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Abstract
Visual perception is capable of pooling multiple local orientation signals into a single more accurate summary orientation.
However, there is still a lack of systematic inquiry into which summary statistics are implemented in that process. Here, the
task was to recognize in which direction, clockwise or counter-clockwise, the mean orientation of a set of randomly distributed
Gabor patches (N = 1, 2, 4, and 8) was rotated from the implicit vertical. The mean orientation discrimination accuracy did not
improve with the increase of the number N of elements in proportion to the square-root-N, as could be expected if noisy internal
representations were arithmetically averaged. The Proportion of Informative Elements (PIE), defined as the percentage of
elements having an orientation different from the vertical, also affected the discrimination precision, violating the arithmetic
averaging rules. The decrease in the orientation discrimination precision with the increase of the PIE would suggest that the
orientation pooling could be more adequately described by a quadratic or higher power mean. Thus, we parameterized the
averaging process for the power parameter of the generalized mean formula. The results indicate that different pooling rules in
different trials may apply, for example, the arithmetic mean in some and the maximal deviation rule in others. It is concluded that
pooling of orientation information is a relatively inaccurate process for which different perceptual cues and their combination
rules can be used.

Keywords Pooling orientation . Ensemble perception . Statistical averaging . Representational noise . Proportion of informative
elements . Generalizedmean

Introduction

One of the most fundamental discoveries about the human
mind was the magical number seven (Miller, 1956), later re-
duced to four (Cowan, 2015), characterizing the amount of
information that can be received, processed, and remembered.
As expected, the discovery of a mechanism that can somehow
bypass this limit was enthusiastically welcomed (Ariely,
2001; Chong & Treisman, 2003, 2005a, 2005b). A large num-
ber of studies that followed these attempts to identify mecha-
nisms capable of computing the mean values of various per-
ceptual attributes across a large number of elements were unit-
ed into a vigorously growing research field usually called
ensemble perception (Alvarez, 2011; Baek & Chong, 2020;
Bauer, 2015; Bayne & McClelland, 2019; Whitney et al.,

2021; Whitney & Leib, 2018). One of the main incentives
for the study of ensemble perception was to discover smart
perceptual mechanisms that can cope with limited information
processing capacity (cf. Baek & Chong, 2020).

A suggestion that these smart mechanisms exist were pri-
marily based on an observation that the discrimination of the
mean value of some perceptual attribute, usually size or ori-
entation, was roughly constant and changed little with the total
number N of elements. For example, it was observed that the
accuracy of the mean size discrimination remained approxi-
mately constant with the increase of the set size from 4 to 16
(Ariely, 2001, Fig. 4). Subsequent studies confirmed the ob-
servation that the accuracy of the mean size discrimination is
typically independent of the number of elements in the set
(Allik et al., 2013; Chong & Treisman, 2005b). This indepen-
dence was considered as evidence that the number of elements
does not affect the accuracy with which the mean value of a
perceptual attribute can be determined (Alvarez, 2011; Ariely,
2001; Chong & Treisman, 2005b). However, this was a mis-
take because simple statistical considerations could lead to a
conclusion that if the information from N elements is pooled
together arithmetically, the accuracy is expected to increase
proportionally with the square root of N (Allik et al., 2013;
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Fouriezos et al., 2008; Sorkin et al., 1991). Thus, a nearly
constant discrimination precision demonstrates, in fact, a sig-
nificant drop in the accuracy with which each additional ele-
ment is processed. Strictly speaking, this also means that the
pooling of information from multiple elements did not follow
the rules of simple arithmetic addition.

