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How algorithmic popularity bias 
hinders or promotes quality
Giovanni Luca Ciampaglia  1, Azadeh Nematzadeh2, Filippo Menczer  1,2 & 

Alessandro Flammini1,2

Algorithms that favor popular items are used to help us select among many choices, from top-ranked 

search engine results to highly-cited scientific papers. The goal of these algorithms is to identify high-
quality items such as reliable news, credible information sources, and important discoveries–in short, 

high-quality content should rank at the top. Prior work has shown that choosing what is popular may 
amplify random fluctuations and lead to sub-optimal rankings. Nonetheless, it is often assumed that 
recommending what is popular will help high-quality content “bubble up” in practice. Here we identify 
the conditions in which popularity may be a viable proxy for quality content by studying a simple model 

of a cultural market endowed with an intrinsic notion of quality. A parameter representing the cognitive 
cost of exploration controls the trade-off between quality and popularity. Below and above a critical 
exploration cost, popularity bias is more likely to hinder quality. But we find a narrow intermediate 
regime of user attention where an optimal balance exists: choosing what is popular can help promote 

high-quality items to the top. These findings clarify the effects of algorithmic popularity bias on quality 
outcomes, and may inform the design of more principled mechanisms for techno-social cultural markets.

Cultural markets, such as social media, the entertainment industry, and the world of fashion are known for their 
continuous rate of innovation and inherent unpredictability. Success of individual actors (e.g., artists) or products 
(e.g., songs, movies, memes) is in fact hard to predict in these systems1–3, mainly due to the presence of strong 
social reinforcement, information cascades, and the fact that quality is ultimately predicated on intangible or 
highly subjective notions, such a beauty, novelty, or virality.

In the absence of objective and readily measurable notions of quality, easily accessible metrics of success – 
such as the number of downloads of a song, or the number of social media followers of an individual – are o�en 
taken as input for future recommendations to potential consumers. Popularity and engagement metrics are intui-
tive and scalable proxies for quality in predictive analytics algorithms. As a result, we are exposed daily to content 
that is biased to some degree toward popularity, from bestseller lists to search engine results and from trending 
videos to engaging social media posts4.

�e usefulness of such rankings is predicated on the wisdom of the crowd5: high-quality choices will gain early 
popularity, and in turn become more likely to be selected because they are more visible. Furthermore, knowledge 
of what is popular can be construed as a form of social in�uence; an individual’s behavior may be guided by 
choices of peers or neighbors6–12. �ese mechanisms imply that, in a system where users have access to popularity 
or engagement cues (such as ratings, number of views, likes, and so on), high-quality content will “bubble up” and 
allow for a more cost-e�cient exploration of the space of choices. �is is such a widely shared expectation that it 
has become routine for social media and e-commerce platforms to highlight popular and trending items. �is is 
also reminiscent of herd behavior in �nancial markets, where the actions of previous investors carry information, 
and thus it is rational to adopt them13.

Popularity based metrics, however, can bias future success in ways that do not re�ect, or worse, that hinder 
quality. �is can happen in di�erent ways. First, lack of independence and social in�uence among members of 
the crowd – as that implicitly induced by the availability of rankings – severely undermines the reliability of the 
popularity signals10. Second, engagement and popularity metrics are subject to manipulation, for example by fake 
reviews, social bots, and astroturf14,15.

Popularity bias can have more subtle e�ects. In search engines, the use of popularity in ranking algorithms 
was alleged to impede novel content from rising to the top, although such an entrenchment e�ect was shown to 
be mitigated by diverse user queries16. In social media, some memes inevitably achieve viral popularity in the 
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presence of competition among networked agents with limited attention, irrespective of quality2, and the pop-
ularity of memes follows a power-law distribution with very heavy tails17. Mechanisms such as unfriending and 
triadic closure facilitate the formation of homogeneous “echo chambers”18 or “�lter bubbles”19 that may further 
distort engagement metrics due to selective exposure.

