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Abstract. The Sunyaev-Zel’dovich effect is a powerful tool for cosmology that can be used to measure the radial
peculiar velocities of galaxy clusters, and thus to test, and constrain theories of structure formation and evolution.
This requires, in principle, an accurate measurement of the effect, a good separation between the Sunyaev-
Zel’dovich components, and a good understanding of the sources contributing to the signal and their effect on the
measured velocity. In this study, we evaluate the error in the individual radial peculiar velocities determined with
Sunyaev-Zel’dovich measurements. We estimate, for three cosmological models, the errors induced by the major
contributing signals (primary Cosmic Microwave Background anisotropies, Sunyaev-Zel’dovich effect due to the
background cluster population, residuals from component separation and instrumental noise). We generalise our
results to estimate the error in the bulk velocity on large scales. In this context, we investigate the limitation due
to the Sunyaev-Zel’dovich source (or spatial) confusion in a Planck-like instrumental configuration. Finally, we
propose a strategy based on the future all-sky Sunyaev-Zel’dovich survey, that will be provided by the Planck
mission, to measure accurately the bulk velocities on large scales up to redshift 1, or more.
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1. Introduction

One of the major fields of research in cosmology is the
study of the large scale matter distribution in the universe.
On large scales, the evolution of the matter density fluctu-
ations is adequately described through linear physics. The
matter distribution thus represents the imprint of the ini-
tial density perturbations. Combined with other results,
such as those derived from Cosmic Microwave Background
(CMB) observations, this kind of information can probe
the structure formation models and the cosmological
parameters.

The luminous matter distribution can be probed
through the direct observation of galaxy, or galaxy clus-
ter, distributions but this gives a biased view of the total
matter distribution. The latter can be inferred from the
velocity fields. In fact, the inhomogeneities in the mass
distribution produce deviations from the Hubble flow re-
ferred to as the peculiar velocities. A few methods have
been suggested to measure the transverse velocity com-
ponents, e.g., Birkinshaw (1983) and Birkinshaw & Gull
(1983). However, in practice, the radial component of the
peculiar velocities can only be measured using redshift
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surveys, and by some established relationships which give
independent distances to the objects, such as the Faber-
Jackson (Faber & Jackson 1976) or the Tully-Fisher (Tully
& Fisher 1977) relations. Nevertheless, these methods lead
to uncertainties in the expansion velocity which are pro-
portional to the distance and thus induce even larger
uncertainties when measuring peculiar velocities on very
large scales. The velocity fields can be studied using galax-
ies or galaxy clusters. However, there are more advantages
in studying the deviations from the Hubble flow as traced
by galaxy clusters. One of these advantages comes from
the fact that, on scales probed by galaxy clusters, the
underlying density fluctuations are largely in the linear
regime and therefore very close to the initial conditions
from which large scale structures developed. Finally, given
observed radial peculiar velocities and the potential flow
assumption, the full three-dimensional velocity field can
be derived using reconstruction methods (Bertschinger &
Dekel 1989; Zaroubi et al. 1999 and references therein).
The inferred density field is, in principle, representative of
both the dynamical evolution of the structure and the un-
derlying total matter distribution. Therefore, comparisons
between the reconstructed total matter distribution from
velocity fields and CMB fluctuations and that traced by
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galaxies can test and constrain theories of structure for-
mation and evolution, and cosmological models.

Moreover, given cluster radial peculiar velocities at
known positions, cluster motions can be used as cosmo-
logical probes using various statistical quantities among
which are the velocity frequency distribution, the power
spectrum, the velocity dispersions, the pairwise velocities,
the velocity correlation function, and the bulk flows. As
already mentioned, relative errors in the distance determi-
nation lead to the peculiar velocity uncertainty increasing
linearly with distance. As a consequence, all the statisti-
cal quantities derived from observed velocities suffer from
large errors especially at high redshifts. For example, in
the case of the bulk velocity, which is the average of the
local velocity field smoothed over a window function of
scale Rh−1 Mpc (h = H0/(100 km s−1/Mpc) is the nor-
malised Hubble constant), several measurements exist in
the literature (Dressler et al. 1987; Courteau et al. 1993;
Willick et al. 1996; Giovanelli et al. 1998; Hudson et al.
1999; Willick 1999). Whereas most of these studies agree
on the reality of a significant bulk flow within 50h−1 Mpc;
the situation is more controversial at larger scales where
the accuracy of the determination of the bulk velocities
decreases.

In order to overcome the problem of large uncertainties
in the peculiar velocities, we must find ways of measuring
them with a redshift independent accuracy. In this con-
text, the Sunyaev-Zel’dovich (SZ) effect is a very promis-
ing, and potentially sensitive, tool. As proposed initially
by Sunyaev & Zel’dovich (1980), the radial peculiar ve-
locity of galaxy clusters can be determined using SZ mea-
surements, which are in addition distance independent. In
the forthcoming years several experiments (ground based,
balloon borne or space) will measure the SZ effect and
perform SZ surveys (AMIBA, ARCHEOPS, BOLOCAM,
MAP, ...). These experiments, of which the Planck satel-
lite1 is the best example, are designed so that the sensi-
tivity, the frequency coverage and the angular resolution
allow a very good separation of the two SZ effect compo-
nents (thermal and kinetic, see Sect. 2), and a best possible
evaluation of the foreground (galactic and extra-galactic)
emissions that contribute to the measured signal. In this
context, we expect that the number of observed SZ clus-
ters will rapidly increase, thus allowing the radial peculiar
velocity of clusters to be measured and providing a useful
cosmological tool. This kind of project has already been
undertaken on a sample of 40 known galaxy clusters with
redshifts ranging between 0.1 and 0.3 by the SUZIE team
(Holzapfel et al. 1997). Nevertheless, the accuracy in indi-
vidual clusters is limited by the contamination from other
components of the microwave sky. It has been suggested by
Aghanim et al. (1997) and Kashlinsky & Atrio-Barandela
(2000) that averaging over many clusters in a large volume
is probably the best method to measure the large scale ve-
locity field up to z = 1. This requires a sensitive all-sky SZ
survey which will be provided only by the Planck mission.

