3] is that
the parameter estimates depend only on the signal-to-
noise ratio of the component being estimated and not
on the signal-to-noise ratio of the other component.
To illustrate this effect, a third data set was analyzed
using

d�ti� � 50 exp	
4ti� � 100 exp	
8ti� [11]

to generate the data.
Note that nothing has changed in these simulated

data except that the amplitude of the first exponential
has been halved. Uniformly sampled data were gen-
erated using the same sampling time and interval.
According to Eq. [3], halving this amplitude should
result in doubling the width of the posterior probabil-
ity for the first decay rate constant. We have plotted
this posterior probability in Fig. 1(B), the broader of

Figure 1 Estimating the decay rate constant. Panel (A) is
P(�1�D I ) when the rapidly decaying second component is
not present, narrow feature, and when it is present, broad
feature. The change in width is roughly a factor of ten; the
predicted factor is 9. Panel (B) is P(�1�D I ) before, narrow
feature, and after, broad feature, halving the signal-to-noise
ratio of the first component. The change in width is the
predicted factor of two. Panel (C) is P(�2�D I ) computed
before and after halving the first component’s signal-to-
noise ratio. Note the probability density functions are, as
predicted, identical.
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the two curves. Again, when we computed this mar-
ginal posterior probability we also computed the mean
and standard deviation for the decay rate constant:

��1�est � 4.000 � 0.0329. [12]

Taking the ratio of the standard deviations computed
from the posterior probability for the decay rate con-
stants given the data generated from Eq. [11] and Eq.
[12], we find 0.0329/0.0166 � 1.98, in good agree-
ment with the predicted value of 2.

Finally, note that Eq. [3] predicts that the param-
eter estimates for the exponential component that we
did not change will not change. We can verify this
fact if we plot the posterior probability for �2 using
the data generated from Eq. [11] and Eq. [12] respec-
tively, Fig. 1(C). Note that these distributions are not
just indistinguishable from one another; they are iden-
tical to one another. Thus, the marginal posterior
probability for the decay rate constant whose ampli-
tude did not change does not depend on the signal-
to-noise ratio of the signal component that did change,
exactly as predicted.

CONCLUSIONS

These equations show how the uncertainty in the
estimated amplitudes and decay rate constants de-
pends on the experimental parameters. The equations
also demonstrate how the addition of a second expo-
nential markedly increases the difficulty of estimating
the parameters. These estimates are valid for high
signal-to-noise ratio data containing single and biex-
ponentially decaying signal components that decay
away during the data acquisition period. They are not
valid for truncated signals or for data that contain
more than two exponential signal components, nor are
they valid for data containing a constant offset.

The problem of determining the uncertainty in the
parameters for a single exponential plus a constant
would, at first glance, seem to be a trivial extension of
the results obtained in this article. Unfortunately, the
approximations used in these calculations are not ad-
equate for the single exponential plus a constant prob-
lem, and when the problem is solved using better
approximations, the resulting expressions are too
cumbersome to be useful, i.e., they do not give any
physical insight.

In deriving these formulas we used the Laplace
approximation, as described in the appendices. The
resulting formulas are valid, provided this approxima-
tion is valid. There are two regimes in which this
approximation breaks down. First, in the limit that one

exponential decay rate constant approaches the other;
one has a single exponential, not two. Consequently,
only the sum of the decay rates constants can be
estimated. The joint posterior probability has a peak
when the decay rate constants are well separated.
However, as they approach each other, this peak be-
comes a ridge line corresponding to the sum of the
decay rates equal to a constant. As a consequence, the
Laplace approximation is not valid and the given
formulas do not apply. The second circumstance un-
der which the Laplace approximation breaks down is
when the amplitude of one of the exponentials is
much smaller than the other. In this case, for all
practical purposes, the data are single exponential,
and the posterior probability will not depend strongly
on the decay rate constant of the small amplitude
exponential. But if the posterior probability does not
depend strongly on this decay rate constant, then
again we have a broad peak that is developing into a
ridge line, and the Laplace approximation cannot be
applied.

Because we ignored the projection of the model
onto the noise in the calculations, these parameter
estimates should be considered as a lower bound on
the estimated uncertainties. The actual parameter es-
timates obtained for any given data set will essentially
never be better than these estimates, and will almost
certainly be worse.

