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Abstract. Synchrony is claimed by psychology as a crucial parameter
of any social interaction: to give to human a feeling of natural interac-
tion, a feeling of agency [17], an agent must be able to synchronise with
this human on appropriate time [29] [11] [15] [16] [27]. In the following
experiment, we show that synchrony can be more than a state to reach
during interaction, it can be a useable cue of the human’s satisfaction
and level of engagement concerning the ongoing interaction: the better
is the interaction, the more synchronous with the agent is the human.
We built an architecture that can acquire a human partner’s level of
synchrony and use this parameter to adapt the agent behavior. This
architecture detects temporal relation [1] existing between the actions
of the agent and the actions of the human. We used this detected
level of synchrony as reinforcement for learning [6]: the more constant
the temporal relation between agent and human remains, the more
positive is the reinforcement, conversely if the temporal relation varies
above a threshold the reinforcement is negative. In a teaching task, this
architecture enables naive humans to make the agent learn left-right
associations just by the mean of intuitive interactions. The convergence
of this learning reinforced by synchrony shows that synchrony conveys
current information concerning human satisfaction and that we are
able to extract and reuse this information to adapt the agent behavior
appropriately.

Index Terms: Social interaction, intuitive social interaction, synchrony,
active-listening, reinforcement learning.

1 Introduction

It is now clear that social interaction cannot be reduced to an exchange of
explicit information. When an interaction takes place between two partners, it
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comes with many non-verbal behaviours, such as imitations, perceptual crossing,
facial expressions, and many para-verbal behaviours, such as phatics, backchan-
nels or prosody. The first studies raising this issue of the form and the role of
non-verbal and peri-verbal behaviours came from Condon et al. in 1966 and
1976 [5] [4]. On one hand, these studies have described the non-verbal and peri-
verbal behaviours cited just above, within dyads of persons engaged in discussion
together. On the other hand, these studies have suggested that there are tem-
poral correlations between the two behaviours of each dyad: micro analysis of
videotaped discussions conduced Condon to define in 1976 the notions of auto-
synchrony (synchrony between the different modalities of an individual) and
hetero-synchrony (synchrony between partners). Synchrony does not necessarily
mean perfect co-occurence but constant temporal relation: just as described by
Pikovsky et al., synchronisation can for instance be in anti-phase or with a phase
shift [21].

The form of synchronisation between partners is even now investigated, by
studying either behaviour [26] [25] [10] or cerebral activity [22] [28] [19] [20].
All these studies tend to show that when two persons interact together, they
synchronise with each other or synchrony emerges between them. Synchrony is a
dyadic parameter of the interaction between people, that means this parameter
represents and accounts for the mutual coupling between them [12].

Synchrony does not only emerges from interaction, with this status of dyadic
parameter, it can also be used by agents to modulate their interaction: it should
participate to maintain contact between participants, facilitate verbal exchange
and may also convey information. Psychological studies of dyadic interactions
between mother and infant showed that very early in life (since two months
and certainly earlier) synchrony between partners is a necessary condition to
enable interaction: the infant stops interacting and imitating her mother when
the mother stops being synchronous with her, all other parameters staying equal
[29] [11] [15] [16] [18] [14] [27]. To explain this early effect of synchrony, Gergely
and Watson postulate an innate Contingency Detection Module (CDM)[7] [8].
This detection of synchrony will enable the infant to detect the reactivity of her
mother; when her mother is contingent, the infant is able to detect relations
between her own actions and the actions she perceives from her mother: the
action of her mother become a biofeedback of the infant’s own actions. To detect
the synchrony of the other is not only to detect the reactivity of the other, it is
also to detect her/his engagement within the ongoing interaction and moreover
it is also to detect her/his agency [17]. In that way, synchrony has been shown
to be a premise of the interaction: in Nadel’s Still Face experiment [13], the
experimenter faces an autistic child which first ignores her. She then forces the
synchrony with the child by imitating him, and the child enters in interaction
with the experimenter. Child and experimenter finish taking turns and imitating
each other. In that case forced synchrony made the child with autism detect the
experimenter as a social partner.