1 http://astro.estec.esa.nl/Planck

In this paper, we investigate quantitatively the accuracy
of such a measurement, within the context of Planck.

As described in Sects. 2 and 3, the combination of the
so-called kinetic and thermal SZ effects allows us to mea-
sure the radial peculiar velocity. However, this measure-
ment is affected by errors due to astrophysical contribu-
tions (CMB, background cluster population), to residuals
from the component separation and to instrumental noise.
In Sect. 5, we present the method used to evaluate the rms
error which affects the peculiar velocity measurement. We
give, for three cosmological models, the results obtained
for the major sources of error in terms of the rms error
as a function of the cluster size for a Planck measure-
ment. These errors are evaluated using simulated maps.
The cluster model and the map simulation are presented
in Sect. 4. In Sect. 6, we generalise the computation of
the rms error to the bulk velocities at an illustrative scale
of 100 h−1 Mpc. We discuss our results and conclude in
Sect. 7.

In the following, we use the baryon density Ωb = 0.06
(Walker et al. 1991). We discuss three cosmological mod-
els: an open model with a density parameter Ωm = 0.3,
and two flat models: one with a non-zero cosmological
constant (Ωm = 0.3 and ΩΛ = 0.7), and the other with no
cosmological constant (Ωm = 1).

2. The SZ (thermal and kinetic) effect

The SZ effect comprises the so-called thermal and kinetic
effects. The thermal SZ effect is the inverse Compton in-
teraction between CMB photons and the free electrons
of the hot intra-cluster medium. Its amplitude is charac-
terised by the Compton parameter y – the integral of the
pressure along the line of sight – which depends only on
the cluster electron temperature and density (Te, ne):

y =
kσT

mec2

∫
Te(l)ne(l) dl , (1)

where k is the Boltzmann constant, σT the Thomson cross
section, me the electron mass, c the speed of light and l
is the distance along the line of sight. If the intra-cluster
gas is isothermal (Te(l) = Te = const), y is expressed as a
function of the optical depth τ (τ = σT

∫
ne(l) dl):

y = τ
kTe

mec2
· (2)

The inverse Compton interaction conserves the number of
photons and shifts their spectrum, on average, to higher
frequencies. This can be observed as the induced relative
monochromatic intensity difference between Compton dis-
torted and undistorted CMB:

∆Iν
Iν

= y · f(x),

where x is the dimensionless frequency x = hplν/kTCMB

(hpl denotes the Planck constant, TCMB the CMB tem-
perature, and ν the frequency), Iν is the intensity of the
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CMB (black body emission) and f(x) is the spectral form
factor given by:

f(x) =
xex

(ex − 1)

[
x

(
ex + 1
ex − 1

)
− 4
]
.

In the non-relativistic approximation, this spectral signa-
ture is universal, whereas it varies with the temperature of
the intra-cluster gas in the exact computations including
the relativistic corrections (Wright 1979; Rephaeli 1995;
Challinor & Lasenby 1998; Itoh et al. 1998; Pointecouteau
et al. 1998; Sazonov & Sunyaev 1998; Hansen & Lilje 1999;
Molnar & Birkinshaw 1999; Nozawa et al. 2000).

When the cluster moves with a radial peculiar velocity
vr, an additional relative intensity variation of the CMB
due to the first-order Doppler effect is generated. It is:

∆Iν
Iν

= −vr

c
τ × a(x) =

(
∆T
T

)
SZ

× a(x),

where a(x) is a spectral form factor, given by:

a(x) = x
ex

ex − 1
·

This is what is commonly referred to as the kinetic SZ
effect. The intensity fluctuation induced by the kinetic
SZ effect has the same spectral shape as the primordial
anisotropies (equivalent to a temperature fluctuation).
The amplitude of the temperature anisotropy induced by
the kinetic SZ effect is thus:(

∆T
T

)
SZ

= −vr
c
τ. (3)

The effect is positive for clusters moving towards the ob-
server (i.e. with negative velocities).

3. Measuring the peculiar velocity with SZ

The characteristic spectral signature of the thermal SZ
effect makes it a powerful tool for detecting galaxy clus-
ters through millimetre and submillimetre observations.
The kinetic SZ effect has a very different spectral signa-
ture from the thermal effect. In particular, it peaks at
about 1.4 mm where the thermal effect is null. A multi-
frequency observation of a galaxy cluster should therefore
allow a separation of the two effects. Consequently, the SZ
effect can in principle be used as a tool for measuring the
radial component of the galaxy cluster peculiar velocity
vr. In fact, when we combine the thermal and kinetic SZ
(Eqs. (2) and (3)), we obtain:

vr = −c kTe

mec2
(δT/T )SZ

y
· (4)

This method was first suggested by Sunyaev & Zel’dovich
(1980), who also proposed to use it for bulk motion mea-
surements at large scales. Rephaeli & Lahav (1991) made
one of the first estimates of the possibility of measuring the
peculiar velocities using a selected sample of galaxy clus-
ters. However, the most convincing measurements on indi-
vidual clusters have only been done recently with the new

generation of very sensitive bolometers (Holzapfel et al.
1997; Lamarre et al. 1998).

As mentioned in the previous section, the primary
CMB anisotropies have the same spectral signature as the
kinetic SZ effect of galaxy clusters. Therefore, the mea-
sured (δT/T ) towards a targeted cluster is contaminated
by the primordial temperature fluctuations of the CMB.
It is also contaminated by the background fluctuations in-
duced by the clusters population, by any non-removed or
residual astrophysical foreground contribution, and finally
by the instrumental noise. These sources of contamination
are responsible for an error δvr in the estimated cluster pe-
culiar velocity. When computed using Eq. (4), the relative
error in the velocity can be expressed as follows:

δvr

vr
=
δA

A
+
δTe

Te
, (5)

where A = (δT/T )
y . The δTe/Te term is the relative error

due to the uncertainty in the intra-cluster gas temperature
which should be derived from X-ray data or from the SZ ef-
fect itself, as proposed by Pointecouteau et al. (1998). For
the new generation of X-ray satellites (Chandra, XMM-
Newton), this error is expected to be of the order of 5
to 10%. Hereafter, we will neglect this source of error in
the evaluation of δvr. The error due to the CMB primary
fluctuations enters into the term A of Eq. (5) through the
measurement of δT/T . In the same manner, the fluctua-
tions generated by the background population of galaxy
clusters through their kinetic SZ effect and all spurious
emissions (astrophysical residuals, noise, ...) will also con-
tribute to the error in δvr through the δT/T term. The
residuals of the component separation between thermal
and kinetic SZ effects should contribute either to the δT/T
term, or to the measurement of the cluster Compton pa-
rameter y. In our study, we take them into account as an
additional δT/T component.