However, there is one important subtlety. The square-root-
N rule holds only if all N elements are noticed and processed.
It was demonstrated that deviations from the square-root-N
rule could also be explained by inattentional feature blindness
(Myczek & Simons, 2008). The observed discrimination pre-
cision of the mean value can be obtained assuming that only
two to three elements out of N are attended, and information
recorded from them is pooled together for finding their mean
size (Myczek & Simons, 2008). However, inattentional fea-
ture blindness cannot be separated from the representational
noise based on the discrimination precision alone (Allik et al.,
2013). Because these two factors have a trade-off effect on the
discrimination precision, the slope of the psychometric dis-
crimination function or any of its characteristics is an ambig-
uous indicator (Allik et al., 2013). To resolve this conundrum,
a novel method for separating the effects of inattentional fea-
ture blindness from perceptual noise was recently proposed
(Raidvee et al., 2021). This method is based on presenting
only one single informative element among “dummies” that
carry no useful information for solving a given perceptual
task. If the single informative element goes unprocessed, the
correct answer can only be given by a random guess. This
random guessing rate can be modelled using a lapse rate pa-
rameter λ, which changes the shape of the psychometric dis-
crimination function, not only its slope or standard deviation
(Raidvee et al., 2021). By evaluating this deformation of the
psychometric discrimination function it is possible to deter-
mine how often the critical element is missed independently
from the accuracy with which a perceptual attribute can be
perceptually represented. This study provided a strong en-
dorsement that inattentional feature blindness played no sig-
nificant role in the perception of the mean orientation when
stimuli were identical to the study we will present here. Even
when the maximal number of objects was N = 8, the observed
lapse rate was not noticeably different from zero (Raidvee
et al., 2021). This implies we can ignore inattentional feature
blindness (or subsampling) as a potential mechanism involved
in the pooling of local information signals, at least for the
experimental settings that were used in the current study.

Evidently, in addition to varying the total number N of
elements, other methods are needed for testing arithmetic av-
eraging. Typically, simple averaging models are fitted to ex-
perimental data, which leads to inconclusive results because
common indicators of the observer’s performance are unable
to tell different factors apart (Raidvee et al., 2021). Because
simple averaging did not explain data accurately enough, ad-
ditional factors such as under-sampling or inattentional

blindness were proposed (e.g., Allik et al., 2013; Dakin,
2001; Solomon et al., 2011). Even if the two simplest rules
– arithmetic averaging and maximal value – were found to
provide a poor fit to data, usually no alternative explanations
were proposed (e.g., Solomon, 2010). Thus, deviations from
arithmetic averaging have been acknowledged, but no feasible
alternatives have been proposed so far.

Very few studies have assessed the linear additivity in per-
ceptual pooling despite the simplicity of the testing rules. For
instance, it is not complicated to test the symmetry axiom
which states that the order of addends does not change their
sum (cf. Pascucci et al., 2021). Another axiom – associative –
states that the form of distribution of a constant sum among
addends does not change the result. For example, if the ob-
server’s task was to discriminate the mean size of four test
circles from the size of the reference circle then it was irrele-
vant whether all four units of increment or decrement relative
to the reference size were added to only one of the test circles
(4-0-0-0, where “0” indicates a “dummy” element identical to
the reference) or equally distributed among all of them (1-1-1-
1, where four units of increment/decrement are distributed
equally among all four elements) (Allik et al., 2014). Thus,
if the basic rules of arithmetic are obeyed, the precision of
discrimination is indifferent to the distribution of increments/
decrements among elements. This is exactly what happened in
the task of discriminating the mean size of four circles (Allik
et al., 2014). However, there is no guarantee that pooling
orientation information, or any other attribute, obeys the same
simple rules of addition.

Let us not forget that the arithmetic mean is only one of
many alternative averaging methods such as the geometric,
harmonic, and quadratic means, to say nothing about taking
the minimum and maximum values, which are also variants of
the summary statistics. If data do not fit arithmetic averaging
then it is possible that some other averaging scheme provides
a more adequate explanation. All these variants of averaging
can be embraced by a single formula known as the general-
ized mean (Hölder or power mean) in which aggregated
values are raised to power p and from their sum, the pth root
is taken. Let us suppose that we are interested in the pooling of
orientation information from N elements, the ith of which has
orientation Δϕi relative to some reference orientation. The
generalized mean orientation Δϕ* across N elements can be
found with this formula:

Δϕ* ¼ 1

N
∑
N

i¼1
Δϕi

p
� �1

p

where p is the power-parameter of the generalized mean. For
example, if p = 1, then the result corresponds to the arithmetic
mean; if p → 0, then this corresponds to the geometric mean,
if p = –1, then we have the harmonic mean, and if p = 2, it is
what is called the quadratic mean. One particularly interesting
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case is when p → ∞, in which case the power mean corre-
sponds to the maximal value or, in our particular case, the
maximal tilt from the reference.

There have been multiple psychological studies in which
the generalized meanwas used for parameterizing information
collected from multiple stimulus elements (e.g., Bimler et al.,
2013; Shepard, 1987; To et al., 2011). For example, before
applying multidimensional scaling (cf. Borg & Groenen,
2005), it is routine to test for something other than the
Euclidean metric that could underlie analysed judgements.
In ensemble perception, however, other alternatives to the
arithmetic averaging are seldom considered (e.g., Whitney &
Leib, 2018).