Even in the absence of engineered manipulation or social distortion, quality is not necessarily correlated with 
popularity. Consumers face a trade-o� between performing cognitively expensive but accurate assessments based 
on quality and cognitively cheaper but less accurate choices based on popularity. Adler has shown that the cost of 
learning about quality will lead to “stars” with disproportionate popularity irrespective of di�erences in quality20. 
Such trade-o�s are common in social learning environments21. Salganik et al. created a music-sharing platform to 
determine under which conditions one can predict popular musical tracks12. �e experiments showed that in the 
absence of popularity cues, a reliable proxy for quality could be determined by aggregate consumption patterns. 
However, popularity bias – for example when users were given cues about previous downloads of each track – 
prevented the quality ranking from being recovered. By in�uencing choices, popularity bias can reinforce initial 
�uctuations and crystallize a ranking that is not necessarily related to the inherent quality of the choices22. �is 
can happen even in the absence of explicit social signals, if the observed ranking is biased by popularity23. Similar 
results have been found in other studies8,24–26 and have spurred a renewed interesting in the topic of predictabil-
ity in cultural markets. Idealized multinomial logit models have been used to understand the behavior of social 
in�uence. Van Hentenryck et al.27 studied a model of trial-o�er markets to analyze the e�ect of social in�uence on 
market predictability. In this model, users chose from a list of items ranked by quality rather than popularity; this 
modi�cation makes the market predictable and aligns popularity and quality. Empirical tests of speci�c presenta-
tion policies combining quality and popularity do suggest that uncertainty can be reduced in this way28,29. Finally, 
Becker et al.30 addressed the question of which network structure is most conducive to the wisdom of the crowd 
when people are in�uenced by others.

Another line of research that bears some connection to the present work is that of network growth models. 
Bianconi and Barabási31 incorporated a notion of �tness in the preferential attachment model32. �is approach 
provides one way to combine choices based on popularity and quality, but not a way to explore the e�ect of di�er-
ent mixtures between the two ingredients.

�e conditions in which popularity bias promotes or hinders quality content have not been systematically 
explored. Here we do so by studying an idealized cultural market model in which agents select among competing 
items, each with a given quality value. A parameter regulates the degree to which items are selected on the basis 
of their popularity rather than quality. We �nd that this popularity bias yields a rich behavior when combined 
with the cognitive cost of exploring less popular items. As we shall see, popularity bias tends to hinder quality in 
general; but for a critical exploration cost, some popularity bias results in maximal average quality.

Results
Our model considers a �xed number N of items. �ese represent transmissible units of information, sometimes 
referred to as memes33, such as music tracks, videos, books, fashion products, or links to news articles. Items are 
selected sequentially at discrete times. Each item i has an intrinsic quality value qi drawn uniformly at random 
from [0, 1]. Quality is operationally de�ned as the probability that an item is selected by a user when not exposed 
to the popularity of the item. �e popularity of item i at time t, pi(t), is simply the number of times i has been 
selected until t. At the beginning each item is equally popular: pi(0) = 1, i = 1 … N.

At each time step, with probability β, an item is selected based on its popularity. All items are �rst ranked by 
their popularity, and then an item is drawn with probability proportional to its rank raised to some power:
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where the rank ri(t) is the number of items that, at time t, have been selected at least as many times as i. �e 
exponent α regulates the decay of selection probability for lower-ranked items. �is schema is inspired by the 
ranking model, which allows for the emergence of scale-free popularity distributions with arbitrary power-law 
exponents34; it is consistent with empirical data about how people click search engine results16 and scroll through 
social media feeds35. �is model could accurately capture aggregate behavior even if individuals followed di�erent 
selection schemes36.

Alternatively, with probability 1 − β, an item is drawn with probability proportional to its quality:
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A�er an item i has been selected at time t, we update its popularity (pi(t + 1) = pi(t) + 1) and the ranking. Two 
items have the same rank r if they have been selected the same number of times. If n item are all at the same rank 
r, then the next rank is r + n.

�e model has two parameters: β regulates the importance of popularity over quality and thus represents the 
popularity bias of the algorithm. When β = 0, choices are entirely driven by quality (no popularity bias). When 
β = 1, only popularity choices are allowed, yielding a type of Polya urn model37. �e parameter α can be thought 
of as an exploration cost. A large α implies that users are likely to consider only one or a few most popular items, 
whereas a small α allows users to explore less popular choices. In the limit α → 0, the selection no longer depends 
on popularity, yielding the uniform probability across the discrete set of N items. Another way to think about the 
parameter α is as inversely related to attention: low α means that users have su�cient attention to consider all items 
(high attention), while high α means that users have attention for only a limited number of items (low attention).
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At equilibrium, a�er a large number of selection steps T, we characterize two properties of the distribution of 
popularity =p{ }

i i
N

1 with respect to the intrinsic quality distribution =q{ }
i i

N
1. For brevity, we pose pi = pi(T) here. �e 

�rst quantity we measure is the average quality = ∑ ∑= =q p q p/i
N

i i i
N

i1 1
 and the second property τ is the faithfulness 

of the algorithm, i.e., the degree to which quality is ref lected in popularity. We quantify faithfulness using 
Kendall’s rank correlation between popularity and quality38. �e question we ask is whether it is possible to lever-
age some popularity bias to obtain a higher average quality, even at the cost of decreasing the algorithm’s 
faithfulness.