Based on a map analysis, we evaluate the error in the
peculiar velocity of individual galaxy clusters due to all
contributing sources (CMB, clusters, ...) and we express
it in terms of an induced rms error in the velocity. In
this context, each source of error, i, will contribute in a
quadratic form to the overall rms error, that is (δvtot

rms)2 =∑
i(δv

i
rms)

2.

4. Simulating the SZ effect of galaxy clusters

We use a set of simulated maps for both the primary
CMB fluctuations and the SZ effect contribution due to
the thermal and the kinetic effects. All maps have 512×512
pixels of 1.5 arcmin square. We simulate the SZ effect us-
ing an empirical approach which consists of predicting the
number of galaxy clusters that were formed between today
and a redshift z = 10. To do so, we use the Press-Schechter
(PS) mass function (Press & Schechter 1974). The indi-
vidual galaxy clusters are modelled following a β-profile
(see Sect. 4.2) and their positions on the simulated maps
are drawn at random.
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4.1. Cluster counts

The general analytic expression for the PS counts gives
the comoving number density of spherical collapsed halos
in the mass range [M,M + dM ] formed at a redshift z:

dn(M, z)
dM

= −
√

2
π

ρ

M2

d ln σ(M, z)
d ln M

δc0(z)
σ(M, z)

× exp
[
− δ2

c0(z)
2σ2(M, z)

]
, (6)

where ρ is the mean comoving background density and
δc0(z) is the overdensity of a linearly evolving structure.
The mass variance σ2(M, z) of the fluctuation spectrum,
filtered on mass scale M , is related to the power spec-
trum of the initial density fluctuations P (k) (Peebles
1980). Following Viana & Liddle (1996) and Viana &
Liddle (1999), we use an approximation of the variance
in spheres of radius R (R = (3M/4πρ)1/3) in the vicinity
of 8 h−1 Mpc:

σ(R, z) = σ8(z)
(

R

8 h−1 Mpc

)−γ(R)

,

with

γ(R) = (0.3Γ + 0.2)
[
2.92 + log

(
R

8 h−1 Mpc

)]
.

Γ is the so-called shape parameter of the cold dark matter
transfer function, taken to be 0.23 (see Viana & Liddle
1999 for a discussion). The redshift evolution σ8(z) is given
by the perturbation growth law (Carroll et al. 1992).

4.2. Modeling individual clusters

The spatial distribution of the SZ (thermal and kinetic)
effect is ruled by the intra-cluster gas profile. The lat-
ter is generally well-described by the so-called β-profile
(King 1966). We will therefore use for simplicity, as
in Cavaliere & Fusco-Femiano (1978), the hydrostatic
isothermal model with a spherical geometry. In this model
the electron density distribution is given by:

ne(R) = ne0

[
1 +

(
R

Rc

)2
]− 3β

2

, (7)

where ne0 is the central electron density, Rc is the cluster
core radius and β is a parameter whose value is about 2/3
as indicated by both numerical simulations (Evrard 1990)
and X-ray surface brightness profiles (Jones & Forman
1984; Edge & Stewart 1991). The physical parameters of
a galaxy cluster (temperature, virial radius and central
electron density) can be computed once its formation red-
shift and its mass are known. The cluster temperature Te,
in keV, is given by Bryan & Norman (1998):

Te = 1.39
fT

b
M

2/3
15 [h2∆c(z)E(z)2]1/3, (8)

where fT and b are numerical factors set respectively to
0.79 and 1,M15 is the cluster mass in 1015M� units, ∆c(z)

is the critical density (expressions can be found in Bryan
& Norman 1998) and E(z) is related to the time by t(z) =
H−1

0

∫∞
z (1 + z)−1E(z)−1 (see Peebles 1993 for example).

The central density ne0 can be derived from the cluster
gas mass using the following equation:

Mgas

(
Ωb

Ωm

)
= mpµ

∫ Rvir

0

ne(R) 4πR2 dR, (9)

where the virial radius of the structure, for a critical uni-
verse (Ωm = 1), is given by:

Rvir =
(GM)1/3

(3πH0)2/3

1
1 + z

· (10)

In this equation, mp is the mass of the proton, µ = 0.6
is the mean molecular weight of a plasma with primor-
dial abundances, and G is the gravitational constant. We
can define the core radius of a cluster as Rc = Rvir/p, and
arbitrarily set p = 15 for all the clusters. Using these quan-
tities and assuming the β-profile, we compute the profile
of the y parameter (Eq. (1)) associated with each cluster.
The cluster atmosphere could depart from the spherical
assumption made in our study. The most extreme geo-
metrical variation would occur if the cluster is oblate or
prolate with its unique axis oriented along the line of sight.
Assuming typical ellipticities (see discussion in Birkinshaw
et al. 1991 and Hughes & Birkinshaw 1998 and references
therein), the Compton parameter could be, at the very
most, multiplied by a factor 0.5 to 2 due to the cluster as-
phericity. The second physical assumption we make con-
cerns the intra-cluster gas distribution. There is still no
strong evidence of a temperature decrease with radius (at
large radii) from recent X-ray observations (apart from
cooling flow and merger clusters). Chandra results, with
large error bars, are consistent with a slightly decreas-
ing temperature profile (Markevitch et al. 2000) whereas
XMM-Newton higher precision observations show a “flat”
profile consistent with the isothermal assumption (Arnaud
et al. 2001) at least up to 0.7Rvir. Therefore in our study,
we make the conservative assumption of isothermality.