To compare different averaging algorithms, it is necessary
to have a stimulus attribute that could differentiate between
these various averaging schemes. A promising variant for
testing averaging, as mentioned above, is the distribution of
the relevant stimulus information among displayed elements.
It is possible to render some elements as “dummies” by
assigning them attribute values identical to the reference,
which make them carry no useful information based on which
orientation or any other attribute can be discriminated. The
Proportion of Informative Elements (PIE) can be defined as
a ratio of the number of elements that contain usable informa-
tion to the total number N of displayed elements. Using ele-
ments identical to the reference is not a novel approach, and
can be found in many previous studies (e.g., Allard &
Cavanagh, 2012; Hess et al., 2003; Solomon, 2010).
However, we are not aware of studies in which this stimulus
attribute was systematically used as a tool for the identification
of the averaging algorithm.

Let us assume that the task was to determine the average tilt
of four elements that were all rotated by one unit angle θ
clockwise from the reference orientation (symbolically, θ - θ
- θ - θ). For this combination, the PIE=4/4 (numerator shows
the number of informative elements and denominator corre-
sponds to the total number N of elements) signifying that all
four elements are informative. The same average tilt, however,
can be achieved when two elements are rotated by two units of
angle and two have zero orientation carrying no useful infor-
mation (2θ – 2θ – 0 – 0; PIE=2/4). Finally, we can assign the
whole amount of the usable information to only one element
(4θ – 0 – 0 – 0; PIE=1/4). Because the total amount of tilt was
held constant, the arithmetic mean value also remained un-
changed. However, this is not so for other forms of the gen-
eralizedmean. Let us consider the quadratic mean (p = 2) as an
example. The quadratic mean for these three hypothetical dis-
tributions will be different: 1, 1.41, and 2, respectively, for
distributions θ – θ – θ – θ, 2θ – 2θ – 0 – 0, and 4θ – 0 – 0
– 0. Thus, the quadratic mean increases with the decrease of
the PIE value. This implies that if the total amount of tilts is
distributed evenly among elements, the quadratic mean would
be smaller than for any uneven distributions. Consequently,

the PIE is a stimulus attribute that is helpful in testing whether
the pooling information from multiple elements is performed
in accordance with the rules of arithmetic addition/subtraction
or not.

The main goal of this study was to investigate the effects of
the number N of elements and the PIE on the accuracy with
which the mean orientation of a set of objects could be deter-
mined. If the orientation of elements is arithmetically aver-
aged, it is expected that the accuracy of discrimination in-
creases proportionally to the square-root-N while the PIE
has no effect on the mean orientation discrimination accuracy.
If these two predictions are violated, then local orientation
signals are pooled together using an algorithm that is different
from arithmetic addition and subtraction.

Methods

Stimuli and procedure

Stimuli were presented on a flat LCD monitor (60 Hz) at a
distance ensuring that one pixel of the screen would subtend
about 1 min of arc. Stimuli were generated using MATLAB
(TheMathWorks, Inc., Natick,MA, USA), the Psychophysics
Toolbox (Brainard, 1997) and CircStat Toolbox (Berens,
2009).

Each trial started with the presentation of a fixation cross
for 1 s, after which a set of sinusoidal gratings embedded in a
Gaussian envelope – Gabor’s patches or Gabors – were pre-
sented for 250 ms against a homogenous grey background
(see Fig. 1). The position of each Gabor was chosen randomly
within a circular test area with a diameter of 10.6° of visual
angle. An inhibitory radius surrounded each Gabor to avoid
spatial overlap between the elements, and guaranteed that two
Gabors were never closer than 90 pixels. Because orientation
discrimination precision decreases as a function of eccentric-
ity, the main purpose of random positioning was to equalize
stimulus elements by their average positions at least.

Participants were asked to indicate, with the corresponding
button press, whether the presented set had an average tilt to
the left (clockwise) or right (counter-clockwise) compared to
the implicit vertical orientation. Previous studies have also
used the vertical orientation as an implicit reference (cf.
Dakin, 2001). This implicit reference was used because its
efficiency was shown to be no different from using explicit
standards (Morgan et al., 2000; Nachmias, 2006).

