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Abstract: Running can promote public health. However, the association between running and the
built environment, especially in terms of micro street-level factors, has rarely been studied. This
study explored the influence of built environments at different scales on running in Inner London.
The 5Ds framework (density, diversity, design, destination accessibility, and distance to transit) was
used to classify the macro-scale features, and computer vision (CV) and deep learning (DL) were
used to measure the micro-scale features. We extracted the accumulated GPS running data of 40,290
sample points from Strava. The spatial autoregressive combined (SAC) model revealed the spatial
autocorrelation effect. The result showed that, for macro-scale features: (1) running occurs more
frequently on trunk, primary, secondary, and tertiary roads, cycleways, and footways, but runners
choose tracks, paths, pedestrian streets, and service streets relatively less; (2) safety, larger open space
areas, and longer street lengths promote running; (3) streets with higher accessibility might attract
runners (according to a spatial syntactic analysis); and (4) higher job density, POI entropy, canopy
density, and high levels of PM 2.5 might impede running. For micro-scale features: (1) wider roads
(especially sidewalks), more streetlights, trees, higher sky openness, and proximity to mountains and
water facilitate running; and (2) more architectural interfaces, fences, and plants with low branching
points might hinder running. The results revealed the linkages between built environments (on the
macro- and micro-scale) and running in Inner London, which can provide practical suggestions for
creating running-friendly cities.

Keywords: running activity; built environment; Strava; street view images (SVIs); deep learning;
semantic segmentation; spatial inequality; Inner London

1. Introduction

Promoting physical activity may significantly improve public health and well-being
and further contributes to the sustainability of cities and society [1–4]. Running has multiple
mental and physical benefits [5,6]. Since 1960, running has gradually gained worldwide
popularity [7]. While numerous studies have addressed which urban built environment
features contribute to walking and cycling [2,4,8,9], few have investigated how the built
environment affects running activities [5,10]. Since running is different from those physical
activities (e.g., in terms of speed, spatial scope, and sensory experience) [11], we cannot
freely assume that an environment that is attractive for walking, biking, or team sports will
be equally attractive for runners [10]. Therefore, it is necessary to better understand the
relationships between the built environment and running behavior.

There are three main gaps among the prior running studies. First, previous running
environment studies have had limitations on data sources [12]. The data collection methods
of traditional studies were mostly questionnaires [5,13], participant observation [14], and
diary interviews [15], which are time-consuming and laborious. In addition, the sample
size was rather limited, so the large-scale analyses of the running’s spatial rules were
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inadequate. In recent years, the emergence of GPS crowdsourcing tracking data provides a
new data source for running activities, which can record the behavior patterns of runners
in a large range and provide a new opportunity for the research of running patterns at the
urban scale.

Second, only a few studies have focused on the impact of limited built environment
factors (variables) on running [5,11,13] and lack comprehensive and systematic measure-
ment of the built environment [6], so some macro-scale features that may potentially affect
running may be overlooked. In the field of urban research, the 5Ds framework proposed
by Cervero et al. [9,16] has been widely recognized by researchers and professionals to
classify and measure the attributes of the built environment. It has been widely applied in
walking and cycling studies as a representation of the five aspects of the macro-scale built
environment [2,4,17,18]. The application of the 5Ds framework may be an effective way to
classify and measure the macro-scale built environment that may affect running.

Third, the micro-scale built environment features based on eye-level views have been
shown to have a significant impact on human physical activities [6,11]. However, due to
the limitations of technology, the influence of street-level elements on running activities is
rarely discussed in running environment studies. New data sources and technologies have
enabled the study of the influence of the built environment on running more deeply and
broadly. The combination of SVI data and DL technology provides new opportunities to
understand the relationship between the built environment and running at the micro-scale
by quantifying the street environment at the approximate eye level of runners [15,19].

Against this backdrop, this study explored the spatial patterns of city-wide running
activities and scrutinized the influence of building environment features at different scales
on running in Inner London using multi-source data, SVIs, and DL. We will mainly explore
the following four questions:

(1) How and which macro-scale built environment attributes based on the 5Ds framework
influence the running amount in Inner London?

(2) How and which micro-scale streetscape features based on CV influence the run-
ning amount?

(3) How do micro-scale streetscape features complement or conflict with macro-scale
built environment indexes?

(4) Does the running amount in Inner London (as geospatial data) have spatial depen-
dence effects?

To test these questions, we (1) used secondary data from the Strava Heatmap (SH) to
obtain the distribution of running (two-year accumulated GPS running tracks) in Inner
London; (2) extracted multi-source data to measure the macro-scale built environment
features based on the 5Ds framework; and (3) acquired a large number of Google Street View
images (GSVs) using DL technology (a semantic segmentation framework—Pyramid Scene
Parsing Network, PSPNet) and CV to measure the microscopic built environment features
at a level similar to a runner’s line of sight. We combined the two different scales to measure
the linkages between running and built environments comprehensively. Furthermore, we
explored the potential association between macro- and micro-scale environment features.
Finally, based on a traditional regression analysis, we established a spatial regression model
to measure the effect of spatial dependence.

The contributions of this study can be summarized as follows. First, we attempted
to use a semi-open data source, SH, to investigate runners’ route preferences and spatial
clustering effects at the city scale in Inner London. Second, our study adds to the running
literature by combining the traditional 5Ds framework with the microscopic built envi-
ronment features from runners’ sight, which allows for a comprehensive analysis of the
influence of built environments on running. Third, we explored the internal correlation
between macro-scale built environment features and micro street-level characteristics and
compared their degrees of contribution to the explanatory power of running activities,
which has not been evaluated in running studies. Finally, the effect of spatial autocorrela-



ISPRS Int. J. Geo-Inf. 2022, 11, 504 3 of 30

tion has rarely been considered in previous studies; therefore, we used the SAC model to
take spatial dependence into account.

2. Review of the Literature

Running can be seen as an interaction between the body, senses, and environment [20].
There is strong evidence that various built environment features can influence running.
For example, Bodin and Hartig [21] suggested that outdoor environments promote run-
ning by regulating the runner’s psychology. The authors of [22] found that the physical
environment had an important impact on runners’ running performance. Academics and
policymakers are becoming increasingly aware that well-designed public spaces can help
create pleasant urban environments that are attractive to runners. Both the macro- and
micro-scale built environment features had been discussed in previous running studies,
but rarely systematically classified.

2.1. Macro-Scale Built Environment and Running

In the field of urban research, a popular framework for assessing the macro-scale built
environment is the 5Ds (density, diversity, design, destination accessibility, and distance
to transit). Three dimensions called the 3Ds (density, diversity, and design) were first put
forward to express the urban environment by Cervero and Kockelman [23]. Two more
dimensions (destination accessibility and distance to transit) were later proposed as a com-
plement to form the 5Ds [9]. Ewing and Cervero [16] found it useful to use the D variables
to organize the empirical literature and provide order-of-magnitude insights. A few schol-
ars have recently attempted to apply the 3Ds or 5Ds framework to the running field. Yang
et al. [12] took the lead in using 5Ds to measure the impact of the built environment on the
strength index of running and cycling. On this basis, we used the classification dimension
of the 5Ds classical urban theory framework to separately discuss the macro-scale built
environment factors involved in previous running studies.

Density is recognized as one of the most essential and frequently used built environ-
ment variables [24]. The common measurements of density are the population density
and building density [25]. Many studies have shown a significant correlation between
population density and physical activity, but researchers differ as to how the population
density affects (promotes or hinders) running. Ettema [11] indicated that a densely popu-
lated urban area decreases the enjoyment experienced from running due to the hindrance
of public traffic. Huang et al. [6] found that running satisfaction was not related to the
population density. In terms of building density, Yang et al. [12] revealed that the residential
building density and floor area ratio have either negative or insignificant effects on running
indices in Chengdu. They explained that Chengdu is a high-density city that is experiencing
constant urban expansion, so the impact of the residential building density in Chengdu on
physical activity may differ from that observed in Western countries.

In the dimension of diversity, Troped et al. [26] argued that a higher level of the land-
use mix can promote moderate–vigorous physical activity, but Yang et al. [12] concluded
that the land-use mix has insignificant effects on the running activity of residents, which
largely contrasts with the evidence gathered from previous studies.