This literature contributes to show that some of the signals created by the
social interaction, such as synchrony between partners’ behaviours, are signals
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which both enable to bootstrap, regulate and maintain social interaction and also
signals which enable to develop a sense of agency and which contain information
concerning the ongoing interaction.

How can we build a human-robot interaction which could take advantage of
the signals emerging from this interaction so as to self-regulate? And how can
we evaluate if the robot involved within this interaction does extract and use
these signals?

A dyadic parameter of the interaction such as synchrony is a global parameter
of the dyad, which makes sense only when we speak about several systems, but
which is also perceivable by each individu of the dyad. That is the interesting
point of this parameter, it carries dyadic information, concerning the quality of
the ongoing interaction, and at the same time it can be retrieved by each partner
of the interaction.

Andry et al. [1] used the rhythm of human actions on a keyboard as a
reinforcement signal for learning. They assumed that when a human is sat-
isfied with the computer answers, her/his actions are regular and will give
positive reinforcement, and conversly, a break of the rhythm will produce an
error signal. In the present paper, we also propose to learn some simple associ-
ations being only guided by an implicit reinforcement. In our case, the human
and the agent will interact, not through a keyboard and a screen, but in the
real world, through action and mutual perception: the agent will be a robot.
The reinforcement will not be given by the individual parameter of actions
rhythm (of either a human [2] or an agent [1]) but by the dyadic parameter of
synchrony, which links the behaviour of both partners and which should be
naturally modulated by their mutual engagement. The convergence of the learn-
ing reinforced by synchrony will show two things: First, that the dyadic pa-
rameters of the interaction emerging from the coupling between agents carry
information available for each individual taking part within the interaction. Sec-
ond, that these signals can be obtained and re-used by the robot and enable
it to benefit from the interaction, for instance by learning a rule linked to the
partner.

We have built a robot, ADRIANA (ADaptable Robotics for Interaction ANAl-
ysis, [23]), capable to get the information of synchrony of its interaction with a
human. We present first the principle of the experiment and of the associated
architecture. Then we present in detail the architecture, from the synchrony de-
tection to the use of this synchrony as a reinforcement signal. In section four we
present our results on live experimentations with naive human subjects: seven
naive subjects enable to improve the robot and architecture kinematics, and
then three naive subjects were presented to the fully functionning robot to test
its ability to detect and use synchrony. Finally we discuss these results which
annonce a step toward intuitive interaction between human and robot, where
human has not any knowledge of the robot functionning and only interacts with
the implicit rules of every dyad in interaction.
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2 How to Extract Relevant Cues of Ongoing Interaction
and Proove That?

The aim of this robotic architecture and of its associated experiment is dual.
On one hand the architecture should enable the robot to extract synchrony
information during an interaction. On the other hand the experiment should
prove that the extracted synchrony is relevant for social interactions, that means
that synchrony is naturally modulated by human during an interaction.

To prove that, we will use the extracted synchrony to reinforce a learning: if
the learning converges, then the synchrony we used is relevant, if the learning
does not converge, then the signal we extracted is not appropriate.

2.1 Experimental Procedure

Each naive human subject faces the robot ADRIANA. ADRIANA is equiped
with two arms with one degree of freedom and a camera (see fig.1). When the
human subject, raises or pulls down one of her arms, the robot, respectively,
raises or pulls down one of its arms, randomly the left or the right: the robot
imitates the up or down position but not the left and right.

Fig. 1. A naive human subject faces the robot, ADRIANA [23] (right picture), which
is equiped with two arms with one degree of freedom and a camera. When the human
raises or pulls down one of her arms, the robot respectively raises or pulls down one of
its arms. The subject is asked to make the robot learn to imitate “in mirror” (to move
the arm on the same side as the one moved by the human).