As feedback, one of two simple tones, lower (400 Hz) or
higher (600 Hz), was played after each response to indicate its
correctness (lower tone for correct responses). The main pur-
pose of feedback was to reduce response biases and to achieve
the highest possible response accuracy.

Stimulus display consisted of N = 1, 2, 4, or 8 Gabor
patches (with phase of 0°, 2.3 cycles per degree, the value of
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the spatial constant of the Gaussian envelope function was 11,
Michelson contrast of 75%, 1° of visual angle per grating). All
Gabors’ parameters except orientation were fixed because this
was the only relevant attribute to attend. Stimuli were present-
ed in 16 experimental blocks with set size N held constant
within a block. One experimental block consisted of 560 trials
(in case of one Gabor patch) or 640 trials (in case of two, four,
and eight Gabors) and lasted around 40min (three blocks were
administered in case of one and two Gabor patches, and five
blocks in case of four and eight Gabor patches). Participants
could take self-paced breaks between the blocks. For N = 1
there can only be one PIE value, PIE = 1/1. For the set of two
Gabors two variants exist: PIE=1/2 and 2/2. For four Gabors
four PIE values were used: PIE = 1/1, 2/4, 3/4, and 4/4. The
PIE values used for eight Gabors were: PIE = 1/8, 2/8, 4/8 and
8/8. The PIE = 1/8 is particularly interesting because even if
only one of the elements is missed due to inattentional blind-
ness, it is possible that this element has all necessary informa-
tion for a correct answer. When this happens the only possi-
bility to give a correct answer is by random guessing, which is
expected to change the shape of psychometric function due to
the lapse rate λ (Raidvee et al., 2021). Because these prelim-
inary experiments demonstrated a near-zero lapse rate for PIE
= 1/8, we did not consider inattentional feature blindness as an
important factor.

It is necessary to mention that observers were gener-
ally unaware of the PIE value that was used in each
trial. Because all deviations Δϕ from the reference were
close to the detection threshold, the participants rarely
had the impression that all displayed elements had the
same tilt or that only one of them deviated significantly
from the vertical axis. Thus, there is no strong support

for explanations arguing that contrast between neighbor
elements’ orientations, or perceptual pop-out of some of
them, played any role in the pooling of orientation
information.

The range of the individual tilt values Δϕ was cho-
sen from the extreme anti-clockwise to the extreme
clockwise to guarantee that the psychometric functions
would approach zero in one of its ends and one in the
other end. To cover the whole range of tilts, eight tilt
values with an equal step were selected. The mean (or
summary) tilt value of all N Gabors was always differ-
ent from the vertical reference. For all test conditions, a
particular combination of tilt values was randomly se-
lected from a list of possible combinations until each
condition was replicated at least 100 times. To make
conditions comparable, all orientations were expressed
in terms of the mean tilt (i.e., the summary tilt from
the reference of all presented Gabors divided by the
number N of elements). Within each block, the total
number of Gabors presented was kept constant while
the PIE values were randomized.

Observers

Five adult participants – S1, S2, S3, S3, and S5 – took part in
the experiment. Two of themwere very experienced observers
and authors of this study. Three participants were not aware of
the design and purposes of this study. All participants had
normal or corrected-to-normal vision.

The experimental procedures were approved by the
Research Ethics Committee of the University of Tartu.

Fig. 1 Examples of stimuli used in this study. The number of Gabor
patches N = 1, 2, 4, and 8 increases from left to right. In the upper row
(panels a–d), all Gabors are tiltedΔϕ = 2° clockwise from the vertical. In

the bottom row (e–h), only one of N presented Gabors is tilted counter-
clockwise from the vertical
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Results

Each set of discrimination data (11 combinations of the num-
ber N of elements and the PIE) were approximated by a nor-
mal cumulative distribution function (the best fit in terms of
non-linear least squares) to find the optimal values of the mean
μ and standard deviation . For saving space, Fig. 2 illus-
trates empirical psychometric functions for three differ-
ent values of PIE = 1/1, 1/8, and 8/8, for all five ob-
servers. In the first column of panels, the discrimination
functions for a single element (PIE=1/1) are demonstrat-
ed. This is a special case because the standard deviation
( ) of the best fitting cumulative distribution function
characterizes the precision (the inverse of the represen-
tational noise) of identifying the orientation of a single
Gabor. The values of representational noise ranged from
0.58 (S4) to 1.1 (S1).