The design dimension has been most discussed in previous running studies. Many
studies have shown that runners prefer to be in nature and away from the hustle and bustle
of the urban environment. The authors of [21,27] found that runners prefer green environ-
ments more than urban settings due to their attractiveness and lack of association with
daily troubles. The authors of [28,29] indicated that runners tended to run inside parks and
to stay away from traffic and intersections to avoid a fragmented experience. In addition, a
safer running atmosphere was also proven to be the reason for the popularity of various
running paths in structured interviews (N = 546) that were conducted by Borgers et al. [30].
Moreover, street design characteristics, such as the traffic conditions, tree density, street
light density, terrain slope, top-down greenness, blue space density, length of the street
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segment, and the twists and turns of the path, have all been shown to affect the running
satisfaction or consistency of the running rhythm [6,31,32].

Destination accessibility was recognized as one of the most fundamental factors for
urban physical activity. This dimension was less involved in the study of running, but
in the field of walking, the spatial design network analysis (sDNA), a space syntax tool,
was often used to measure spatial connectivity [25]. The analysis of betweenness indicates
the “through-movement” possibility, which means the potential of each street unit to be
chosen for physical activity. Therefore, it can be used to predict the most easily accessed
streets [33]. Furthermore, angular distance-based accessibility values have been proven to
be well correlated with observed human–vehicle behavior distributions [34].

Distance to transit is usually measured as the shortest network distance from an origin
to a nearby transit stop [16]. Public transit use is thought to encourage more physical
activities. Huang et al. [6] found that running routes were more satisfying when they had
more public transport nodes.

In conclusion, a range of running studies have investigated the relationship between
macro-scale built environment variables and running, but few have discussed this 5Ds
framework systematically. Therefore, there is a need to measure macro-scale built environ-
ment features comprehensively and systematically and their relationships with running.

2.2. Micro-Scale Built Environment Features and Running

Micro-scale built environment features mainly refer to the elements and features that
pedestrians can directly perceive on the streets [35,36]. It can be seen from the previous
literature that some street-level microscopic built environment factors do have an impact
on running. Huang et al. [6] found that the eye-level greenness of streetscape features had
a positive impact on running satisfaction. The authors of [37] noted that different surfaces
affect the effort required (e.g., smooth pavement or grass vs. uneven pavements, muddy
paths, and holes) and may increase the probability of injury. Other street environmental
features, such as vehicles, pedestrians, cyclists, and street animals (such as unreleased
dogs), have also been found to be associated with the running experience [11,38].

However, due to the limitations of technology and measurement methods, previous
studies tend to involve only a few street-level elements. Few researchers have systemati-
cally considered the association between the microscopic built environment elements and
running activity, so the influence of other street elements on running activity is unknown.

Fortunately, SVIs, as a large-scale data source, have been used to examine visual
features from a near-human perspective that top-down data sources (e.g., aviation, satellite
data) cannot provide [6,8,39]. In addition, DL technology has become a vital tool in the
semantic segmentation of SVIs and has made continuous improvements to the accuracy
of prediction. Thus, this provides a new opportunity to examine the relationship between
the microscopic built environment in finer detail and the running behavior of a larger
area. In the research of walking or cycling, some scholars have used the emerging image
segmentation technology to measure the physical features of the built environment at the
street level and explored the impact of these microscopic street features on physical activity,
which has achieved good results [2,3,40]. However, this new measure has rarely been used
in studies of running activity. Dong et al. [32] recently investigated the impacts of the
physical streetscape and perceptions on running using Resnet (a deep residual network)
and CV. They found that the streetscape quality is an important running-influencing factor
for running in Boston. The results indicated that running has positive associations with
the pixel ratios of vegetation, sky, terrain, sidewalk, wall, fence, person, etc., while it is
negatively related to the pixel ratios of motorcycle and traffic light. Despite this, studies that
simultaneously assess the impact of macro-scale variables and micro-scale street elements
on running under a large geographic area remain little known.
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2.3. The Rise of Crowdsourced Data for Running

In recent years, there has been a boom in apps that use GPS devices (e.g., mobile
phones, fitness watches) to track users’ behavior and record personal fitness processes.
These crowdsourced data can increase the number of observations and show route pref-
erences in human movements via massive movement tracking [41]. In terms of running,
Strava is the largest platform, which includes Strava Metro and SH [42]. Strava Metro pro-
vides detailed data on running users, but only for certain partners. However, SH is freely
available to registered users and contains trillions of data points at the street level [43,44].
SH can accurately show the track points and routes of an athlete’s actual run, as well as the
cumulative number of runs on each street using color saturation, which represents the GPS
point density of the users. The higher the heat value, the greater the cumulative number of
runs conducted at that location [42].

Researchers have realized the value of SH in academic studies to measure hot spots
and routes at a large scale and to extract spatial patterns of movement. For example,
Rice et al. [45] extracted GPS track data from SH by overlaying street networks in GIS. The
method offers a promising approach to obtaining data on physical activity. In addition,
Havinga et al. [46] extracted the average “heat” intensity (the 18 m circular areas around
the midpoint of each road) from SH to represent running activity data.

Recently, Cahill and Woods [47] used the same method as Rice et al. (2019) [45] to
take computer screenshots of SH running and cycling maps using the Microsoft Snipping
Tool. They obtained a total of 24 screenshots and used GIS for the reclassification of pixel
values (as the use intensity of runners and cyclists on forest roads and hiking trails). They
proposed an innovative way to explore recreational use preferences, despite its heavy
reliance on pixelated data from SH. Dong et al. [32] also used SH screenshots to obtain the
value of the running amount on each street segment in Boston to explore route choices.
Yang et al. [12] constructed spatial regression models to analyze the relationship between
the built environment and running and cycling using SH in Chengdu, China. Since Strava
crowdsourced data have many advantages in terms of data collection, SH was used in this
study to measure the running amount.

3. Data and Methods
3.1. Study Area and Analytical Framework

London is the capital, and largest, city of the United Kingdom. The general topography
of London is relatively flat with many outdoor running trails that are suitable for regular
jogs and long runs. Furthermore, the latest mayor’s strategy—“Sport for all of us”—has
encouraged greater participation in sports and physical activities to improve health and
well-being and build links between diverse communities. All these give London a unique
running atmosphere. Our study area was Inner London (Figure 1). Inner London is the
interior part of Greater London and is surrounded by Outer London. It covers 123 square
miles and has a population of 3,536,000. It is a densely populated area of London. The
boundary of Inner London was downloaded from the Greater London Authority (GLA).

The framework is composed of four stages (Figure 2). First, we collect multi-source
datasets on a cloud server. Second, we extract the running raster value as the dependent
variable and a series of features that may influence running as independent variables in
20 m, 50 m, and 100 m buffer zones. These independent variables are divided into three
groups: macro-scale built environment characteristics (5Ds), micro-scale built environment
characteristics, and control variables. Then, we use the extracted features for correlation
analysis and use the ordinary least squares (OLS) method to explore the impacts of multiple
variables on running and the relationship between each independent variable. Finally, we
use the SAC model to test the spatial dependence and solve the bias caused by the spatial
autocorrelation effect.
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3.2. Data Collection and Variables Extraction
3.2.1. Dependent Variable: Running Amount

According to Strava’s official documentation, SH shows public activity data aggregated
over the past two years, reflecting accumulated public activity [44,48]. In Greater London,
there are 4559 run-themed clubs in total. Among these, there are 30 running clubs with
more than 10,000 members and 79 running clubs with 1000 to 10,000 members. The Weekly
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5kClub Run alone has 72,133 running members. The cumulative results of the running
trajectories of these runners over two years could reflect the local running hotspots and
the spatial preference patterns of runners to a certain extent. We wrote a Python script to
climb the high-definition thermal raster map of running from SH, in contrast to previous
studies [12,45,47] that captured image raster data using computer screens. We obtained
594 tiles (512 × 512 pixels in each picture) and assembled a complete raster image of Inner
London (Figure 3). All the tiles of the raster data that we captured were at the same map
zoom level; therefore, our method is more accurate and reliable than previous screenshot
methods. Since the visual map of the Strava platform is based on the OpenStreetMap
(OSM) street networks [47], we downloaded OSM street data and superimposed it to
extract running data using the tool “Zonal Statistics as Table” in ArcGIS Pro software
(version 2.8.6, Esri, Redlands, CA, USA). Then, we extracted and calculated the raster value
of each street to obtain the mean value.
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To more comprehensively cover the street environment of Inner London and to obtain
the geographical coordinates of GSVs, sample points were generated along each street
segment at 100 m intervals [49,50]. Finally, 48,286 sample points were obtained. The
mean raster value was regarded as the proxy of the cumulative running number (running
amount) of each sample point, and as the dependent variable for this study.