As noted in the introduction, the traditional way to
obtain lower bounds on parameter estimates is using
the Cramer Rao lower bound. The Cramer Rao lower
bound is a theoretical result that specifies the mini-
mum variance for a parameter estimate, given an
unbiased, single parameter estimator (26, 27). This
can be extremely useful. However, the Cramer Rao
lower bound does not provide the estimator. An esti-
mator must be guessed and then tested to see if it
achieves the Cramer Rao lower bound. Further, the
Cramer Rao lower bound was derived for single pa-
rameter estimators. It was not derived for multiple
parameter estimators, which are required for exponen-
tial signal models, nor does it apply when biased
estimators are used. Often, the multiple parameter
estimator problem is resolved by constraining the
other parameters to their “best” estimate and then
evaluating the Cramer Rao lower bound for the pa-
rameter of interest, as if those other parameters were
not present. Bayesian probability theory uses biased
estimators. The bias is introduced by the prior prob-
abilities and by marginalization. The Cox theorem (8
[chaps. 1–3], 28) guarantees that the Bayesian esti-
mate is the best estimate one can make. Any other
technique will either do worse, or reproduce the
Bayesian results, but it will not outperform the Bayes-
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ian calculation. To determine how a Bayesian poste-
rior probability will perform, procedures other than
calculating the Cramer Rao lower bound are required
(29). The calculations presented in this article are a
specific example. In these calculations, our intention
was to derive closed-form expressions for how the
actual Bayesian posterior probabilities perform. The
numerical example given in the discussion illustrates
that the derived expressions do reflect how the actual
Bayesian posterior probabilities perform.

In this article, uniform prior probabilities were
purposely employed. Thus, the results presented will
approximate those expected from an optimal unbiased
multiple parameter estimator and the insights offered
by Eqs. [1–4] are broadly applicable to exponential
parameter estimation.
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APPENDIX

A. Data Containing a Single
Exponential Signal

As explained in the text, we make three simplifying
assumptions in the process of performing these cal-
culations. First, we assume that the exponential sig-
nals decay by three or more e-foldings. Second, we
assume that the projection of the noise onto the model
is small compared with the projection of the signal
onto the model, i.e., high signal-to-noise ratio data.
Third, we repeatedly project one exponential onto
another. These projections result in sums of the form
¥i�1

N exp{

ti}, where 
 is typically a simple func-
tion of the decay rate constants (e.g., the sum of two
decay rate constants). The third simplifying assump-
tion is related to this sum. If we assume uniform
sampling of N data points with sampling interval �T
between two consecutive data points, this sum may be
approximated as

�
j�0

N
1

exp	

�Tj� � 1 � X � · · · � XN
1

�
1 � XN

1 � X
�

1


�T
, [13]

where X � exp{

�T}. In deriving this approxima-
tion, we assume that exp{

�T N} is small com-
pared with one, and that 
�T � 1, so that X may be
approximated by a two-term Taylor series.

For roughly 100 data values and a signal decaying
to three e-foldings, this approximation introduces an
error of about 5%, more than sufficient for our pur-
poses.

We first consider data containing a single exponen-
tial signal. In this calculation, the data value that was
sampled at time ti is designated as di, and the data are
related to the parameters to be estimated by

di � A exp	
�ti� � ni �1 � i � N�, [14]

where ni represents the noise at time ti. The two
parameters to be estimated are A and �. All of the
information in the data relevant to these two param-
eters is summarized in the joint posterior probability
for the amplitude and decay rate constant. Symboli-
cally, this posterior probability is written as
P(A��D�I). This expression should be read as the
joint posterior probability for the amplitude and decay
rate constant given all of the data, D, the standard
deviation, �, and the prior information, I. The stan-
dard deviation is really the standard deviation of a
Gaussian prior probability that is assigned to represent
what is known about the noise. In the following
calculations, we assume this standard deviation is
known and equal to the “true” standard deviation of
the noise. We do this so that we can explicitly show
how the parameter estimates depend on the noise
level. Finally, the prior information represents every-
thing known about the parameters, the model, and the
noise.

To compute the joint posterior probability,
P(A��D�I), we apply Bayes’ theorem [5] and the
product rule to obtain

P� A��D�I� � P���I� P� A�I� P�D��A�I� [15]

where P(��I) and P(A�I) are the prior probabilities for
the parameters and P(D��A�I) is the direct probability
for the data and is proportional to a likelihood func-
tion. In the high signal-to-noise ratio approximation,
any uninformative prior probability assigned, regard-
less of its functional form, will essentially be a con-
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stant over the high-likelihood region and so cancel
when the distributions are normalized. Consequently,
we simply assign uniform prior probabilities to these
parameters. Finally, the direct probability, P(D��A�I),
is assigned using a Gaussian noise prior probability
having zero mean, and standard deviation, �. Thus,
we obtain

P� A��D�I� � exp�

Q

2�2	 [16]

as the joint posterior probability for the parameters
(note that a normalization constant has been dropped).
The quantity Q, defined by

Q 
 �
i�1

N

�di � A exp	
�ti��
2, [17]

is essentially chi-squared.