The kinetic SZ anisotropy map is obtained from the
thermal SZ map by introducing the radial component
of the cluster peculiar velocity. In the assumption of
an isotropic Gaussian distribution of the initial density
perturbations, the initial power spectrum P (k) gives a
complete description of the velocity field through the
three–dimensional rms velocity σv predicted by the lin-
ear gravitational instability at a scale R. This velocity is
given by:

σv = a(t)H(t)f(Ωm,Λ)
[

1
2π2

∫ ∞
0

P (k)W 2(kR)dk
]1/2

(11)

where a(t) and H(t) are respectively the expansion pa-
rameter and the Hubble constant. W is the Fourier
transform of the window function over which the vari-
ance is smoothed. The function f(Ωm,Λ) can always
be approximated by f(Ωm,Λ) = Ω0.6

m (Peebles 1980;
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Lahav et al. 1991). Furthermore in the assumption of lin-
ear regime and a Gaussian distribution of the density fluc-
tuations, the structures move with respect to the Hubble
flow with peculiar velocities, v, following a Gaussian dis-
tribution f(v) = 1

σv
√

2π
exp

(
−v2

2σ2
v

)
which is fully described

by σv. This prediction is in agreement with numerical sim-
ulations (Bahcall et al. 1994; Moscardini et al. 1996). We
therefore compute the three–dimensional rms peculiar ve-
locity using Eq. (11) for our three cosmological models.
At z ' 0, we find it ranges between 400 and 500 km s−1

(Fig. 6), in good agreement with the observed velocity in-
terval 300 < vrms < 700 km s−1 (Hudson 1994; Giovanelli
et al. 1996; Moscardini et al. 1996). Our values, especially
at low redshifts, could be underestimated by a factor of
up to 40% due to the cluster non-linear evolution at late-
time growth (Colberg et al. 2000). Nevertheless, we do not
correct for it. We will see in the next section (Fig. 1) that
the expected effect will remain negligible compared to the
other contributions to the error in the peculiar velocity.
Assuming a random distribution of angles, the amplitude
of the peculiar velocity for individual clusters is drawn at
random from the specified Gaussian distribution, and it is
then assigned to the clusters one by one.

5. The error in individual cluster peculiar
velocities

5.1. Method

The radial component of the galaxy cluster peculiar ve-
locity can be determined using the ratio of thermal to
kinetic SZ effect combined with the intra-cluster temper-
ature. This requires a good separation of the thermal and
kinetic components of the SZ effect which can be achieved,
in principle, through accurate measurements at two or
more millimetre/submillimetre wavelengths (Hobson et al.
1998; Bouchet & Gispert 1999) as expected for the Planck
mission.

Astrophysical or instrumental contributions will intro-
duce systematic errors into the determination of the pecu-
liar velocity vr. In this context, we examine the contribu-
tions of the background population of galaxy clusters, and
then that of both the SZ clusters, and the CMB primary
anisotropies. The results are given for three cosmological
models using simulated maps convolved with a Gaussian
beam of 5 arcmin (the Planck effective resolution for SZ
measurements).

The CMB primary temperature fluctuations dominate
down to angular scales of about 5 arcmin with amplitudes
varying with scale and cosmological model. More gener-
ally, each contributing source to the signal (astrophysical
or instrumental) has its own particular distribution in the
amplitude-scale space. Therefore, the measurement of the
SZ effect at a cluster scale (a few arcminutes to a few de-
grees) picks up a spurious signal from all the contributions
at scales up to the cluster scale (typically the angular scale
corresponding to its virial radius).

Following Aghanim et al. (1997), our method consists
of detecting the cluster through its thermal SZ effect and
measuring the kinetic SZ effect (δT/T ) at this position.
The accuracy of the peculiar velocity determination de-
pends on the accuracy of both of these measurements. We
compute the error to the peculiar velocity due to the δT/T
term using a spatial filter. The filter is characterised by
two windows: a central disk (centred on the cluster posi-
tion) and an external ring, and thus by three parameters
(the radius of the central disc, and the inner and outer
radii of the ring). The optimum filter is chosen, through
the thermal SZ effect measurement, using only the data,
i.e. for the Planck resolution, the observed cluster pro-
file (convolved with the Planck beam). In practice, due to
beam dilution effects, we have obtained an optimum spa-
tial filter that can be applied to a wide range of clusters.
In this case, the disc corresponds to the region where the
Compton parameter is greater than 70% of the observed
central value, and the ring is defined by its inner radius
0.5× FWHM and its width ∆R = 2 pixels.

The peculiar velocity of a targeted cluster is then ob-
tained by computing the ratio of the difference of the
thermal and kinetic components of the SZ effect, between
the two windows of the filter. Consequently, on a “blank
field” containing foreground or background contributions
(CMB, or cluster population, or galactic residuals), the
filter is used to measure the expected contamination due
to some, or all of these contributions, to the δT/T term
which is expressed in terms of an error δvr in the peculiar
velocity. In our case and due to the beam dilution, the
contribution to the error in the peculiar velocity associ-
ated with the amplitude of the thermal SZ effect just acts
as a normalisation factor δvrms ∝ 1/y. In all the following
results shown in Figs. 1–4, the errors are computed for a
cluster whose central Compton parameter is y0 ' 10−4.

To evaluate the accuracy of the peculiar velocity deter-
mination, we use the optimum spatial filter. We compute
the differential signal in the filter windows and infer the in-
duced error for individual clusters δvr using many random
positions on the simulated maps, convolved by a 5 arcmin
beam. We obtain errors δvr in 300 different positions from
which we derive the rms error in the velocity, δvrms. This
operation is repeated for different cluster sizes (expressed
in terms of the core radius) as we expect that the spurious
contributions vary with the angular scale.