The instruction given to the naive subject is to “make the robot learn to
move the arm which is on the same side as the one you move (in mirror)”. The
subject does not know how the robot learns and does not know how she/he can
influence it. The only way is to try to interact with the robot. If the learning
converges in these conditions, that will prove that the cues detected by the
architecture are relevant cues of human communication: they are modulated
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by the human naturally, without having been asked to do so; these intuitive
modulations carry information concerning the ongoing interaction, they have
enable the convergence of learning. If, furthermore, these cues detected by the
architecture are the synchrony variations, that will also prove that synchrony is
a parameter naturally modulated depending on the ongoing interaction.

2.2 Architecture Principle

The idea of this architecture is to retrieve the information of synchrony between
partners and to use it to reinforce associations between left/right visual field and
left/right arms. We assume that synchrony is an indice of partner satisfaction
concerning the ongoing interaction.

Synchrony is a dyadic parameter which characterises the reciprocal engage-
ment of two partners. From the whole two partners system (the dyad), synchrony
is accessible measuring the temporal relation existing between the actions of one
partner and the ones of the other. But from the individual point of view of each
partner, this information is also accessible, by comparing the time of her/his own
action (ideally using proprioception) and the time of the successive activation
within her/his visual field, generated by answer of the other partner.

To enable ADRIANA to compare its actions to the human’s actions and to
detect synchrony, there are two ways in the architecture, one from its perception
and another from its action. If the delay between activation of the action way and
activation of the perception way remains constant, that means that human and
robot are synchronised: the interaction goes as human expects. In that case the
reinforcement of previously used associations will be positive. If the delay pre-
dicted between perception and action varies above a threeshold, that mean that
there is no synchrony between human and robot: the interaction is temporar-
ily disrupted, accounting for unsatisfied human’s expectations. In that case, the
reinforcement of previously used associations will be negative.

Finally, the convergence of learning will show that the reinforcement signal
(the synchrony extracted) is correctly built by the architecture and that the
synchrony modulated by the human interacting with the robot is an indice of
the satisfaction of human’s expectations.

3 Detailed Architecture

Figure 2 shows the full architecture, from visual detection of movement to motor
commands sent to the arms. The pathway between perception and action is
modulated by the detection of synchrony. In the remaining of this section, we
detail the different part of this architecture.

3.1 Synchrony Detection: The Delay Prediction

To detect synchrony with the interaction partner, the architecture predicts the
delay between its own actions and the detected actions of the partner. To predict
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Fig. 2. ADRIANA’s architecture. This architecture enable the robot, when it is inter-
acting with a human, to detect the social signal naturally modulated by the human,
here the synchrony, and to use this signal to reinforce a learning.

delay between action and perception we used a modified version of the archi-
tecture proposed by Andry et al. in 2001 which enables one to learn on the fly
complex temporal sequences [1]. The original architecture enables a one shot
learning of a temporal sequence of signals thanks to two formal neurons groups,
connected together by modifiable links.

The first group of neurons is a time base1: every neuron is activated by a
unique entry but each one has a different activation dynamic, from very quick

1 See the works of Grossberg and Merryl 1996, and Banquet et al 1997, for a more
neurobiologically plausible implementation of neurons with a time spectrum activity
[9] [3].
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to very slow. The input activates every neuron simultaneously, for instance at
time t0, each neuron has an activation dynamic Actk(t) which depends on the
neuron position k in the group: Actk(t) = n

k α(t − t0) (where n is the number
of neurons in the group and α a constant coefficient, see graphics of the upper
part of fig.3). As soon as this group is activated by an input, the pattern of
activations of its neurons represent the course of time since the input. It is this
pattern of activations which will be learned and which will enable prediction of
delay. To enable the architecture to predict delay between its own actions and
the actions of the other, we have added a switch between signal coming from
perceptive pathway and motor pathway. The time base is activated by the signal
coming from the motor pathway and the pattern of the time base activations is
learned when a signal coming from the perceptive pathway occurs.
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Fig. 3. Synchrony detection. This part of the architecture is dedicated to the predic-
tion of the delay between the robot’s own actions and human’s actions: i.e. synchrony
between human and robot. A first group of neurons, the time base, “measures” the
course of time as soon as the robot produces an action. Links toward a second group
of neurons, the delay prediction, have their weights modified when an action of the
human is detected. The weights store the delay measured by the time base.