3.2.2. Macro-Scale Built Environment: 5Ds

Expanded from Cervero and Ewing, this study adjusted the 5Ds variables based on
the characteristics and data availability of the built environment in Inner London. Most of
the data were collected from the Office for National Statistics (ONS), GLA, and Transport
for London (TFL) between 2018 and 2021. Table 1 shows the sources, data description, and
processing method of all variables.

It is important to emphasize that this study used angular betweenness (BtA) as a
measure of road network accessibility. The radius is essential in sDNA analysis. The results
of the accessibility of the analysis of different radii correspond to road selectivity for travel
behavior at corresponding radii distances [25,51]. According to Strava’s annual summary
reports for 2021 and 2020 [52,53], the average running distance of Strava users worldwide
in 2021 was 6.28 km, and the average running duration was 0:38:48 min. In 2020, the
average global Strava user ran 6.3 km in 0:38:48 min. The average distance run is 800 m
per five minutes. Therefore, the two distances of 800 m and 6.3 km were selected as the
analysis radii of running in our study.
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Table 1. The data sources and extraction methods of all independent variables.

Variables Data Source Data Description and Extraction Reference

Control variables

Age groups
Pop0to17, Pop18to44, Pop45to59, Pop60to74,
Pop over75 ONS Add up the population for each age from 0 to 90+ at the London ward level Sarkar et al. [33]

Per capita income 2019 ONS The amount of money of each person at the London ward level Andersson et al. [54]

Macro-scale built environments 5Ds

Density

Population density 2020 ONS Extracted at London ward level Cervero and Kockelman [23]
Li et al. [17]

Job density 2019 ONS Extracted at London borough level Andersson et al. [54]

Building density OSM Building area divided by 20, 50, and 100 m buffer area Cervero et al. [9]
Rebecchi et al. [4]

Diversity

Street type
Trunk road, primary road, secondary
road, tertiary road, residential street,
living street, pedestrian street, cycleway,
footway, service street, track, path

OSM

Each street corresponds to a street type (0. no; 1. yes). The street networks downloaded
from OSM include a total of 20 road types. According to the definition of OSM road
classification [55], eight road types, such as bridleway, steps, unclassified, etc., were
removed [49,56]

Ito et al. [3]
Sultan et al. [56]
Li et al. [49]

POI entropy OSM Calculate Shannon–Wiener index Yang et al. [12]

Design

Design: street amenities

Open space area Planning Constraints Map Open space area divided by 20, 50, and 100 m buffer area Cervero et al. [9]
Yang et al. [12]

Canopy density Breadboard Labs and GLA
A high-resolution map (25 cm per pixel) of the tree canopy cover of London was
produced from aerial imagery using CV and DL (accuracy 94.87%). We calculated the
canopy density and extracted it to each sample point

Cervero et al. [9]
Sarkar et al. [33]

Number of intersections OSM 20, 50, and 100 m buffer zones Lee et al. [57]
Rebecchi et al. [4]

Number of traffic lights OSM 20, 50, and 100 m buffer zones Cervero et al. [9]
Number of parking lots OSM 20, 50, and 100 m buffer zones Rebecchi et al. [4]

Maximum speed OSM Extract the maximum vehicle speed of each street to each sample point Cervero et al. [9]

Street length OSM Calculate the length of each street using GIS Wang et al. [58]
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Table 1. Cont.

Variables Data Source Data Description and Extraction Reference

Design: safety

Number of crimes Metropolitan Police Service Calculated the total number of crimes (the last 24 months) in the ward-level area Cervero et al. [9]

Number of traffic accidents Department for Transport The number of traffic accidents (2020) within the 20, 50, and 100 m buffer zones of each
sample point were calculated Cervero et al. [9]

Number of fires London Fire Brigade Calculated the number of fires (the last 5 years) in each ward-level area Schuurman et al. [5]

Design: level of street pollution

Annual mean NO2 TFL The dataset (2019) includes ground-level concentrations of annual mean NO2 in µg/m3 at
a 20 m grid resolution. We extracted the annual mean concentration of each sample point

Larkin et al. [59]

Annual mean PM2.5 TFL Same as above Same as above

Street noise pollution level
Department for
Environment, Food and
Rural Affairs

The noise pollution dataset shows the annual mean noise level from roads and rails We
superimposed and extracted the values to each sample point Schuurman et al. [5]

Design: street environment attributes

Street slope
National Aeronautics and
Space Administration DEM
data

Used the “slope” tool in GIS and extracted values to each sample point (12.5m accuracy). Ito et al. [3]
Cervero and Kockelman [23]

Night-light intensity LJ1-01 remote sensing
satellite data

Superimposed the imaging data (from 19 June to 3 October 2018, 130 m resolution),
calculated the mean input radiance value of night light, and extracted it to each sample
point

Yang et al. [12]

Annual mean temperature GLA, Landsat-8 Thermal
Satellite data

Recorded London’s major daytime summer hotspots (30 m resolutions). We extracted the
temperature value to each sample point Balaban and Tunçer [60]

Destination accessibility

BtA800, BtA6300 Space syntax tool Calculated and extracted angular-distance-based accessibility values Sarkar at al. [33]
Tang at al. [25]

Distance to transit

The public transport accessibility levels
(PTALs) TFL

A precise measurement of the density of the public transport network at any location
within London (100 m accuracy). We extracted the density of the public transport network
to each point

Cervero et al. [9]
Ewing and Cervero [16]

Micro-scale built environments

Wall, building, tree, road, grass, sidewalk, earth,
plant, car, fence, signboard, awning, streetlight, van,
ashcan, railing, person, minibike, chair, sculpture,
bicycle, column, bridge, water, fountain,
windowpane, mountain, ceiling, booth, sofa, lamp,
skyscraper, lake, bulletin board, desk, pier

40,290 GSV images PSPNet semantic segmentation framework using Python script Qiu et al. [61]
Dong et al. [32]

Sky view factor (SVF) 40,290 GSV images Generate fisheye and calculate SVF values using Python script Li et al. [62]
Xia et al. [63]
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3.2.3. Micro-Scale Built Environment

We obtained pixel ratios of 37 physical features of streetscapes using SVIs and CV in
three stages (Table 1).

(1) Collection of GSVs. To obtain GSVs of the 48,286 sample points, based on the longitude
and latitude of each point, a Python script was used to download the latest GSV
panoramas from May to October [64] using the Google Street View Static API. Finally,
we collected 360◦ panorama images of 40,290 sample points along streets with a size
of 2048 × 1024 pixels.

(2) Semantic segmentation. The pixels of physical features of the panoramas were ex-
tracted using PSPNet and model training based on the ADE20K dataset, which is
tailored for semantic urban scene understanding [65]. Moreover, PSPNet could accu-
rately parse the scenes with complicated elements and has been used by many relevant
urban studies [61,66]. The prediction accuracy of PSPNet in this study was 93.4%.

However, due to the image distortion of panorama images in the upper portions and
lower portions, it is not suitable to extract the elements directly [40,67,68]. Tsai and Chang [67]
mentioned that the center of the panoramic images was less distorted. They proposed to
locate visual elements on the central portions of ±30◦ in pitch according to the vertical field
of view of the camera lens. We adopted this method in our study, as is shown in Figure 4.
The parts at approximately human eye level with a lower degree of distortion were used in
the semantic segmentation process.
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black dotted line is where we used to calculate SVF values; (e) the result of semantic segmentation.
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(3) Calculate the sky view factor. SVF is an important indicator to evaluate the openness
of streets, which reflects the architectural form and the thermal comfort of the micro-
scale street building environment along the street [63]. It can quantify the level of
enclosure of street canyons and can be calculated as the ratio of the visible sky area to
the total sky area at one point on a street (from 0 to 1), where 1 indicates an entirely
open area and 0 means a completely covered space [62]. The method developed by
Xia et al. [63] can generate fisheye (hemispherical) images to quantify street-level SVF
values based on the DL model. In this study, we wrote a Python script to estimate
the sky area using the upper part of the panoramic images [65] (Figure 5). Next, SVF
values were calculated using Equation (1), which has also been applied and proven to
be effective by Cao et al. [69].

SVF =
Areas_i
Areat_i

× 4
π

(1)

where, Areas_i refers to the sky area pixels in the image taken in the ith sample point
and Areat_i refers to the total pixels of the image taken at the ith sample point.
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3.2.4. Control Variables

The control variables include age groups and per capita income. The age groups
dataset (2020) provided the ward-level population for every age from 0 to 90+. We divided
and calculated the population into five groups (0–17, 18–44, 45–59, 60–74, and over 75).

3.3. Correlation Analysis and OLS Analysis

We first conducted a Pearson correlation analysis on all variables and dependent
variables. The variables unrelated to the running amount were eliminated (p > 0.05).
Then, we compared the relative importance of three variable groups (control variables,
macro-scale- and micro-scale built environment features) on the running amount using
OLS.