5.2. Results

We first analyse simulated maps of the background fluc-
tuations induced by the kinetic SZ effect of a synthetic
population of galaxy clusters. In order to separately esti-
mate the contribution to the error from the background
SZ kinetic fluctuations, no other contributing source is
taken into account at this stage of the analysis. We plot,
in Fig. 1, the obtained δvrms as a function of the cluster
core radius for three cosmological models. As a general
trend for all the cosmological models, the rms error in
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Fig. 1. The rms error in the peculiar velocity due to the kinetic
SZ secondary anisotropies of galaxy cluster background popu-
lation. The error is given for an individual galaxy cluster with
y0 ' 10−4 as a function of its core radius in arcmin and for
three cosmological models. The solid, dotted and dashed lines
represent respectively the standard model (Ωm = 1, ΩΛ = 0),
the open model (Ωm = 0.3) and the flat model with a cosmo-
logical constant (Ωm = 0.3, ΩΛ = 0.7).

the individual peculiar velocity decreases rather abruptly
with increasing core radius for clusters with core radii up
to 2 arcmin; whereas for larger radii the uncertainty de-
creases very slowly. This variation of the rms error with
cluster size can be understood by the fact that, for ex-
tended clusters (i.e., large core radii), the temperature
fluctuations (around zero) induced by the kinetic SZ ef-
fect of the background clusters are averaged out. Whereas
for small core radii, the effect of beam dilution dominates.
When we compare the error as a function of the cosmologi-
cal model, we note that δvrms is the lowest for the standard
model with no cosmological constant (Ωm = 1, solid line).
It ranges between less than 90 km s−1 (at maximum) and
about 40 km s−1 for the largest core radii. In the open
model (Ωm = 0.3, dotted line), the error reaches about
150 km s−1 for very small core radii, and can be as low
as about 30 km s−1 for extended clusters. This is due to
the combined effect of the cluster higher number counts,
especially at high redshifts, and the fact that the veloc-
ity dispersions are higher in an open model. In the flat
model with a non-zero cosmological constant (Ωm = 0.3,
ΩΛ = 0.7, dashed line), the cluster peculiar velocities and
the number of sources are larger than in the other mod-
els. As a consequence of the late-time non-linear growth of
the galaxy clusters, the predicted error due to the kinetic
SZ background population could be, roughly, up to 40%
larger than the quoted numbers.

In the second step, we analyse a simulated δT/T map
containing both the primary CMB anisotropies and the
kinetic SZ fluctuations due to the population of galaxy
clusters studied above. The first thing we note in com-
paring Figs. 1 and 2, is that the primary CMB domi-
nates the uncertainties, it induces larger errors than the

Fig. 2. For a y0 ' 10−4 individual cluster with a core radius
varying between 0 and 12 arcmin, we plot the rms error in the
radial component of the peculiar velocity due to the kinetic
SZ secondary anisotropies of the galaxy cluster background
population plus the CMB primary anisotropies. The line-styles
represent the same cosmological models as in Fig. 1.

SZ kinetic population and it has a different behaviour.
In our three cosmological models, unlike the SZ back-
ground contribution, the CMB contribution increases in
amplitude with increasing cluster size. In fact, δvrms de-
creases (beam dilution effect) and then increases with in-
creasing core radius with a minimum at about 1.5 arcmin.
This arises from the fact that the amplitude of the pri-
mary temperature fluctuations increases with the angular
scale in the range sampled by our spatial filter (acous-
tic peak). Consequently, this larger contribution to δT/T
induces larger errors in the velocity at large core radii.
The open model (dotted line) exhibits the largest errors
which reach about 800 km s−1, with a minimum of about
500 km s−1 near 1.5 arcmin. In the flat model with a non-
zero cosmological constant (dashed line), the errors cul-
minate at about 650 km s−1 for extended clusters their
minimum is about 350 km s−1 near 2 arcmin and they
reach about 450 km s−1 for small core radii. The standard
model (Ωm = 1, solid line), predicts the smallest error with
a maximum, for extended clusters, of about 450 km s−1 a
minimum at 200 km s−1 and an error of about 300 km s−1

for the smallest core radii. In this context, the contribu-
tion from the non-linear evolution of clusters is negligible
with respect to the CMB primary contribution. The linear
approximation used will thus almost not affect our results
and conclusions.

So far, we have studied two cosmological signals (CMB
and kinetic SZ) that contribute as sources of error in
the velocity determination, and that are not separated
(they have the same spectral signatures). In practice, the
thermal SZ maps contain information on the position
and shape of galaxy clusters that helps us in measur-
ing the peculiar velocities. We have used this information
in a very simple way by associating the position of the
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Fig. 3. The dotted long-dashed line represents the contribution
to the rms error in the peculiar velocity due to the astrophysical
residuals from the component separation and to the Planck-
like instrumental noise (other than CMB and SZ). The thin
solid line stands for the contribution of CMB and SZ kinetic
background population in an Ωm = 1 model. The thick solid
line represents the total rms errors.

maximum detected thermal SZ signal with the central po-
sition of the cluster, and also by optimising the spatial
filter using the observed thermal map. More sofisticated
methods have been proposed to use the additional phase
information of the different signals in order to reduce the
error due to the CMB fluctuations (Scherrer et al. 1991;
Naselsky et al. 2000). This kind of method, applied for
the best case of point-like sources (Naselsky et al. 2000),
has shown its usefulness in detecting and extracting the
point sources buried in a CMB signal. The efficiency of
such a method, in reducing the CMB contribution to the
peculiar velocity, for resolved sources convolved with the
instrumental beam (as in our case) remains to be stud-
ied. In addition, our analysis has been done in an ideal
way because we did not take into account the fact that
a δT/T map will result from a component separation. In
this context, we expect that the residuals from the compo-
nent separation will contribute to the error in the peculiar
velocity. Among the residuals, an important contribution
comes from the instrumental noise, which in the case of
Planck, is about 2×10−6 rms δT/T . For a standard model
with Ωm = 1, we derive, from a previous study (Aghanim
et al. 1997), the rms error due to the instrumental noise
and the residual signals from the component separation
(Fig. 3, dotted long-dashed line). The component sepa-
ration was performed using Wiener filtering (Bouchet &
Gispert 1999), and the residuals account for the galactic
contributions and the instrumental noise. The total δvrms

(including the contribution from the CMB and kinetic SZ
effect (Fig. 2, solid line)) is represented by the thick solid
line in Fig. 3. This error in the peculiar velocity due to
the residuals remaining after the component separation
and to instrumental noise, is thus mostly independent of
the cosmological model, and it should be present in the

Fig. 4. The total rms error in the individual velocity due to
all sources of confusion (CMB, background kinetic SZ, galac-
tic residuals, residuals of component separation, Planck-like
instrumental noise). The line-styles stand for the same cosmo-
logical results as in Fig. 1.