The second group is the delay prediction. In our case it is a group of one
neuron as we have only one delay to predict. This neuron is connected to every
neuron of the time base group (one to all connection). Andry et al. [1] propose
a one shot learning of the delay di between two successives events evi and evi+1

of a sequence. To do so, after evi, when the next event evi+1 occurs, the pattern
of activations of the time base neurons is stored in the weights Wk of the one
to all links between the two groups: Wk(t) = Actk(t), and the time base is
reset. We have modified this one shot learning rule to enable a learning of the
mean value of the delay according to a Kohonen like learning rule: Wk(t + 1) =
Wk(t) + μ × (Actk(t + 1) − Wk(t)), where μ is the learning speed (μ = 1

3 in



How an Agent Can Detect and Use Synchrony Parameter 57

our case, if μ = 1 it becomes a one shot learning). It is necessary to predict a
mean delay since this mean delay is representative of the ongoing interaction
which takes place between human and robot: when the interaction is satisfying,
the human comes back to this “phase shift” when she/he aswers to the robot’s
actions. When the time base is activated once again, by a new motor command of
the robot, the neuron of the second group is activated depending on the learned
weight, according to the following equation: 1

n

∑n
k=1 e−

1
2δ2 (Actk−Wk)2 where δ is

a coefficient controlling the width of the Gaussian e−
1

2δ2 (x)2 (in our case δ = 0.2,
see next section). The prediction of delay is a sum of gaussians: one gaussian for
each neuron of the time base, centered on the predicted delay, when Actk = Wk.
This signal, also a gaussian centered on the predicted delay, will enable the
architecture to built a reinforcement signal (see graph in the lowest right part
of fig.3).

3.2 Reinforcement Signal: Synchrony

The prediction of the delay between action and perception is used by the archi-
tecture to compute the “level of synchrony” of the human-robot dyad. This level
of synchrony is the error between the predicted delay and the real delay: If the
predicted delay is close to the real delay, there is constant timing between both
partners of the dyad, there is synchrony within the dyad and the interaction
might be satisfactory for both partners (in our case for the human, the robot
is always engaged in the interaction). If the predicted delay is far from the real
delay, timing between partners of the dyad has varied; there is a synchrony break
within the dyad; the interaction may have been disrupted by some event (in our
case, by the robot which does not satisfy human expectations).

Synchrony between partners of an interaction should account for the quality
of the interaction. In our experiment, we use this synchrony as reinforcement
signal, assuming that the more satisfied will be the human expectation, the
more synchronous the human will be with the robot: the more predictible the
delay between robot’s actions and human’s actions will be.

To build this reinforcement signal, the robot can use two things: on one hand
it has the delay it is currently predicting, a gaussian centered on the learned
delay (see section 3.1), and on the other hand it has the real current delay,
instantaneous signal issuing from the perception of an action in the visual field
(see fig.4).

The reinforcement signal Renf is the value of the gaussian when an action
is perceived in the visual field, i.e. when a signal comes from the movement
detection. This reinforcement signal is computed at the level of the & operator
in figure 4.