The middle column of panels corresponds to PIE=1/8,
where the orientation of a single element deviated from the
reference (vertical) orientation. The standard deviations of the
best fitting normal cumulative distribution ranged from 0.36
(S4) to 0.73 (S5). This standard deviation , however, charac-
terizes representational noise of a summary distribution of all
eight elements, not of a single element. To distinguish the
standard deviation of the psychometric discrimination func-
tion from the imprecision (representational noise) with which
orientation of each element can be registered, we use a symbol
ς (final-sigma) to characterize representational noise of
each single element (cf.; Allik et al., 2013). Only if N = 1,
the psychometric corresponds directly to the representational
noise ς. Otherwise, assuming that recorded orientations of
elements are arithmetically aggregated, theoretically expected
representational noise ςmust be √N-times larger than the stan-
dard deviation of the best fitting normal cumulative function:
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Fig. 2 Examples of empirical discrimination functions for all five observers (in rows) for three most critical stimulus conditions PIE = 1/1, 1/8, and 8/8 in
the first, second, and third column, respectively
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ς = √N. In other words, the standard deviation of the sum-
mary distribution is √N-times smaller than the standard devi-
ation of each individual component. Please notice that the best
fitting psychometric functions for PIE=1/8 have usual forms
in which the lower and upper tails are asymptotically ap-
proaching zero and one, respectively, indicating that the laps-
ing rate λ is close to zero. This is a confirmation of our previ-
ous observation that no stimulus elements were missed due to
inattentional feature blindness (cf. Raidvee et al., 2021).

This implicates that the representational noise ς of each
individual element out of eight is expected to be about √8 =
2.83 times higher than the standard deviation of the psycho-
metric discrimination function. For all observers, the calculat-
ed representational noise values ς (1.24, 1.22, 1.10, 1.02, and
2.06) were significantly higher than the respective values for
PIE = 1/1. This means that the square-root-N rule was not
obeyed. If the representational noise ς is independent of the
number N of elements then it is a sign that the recorded ori-
entations of elements are not arithmetically summed or
averaged.

The last column demonstrates the condition in which eight
Gabors had identical tilt Δϕ (PIE = 8/8). Although the arith-
metic averaging predicts no difference between PIE=1/8 and
PIE = 8/8, in empirical data the slope of the best fitting psy-
chometric function was always flatter (the standard deviation
was larger) in the latter case (i.e., in case of eight elements
having the same tilt).

This means that the orientation discrimination was less pre-
cise when all eight elements were informative rather than
when only one of them carried all relevant information.
Thus, the PIE determines the mean orientation discrimination
accuracy which clearly violates the rules of arithmetic
averaging.

Figure 3 demonstrates all calculated representational noise
values for a single element calculated from the standard devi-
ations of the best fitting psychometric discrimination func-
tion bymultiplying it with √N for all 11 combinations ofN and
PIE, and for all five observers. As in every perceptual task,
there were conspicuous individual differences. However, the
results of all five observers were similar (at least from the
perspective of testing for linear additivity in perceptual
pooling). The calculated representational noise values ς were
always higher than the respective values for N = 1 (black
symbols), which indicated a significant drop in the accuracy
with each additional element. Higher values of ς mean that
summation precision in any number of Gabors cannot induc-
tively, by arithmetic summation be predicted from data where
orientation of a single Gabor was judged.

Another invariant property characterizing all five observers
is the increase of representational noise ς accompanied by the
increase of PIE value. For clarity, a linear regression was
computed for each set of representational noise estimates for
different PIEs with the same number N of elements.

Expectedly, this relationship was obvious for eight Gabors
(N = 8), where the regression line had a positive slope. The
mentioned regularity was less clear for N = 4 and especially
for N = 2, where only two PIE values exist. Nevertheless, a
condition with eight Gabors (N = 8) clearly demonstrates that
the precision of orientation discrimination is considerably
higher (and thus the value of ς smaller) when only one of eight
elements carries relevant information (PIE = 1/8) compared to
a condition where all eight elements are tilted away from the
reference orientation. In other words, the total amount of tilt
away from the reference that was necessary for the discrimi-
nation of the mean orientation was considerably larger when
all eight elements were tilted than when only one element was
different from the reference.