Planck measurements of the peculiar velocities using the
SZ effect at this level, independent of the cosmological
model. Furthermore, the induced error is dominant for
the standard model, and dominant or comparable to the
CMB+SZ error in the other cosmological models. In this
context, the phase information will not help and we do
not expect a reduction of the total error in the velocity.
The resulting total rms errors on the velocity of individ-
ual clusters are displayed in Fig. 4 where the solid line
represents the standard (Ωm = 1 model), and the dotted
and dashed lines stand respectively for the open and flat
models.

6. Bulk velocities

The error in the individual velocities of galaxy clusters
are rather large due to several contributions. However, we
can obtain meaningful and valuable information on the ve-
locity fields through statistical analyses. Over large scales,
one accessible piece of statistical information derived from
the cluster peculiar velocity is the bulk velocity. It is de-
fined as the centre-of-mass velocity of a specified region,
and it is given by the integral of the peculiar velocities
over a selected volume specified by a selection function.
In a given volume containing N clusters with individual
peculiar velocities vi each measured with an accuracy σi,
the best estimate of the bulk velocity Vbulk is the mean
weighted velocity:

Vbulk =

N∑
i=0

1
σ2
i

vi

N∑
i=0

1
σ2
i

· (12)
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Fig. 5. The number of clusters as a function of redshift in the
100 h−1 Mpc size boxes. The solid line represents the standard
model (Ωm = 1), the dotted line represents the open (low Ωm)
model and finally the dashed line shows the results for a flat
model with a non-zero cosmological constant.

We compute the error due to the astrophysical and in-
strumental contributions, in the bulk velocity, using the
following relation:

σ2
bulk =

1∑
i

Ni
σ2
i

, (13)

where Ni is the number of clusters of mass Mi and accu-
racy σi at a given redshift.

In order to avoid local non-linear or correlation effects,
we focus on scales that are large enough to allow a signif-
icant measurement of the bulk velocity. We choose an il-
lustrative 100 h−1 Mpc scale and investigate, for redshifts
between 0 and 2, the accuracy of the bulk velocities when
we take into account the major sources contributing to
the error (CMB primary fluctuations, kinetic SZ fluctua-
tions of a background cluster population, residuals due to
component separation process and instrumental noise). In
each “box” of 100 h−1 Mpc size defined by its ∆Ω and
∆z at redshift z, we use the PS number counts to com-
pute the predicted number of clusters. For each of these
clusters, we compute the core radius θc and the central
Compton parameter y0. Thus using the results displayed
in Fig. 4, we can associate with each cluster in a given
volume an error in its individual peculiar velocity. Finally
using Eq. (13), we compute the overall accuracy σbulk in
each 100 h−1 Mpc typical size volume and show the results
as a function of redshift in Fig. 7.

In the standard model, the bulk velocity at the
100 h−1 Mpc scale can be affected by an error as large as
400 km s−1 at small redshifts. This error decreases with
redshift down to about 150 km s−1 by z = 0.8. It remains
almost constant until z ' 1.3 and increases again to very
large values by z = 2. This increase is associated with the
lack of clusters at high redshifts in high Ωm models (see
Fig. 5). In an open model the number of clusters being

Fig. 6. The rms peculiar velocity for a 100 Mpc scale, in linear
theory, as a function of redshift for three cosmological models.
The solid, dotted and dashed lines represent respectively the
standard model, the open model and the flat model with a
cosmological constant.

much higher, the accuracy in the bulk velocity is better
than in the standard case. The overall error decreases very
rapidly. It is of the order of 80 km s−1 at z = 0.5 and
reaches 30 km s−1 at z = 1. At z = 2, the accuracy is
as small as 10 km s−1. It increases at high redshift, again
when the number of clusters decreases. Similarly, in the
flat model with a non-zero cosmological constant, the er-
ror in the bulk velocity decreases rapidly with redshift;
but it is slightly larger than in the open case at all red-
shifts. The error ranges between 400 km s−1 (at low red-
shifts) and 25 km s−1 at z = 2. At z = 0.5 and z = 1, it
reaches respectively 100 and 50 km s−1. In the low density
models, we thus expect to achieve very accurate measure-
ments of the bulk motion using the SZ effect. This can
be illustrated by comparing a rough estimate of Vbulk for
a 100 Mpc scale (Fig. 6), computed in the linear theory
(Eq. (11)), with the estimated error (Fig. 7). On the con-
trary, the precision for the standard model is rather poor
('2σ around z = 1).

These very impressive accuracies in the bulk ve-
locity measurements would be those obtained on the
100 h−1 Mpc scale using the SZ effect and assuming that
all the SZ sources are detected and used for the computa-
tion. This would be the case if the sky were to be surveyed
with a very high angular resolution (typically better than
1 arcmin) as will be achieved by FIRST-Herschel. In the
Planck configuration, for a 5 arcmin beam convolution,
source confusion will be the limiting factor in cluster de-
tection and will lead to a degradation of the bulk velocity
accuracy. Source confusion affects the measurements in
all the cosmological models, but the problem is especially
severe in low density matter models for which the clus-
ters are more numerous at z > 0.3 (e.g. Barbosa et al.
1996), as illustrated in Fig. 5. We estimate the effect of
source confusion on the bulk velocity measurement, and
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Fig. 7. The rms error in the bulk velocities measured in vol-
umes of 100 h−1 Mpc typical size. The solid line represents the
standard model (Ωm = 1), the dotted line represents the open
(low Ωm) model and finally the dashed line shows the results
for a flat model with a non-zero cosmological constant.