This reinforcement signal which varies between 0 and 1 will then be projected
between −1 and 1 to enable positive or negative reinforcements (see the lower
graph of figure 4). The width δ of the gaussian must be chosen carefully: it
must be large enough to tolerate small variations in the synchrony between
human and robot, but also narrow enough to enable detection of synchrony
breaks associated to human subject unsatisfaction. We have chosen δ = 0.2
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Fig. 4. From synchrony to reinforcement signal. The reinforcement signal is built de-
pending on the quality of the interaction, i.e. depending if the expectations of the
human subject are satisfied or not. The more satisfied is the human, the more reg-
ular will be her/his productions after the robot actions, thus, the more accurate the
predicted delay will be. When the human’s action is detected, the current value of
the predicted delay, a gaussian centered on the predicted delay, is taken. This value is
between 0 and 1, maximum when the prediction is exact and which lower when the
real delay moves away (advanced or delayed) from the prediction.

which corresponds to a tolerance of about 0.4sec in the delay prediction, before
sending a negative reinforcement.

Finally, better is the predicted delay compared to the real delay, better is the
reinforcement signal, thus better is the reinforcement, better is the synchrony
between human and robot behaviours.

3.3 Learning Based on a Delayed Reinforcement

In order to test the relevance of this “level of synchrony” we used it as a rein-
forcement signal for the learning of associations: the relevance of this computing
will be validated if the “level of synchrony” computed by the architecture en-
ables learning to converge. The learning modulates associations between the side
of perception of the robot (left or right visual hemi-field according to the arm
moved by the human) and the side of action of the robot (left or right arm of
the robot).

The reinforcement signal (the level of synchrony) is generated by the human
(who ignores that) and we do not know a priori when this signal will vary after
an error of the robot. That raises two issues: first the reinforcement signal oc-
curs later than the trials it concerns; second the perceptions-actions associations
aimed by the reinforcement signal are not specified. The PCR (Probabilistic
Conditioning Rule) of Gaussier and Revel et al. [6,24] solve the first issue: it
enables associations between groups of formal neurons to be modified according
to a reinforcement signal, even if the reinforcement occurs later than the trials it
concerns. The second issue remains since the original PCR was built for a rein-
forcement signal aiming at a well defined set of associations: the associations used
since the previous reinforcement. By contrast, the reinforcement signal linked to
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the level of synchrony is computed at every trial and we do not know exactly
how many associations it concerns. To solve this second issue, we assume that
humans naturally make synchrony vary according to her/his satisfaction and we
assume that this synchrony modification detected by the architecture (see sec-
tion 3.2) concerns the actions performed by the robot an a time window of length
τ (τ = 3 seems a good length for this window, see section 4). We modified the
PCR so that the reinforcement signal at time t concerns the associations used
during the time window [t − τ, t].

The learning rule is a local rule, i.e. it applies to one link between an input
neuron and an output neuron and depends only on the activation of these two
neurons and on its own weight. Given a link Ii → Oj , at each time step, the
activation rate ActEi of its input Ei is updated. ActEi is the percentage of acti-
vation times during a window of τ time steps: ActEi(t+1) = τ×ActEi(t)+5×Ei(t)

τ+5
where Ei = 0 or 1.

When a reinforcement signal is produced by the synchrony detection (section
3.2), Renf �= 0, two additional variables are updated:

– First the confidence Cij in the weight of the link. It depends for one part on
the reinforcement signal (common to every link) and for another part on the
impact of this specific link on the reinforcement signal, i.e. the activation
rate ActEi of the entry of the link:

Cij(t + 1) = Cij(t) + α × Renf (t) × ActEi(t) where α = 0.5

To compute the variation of the confidence in the weight of the link,
the reinforcement signal is first projected from [0; 1] to [−1; 1] and then
multiplied by the activation rate ActEi of the entry and a coefficient α. This
variation is added to the previous confidence Cij .

– After that, the weight Wij of the link is updated depending on Cij . The con-
fidence Cij is used as a probability to maintain the weight value unchanged:
If a random draw is greater than or equal to Cij , then Wij(t+1) = 1−Wij(t)
and Cij(t + 1) = 1 − Cij(t).

Else, the weight is unchanged.
When the random draw is greater than the confidence Cij in the weight,

the weight is drastically modified (symetrically to 0.5), and thus the confi-
dence in this new weight is also modified (symetrically to 0.5).