We can derive the values of both properties in the extreme cases of popularity bias. When β = 0, selections are 
made exclusively on the basis of quality and therefore one expects pi → qi as T → ∞. �e rankings by quality and 
popularity are therefore perfectly aligned, and τ = 1. In the limit of large N we can make a continuous approxima-

tion ∫ ∫→ =q q dq q dq/ 2/3
0

1 2

0

1
. When β = 1, quality never enters the picture and any permutation of the items 

is an equally likely popularity ranking, which translates into τ = 0. Also pi → 1/N and in the continuous approxi-

mation ∫→ =q q dq 1/2
0

1
.

What happens for intermediate values of popularity bias is harder to predict due to the role played by ranking, 
especially for high values of β where initial �uctuations can be strongly enhanced by the popularity-based ranking 
algorithm. Let us nevertheless try to derive q at equilibrium by discretizing q ≈ k/N for k = 1 … N:
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Using Eq. 2 we can write the �rst probability term as
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For the second term of the probability, we assume that the rank will converge to a value that depends on β. In 
the extreme β = 0, the rank of the item with quality k/N should be narrowly peaked around rk = N − k + 1, yield-
ing the top rank when k = N (maximum quality) and the bottom rank when k = 1 (lowest quality). In the extreme 
β = 1, quality plays no role, and therefore all ranks are equally probable, no matter the value of the item quality. 
For intermediate β we interpolate between these extremes, assuming that rk is uniformly distributed between two 
limits β= + − − γr N k1 ( )(1 )k

min  and β= − − − γr N k( 1)(1 )k
max . �e heuristic parameter γ captures how 

e�ectively the perfect information produced (for ranking) by quality-based choices is preserved as β increases. 
From these assumptions and Eq. 1 we obtain
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We plugged the approximations from Eqs 4 and 5 into Eq. 3 and solved numerically using γ = 4 to obtain the 
equilibrium prediction shown in Fig. 1. �e analysis suggests a non-trivial behavior of the system, with a maxi-
mum in average quality q for intermediate values of β when α is not too small and another maximum for high β 
and α.

Given the strong assumptions in our derivation and the consequent uncertainty of the solution, let us turn to 
simulations for a more reliable analysis of the model’s behavior. We vary β systematically in [0, 1] and consider 

Figure 1. Predicted average quality at equilibrium. Heatmap of average quality q as a function of α and β, based 
on numerical solution of equilibrium condition derived in the text.
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di�erent values of α between 0 and 3. We simulate 100 realizations for each parameter con�guration. In each reali-
zation we perform T = 108 selections among N = 1000 items using Eqs 1 and 2 and store the �nal popularity values.

�e dependence of the average quality q on the popularity bias β and exploration cost α is shown in Fig. 2(a,b). 
We observe that the predictions for β = 0 (q = 2/3) and β = 1 (q = 0.5) were correct. For intermediate popularity 
bias, the derived solution predicted that the optimal amount of popularity bias depends non-trivially on the 
exploration cost; however the simulation results provide a more accurate picture. When attention is abundant and 
the exploration cost is small (α < 1), popularity bias only hinders quality; the best average quality is obtained for 
β = 0. In the opposite extreme of very limited attention, when popularity-based choices are strongly focused on 
the top-ranked items (α = 3), the trend is more noisy but popularity bias tends to hinders quality; the optimal 
value of q is again attained for β = 0. �e most interesting behavior is observed at a critical regime of attention, 
when the exploration cost is around α = 1. Here, the optimal value of q is attained for an intermediate value of 
popularity bias β β= ≈ .β

ˆ qarg max ( ) 0 3. When β is smaller, the system may not be taking advantage of quality 
signals crowdsourced from other users. When β is higher, the system may be amplifying random initial �uctua-
tions in popularity.

In Fig. 2(c,d) we show the behavior of faithfulness τ as a function of α and β. We observe that τ = 1 for β = 0, 
as predicted. Popularity bias always hinders the algorithm’s faithfulness, however the e�ect is small as long as β is 
not too large. �is suggests that in the regime where popularity bias improves quality on average, there is a small 
price to be paid in terms of over-represented low-quality items and under-represented higher-quality items. In 
general, the algorithm can retain faithfulness in the presence of moderate popularity bias. Near α = 1 we observe 
a degradation in faithfulness as β grows larger, as low-quality items are wrongly picked up and become popular. 
�is explains the degradation in average quality. But in general, τ remains relatively high over a wide range of 
popularity bias values. We observe a sharp transition to the predicted value τ = 0 at β = 1, when quality no longer 
plays a role and popularity merely ampli�es random �uctuations.