Next, we looked for the generalized mean parameter p val-
ue, which could account for the departure from the flat hori-
zontal function corresponding to the arithmetic mean (p = 1).
The best fit was obtained with p = 2.2, 4.0, 2.2, 1.6, and 1.5 for
the observers S1, …, S5, respectively. Thus, values closer to
the quadratic rather than arithmetic mean are in better agree-
ment with the obtained data.

Discussion

No evidence of arithmetic averaging

Although extracting statistics from multiple elements is a cen-
tral theme in ensemble perception (e.g., Alvarez, 2011; Baek
& Chong, 2019; Bauer, 2015; Whitney & Leib, 2018), the
arithmetic averaging (or linear additivity) was not often tested
or demonstrated. In this study, we examined two predictions
of the assumption that local orientation signals are pooled
together using arithmetic averaging. First, if stochastic repre-
sentations of the individual elements’ attributes are summed
together then the discrimination performance is expected to
improve according to the square-root-N. Second, because of
the association rule of arithmetic, the discrimination perfor-
mance is expected to be independent of the proportion of
informative elements or PIE. Neither of these two predictions
was confirmed. The orientation discrimination performance
improved considerably less than by the predicted factor of
√N. Also, the orientation discrimination performance was sig-
nificantly better when only one element deviated from the
reference compared with a condition in which all elements
were tilted away from the reference orientation. Thus, there
was no evidence that the orientation information from multi-
ple elements was pooled together by following closely the
rules of arithmetic averaging.

However, it is important to remember that voluntary orien-
tation averaging was examined in this study. The observers
were instructed to report the perceived mean orientation of all
displayed elements. Involuntary averaging occurs when the
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samples are unavoidably pooled, for example, under crowding
conditions when the samples are near one another in the pe-
riphery and are difficult to report independently (Allard &
Cavanagh, 2012). It was reported that it was impossible to
determine the orientation of the central target without taking
into account the orientation of parafoveal objects that were
explicitly instructed to be ignored (Parkes et al., 2001). No
convincing proof seems to exist, however, that the involuntary
compulsory pooling of orientation information “knows” the
rules of arithmetic better than the voluntary pooling that was
studied in this paper.

An idea that a perceptual system is capable of computing
effortlessly statistical properties of an image (Ariely, 2001)
incited a hope that it could be a general ability generalizable
across many perceptual attributes (cf. Cha et al., 2021;
Whitney & Leib, 2018). For a reminder, ensemble perception
was defined as a perceptual system’s ability to extract sum-
mary statistical information from groups of visual objects
even if they were presented for a very short period (Whitney
& Leib, 2018). Although a confirmation exists that the mean
perceived size is indeed computed according to the rules of
arithmetic (Allik et al., 2014), the results of the present and
other studies demonstrate that these rules are not always ap-
plied. For example, there is robust evidence that human visual
system is essentially incapable of estimating the mean position
of even two different objects (Hess et al., 2003). These find-
ings seem to suggest that the perceptual system may be less
proficient of an “intuitive statistician” than previously

thought. This may also be a signal for an adjustment of the
previous research agenda. Instead of one general perceptual
ability, it seems more productive to talk about multiple spe-
cific mechanisms that are used for pooling information about
various visual attributes across multiple elements.

One mechanism that could potentially explain anomalies in
arithmetic averaging is differential weighting of the elements
to be added (Iakovlev & Utochkin, 2020; Kanaya et al., 2018;
Pascucci et al., 2021). For instance, it is well known that the
precision of orientation discrimination decreases towards the
periphery of the visual field (Mäkelä et al., 1993). In the same
way, if there was a single informative element among eight
elements (PIE=1/8) then we clearly observed the decrease in
the orientation discrimination precision with the distance from
the centre of the display. Unfortunately, in most other condi-
tions there were multiple informative elements, and the rela-
tionship between discrimination accuracy and spatial position
was not determined. As already mentioned, the main purpose
of random positions was equalizing the elements’ average
distance from the centre of the visual field. Even if elements
have different weights depending on their spatial positions
these weights are expected to regress towards a common av-
erage value. However, according to the proposed explanation,
no weights are needed to take into account the variable dis-
tance from the centre of the visual field. The only required
modification is to make the representational noise ς with
which the orientation of an element can be perceived variable
depending on its distance from the centre. Unfortunately,
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multiple informative elements make this dependence ambig-
uous, preventing its exact specification. Thus, we know that
the representational noise ς increases towards the periphery,
but we had no constraints allowing to specify this increase.