A.1. Estimating the Decay Rate Constant

To estimate the decay rate constant, we apply the sum
rule of probability theory to the joint posterior prob-
ability for the parameters, Eq. [16], to obtain

P���D�I� � � dA exp�

Q

2�2	. [18]

The integral over A is a Gaussian integral. It is eval-
uated by completing the square in Q, followed by a
change of variables to transform the integral into a
Gaussian. One then obtains

P���D�I� � exp� h2

2�2	, [19]

from which we have again dropped some constants.
The quantity h2 is called a sufficient statistic, and it
summarizes all of the information in the data relevant
to estimating the decay rate constant. This sufficient
statistic is given by

h2 �
�d � G�2

G � G
[20]

where “ � ” means sum over discrete times; and we are
using G as a place holder for the exponential in the
model. Consequently,

d � G 
 �
i�1

N

diG�ti� � �
i�1

N

diexp	
�ti�, [21]

and

G � G 
 �
i�1

N

G�ti�
2 � �

i�1

N

exp	
2�ti� �
1

2��T
. [22]

As already noted, the approximation in this last equa-
tion assumes that the exponential decays into the
noise and that exp{
2��T} � 1 
 2��T.

We were able to simplify the G � G term because
all of the quantities in this sum were known, but the
term d � G could not be simplified because we do not
know the numerical values of the data. However,
suppose the data are given by

di 
 Â exp	
�̂ti�, [23]

where Â and �̂ are the “true” amplitude and decay rate
constant of the uniformly sampled signal, then

d � G � Â �
i�1

N

exp	
�� � �̂�ti� �
Â

�� � �̂��T
. [24]

In making this approximation, the projection of the
model onto the noise has been ignored.

For the postulated data, the marginal posterior
probability density for the decay rate constant be-
comes

P���D�I� � exp� �Â2

�2(� � �̂)2�T	. [25]

The maximum of this posterior probability occurs at
� � �̂. Taylor expanding the exponent about this
maximum to second order gives

P���D�I� � exp�

(� � �̂)2Â2

16�2�̂3�T 	, [26]

from which we obtain

���est � �̂ �
�

Â
�8�̂3�T [27]

as the estimate (mean � standard deviation) for the
decay rate constant.
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A.2. Estimating the Amplitude

As noted previously, all of the information in the data
relevant to estimating the amplitude is summarized in
a posterior probability. This posterior probability is
represented symbolically by P(A�D�I), which should
be read as the posterior probability for the amplitude
given all of the data, the standard deviation, and the
prior information. Just as the posterior probability for
the decay rate constant was computed from the joint
posterior probability for the parameters by integrating
over the amplitude, the posterior probability for the
amplitude is computed from the joint posterior prob-
ability by integrating over the decay rate constant:

P� A�D�I� � � d� exp�

Q

2�2	, [28]

where Q was defined in Eq. [17]. The integral in this
equation has no closed-form solution. However, the
function Q is a simple function of the amplitude and
decay rate constant. One can locate the maximum of
Q as a function of �, Taylor expand about this max-
imum, and evaluate the integral using the Laplace
approximation. This Laplace approximation is the real
version of the method of stationary phase in complex
analysis. Locating this maximum and evaluating this
integral, one obtains

P� A�D�I� � exp�

(A � Â)2

4�2�̂�T 	 [29]

as the marginal posterior probability density for the
amplitude. In deriving this expression, several con-
stants were dropped. Examining Eq. [29], the esti-
mated amplitude (mean � standard deviation) is
given by

� A�est � Â � ��2�̂�T. [30]

B. Data Containing a Biexponential Signal

The results derived in the previous appendix show
explicitly how the uncertainty in the parameter esti-
mates depends on the acquisition parameters for data
containing a single exponential signal component. In
this Appendix, we treat the case of data containing a
biexponential signal. Because the mathematics is
complicated, we simply sketch how the calculations
are performed. The actual calculations were per-
formed using a symbolic mathematics package.

The model considered in this section is the two
component or biexponential model:

di � Gi � ni, [31]

where Gi is a biexponential:

Gi � A exp	
�ti� � B exp	
�ti�, [32]

with 1 � i � N, and B and � are the amplitude and
decay rate constant of the second exponential model
component. As in the single exponential case, the
posterior probability for each of the parameters is
computed from the joint posterior probability for all
of the parameters. The joint posterior probability,
represented symbolically by P(A�B�|D�I ), is com-
puted by application of Bayes’ theorem and the prod-
uct rule. As in the single exponential case, all of the
prior probabilities are assigned using uniform prior
probabilities, so the joint posterior probability is pro-
portional to the direct probability:

P� A�B��D�I� � P�D�A�B��I�. [33]

If we assign the direct probability using a Gaussian
prior probability for the noise, we obtain

P� A�B��D�I� � exp�

Q

2�2	, [34]

where Q, for this problem, is given by

Q 
 �
i�1

N

�di � Gi�
2, [35]

and is essentially chi-squared.