Considering the modifiable areal unit problem, which is a statistical bias that leads to
the impacts of aggregation of geographic data on the analysis results [70], the OLS models
were established at a range of 20 m, 50 m, and 100 m buffers [6,10,68], respectively, to verify
the stability of the models. Then, the buffer with the better result would be used for the
spatial model analysis.

To compare the contribution of the three variable groups to the explanatory power in
the model, especially the relationship between micro variables and macro variables, four
OLS models were generated as follows:

OLS Model1 Running amount (Y)~Control variables
OLS Model2 Running amount (Y)~Control variables + Macro-scale 5Ds
OLS Model3 Running amount (Y)~Control variables + Micro-scale
OLS Model4 Running amount (Y)~Control variables + Macro-scale 5Ds + Micro-scale

3.4. Spatial Dependence Test and the Spatial Model

Due to the existence of spatial autocorrelation, there will be deviations in OLS model
fitting [18,61,64,66]. The spatial autocorrelation effect can be tested by Moran’s I [64]. If
the Moran’s I shows a significant correlation, it indicates that the OLS model has spatial
autocorrelation. Therefore, we needed to establish a corresponding spatial model for
further analysis to ensure the accuracy of the regression results according to relevant
indicators, such as robust Lagrange multiplier (lag) and robust Lagrange multiplier (error),
in OLS [50,61]. Moran’s I tests and the construction of the spatial model were carried out in
GeoDa 1.20.

In our case, the robust Lagrange multiplier indicates the existence of both spatial lag
and error effects. Therefore, a SAC model with both a spatially lagged dependent variable
(Wy) and a spatially autocorrelated error term (Wµ) [61] was used. It was calculated
as follows:

yi = ρ
n

∑
j=1

Wijyj + βxi + µµ = λWµ+ εi (2)

where, yi is the level of running amount in point i; yj is the level of running amount in
point j; ρ is the spatial autocorrelation coefficient; wij is the spatial weight matrix; β is the
coefficient of the variables we chose; xi is the value of the variables in point i; µ is a vector
of the spatial autoregressive error term; λ is the coefficient of the spatial dependence in
error terms; εi is the error term; and n is the number of sample points in Inner London.

4. Results
4.1. Descriptive Statistics

Figure 6a shows the running amount in the OSM street networks extracted from the
SH using GIS. Figure 6b illustrates the spatial distribution of the raster value of 40,290
sample points in Inner London. The value of the running amount varies from 0 to 255, with
a mean value of 78.736 and a standard deviation of 65.165. From the perspective of the
spatial distribution of running hot spots, the areas with frequent running in Inner London
are relatively uniform at the regional level. One obvious phenomenon is the concentration
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of running tracks along the banks of the River Thames, as well as near large parks or open
spaces (e.g., Hyde Park, Regent’s Park, Battersea Park, Victoria Park, Greenwich Park,
etc.). In addition, some main streets also showed high raster values. Specifically, as is
shown in Figure 6c, positions B and G are high-frequency running areas, as they are close
to large open spaces and surrounded by greenery. F is located on the River Thames, and
the area around the river has high “heat”. C, D, E, and H are all located in residential
areas that show moderate to low levels of running. In addition, A was located near the
highway, which showed a lower running frequency. To further explore the distribution
rules and influencing factors of running, we conducted the following series of analyses.
The descriptive statistics for all variables are shown in Table A1.
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representative areas, the A–H area corresponds to a street scene, respectively.

4.2. Correlation Analysis

After the Pearson correlation analysis for all independent and dependent variables, in
the 20 m buffer zone, 13 variables showed no significant correlation (p > 0.05), namely pop
60 to 74, living street, number of parking lots, night-light intensity, and nine variables of
semantic segmentation (van, chair, bicycle, column, ceiling, sofa, lamp, bulletin board, and
desk). In the 50 m and 100 m buffer zones, the insignificant variables were the same as the
above variables except that the number of parking lots became significantly correlated with
the running amount. The irrelevant variables were removed in the subsequent analysis.
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4.3. OLS Results and the Relative Importance of Variable Groups

We standardized the independent variables using the Z-score standardization method.
By using this approach, we standardized variables with different observation scales into
the same scale to eliminate the dimensional differences caused by different units. The mean
of the newly generated variables is 0 and the standard deviation is 1, but they keep the
distribution trend of the original data.

Table 2 shows the relative importance of the macro-scale, micro-scale, and control
variable groups. In the 20 m, 50 m, and 100 m buffer zones, the ranking results of the
importance of the three variable groups were consistent, and the F statistics were all
significant. Furthermore, to avoid the multicollinearity problem of OLS models, we took a
variance inflation factor (VIF) of less than 10 as the standard [61,66]. The variables with
VIF > 10 were removed.

Table 2. The relative importance of control, macro-scale, and micro-scale variables.

OLS Diagnosis Control Variables Macro-Scale 5Ds Micro-Scale

Buffer zone - 20 m 50 m 100 m -
R2 0.014 0.366 0.372 0.374 0.146

Adjusted R2 0.013 0.365 0.372 0.373 0.146
F-statistic (sig.) 110.341 *** 748.906 *** 770.332 *** 774.241 *** 255.843 ***

Notes: p-value *** p< 0.01.

In the end, the explanatory variables that had the highest relative importance were
macro-scale built environmental variables. The adjusted R2 values of the three buffers were
0.365, 0.372, and 0.373. The micro-scale variables ranked second in importance. The control
variables’ contribution was the smallest.

Since the OLS models with a 100 m buffer showed the highest goodness of fit, we only
show the details of the OLS models with 100 m buffer in the tables. The results of OLS
models 1–4 are shown in Tables 3 and 4.

The OLS models of the three buffers all showed severe collinearity for three variables,
namely residential streets, annual mean NO2, and pixel ratios of buildings. After excluding
these three variables, the VIFs of all other variables in the final OLS models were less than
10, which proved that there was no multicollinearity problem in our models. Moreover, the
F statistics for all models were significant.

Comparing OLS models 1–4, we found that both sets of variables contribute uniquely
to the explanatory power of the baseline model (Model 1) when either macro-scale built
environment variables or micro-scale streetscape variables were added separately. However,
the streetscape variables did not seem to provide substantial improvements in terms of R2

when all three sets of variables were included in the analysis.
To further explore the reasons, we conducted a pairwise correlation matrix analysis

between macro-scale 5Ds variables and micro-scale streetscape variables to verify the corre-
lation between variables. We screened out pairwise variables with correlation coefficients
greater than 0.2 for visualization. As can be seen from Figure 7, there were moderate
or even high correlations between some variables. For example, in the SVIs variable,
SVF had a moderate correlation with building density, PTALS, and per capita income
(coefficient > 0.3), and the correlation between car and street noise was also greater than 0.3.
It is worth noting that the correlation between grass and open space area was up to 0.54. In
addition, there was a relatively strong correlation between tree, canopy density, and open
space area (0.44 and 0.48, respectively). This showed that in the micro-scale streetscape
variable, there were indeed some street view features that overlapped with the 5Ds macro
variable. This may be the reason why, when macro-scale variables or street view variables
were added separately, they had higher explanatory power, but when the three groups of
variables were combined, the R2 of the model did not improve significantly. In addition,
due to the relatively strong correlation between some variables, to prevent the collinearity
effect on the results of the OLS models, we further examined how the results changed
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when using different variable selection methods (e.g., stepwise regression, eliminating
unimportant variables, or lowering the VIF threshold again to 3). However, regardless of
the variable selection method, the relative importance of macro-scale features and street
view factors in model fitting did not change.
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Table 3. The ordinary least squares (OLS) in a 100 m buffer zone of 40,290 sample points.

Variables OLS Model 1 OLS Model 2 OLS Model 3

Coef. (Std. Dev.) β Coef. (Std. Dev.) β Coef. (Std. Dev.) β

Control variables

Age groups
Pop0to17 −12.521 *** (0.573) −0.192 −14.097 *** (0.532) −0.216 −10.833 *** (0.548) −0.166
Pop18to44 2.186 *** (0.410) 0.034 3.475 *** (0.371) 0.053 1.395 *** (0.392) 0.021
Pop45to59 7.162 *** (0.607) 0.110 5.798 *** (0.524) 0.089 5.512 *** (0.569) 0.085
Pop over75 0.520 (0.376) 0.008 0.317 (0.321) 0.005 −1.080 *** (0.353) −0.017

Per capita income 2019 −0.251 (0.397) −0.004 −6.269 *** (0.626) −0.096 −0.667 * (0.382) −0.010

Macro-scale built environments 5Ds

Density

Population density
2020 −3.016 *** (0.306) −0.046

Job density 2019 4.948 *** (0.505) 0.076
Building density −5.329 *** (0.371) −0.082



ISPRS Int. J. Geo-Inf. 2022, 11, 504 16 of 30

Table 3. Cont.