What rule of pooling?

Because the exact arithmetic averaging provided a poor fit to
the collected data, a question arises what rule of pooling was
used. Obviously, arithmetic averaging is not an imperative of
how information from multiple elements is pooled together.
Because of the direct relationship between the orientation dis-
crimination precision and the PIE, we were able to identify
that a quadratic or higher power mean was computed when
information from multiple elements was pooled together.
Thus, instead of the arithmetic mean, the pooling rule was
closer to squaring or even higher powers of individual mea-
sures of orientation.

One problem, however, is the reality of these non-linear
operations. Although squaring or multiplying is not an un-
known operation for the visual system (e.g., Morrone &
Burr, 1988; Rashbass, 1970), it is not easy to see the benefits
of these non-linear transformations for the pooling orientation
or size information. One possible answer is to notice that the
generalized mean characterizes average performance and not
the process of decision making in every single trial. It is pos-
sible, for instance, that different rules are applied in different
trials. Notice that if p → ∞ then the power mean is simply
corresponding to the maximal tilt value. In other words, alter-
nating the mean (p = 1) and maximum (p → ∞) decision
strategies in different trials it is possible to achieve a different
average p value between these two extremes. In other words,
the fitted value of power p > 1 may indicate that different
strategies were used in different trials. In some of the trials,
the answer was given according to the perceived tilt of the
element with the largest absolute deviation from the reference;
in other trials, however, the answer was given based on the
average tilt value. This is, of course, a speculation that can be
confirmed by developing experimental procedures that ma-
nipulate response strategies.

It is important to note that the generalized mean with p > 1
is not the only explanation to the reduction in discrimination
accuracy with the increase of proportion of informative ele-
ments – PIE. For example, it was observed that when it is
surrounded by lines of a differing orientation, a test line
changes its apparent orientation in a direction away from that
of the surrounding lines (Solomon & Morgan, 2006;Virsu &
Taskinen, 1975 ; Wenderoth & Johnstone, 1988 ;
Westheimer, 1990). Although there is no evidence that this
phenomenon, dubbed the tilt illusion, can occur between a real
test stimulus and an implicit reference, it could be a potential
mechanism extending apparent tilt away from the reference.
An assumption that a physical angle is transformed into an

enlarged perceived angle is technically enough to explain why
the tilt of a single element is perceived more accurately than
the same summary tilt split into smaller portions and distrib-
uted equally between all elements. Mathematically speaking,
consequences of the tilt illusion would give results very sim-
ilar to the generalized mean with p > 1. However, there are
multiple problems with this explanation. There are no data
showing that the perceived angle away from the implicit ver-
tical deviates significantly from its physical value. The tilt
illusion itself seems to have properties not favoring this type
of explanation. For example, the largest orientation contrast
effect occurs when the angle between a target and reference is
about 15° (Virsu & Taskinen, 1975; Wenderoth & Johnstone,
1988; Westheimer, 1990). There is no evidence that small tilt
angles used in this study are perceptually exaggerated enough
for the discrimination accuracy to decrease as the PIE value
increases. Thus, an explanation relying on the generalized
mean has an obvious advantage over the tilt illusion
explanation.

Relation to previous studies

Most previous studies on the orientation pooling – voluntary
or involuntary – used a wide range of orientations (Anderson
et al., 2007; Dakin, 2001; Dakin & Watt, 1997; Gheri &
Baldassi, 2008; Husk et al., 2012; Põder, 2012; Solomon
et al., 2016; Webb et al., 2010). A distinctive characteristic
of this study is that all orientations were in a narrow range,
extremely close to the just noticeable tilt away from the refer-
ence value. This is one of the main reasons why explanations
assuming that orientations of neighbouring stimuli can influ-
ence the perceived orientation of a given element are not re-
alistic. Nevertheless, a justified question arises how general-
izable are these results from a near threshold conditions to the
whole 180° range of orientations? For example, although not
likely, the perceptual system may be inept at pooling tiny tilts
while in a wide range of orientations, the voluntary pooling
can be better described by arithmetic averaging. Indeed, it was
found in a voluntary averaging paradigm that if a set of stimuli
had a wide range of orientations, then averaging their orienta-
tions was possible. However, if orientations were similar to
one another then observers seemed to lose their ability to
average individual orientation signals (Allard & Cavanagh,
2012). However, without additional experiments it would be
premature to conclude that the ability to average orientations
vanishes when stimulus elements have remarkably similar
orientations.