B.1. Estimating the Decay Rate Constants

All of the information in the data relevant to estimat-
ing the decay rate constants is contained in the joint
posterior probability for these rate constants. This
joint posterior probability is represented symbolically
by P(���D�I ), which should be read as the joint
posterior probability for the decay rate constants
given the data, the standard deviation, and the prior
information. This probability is computed from Eq.
[34] by application of the sum rule:

P����D�I� � � dAdB exp�

Q

2�2	. [36]

The integral over A and B is Gaussian. Again, evalu-
ating such integrals is straightforward and we omit the
details here, to obtain
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P���D�I� � exp� h2

2�2	 [37]

as the joint posterior probability for the decay rate
constants. The sufficient statistic, h2, is given by

h2 �
2���T�� � ��2

�� � ��2 � T1
2

2�
�

2T1T2

� � �
�

T2
2

2�	 [38]

with

T1 � �
i�1

N

diexp	
�ti� [39]

and

T2 � �
i�1

N

diexp	
�ti�. [40]

As we did in the single exponential case, we now
postulate a data set containing two exponential signal
components given by

di 
 Â exp	
�̂ti� � B̂ exp	
�̂ti�, [41]

where B̂ and �̂ are the “true” amplitude and decay rate
constant of the second exponential signal component.
Substituting the data, Eq. [41], into Eqs. [39, 40], T1

and T2 are approximated by

T1 �
Â

�� � �̂��T
�

B̂

�� � �̂��T
[42]

and

T2 �
Â

�� � �̂��T
�

B̂

�� � �̂��T
. [43]

Substituting these values for T1 and T2 into the joint
posterior probability for the decay rate constants, we
discover that the joint distribution is completely sym-
metric with respect to the two exponentials. Conse-
quently, we do not need the posterior probability for �
and �, we need this distribution for only one of the
two decay rate constants. By an appropriate change of
labels, we can then obtain the results for the other
decay rate constant. Below, we compute the posterior
probability for � the decay rate constant of the first
exponential.

The posterior probability for this decay rate con-
stant is computed from the joint posterior probability
for the two decay rates, P(���D�I ), using the sum
rule of probability theory. One then obtains

P���D�I� � � d� exp�h2

�2	. [44]

The maximum of the integrand occurs at � � �̂ and
� � �̂. If we Taylor expand about this maximum to
second order, the integral can be evaluated in the
Laplace approximation:

P���D�I� � exp�

(�̂ � �)2Â2(�̂ � �̂)4

16�2�̂3�T(�̂ � �̂)4 	, [45]

from which several constants have been dropped.
From Eq. [45] one obtains

���est � �̂ �
�

Â � �̂ � �̂

�̂ � �̂�
2

�8�̂3�T [46]

as the estimate (mean � standard deviation) of the
decay rate constant. To obtain the estimate for the
second decay rate constant, one simply exchanges the
role of the two exponentials:

���est � �̂ �
�

�̂ � �̂ � �̂

�̂ � �̂�
2

�8�̂3�T. [47]

B.2. Estimating the Amplitudes

As with the other examples, all of the information in
the data relevant to estimating the amplitude is con-
tained in the posterior probability for the amplitude.
Because we have already described three of these
calculations, we omit most of the details and go
directly to the results. The posterior probability for the
amplitude of the first component is represented sym-
bolically by P(A�D�I ), which is a marginal posterior
probability. It is computed from the joint posterior
probability for all of the parameters, Eq. [34], by
application of the sum rule

P� A�D�I� � � dBd�d� exp� Q

2�2	, [48]

where Q is given by Eq. [35]. If we assume data of the
form of Eq. [41], the posterior probability for the
amplitude may be written as
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P� A�D�I� � � d�d� exp�

(� � A)2

2�2 	, [49]

where the integral over B was evaluated analytically
and � is given by

� 
 2��T� � � �

�2 � �2��T1 � 
 2�

� � ��T2� , [50]

where T1 and T2 were defined previously, Eqs. [39,
40]. If we now Taylor expand the integrand about its
maximum to second order and evaluate the two inte-
grals using the Laplace approximation, the posterior
probability for A is given by

P� A�D�I� � exp�

(Â � A)2

4�2�̂�T ��̂ � �̂

�̂ � �̂�
2	. [51]

Examining Eq. [51] the estimated (mean � standard
deviation) amplitude estimates are given by

� A�est � Â � �� �̂ � �̂

�̂ � �̂
� �2�̂�T [52]

and

�B�est � B̂ � �� �̂ � �̂

�̂ � �̂
� �2�̂�T. [53]
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