These different parts of the architecture, when put together and correctly
parametrised, enable the robot to use the synchrony of its interaction with a
human as a reinforcement signal.

4 Results

ADRIANA equiped with two arms, a camera and the previously described ar-
chitecture, has been first parametrised on seven naive subjects and then tested
on three other naive subjects.

The first seven subjects enabled us to improve the timing of the different parts
of the architecture of the robot:
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– Our system does not modulate its rhythm of interaction in live, the arms
velocity and the speed of answers to visual stimulation, have been adjusted
along these first experiments: To enable human interaction rhythm to be
intuitive for the subject, the human needs to feel reciprocal interaction. The
reaction of the robot to human’s movements must be systematic and almost
instantaneous to be trusted to be imitation. It must also be predictible by
the human, not in its form but in the fact that particular movement of
the human will systematically lead to an answer of the robot. The human
must be sure that both she/he is influencing the robot and she/he has the
attention of the robot. Otherwise, the human is rapidly discouraged.

– The kinematics of the robot’s movement must fit the kinematics perceivable
by the robot: the human adapts the kinematics of his actions to the robot
kinematics, systematically and with no instruction. It is one facet of the
expertise of human in social interaction. For our robot, a good compromise
between speed and detection is full movements (raising or pulling down an
arm) which last around 1 second: human-robot reciprocal answers are fluid,
human actions are systematically detected by the robot, and time delay from
an action to the next (between 1 and 2.5 seconds) are also correctly predicted
by the robot.

– The kinematics of the robot, kinematics of human induced by the robot
and kinematics perceivable by the robot taken as a whole, must be what
is intuitively modulated by human when socially interacting, i.e. the inter-
individual synchrony. In our case, for actions lasting 1 second, the mean
delay of human reactions to the robot actions is 1.5sec, between 1.4sec and
1.7sec when the interaction is going well, and modified by more than 0.5sec
when perturbations such as robot’s mistakes occur (the width of gaussian
δ = 0.2 which corresponds to a tolerance of 0.4sec).

– The reinforcement signal comes around 4 seconds (equivalent to about 3
actions) after the corresponding actions of the robot: the reinforcement must
concern a time window with a length of at least 3 steps (τ = 3).

– These points contribute to make the robot’s production of action to enable
synchrony to emerge between human and robot.

The last three subjects have been presented to the whole experimental protocol
(without anymore adaptation of the robotic setup). They could interact naturally
and robustly with the robot and made the learning converge. A second task was
added due to the quick and good results of the first teaching task:

The first instruction given to the subject was to make the robot learn to
imitate “in mirror” (for an example see http://ken.prepin.free.fr/spip.php?article20,
first video “The robot which uses natural cues of social interaction. Part 1”).

Then, when the robot did not make anymore mistake (learning has converged
and the subject has the feeling of stabilised behaviour), subject have been asked
to make the robot imitate “on the opposite side”. There was no break in the
experiment, the robot had to unlearn previous association and learn new ones,
on the fly (for an example see http://ken.prepin.free.fr/spip.php?article20, second
video “The robot which uses natural cues of social interaction. Part 2”).
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The results obtained in these three experiments are similar (see fig.5 for an
example):

– Learning converged: in our three experiments, an average of 10 reinforcement
signals was necessary to enable learning to converge, 30 signals to unlearn
and relearn associations. This learning convergence was faster than learning
by chance: let N be the number of possible associations (4 in our case:
two possibilities for each of the two possible inputs), let τ be the size of
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Fig. 5. Results obtained with one subject. The first graph represents together the real
(continuous line) and predicted (dotted line) actions of the human and the associated
phase-shift between robot and human (bold line). The second curve represents the
real mistakes of the robot (according to the instructions: “make the robot imitate
in mirror”). The third curve is the reinforcement signal computed using synchrony
information: a negative reinforcement is lower than 0.5 and a positive reinforcement
is higher than 0.5. This reinforcement depends on the accuracy of the predicted delay
compared to the real one. The fourth graph is the evolution of the weight of the links
between perception and action. It enable to see if these weights stabilise and if they
are opposite (as needed). Let us notice that learning stabilises and moreover that
reinforcement signal is clearly linked to the real mistakes of the robot.
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the time window concerned by the reinforcement signal (3 in our case: the
reinforcement signal depends on the three previous detections of synchrony)
and let us assume that the reinforcement can be either positive or negative. In
the same conditions (delayed positive or negative reinforcement), a random
reinforcement would have 1

N × 1
τ × 1

2 = 1
24 chances to be correct.