Variables OLS Model 1 OLS Model 2 OLS Model 3

Coef. (Std. Dev.) β Coef. (Std. Dev.) β Coef. (Std. Dev.) β

Diversity

Street type
Trunk road 2.842 *** (0.397) 0.044
Primary road 12.004 *** (0.348) 0.184
Secondary road 10.910 *** (0.271) 0.167
Tertiary road 13.562 *** (0.272) 0.208
Pedestrian street −0.575 * (0.323) −0.009
Cycleway 6.473 *** (0.348) 0.099
Footway −1.207 ** (0.549) −0.019
Service street −13.236 *** (0.379) −0.203
Track −3.013 *** (0.261) −0.046
Path −2.452 *** (0.289) −0.038

POI entropy 3.068 *** (0.350) 0.047

Design

Design: street amenities
Open space area 12.707 *** (0.341) 0.195
Canopy density −2.580 *** (0.308) −0.040
Number of intersections 2.878 *** (0.356) 0.044
Number of traffic lights 0.675 * (0.371) 0.010
Number of parking lots −1.401 *** (0.261) −0.021
Maximum speed −12.965 *** (0.637) −0.199
Street length 8.372 *** (0.274) 0.128

Design: safety
Number of
crimes −3.966 *** (0.357) −0.061

Number of traffic accidents 2.094 *** (0.320) 0.032
Number of fires 0.016 (0.354) 0.000

Design: level of street pollution
Annual mean
PM2.5 −0.905 ** (0.404) −0.014

Street noise pollution level 6.765 *** (0.420) 0.104
Design: street environment attributes

Street slope 0.589 ** (0.265) 0.009
Annual mean temperature −4.698 *** (0.327) −0.072

Destination accessibility

BtA800 3.708 *** (0.296) 0.057
BtA6300 5.059 *** (0.310) 0.078

Distance to transit

PTALs −2.658 *** (0.393) −0.041

Micro-scale built environments

Pixel ratios of wall 2.819 *** (0.340) 0.043
Pixel ratios of tree 15.234 *** (0.394) 0.234
Pixel ratios of road 7.727 *** (0.397) 0.119
Pixel ratios of grass 7.832 *** (0.424) 0.120
Pixel ratios of sidewalk 8.765 *** (0.401) 0.135
Pixel ratios of earth 3.914 *** (0.334) 0.060
Pixel ratios of plant −1.872 *** (0.334) −0.029
Pixel ratios of car −2.253 *** (0.432) −0.035
Pixel ratios of fence −4.431 *** (0.326) −0.068
Pixel ratios of signboard 1.839 *** (0.310) 0.028
Pixel ratios of awning 1.190 *** (0.305) 0.018
Pixel ratios of streetlight 2.363 *** (0.310) 0.036
Pixel ratios of ashcan −0.339 (0.313) −0.005
Pixel ratios of railing 2.893 *** (0.310) 0.044
Pixel ratios of person 4.597 *** (0.318) 0.071
Pixel ratios of minibike −0.039 (0.301) −0.001
Pixel ratios of sculpture −0.262 (0.305) −0.004
Pixel ratios of bridge −0.552 * (0.305) −0.008
Pixel ratios of fountain −0.011 (0.305) 0.000
Pixel ratios of windowpane 0.253 (0.303) 0.004
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Table 3. Cont.

Variables OLS Model 1 OLS Model 2 OLS Model 3

Coef. (Std. Dev.) β Coef. (Std. Dev.) β Coef. (Std. Dev.) β

Pixel ratios of mountain 0.377 (0.299) 0.006
Pixel ratios of water 8.131 *** (0.317) 0.125
Pixel ratios of booth 1.031 *** (0.300) 0.016
Pixel ratios of skyscraper 1.297 *** (0.302) 0.020
Pixel ratios of lake 0.231 (0.299) 0.004
Pixel ratios of pier 1.882 *** (0.307) 0.029
SVF 7.600 *** (0.390) 0.117

(Constant) 78.736 *** (0.322) 78.736 *** (0.255) 78.736 *** (0.298)
R2 0.014 0.386 0.155
Adjusted R2 0.013 0.385 0.155
F-statistic (sig.) 110.341 *** 701.841 *** 231.589 ***

Coef. = unstandardized coefficient; Std. Dev.= standard error. β = standardized coefficients. Significance levels:
* p < 0.1. ** p < 0.05. *** p < 0.01.

4.4. Moran’s I Test and Spatial Model Results

A local indicators of spatial association (LISA) cluster map can map the clustering
phenomenon of running hot spots. As can be seen from the LISA cluster map of the running
amount (Figure 8), running hot spots in Inner London mainly appeared along the Thames
River and in large parks or open areas, where high–high values gather. Running cold spots
(low–low values) mainly appeared in South Kensington (a) A, located in the south of Hyde
Park; Paddington (a) B, in the north of Hyde Park; Stepney (a) C, in the south of the Victoria
Park; Forest Gate (a) D, located in the east of the Olympic Park; Romford (a) E, located in
Inner London’s northeast; and other regions. These areas are often densely populated with
houses and dwellings.
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Figure 8. (a) LISA cluster map of the running amount based on 40,290 sample points, position A–E
indicates the representative area where low–low values appear; (b) the LISA significance level map;
(c) Moran’s I test of running amount, which showed a positive spatial autocorrelation.
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We performed a Moran’s I test (with 999 permutations) on residual errors in Model
4, and the spatial weight matrix W used the “rook” method. The result showed that
the Moran’s I value on OLS residuals was 0.354, p-value = 0.001 < 0.05 (Figure 9a). This
indicates a significant positive spatial autocorrelation on the OLS residuals. Moreover,
the robust Lagrange multiplier (lag) and robust Lagrange multiplier (error) were both
significant (Table 4), indicating the existence of both spatial lag and error effects. The SAC
model can combine the spatially lagged dependent variable with the spatially lagged error
term in the spatial modeling process to account for spatial interactions, so it was chosen.
Moran’s I value on the SAC model residual was −0.001, p = 0.333 >0.05 (Figure 9b), which
means that the spatial autocorrelation was not significant, and the SAC model dealt with
spatial autocorrelation well. In addition, compared with the OLS model, the Moran’s I
value of the SAC model’s residuals decreased significantly. The R2 value was also greatly
improved from 0.411 (Model 4) to 0.619 (SAC Model), so we would discuss the results
based on the SAC results.
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Figure 9. The results of Moran’s I test. (a) The spatial autocorrelation of residual error of the OLS
model (100 m buffer); (b) the counterpart of residual error of the SAC model (100 m buffer).

Table 4. The ordinary least squares results (OLS) and spatial regression results (SAC).

Variables OLS Model4 SAC Model

Coef. (Std. Dev.) β Sig. VIF Coef. (Std. Dev.) Sig.

Dependent variable
Running amount

Control variables

Age groups
Pop0to17 −13.632 *** (0.526) −0.209 0.000 4.444 0.089 (0.265) 0.737
Pop18to44 3.379 *** (0.367) 0.052 0.000 2.169 −0.247 (0.181) 0.174
Pop45to59 6.098 *** (0.517) 0.094 0.000 4.303 −0.232 (0.254) 0.361
Pop over75 0.083 (0.316) 0.001 0.792 1.608 0.418 *** (0.154) 0.007

Per capita income2019 −7.292 *** (0.622) −0.112 0.000 6.230 −0.743 ** (0.308) 0.016

Macro-scale built environments 5Ds

Density

Population density2020 −3.418 *** (0.306) −0.052 0.000 1.502 0.211 (0.157) 0.179
Job density2019 5.650 *** (0.503) 0.087 0.000 4.070 −0.968 *** (0.252) 0.000
Building density −4.645 *** (0.381) −0.071 0.000 2.336 −0.176 (0.202) 0.383
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Table 4. Cont.

Variables OLS Model4 SAC Model

Coef. (Std. Dev.) β Sig. VIF Coef. (Std. Dev.) Sig.