illustrate the results for the low density matter models. To
do so, we use the canonical confusion limit for Euclidean
number counts. This implies the presence of one source in
30 independent beams (5 arcmin beam in the Planck con-
figuration). Therefore, the total number of clusters on the
sky must not exceed 1.9×105. This condition thus defines,
for our three cosmological models, a detection (or confu-
sion) limit Ylim in terms of the integrated Compton pa-
rameter above which the clusters are detected. For the flat
model with non-zero cosmological constant, we find that
Ylim ∼ 14×10−3 arcmin2. As expected, the limit is higher
for the open model for which it is about 23×10−3 arcmin2.
This comes from the fact that more clusters are predicted,
and the source confusion effect is thus more important.
Taking into account this additional condition in order to
estimate the number of detected clusters, we re-evaluate
the error in the bulk velocity in the 100 h−1 Mpc typical
size boxes, and we compare the results to those obtained
without the correction for source confusion. The results
illustrated for the two low density models are displayed
in Fig. 8. The thick lines represent the errors when the
limitation due to source confusion is taken into account
as compared with the previous results (thin lines). In the
open model (left panel), the limitation due to confusion re-
sults in a larger error, of the order of 300 km s−1 at z = 0.5
and 50 km s−1 at z = 1. This is, respectively, almost four
times and twice as large as the previous values. In the flat
model (right panel), the confusion effect increases the er-
ror in the bulk velocity by a factor of about two at z = 0.5
where the error is about 260 km s−1. At redshift z = 1,
the error is of the order of 70 km s−1 (a factor 1.4 larger
than the previous accuracy Fig. 7).

Fig. 8. The rms error in the bulk velocities 100 h−1 Mpc typ-
ical scale. The solid lines represent the errors when the limi-
tation due to source confusion is taken into account. The thin
lines shows the results uncorrected form the confusion effects
(open model is in the left panel and flat model, ΩΛ = 0.7, is in
the right panel). The confusion limit is set so that there is one
cluster in 30 independent 5 arcmin beams.

7. Discussion and conclusion

The kinetic SZ effect can be used as an alternative pow-
erful tool to measure the radial component of the pe-
culiar cluster velocities, and consequently to trace the
matter distribution. Nevertheless, the accuracy for indi-
vidual clusters is limited by the contributions from other
astrophysical components and instrumental noise, and by
the source (or spatial) confusion with other clusters. In
the present study, we investigate the limitation of this
method. More precisely, we estimate the rms error by
which the source confusion and the major contributing
sources (CMB primary anisotropies, kinetic SZ due to
the background cluster population, and noise + residu-
als from component separation) can affect the velocity
measurement.

The amplitude of the spurious cosmological contribu-
tions (CMB and SZ kinetic) and the source confusion
varies with the cosmological model. Therefore, keeping the
baryon density constant, we have investigated three cos-
mological models, two flat models with and without a cos-
mological constant (ΩΛ = 0 and 0.7) and one open model
Ωm = 0.3. A previous study by Haehnelt & Tegmark
(1996) estimated the effect of changing the baryon frac-
tion of the universe on the error in the individual peculiar
velocity.

The contribution of the kinetic SZ background clusters
is not a major source of error (relative to the other con-
tributions). It represents, depending on the cosmological
model, a rms error between about 140 and 80 km s−1 for
small cluster sizes, and between 50 and 30 km s−1 for more
extended clusters. These errors could be up to 40% larger
due to the non-linear growth of the structures, but this
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still does not significantly affect our final results because
the total error is clearly dominated by the other contri-
butions. Departures from our physical assumptions, such
as possible asphericity or non-isothermality, can affect the
previous values. For an individual cluster the asphericity
can modify its SZ kinetic contribution by a factor 0.5 to 2.
However, this is the extreme variation for the case where
the principal axis is aligned along the line of sight. In
addition for a cluster population with randomly oriented
ellipticities, we expect that the net geometrical effect will
average out so that the error due to the background cluster
population will not be significantly affected. Recent X-ray
observations of galaxy clusters show isothermal profiles
but still leave room for decreasing temperature profiles
above 0.7Rvir. In this case, the contribution of an individ-
ual cluster is smaller especially in the cluster outskirts. As
a result, the contribution to the temperature fluctuations
due to the kinetic SZ effect of the whole cluster popula-
tion should be smaller than in the isothermal assumption.
Consequently, the departures from the simplest approxi-
mations used in our study are likely to average out, and
therefore leave the final results almost unchanged. The
rms error due to the CMB primary anisotropies is dom-
inant, compared to SZ background clusters, and varies
with the cosmological model and the cluster size. However,
it shows the same shape in all models, i.e., large veloci-
ties at small cluster sizes (due to beam dilution effects)
which sharply decrease and reach a minimum at about
2 arcmin core radius, followed by an increase at larger
scales associated with the contribution from the acous-
tic peak. The rms error reaches its maximum value (al-
most 800 km s−1) at small cluster sizes in the open model,
and its minimum value (almost 200 km s−1) at about
2 arcmin core radius in the standard model. The last spu-
rious component we have taken into account is that due
to the residual signals from component separation includ-
ing Planck like instrumental noise. This contribution is of
the order of, or dominates, the CMB depending on the
amplitude of the cosmological “errors” (that is depend-
ing on the cosmological model). The induced rms error
shows a maximum value for large cluster sizes, where it
reaches about 1000 km s−1, it decreases to 400 km s−1 at
2 arcmin core radius then increases again up to
500 km s−1. The contribution from residuals in the com-
ponent separation could well be smaller if we use better-
adapted component separation techniques, such as the
proposed maximum entropy method (Hobson et al. 1998).
All the resulting accuracies are obtained for a rather im-
portant thermal effect (y0 = 10−4). The velocities vary as
a function of 1/y0, and “weaker” clusters are affected by
larger errors. Another source of error in the peculiar veloc-
ity is the relativistic correction to the SZ effect, which is
not taken into account in our study. It has been evaluated
by Holzapfel et al. (1997) who found it to be of the order of
360(kTe/10 keV)2 km s−1. Furthermore, our results do not
take into account the error due to the uncertainty in the
measured intra-cluster temperature. As previously men-
tioned, the recent X-ray satellite observations will allow

very precise temperature measurements with an accuracy
of 5 to 10%.