Many previous studies on combining local orientation sig-
nals were inspired by perception of textures using a large
number of elements. For example, the maximal number of
elements used by Dakin (2001) was 1,024. Baldwin et al.
(2014) displayed 841 Gabors to their participants in each trial.
It is not realistic to expect that all displayed elements can be

988 Atten Percept Psychophys (2022) 84:981–991



processed if their number becomes sufficiently large. It is
possible that in addition to inattention, rules of combining
local orientation information also change with the number of
elements. As an alternative to arithmetic averaging, it was
proposed that the perceived orientation of multielement tex-
tures is decided based on the centroid of the elements’ orien-
tation distribution (Dakin & Watt, 1997), which corresponds
to the generalized mean parameter p → 0. Following studies
indicated, however, that the mean orientation is computed
based on the arithmetic mean of a fixed fraction of information
in elements regardless of their spatial arrangement or density
(Dakin, 2001). Although the computation of the arithmetic
mean was questioned in some later studies (e.g., Bauer,
2015; Solomon, 2010), no alternative pooling algorithm was
proposed. Understandably, additional experiments are needed
to demonstrate that arithmetic averaging is indeed a pooling
mechanism for textures composed of many repetitive
elements.

Another distinction of this study was the avoidance of the
concept of external noise. Initially, the noise was defined as
the response of the perceptual system in the detection tasks
which occurs without any input signal (Barlow, 1957). This
means that a spontaneous perceptual response can be elicited
in the absence of an external signal. If we consider a tilt away
from the vertical as a signal, then elements with perfectly
vertical orientation could be used to study spontaneous activ-
ity in the absence of the visual signal that is a deviation from
the reference orientation. Indeed, even if the orientations of all
displayed elements were perfectly vertical, their perceived
orientation was incoherently scattered around the vertical,
demonstrating the presence of internal noise. Later, however,
the concept of noise was modified by an assumption that the
variance (or the standard deviation) of the feature values of the
presented stimuli is a factor which in combination with inter-
nal noise, limits the observer’s performance (e.g., Allard &
Cavanagh, 2012; Dakin, 2001; Florey et al., 2016; Florey
et al., 2017; Husk & Hess, 2013; Im & Halberda, 2013).
When the observer’s task is to detect the presence of a weak
signal, the performance is limited by a quantum fluctuation of
this signal which creates uncontrollable external noise (Rose,
1957). However, an analogy with the quantal noise or a noisy
communication channel is misleading because stimuli used
for the study of the perceived size or orientation can be deter-
mined perfectly without anything that obscures them. The size
and orientation of the displayed stimuli is always certain, cor-
responding to these parameters’ values that were specified in
the program running the experiment. Thus, there is no external
noise because these parameters can be deterministically
specified.

However, besides conceptual issues, this interpretation of
the concept of external noise is confronted with some empir-
ical difficulties. Although range or variance of the stimulus
values makes the finding of their mean value less precise

(Fouriezos et al., 2008), Allard and Cavanagh (2012) noticed
that the orientation of four identically oriented Gabors was
more difficult to perceive compared to conditions where they
had different orientations. Thus, they found that not only in-
crease but also decrease of variance in the stimulus values
deteriorates the precision with which the average tilt can be
discriminated. In this study, we also saw that when all ele-
ments had identical orientation and consequently zero vari-
ance the discrimination performance was considerably worse
than in situations where elements had a variance in their ori-
entation values. It seems confusing to call the variance of
stimulus values external noise because instead of expected
deterioration of subject’s performance the variance among
stimulus values seems to facilitate the orientation discrimina-
tion precision.

Conclusions

One of the main premises of the ensemble perception is the
visual system’s ability to compute arithmetic averages across
multiple objects for many perceptual attributes such as size,
orientation, and even facial expressions. Although the mean
size seems to be computed by following the rules of arithmetic
addition and subtraction (Allik et al., 2014), no evidence was
found in support for arithmetic averaging of orientations
across a moderate number of elements, at least not in every
single trial. Applying the concept of the generalized or power
mean it was found that orientation pooling can be more ade-
quately described by computing quadratic or higher power
means, which could be an indication that different pooling
rules are used on different trials. It was concluded that the
pooling of orientation information is a relatively inaccurate
process for which different perceptual cues and their combi-
nation rules can be used.
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