Diversity

Street type
Trunk road 2.885 *** (0.391) 0.044 0.000 2.456 3.426 ***(0.273) 0.000
Primary road 11.479 *** (0.342) 0.176 0.000 1.884 8.785 ***(0.245) 0.000
Secondary road 10.310 *** (0.268) 0.158 0.000 1.158 6.683 ***(0.186) 0.000
Tertiary road 12.975 *** (0.269) 0.199 0.000 1.165 8.439 ***(0.185) 0.000
Pedestrian street −2.029 *** (0.323) −0.031 0.000 1.682 −0.863 ***(0.215) 0.000
Cycleway 6.006 *** (0.344) 0.092 0.000 1.899 5.155 ***(0.232) 0.000
Footway −1.579 *** (0.541) −0.024 0.004 4.712 0.900 **(0.354) 0.011
Service street −12.418 *** (0.376) −0.191 0.000 2.274 −6.866 *** (0.254) 0.000
Track −2.875 *** (0.256) −0.044 0.000 1.054 −1.162 *** (0.177) 0.000
Path −2.422 *** (0.285) −0.037 0.000 1.303 −1.190 *** (0.193) 0.000

POI entropy 2.652 *** (0.348) 0.041 0.000 1.944 −0.536 *** (0.197) 0.007

Design

Design: street amenities
Open space area 12.391 *** (0.379) 0.190 0.000 2.309 1.698 *** (0.212) 0.000
Canopy density −2.868 *** (0.313) −0.044 0.000 1.575 −1.061 *** (0.168) 0.000
Number of intersections 2.712 *** (0.351) 0.042 0.000 1.984 0.689 *** (0.198) 0.001
Number of traffic lights 0.764 ** (0.364) 0.012 0.036 2.137 −0.417 ** (0.207) 0.044
Number of parking lots −1.249 *** (0.256) −0.019 0.000 1.053 −0.312 ** (0.146) 0.032
Maximum speed −12.174 *** (0.627) −0.187 0.000 6.323 −4.320 *** (0.405) 0.000
Street length 8.198 *** (0.271) 0.126 0.000 1.180 4.395 *** (0.176) 0.000

Design: safety
Number of crimes −4.349 *** (0.356) −0.067 0.000 2.037 −0.689 *** (0.180) 0.000
Number of traffic accidents 1.809 *** (0.315) 0.028 0.000 1.594 0.370 ** (0.181) 0.040
Number of fires −0.326 (0.350) −0.005 0.350 1.966 −1.018 *** (0.170) 0.000

Design: level of street pollution
Annual mean PM2.5 −0.555 (0.400) −0.009 0.166 2.578 −1.239 *** (0.259) 0.000
Street noise pollution level 6.027 *** (0.425) 0.092 0.000 2.908 1.239 *** (0.267) 0.000

Design: street environment attributes
Street slope 0.568 ** (0.260) 0.009 0.029 1.090 0.021 (0.169) 0.901
Annual mean temperature −4.106 *** (0.327) −0.063 0.000 1.724 0.553 *** (0.194) 0.004

Destination accessibility

BtA800 3.176 *** (0.292) 0.049 0.000 1.368 2.866 *** (0.195) 0.000
BtA6300 4.960 *** (0.303) 0.076 0.000 1.481 2.861 *** (0.214) 0.000

Distance to transit

PTALs −3.158 *** (0.390) −0.048 0.000 2.444 −0.646 *** (0.199) 0.001

Micro-scale built environments

Pixel ratios of wall −0.182 (0.293) −0.003 0.535 1.377 −1.119 *** (0.187) 0.000
Pixel ratios of tree 4.729 *** (0.381) 0.073 0.000 2.340 1.724 *** (0.242) 0.000
Pixel ratios of road 1.084 *** (0.348) 0.017 0.002 1.953 1.300 *** (0.231) 0.000
Pixel ratios of grass 0.290 (0.382) 0.004 0.448 2.352 −0.215 (0.240) 0.369
Pixel ratios of sidewalk 6.183 *** (0.343) 0.095 0.000 1.894 3.172 *** (0.229) 0.000
Pixel ratios of earth 0.646 ** (0.287) 0.010 0.024 1.325 0.205 (0.180) 0.254
Pixel ratios of plant −1.740 *** (0.287) −0.027 0.000 1.324 −0.664 *** (0.192) 0.001
Pixel ratios of car 2.374 *** (0.372) 0.036 0.000 2.221 0.507 ** (0.255) 0.047
Pixel ratios of fence −3.062 *** (0.276) −0.047 0.000 1.224 −1.264 *** (0.191) 0.000
Pixel ratios of signboard 0.428 (0.263) 0.007 0.104 1.111 0.770 *** (0.193) 0.000
Pixel ratios of awning 0.337 (0.256) 0.005 0.187 1.054 0.409 ** (0.184) 0.026
Pixel ratios of streetlight 1.699 *** (0.263) 0.026 0.000 1.112 0.505 *** (0.185) 0.006
Pixel ratios of ashcan −0.854 *** (0.265) −0.013 0.001 1.133 0.117 (0.178) 0.512
Pixel ratios of railing 0.798 *** (0.263) 0.012 0.002 1.111 0.101 (0.177) 0.570
Pixel ratios of person 2.827 *** (0.278) 0.043 0.000 1.245 0.945 *** (0.182) 0.000
Pixel ratios of minibike −0.250 (0.252) −0.004 0.321 1.024 −0.098 (0.191) 0.609
Pixel ratios of sculpture −0.005 (0.255) 0.000 0.986 1.049 −0.065 (0.177) 0.712
Pixel ratios of bridge −1.006 *** (0.257) −0.015 0.000 1.061 −0.574 *** (0.174) 0.001
Pixel ratios of fountain −0.207 (0.255) −0.003 0.417 1.045 −0.180 (0.186) 0.335
Pixel ratios of windowpane −0.081 (0.254) −0.001 0.750 1.034 −0.127 (0.192) 0.509
Pixel ratios of mountain 0.117 (0.250) 0.002 0.640 1.006 0.432 ** (0.188) 0.022
Pixel ratios of water 6.153 *** (0.267) 0.094 0.000 1.144 2.423 *** (0.178) 0.000
Pixel ratios of booth 0.364 (0.251) 0.006 0.147 1.013 0.599 *** (0.193) 0.002
Pixel ratios of skyscraper 0.715 *** (0.253) 0.011 0.005 1.028 −0.132 (0.162) 0.417
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Table 4. Cont.

Variables OLS Model4 SAC Model

Coef. (Std. Dev.) β Sig. VIF Coef. (Std. Dev.) Sig.

Pixel ratios of lake −0.055 (0.250) −0.001 0.827 1.009 0.135 (0.168) 0.420
Pixel ratios of pier 1.670 *** (0.257) 0.026 0.000 1.063 0.214 (0.184) 0.243
SVF 2.021 *** (0.363) 0.031 0.000 2.115 0.584 ** (0.232) 0.012

(Constant) 78.736 *** (0.249) 0.000 3.705 *** (0.317) 0.010
Wy 0.956 *** (0.004) 0.000
LAMBDA −0.707 *** (0.009) 0.000
R2 0.411 0.619
Adjusted R2 0.410
F-statistic (sig.) 445.783 ***
Moran’s I on residuals (z-value) 0.354 *** (119.287) −0.001(−0.430)
Robust Lagrange multiplier (lag) 111.835 ***
Robust Lagrange multiplier (error) 2694.828 ***

Coef. = unstandardized coefficient; Std. Dev.= standard error. β = standardized coefficients. Significance levels:
**p < 0.05. ***p < 0.01.

5. Discussion

In this study, we used crowdsourced GPS track run data published on the Strava
platform and other open-source datasets to reveal the spatial distribution and influencing
factors of running activities in Inner London. We used emerging GSV images and DL tech-
nology to measure the micro-scale street-level built environment features as a supplement
to the traditional 5Ds macro-scale variables. This paper discussed the specific influence
of built environment features at different scales on runners’ route preferences and the
internal relationship between macro-scale built environment factors and the micro street
view environment features.

5.1. Research Findings

The present study mainly answers four questions as follows:
Question 1: How and which macro-scale built environment attributes that are classified based

on the 5Ds framework influence the running activity in Inner London?
According to the SAC model results, we found that some macro-scale built environ-

ment features have a significant effect on the running amount.

(1) For the density dimension, population density and building density did not show a
correlation with the running amount, while job density indicated a negative relation-
ship with running. In this respect, Ettema [11] found that high density did not seem
to affect running participation. Places with a higher population and building density
were often more urbanized and closer to downtown [10]. Although high density
stimulates walking, it likely reduces the attractiveness of running because it causes
many interactions with other road users and does not allow runners to maintain their
momentum. In addition, the areas with higher job density tend to be central business
districts (CBD), office spaces, and downtown areas in Inner London. These areas tend
to be highly commercial and artificial, which may not be ideal for runners [10].