The measurement of the radial component of the pecu-
liar cluster velocity using the SZ effect is only marginally
possible for the “strongest” clusters, and then only in a
rather narrow spatial window corresponding to clusters
with core radii around 2 arcmin. The number of clusters
matching the two criteria (size and amplitude) over the
sky is small. Therefore, we rather turn to a statistical
approach. The velocity dispersion is not the appropriate
quantity to study as it is very sensitive to systematic ef-
fect contributions. The bulk velocity, in turn, is a better-
adapted statistical quantity which can be derived from
the SZ measurement of the individual peculiar velocities.
Based on the all-sky high sensitivity SZ survey which will
be provided by the Planck mission, we propose a strat-
egy to trace the velocity field by measuring the bulk flows
on very large scales up to z = 1, or greater. The method
relies on averaging, over large volumes, the peculiar ve-
locities of the individual clusters detected therein. In this
context, we have evaluated the rms error associated with
the bulk velocity in 100 h−1 Mpc typical size boxes by
generalising, to a population of clusters predicted by the
PS formalism, the results obtained for individual clusters.
The accuracy in the bulk velocity (σbulk) depends on two
main quantities: the accuracy in the individual radial ve-
locities (σi) and the number of clusters (Ni). The smaller
σi then the smaller is σbulk. The largerNi then the smaller
is σbulk. Therefore, we find a rather poor accuracy in the
standard flat model for which the predicted number of
clusters is small. In contrast, in both low matter density
models (Ωm < 1), the accuracy in the bulk velocities is
higher. In our study, we find that the accuracy of the bulk
flow determination is thus dominated by the numerous
low mass clusters. However, large cluster numbers result
in source confusion which in turn limits our ability to de-
tect individual clusters. It thus decreases the number of
clusters useful for the bulk velocity estimates which re-
sults in a larger σbulk. Taking into account the fact that
source confusion will prevent us from detecting all the in-
dividual SZ clusters in the Planck all-sky survey, we have
estimated the new errors on the bulk velocities (Fig. 8).
Our method cannot be applied for 100 h−1 Mpc boxes,
due to lack of sources above the detection limit, below a
redshift of 0.15 and 0.35 in, respectively, the flat and open
models. In the flat model, the errors are increased with
decreasing redshifts by a factor reaching 3 at z = 0.22. In
the open model, the degradation due to source confusion
is even stronger. The degradation factor is 2.75 at z = 0.66
increasing to 4 at z = 0.5. There is almost no loss of ac-
curacy at z ≥ 1.8. In the low density models, the bulk
velocities measured with the SZ effect exhibit large errors
at small redshifts and small errors at high redshifts. These
results show that the the bulk velocities on large scales,
especially at high redshifts, can be accurately measured
and mapped through the SZ effect (see Figs. 6 and 8).
This is opposite to the case of classical velocity mea-
surements where the errors are larger at higher redshifts
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(e.g. Willick 1999 and references therein). The velocity
field could thus be mapped using these two complemen-
tary approaches (traditional and SZ) as a function of the
redshift range that is probed.

Assuming a low matter density universe (Ωm = 0.3), a
proposed strategy to measure the bulk velocities on large
scales using the SZ effect would be to average the individ-
ual peculiar velocities in large boxes between redshifts of
0 and 1, or more. The size of the boxes would be chosen so
that the obtained accuracy in the bulk velocity is of the
order of a few tens km s−1. This allows an inhomogeneous
sampling of the universe. A sampling with 100 h−1 Mpc
typical size boxes gives satisfying accuracy around z = 1
(σbulk ∼ 80–50 km s−1), but gives larger errors around
z = 0.5 especially in an open model. One way of overcom-
ing this problem would be to increase the statistical clus-
ter sample by estimating the bulk velocity on larger scales
(>100 h−1 Mpc) at intermediate redshifts. Another pos-
sibility would be to measure the bulk velocity of the local
universe up to a certain redshift, typically z = 0.2 for flat
universe and z = 0.4 for open universe. In order to mea-
sure the velocities using the SZ effect, we need, in addition
to a measurement of the Compton parameter y and the
temperature fluctuation of each cluster δT/T , its electron
intra-cluster temperature Te and its redshift z. At interme-
diate redshift (0 < z < 0.5), we could use for a very large
fraction of the sky (about π steradian), the SDSS red-
shift determinations and the available X-ray observations
(ROSAT, ASCA, XMM-Newton, Chandra) to derive the
temperature. The temperature could be obtained either
through spectroscopic measurements, or through empiri-
cal relations with general properties established on smaller
samples. At higher redshifts (0.5 < z < 1), we could
focus on a few selected regions of the sky. The regions
in this case, should correspond to sky selected areas on
which multi-wavelength observations will provide cluster
surveys with their redshifts and temperatures or masses
(VIRMOS, XMM-Newton, Chandra, MEGACAM). For a
better sky coverage, specific complementary observations
could be programmed before the Planck mission.

The study of galaxy cluster peculiar velocities is ad-
vantageous since, on scales probed by clusters, the under-
lying density fluctuations are largely in the linear regime
and therefore very close to the initial conditions from
which large-scale structure developed. The large-scale ve-
locity field represents a direct prediction of the cosmo-
logical model and depends on the power spectrum and
matter density. Following our proposed strategy, based
on the all-sky SZ survey provided by Planck, we will be
able to study the velocity field over cosmologically im-
portant scales and examine its evolution. We could use,
as proposed by Ferreira et al. (1999) and Juszkiewicz
et al. (1999), the evolution of the mean relative veloc-
ity of pairs of boxes as a function of their separation to
directly constrain the cosmological parameters. We could
also apply methods based on the comparison between the
reconstructed total matter distribution from velocity fields
(Bertschinger & Dekel 1989; Zaroubi et al. 1999) and that

traced by galaxies to constrain the matter density; the
constraints on the power spectrum over these large scales
can be directly compared to CMB constraints.
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