– Learning converged in reasonnable time: learning converged in less than half
a minute, unlearning and relearning took 1min30sec.

– At the end of the experiment, while “debriefing”, the three subjects sponta-
neously declared to have enjoyed the experiment.

– The three subjects spontaneously declared they had the feeling of having
influenced the robot.

– The three subjects declared they were satisfied with the experiment and were
ready for a new one.

5 Discussion

This study leads to two main results.
The most important is that the information of synchrony, naturally given

by the naive user, brings relevant sense. Synchrony is not only a phenomenon
accompanying every social interaction, it is a parameter which carries informa-
tion concerning the ongoing interaction. Our results participate to show that
this dyadic parameter can be detected and used by each agent involved in the
interaction so as to get information on this interaction. In our case, synchrony
has conveid information relevant for learning showing that it was directly linked
to the satisfaction of naive human subjects’ expectations regarding the robot’s
actions.

The second result is that this architecture enables us to extract and re-use
this information. The comparison between actions of the agent and perception is
a mean to detect synchrony. The proposed experiment design makes this detec-
tion easy: the very simple robot, ADRIANA, and its basic movements lead the
human to produce action easily detected by our system, i.e. bounded in time and
extractable only by movement detection. The associated learning by a delayed
reinforcement enabled us to benefit from this synchrony detection even if we did
not known a priori its exact relevance and precision over time. This architecture
should be an inspiring way to improve HMIs (Human Machine Interfaces) by
allowing an intuitive on line learning with naive users.

These two intwinned results, support the idea that an agent’s ability to inter-
act with a human and to perceive the relevant signals of this interaction, is not
only a matter of technical complexity of its detection system. Both the agent
and its behaviours influence the way and the means used by human during in-
teraction: with a simple robot which only raises or pulls down its arms with a
specific kinematics, human will interact just raising and pulling down its arms
with similar kinematics, easily detectable by the robot. Finally, the agent’s own
productions influence its possibility of detection and perception.

To investigate synchrony more in details the idea would be to enable the archi-
tecture to modify its dynamics depending either on internal states (or motivations)
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or on the detected synchrony (with for instance synchronisation mechanisms such
as dynamical coupling [23]). On one hand, the agentmay be able to test the engage-
ment of the human: the agent can modify its production dynamics and measure the
subsequent effect of thismodificationon thehumanpartner; if thehumanstays syn-
chronous eventhough dynamics have changed, it means she/he is engaged within
the interaction, otherwise it means either she/he does not care about the interac-
tion or she/he has expectations not satisfied. On the other hand, the agent may be
able to show either its engagement or its un-satisfaction by respectively synchronis-
ing or un-synchronising with the human. Such abilities of the social agent would fit
the experimental psychology claim that social agents test the engagement of their
partner by modifying their production and controlling the reaction of the partner.

Finally, during the interactions enabled by our architecture, knowledge has
been exchanged between human and robot. But the form of this exchange con-
trasts with typical views: Here the knowledge is not directly contained in the
transmitted information as it can be when language is used or when a robot
imitates a human. Here the robot extracts information from the course of the
interaction itself: what is taken into account by the robot is not the transmitted
information but the way the interaction evolves through time. The only mean
to make this robot learn something is not to show it, to repeat it, to correct it,
the only mean to make this robot learn something is to interact with it, to be
trully engaged in interaction with it.
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