(2) For the diversity dimension, running activity occurred more frequently on trunk,
primary, secondary, and tertiary roads, cycleways, and footways. This might be
because trunk, primary, secondary, and tertiary roads tend to have strong connectivity,
complete infrastructure, and wider street space. Cycleways and footways tend to have
a more comfortable atmosphere for physical activity. On the contrary, runners are less
likely to choose tracks (often rough with unpaved surfaces, for mostly agricultural or
forestry uses), paths (for non-specific or shared use), pedestrian streets (used mainly
for pedestrians in shopping and some residential areas), and service streets (for access
roads to, or within, an industrial estate, campsite, business park, car park, alleys, etc.)
for their running activities compared to other road types (Figure 10). The possible
reasons might be that unpaved surfaces, less wide paths, and busy streets with many
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pedestrians or heavy traffic volume are proven to be the features that have negative
impacts on running satisfaction or frequency [10,11,13]. This is also in line with the
results of [71], which reported that a comfortable running surface was important for
runners and had a positive effect.
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The POI entropy also showed a negative correlation with running. Areas with a higher
POI entropy are associated with a higher degree of functional mixing; in other words,
those areas tend to be more urbanized. Previous studies have indicated that runners are
more likely to run in environments that are closer to nature and away from the downtown
core [6,10,11,21]. For example, Bodin and Hartig [21] suggested that runners indeed prefer
green running environments over urban settings and report that they are better at offering
fascination and escape from daily hassles. Additionally, the number of POIs was positively
related to the running amount in Boston [32], which might be due to the difference in
differences in scale and density between the two cities [60].

(3) For the design dimension, the factors that showed positive impacts on running and
promoted running hot spots were close to urban open spaces, relatively long street
segments, and higher safety. Many studies have provided similar results [6,10,11,27].
For instance, Shipway and Holloway [27] showed that runners preferred green, open,
and natural running environments.

The design attributes that hindered running in our study were the canopy density,
number of traffic lights and parking lots, maximum speed, number of crimes and fires, and
annual mean PM2.5. Streets with a higher canopy density might give people a feeling of
enclosure and depression, and thus might negatively affect running. Moreover, streets with
high car speeds and areas with a large number of parking lots and traffic lights tend to
have high volumes of traffic and give a perception of insecurity; thus, impeding running
activity. An area with higher fire or crime frequency could also discourage running because
of the perceived insecurity associated with these streets. Safety has been widely recognized
to have significant impacts on runnability [5,10]. Moreover, street environments with
higher levels of PM 2.5 can hinder running. According to previous studies, air pollution
might affect the respiratory system during running and lead to an uncomfortable running
experience, which can cause health problems [12,14,60].

However, our results showed that running hotspots occurred on streets with a high
number of traffic accidents and in areas with higher street noise levels. This defies common
sense, possibly because running is often attached to the road, so runners are often passively
exposed to noise and traffic insecurity. This suggests that urban designers need to consider
making running environments safer for runners in the future.

(4) For the destination accessibility dimension, in sDNA analysis with a radius of 800 m
(Figure 11a), the downtown area in the center of Inner London and some street
networks in the northeast region have good accessibility. In sDNA analysis with a
radius of 6300 m, important highways and main streets were identified to be highly
accessible (Figure 11b). The SAC results showed that both BTA800 and BTA6300
were significantly positively correlated with running, suggesting that streets with
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higher accessibility were more likely to attract runners. To our knowledge, this is
the first study to use spatial syntax to measure the association between running
activity and street accessibility. Previous studies have reported that streets with high
accessibility promote walking [33]. The results of this study indicate that streets with
high accessibility also promote running.
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(5) For the distance to transit dimension, PTALs showed a negative correlation with
running frequency; that is, runners were less likely to pass public transport service
stations in Inner London. This is contrary to previous studies, which indicated that
more public transport nodes and transportation facilities could promote running [6,32].
Inner London is a densely populated metropolis with dense and developed traffic.
Better access to public transportation could indicate intense urbanization. Therefore,
it is logical to assume that runners are more willing to stay away from heavy traffic
areas. In addition, Ettema [11] regarded running as an activity similar to recreational
(leisure) walking, and in this sense, minimizing the distance to the transportation
facilities is not the goal of recreational walking or running. Running may be more of a
pure form of exercise and physical activity, which is different from walking or cycling
that often entail transferring traffic to other destinations.

Question 2: How and which micro-scale streetscape features influence running amount?
We found that some micro-scale street features play a crucial role in influencing human

running behavior. Our results showed that hot spots for running activities were more likely
to be in areas with wider roads and, especially, wider sidewalks, more trees, higher sky
openness, more streetlights, and proximity to natural landscapes (e.g., mountains and
water). In addition, some street services (e.g., booths, awnings, and signboards) also
showed a positive effect on running. However, GSV features that hinder running were
more architectural interfaces and fences, which reflect the enclosed degree of the streets.
Previous studies have shown that people prefer to be physically active in environments
that are more open, less artificial, and more natural [5].

Notably, pixel ratios of plants showed a negative correlation with running, while trees
showed a positive correlation. In the PSPNet classification labels, plant refers to a shrub
with a low height and branch points. A large number of shrubs may obstruct a runner’s
passage or obscure their view. Moreover, a dense brush can create dark shadow areas, and
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studies have shown that dense brush areas are a potential risk for crime, which can make
runners feel depressed and unsafe [72].

However, some of our results contradict conventional wisdom. The pixel ratios of car
and person showed a positive correlation trend, which was different from previous studies.
For instance, Ettema [11] showed that the presence of too many cars and pedestrians can
become an obstacle for runners and disrupt the flow of running. This study showed the
opposite. It may be that running is more dependent on the streets, so it is difficult to avoid
the gathering of cars and pedestrians. In particular, among the 40,290 sample points, nearly
18,192 sample points were located on residential roads, which may have more pedestrians
and stopped cars on the streets (Figure 12).
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Question 3: How do micro-scale streetscape features complement or conflict with macro-scale
built environment indexes?

By comparing the variable groups, the OLS results showed that both macro-scale and
micro-scale variables showed statistical significance with the running amount. The variable
group with higher relative importance was the macro-scale variables.

Furthermore, after comparing the OLS models 1–4, we found that micro-scale factors
contributed strongly to the explanatory power of running amount, but when all three
variable groups were included, GSV variables did not seem to provide substantial im-
provements to the R2. The pairwise correlation matrix analysis showed moderate or even
high correlations between some variables. This showed that, in GSV variables, there were
indeed some street view features that overlapped with the 5Ds macro variables. As a
result, when the GSV variables and 5Ds macro variables entered the regression model at the
same time, there would be some overlap in the explanatory power of the running amount.
Our research supports that the GSV variables are a supplement to the 5Ds framework in
built environment studies. First, when there are limitations to obtaining some macro-scale
data, strongly correlated GSV variables can be considered as a substitute. Second, among
GSV variables, some street view features do not correlate with macro 5Ds factors but with
running behavior, and these features could be used as a supplement to the 5Ds framework
to measure human running. However, the premise is that care should be taken to prevent
the correlation between variables from causing multicollinearity effects on the models. No
dataset can comprehensively measure all physical activities, but the combination and com-
plement of these multi-source datasets may more comprehensively explain and measure
the unknown laws; thus, providing useful guidance for urban construction.

Question 4: Does the running amount in Inner London have spatial dependence effects?
Spatial autocorrelation causes interference in the OLS models [18,61,64,66]. To obtain

robust results, it is necessary to study the spatial effects of the model. A significant spatial
autocorrelation effect was indeed detected in the residuals of our OLS model. We solved
the problem of spatial dependence well by establishing the SAC model. In addition,
compared with the regression results of the OLS model and SAC model, although the signs
and significance of most variables remain unchanged after regression, some variables do
show deviations. Therefore, taking the spatial effect into account can help us to better
understand the spatial distribution regularities of running and make our regression results
more reliable.
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5.2. Practical Implications

Our findings enrich the literature on the built environment and human behaviors,
and provide empirical evidence for urban designers to develop a running-friendly built
environment, in turn encouraging residents to run, which can improve public health.

First of all, our study revealed that macro-scale built environment variables and
micro-scale GSV variables both have a significant effect on the running amount. Therefore,
city planners and landscape architects should not only consider the macro-scale built
environment features but also eye-level street quality. For example, planners should seek to
increase the width and length of roads (especially sidewalks), pay attention to the openness
of running routes, add plants with higher branch points rather than dense bushes that
block one’s view, and reduce enclosures or excessive artificial atmospheres.