For a given value of β, if α is low, the popularity bias hinders quality because it fails to enhance the signal pro-
vided by the quality-based choices, which are supported by exploration. To understand why quality is also hindered 
by the popularity bias when α takes higher values, consider the evolution of the average quality in simulations of 
the model for di�erent values of α, shown in Fig. 3. By focusing only on the top ranked items (α = 2), the system 
converges prematurely to a sub-optimal ranking, producing lower quality on average. In other words, with 

Figure 2. E�ects of popularity bias on average quality and faithfulness from model simulations. (a) Heatmap of 
average quality q as a function of α and β, showing that popularity bias can either hinder or promote average 
quality depending on exploration cost. (b) �e location of the maximum q as a function of β depends on α, here 
shown for α = 0, 1, 2. When α = 1 an intermediate amount of popularity bias is optimal. (c) Faithfulness τ of the 
algorithm as a function of α and β. (d) τ as a function of β for the same three values of α. Standard errors are 
shown in panels (b,d) and are smaller than the markers if not visible.
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insu�cient exploration the popularity bias risks enhancing initial noise rather than the quality-based signal. With 
more exploration (α = 1), q continues to grow. �e premature convergence to sub-optimal ranking caused by 
excessive popularity bias is also re�ected in the increased variance of the average quality across runs of the model 
(larger error bars). �is is consistent with the increase in variance of outcomes observed in other studies12,22.

Discussion
Cultural markets like social media and the music and fashion industry account for multi-billion dollar businesses 
with worldwide social and economic impact1. Success in these markets may strongly depend on structural or 
subjective features, like competition for limited attention2,35. �e inherent quality of cultural products is o�en 
di�cult to establish, therefore relying on measurable quantitative features like the popularity of an item is hugely 
advantageous in terms of cognitive processing and scalability.

Yet, previous literature has shown that recommending already popular choices can be detrimental to the pre-
dictability and overall quality of a cultural market12. �is le� open the question of whether there exist situations 
in which a bit of popularity bias can help high-quality items bubble up in a cultural market.

In this paper we answered this question using an extremely simpli�ed abstraction of cultural market, in which 
items are endowed with inherent quality. Our results show that optimizing the average quality of consumed items 
requires a careful tuning of quality- and popularity-based choices that depends on the focus on the most popular 
items. Popularity bias hinders average quality when users are capable of exploring many items, as well as when 
they only consider very few top items due to scarce attention. Critically, we found an intermediate regime of mild 
exploration cost in which some popularity bias is good, but too much is bad.

�e model could be extended in many directions, for example assuming a population of networked agents 
with heterogeneous parameters. However, our approach leads to very general �ndings about the e�ects of pop-
ularity bias. While we con�rmed that such a bias can distort assessments of quality, the scenario emerging from 
our analysis is richer than suggested by prior literature. First, it is possible to maintain a good correspondence 
between popularity and quality rankings of consumed items even when our reliance on popularity for our choices 
is relatively high. Second, one can leverage the wisdom of the crowd in the presence of limited attention, or let 
users make their own decisions when they are able to explore many items.

From a normative perspective, our results provide a recipe for improving the quality of content in techno-social 
cultural markets driven by engagement metrics, such as social media platforms. It is possible in these systems to 
estimate the exponent α empirically, by measuring the probability that a user engages with an item as a function of 
the item’s position in the feed. Given a statistical characterization (e.g., average or distribution) of the exploration 
cost, the bias β of the ranking algorithm could be tuned to maximize expected average quality.

�ese �ndings are important because in our information-�ooded world we increasingly rely on algorithms to 
help us make consumption choices. Platforms such as search engines, shopping sites, and mobile news feeds save 
us time but also bias our choices. �eir algorithms are a�ected by and in turn a�ect the popularity of products and 
information, and ultimately drive what we collectively consume in ways that we do not entirely comprehend. It 
has been argued, for example, that the engagement bias of social media ranking algorithms is partly responsible 
for the spread of low-quality content over high-quality material39. Evaluating such a claim is challenging, but the 
present results may lead to a better understanding of algorithmic bias.
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