Second, we found that there was some overlap between the GSV variables and the 5Ds
macro variables in explaining the running amount. Some GSV variables have a relatively
high correlation with macro 5Ds variables. These highly correlated GSV features are
potential substitutes for macro data (when access is limited), for example, open space and
pixel ratios of grass and trees, level of street noise, and pixel ratios of cars, etc.

Third, we found that many built environment features (e.g., open space areas, street
accessibility, street length, street safety, level of PM2.5, etc.) might promote or hinder
running behavior. Adjustments to the built environment and improvements to running
routes could benefit many people and lead to more people participating in and sticking
with running. In this respect, our study could provide some practical suggestions for a
high-density city from a runner’s point of view. Urban designers should consider these
practical factors for a better running environment.

5.3. Limitations

The following limitations need to be noted. First, running activities observed from
Strava may not be able to fully represent all residents’ running behaviors in Inner London.
In the Strava platform, demographic details were hidden to protect user anonymity, so there
is no way to know for sure how representative of all the runners in Inner London these
massive GPS tracks are. Second, running information at an individual level was missing,
such as the frequency and duration of running on an individual level. Future studies
using different methods (e.g., questionnaires and interviews) could be conducted to obtain
more detailed information of running behaviors. Third, the micro-scale built environment
features from GSVs may not necessarily be fully representative of the real scene that runners
see during exercise. For example, night vision could be captured to investigate running
behavior at night. Lastly, we found that some macro-scale built environment features were
strongly correlated with some GSV features. However, whether this relationship will differ
in other cities needs to be explored in the future. GSV features might be identified as a
good potential alternative to some of the macro-scale built environment features, providing
more detailed and robust data.

6. Conclusions

This study contributes to a more comprehensive view of the relationship between
running activity and the urban built environment of different scales. Based on the semi-
open Strava data, we explained the spatial distribution and spatial clustering effects of
running activities in Inner London. We elucidated the mechanism of the built environment
at different scales as contributors to running activity. Our study complemented the effects
of microscopic streetscape features on running activity using GSV images, CV, and DL.
Furthermore, we examined the potential relationship between these micro-scale GSV
features and the macro-scale built environment features. In addition, we analyzed the
spatial autocorrelation effect of running using SAC models.

This study found that both the macro- and micro-scale built environment features
have a significant influence on running. The micro-scale built environment features ex-
tracted from GSV images from a scale similar to human eyes can be a good supplement
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to the traditional macro-scale built environment features. Many specific macro-scale built
environment features (e.g., open space areas, street accessibility, street length, street safety,
level of street pollution, etc.) and GSV features (e.g., SVF, roads, sidewalks, trees, wall,
fence, streetlight, etc.) were found to promote or hinder running behavior.

With the expansion of population in the urban area, the results of our study could help
to cope with the rising needs of urban residents for the city of proximity. We believe that
the results will bring new inspiration to urban planning and public health studies, and can
provide practical suggestions for the creation of running-friendly cities. As a result, our
study might have potential benefits for sustainable, fair, high-quality, and healthy living by
better understanding the way the built environment affects the mobility of people from the
perspective of running.
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Appendix A

Table A1. The descriptive statistics of all variables.

Variables 20 m Buffer 50 m Buffer 100 m Buffer N

Mean (S.D.) Mean (S.D.) Mean (S.D.)

Dependent variable
Running amount 78.736 (65.165) 40,290

Control variables

Age groups
Pop0to17 3258.119 (1097.110) 40,290
Pop18to44 7345.544 (3118.943) 40,290
Pop45to59 2685.136 (624.544) 40,290
Pop60to74 1451.455 (313.130) 40,290
Pop over75 652.967 (199.145) 40,290

Per capita income 2019 35,659.353 (21754.988) 40,290

Macro-scale built environments 5Ds

Density

Population density 2020 11,064.400 (5345.130) 40,290
Job density 2019 2.172 (10.041) 40,290
Building density 0.152 (0.165) 0.188 (0.156) 0.193 (0.143) 40,290

Diversity

Street type
Trunk road (0. no; 1. yes) 1825
Primary road (0. no; 1. yes) 2172
Secondary road (0. no; 1. yes) 1141
Tertiary road (0. no; 1. yes) 2546
Residential street (0. no; 1. yes) 18,192
Living street (0. no; 1. yes) 101
Pedestrian street (0. no; 1. yes) 1032
Cycleway (0. no; 1. yes) 1411
Footway (0. no; 1. yes) 8287
Service street (0. no; 1. yes) 3023
Track (0. no; 1. yes) 85
Path (0. no; 1. yes) 475

POI entropy 0.899 (0.897) 40,290

Design

Design: street amenities

Open space area 147.831 (345.982) 977.392
(2017.663)

4148.766
(7474.492) 40,290

Canopy density 16.906 (11.340)
Number of intersections 0.141 (0.492) 0.538 (1.194) 1.754 (2.618) 40,290
Number of traffic lights 0.051 (0.313) 0.225 (0.858) 0.742 (1.831) 40,290
Number of parking lots 0.001(0.033) 0.008(0.099) 0.033(0.219) 40,290
Maximum speed 21.921 (17.978) 40,290
Street length 0.321 (0.243) 40,290

Design: safety
Number of crimes 3346.523 (3164.750) 40,290
Number of traffic accidents 0.090 (0.387) 0.339 (0.895) 1.104 (1.919) 40,290
Number of fires 632.301 (158.028) 40,290

Design: level of street pollution
Annual mean NO2 33.580 (9.184) 40,290
Annual mean PM2.5 11.658 (1.502) 40,290
Street noise pollution level 3.117(1.768) 40,290

Design: street environment attributes
Street slope 3.045 (2.377) 40,290
Night-light intensity 0.001 (0.002) 40,290
Annual mean temperature 32.675 (1.550) 40,290

Destination accessibility

BtA800 3582.961 (7723.815) 40,290
BtA6300 2,530,509.635 (7,744,852.284) 40,290

Distance to transit

PTALs 20.550 (19.088) 40,290
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Table A1. Cont.

Variables 20 m Buffer 50 m Buffer 100 m Buffer N

Mean (S.D.) Mean (S.D.) Mean (S.D.)

Micro-scale built environments

Pixel ratios of wall 0.030 (0.054) 40,290
Pixel ratios of building 0.257 (0.157) 40,290
Pixel ratios of tree 0.163 (0.125) 40,290
Pixel ratios of road 0.157 (0.071) 40,290
Pixel ratios of grass 0.022 (0.056) 40,290
Pixel ratios of sidewalk 0.078 (0.049) 40,290
Pixel ratios of earth 0.005 (0.023) 40,290
Pixel ratios of plant 0.029 (0.039) 40,290
Pixel ratios of car 0.055 (0.049) 40,290
Pixel ratios of fence 0.017 (0.028) 40,290
Pixel ratios of signboard 0.003 (0.005) 40,290
Pixel ratios of awning 0.000 (0.002) 40,290
Pixel ratios of streetlight 0.001 (0.001) 40,290
Pixel ratios of van 0.003 (0.009) 40,290
Pixel ratios of ashcan 0.002 (0.004) 40,290
Pixel ratios of railing 0.004 (0.012) 40,290
Pixel ratios of person 0.002 (0.007) 40,290
Pixel ratios of minibike 0.000 (0.002) 40,290
Pixel ratios of chair 0.000 (0.001) 40,290
Pixel ratios of sculpture 0.000 (0.000) 40,290
Pixel ratios of bicycle 0.000 (0.002) 40,290
Pixel ratios of column 0.000 (0.002) 40,290
Pixel ratios of bridge 0.000 (0.005) 40,290
Pixel ratios of fountain 0.000 (0.000) 40,290
Pixel ratios of windowpane 0.000 (0.002) 40,290
Pixel ratios of mountain 0.000 (0.001) 40,290
Pixel ratios of water 0.001 (0.009) 40,290
Pixel ratios of ceiling 0.001 (0.016) 40,290
Pixel ratios of booth 0.000 (0.000) 40,290
Pixel ratios of sofa 0.000 (0.000) 40,290
Pixel ratios of lamp 0.000 (0.000) 40,290
Pixel ratios of skyscraper 0.000 (0.001) 40,290
Pixel ratios of lake 0.000 (0.000) 40,290
Pixel ratios of bulletin board 0.000 (0.000) 40,290
Pixel ratios of desk 0.000 (0.000) 40,290
Pixel ratios of pier 0.000 (0.000) 40,290
SVF 0.642 (0.222) 40,290
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