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Abstract

Exploratory data analysis (EDA) is important, yet often overlooked in the social and

behavioral sciences. Graphical analysis of one’s data is central to EDA. A viable

method of estimating and graphing the underlying density in EDA is kernel density

estimation (KDE). A problem with using KDE involves correctly specifying the band-

width to portray an accurate representation of the density. The purpose of the present

study is to empirically evaluate how the choice of bandwidth in KDE influences re-

covery of the true density. Simulations were carried out that compared five bandwidth

selection methods [Sheather-Jones plug-in (SJDP), Normal rule of thumb (NROT), Sil-

verman’s rule of thumb (SROT), Least squares cross-validation (LSCV), and Biased

cross-validation (BCV)], using four true density shapes (Standard Normal, Positively

Skewed, Bimodal, and Skewed Bimodal), and eight sample sizes (25, 50, 75, 100, 250,

500, 1000, 2000). Results indicated that overall SJDP performed best. However, this

was specifically true for samples between 250 and 2,000. For smaller samples (N =

25 to 100), SROT performed best. Thus, either the SJDP or SROT is recommended

depending on the sample size.
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Chapter 1

Introduction and Background

1.1 Introduction

Exploratory data analysis (EDA) is important, yet often overlooked in the social and behavioral

sciences. The quality of the statistical conclusions depends on the accuracy of the data used in

the analyses; in other words, “garbage in garbage out” (Kline, 2008). EDA assists with hypothesis

testing by revealing unexpected or misleading patterns in the data (Behrens, 1997). Unfortunately,

many psychologists do not utilize EDA in their research.

Central to EDA is graphics, which researchers use to diagnose potential issues in the data

and observe trends that can be hidden by summary statistics. When scientists want to analyze

and graph the underlying distribution of data, either parametric or non-parametric methods can be

employed. A parametric approach assumes that the random sample comes from a known family of

distributions such as the Normal, whereas, a nonparametric approach makes no assumption about

the distribution underlying the random sample. In practice, a nonparametric approach is preferable

because the underlying density is unknown (Mugdadi & Jeter, 2010).

The simplest and most well known nonparametric density estimation technique is the his-

togram. Histograms are commonly used to illustrate underlying densities due to their ease of

implementation and prominence. However, according to Silverman (1986), histograms suffer from
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two major problems. First, histograms do not produce a smooth curve of the underlying data. This

can cause problems with visual representation of the underlying density as well as computational

issues for advanced analyses. Second, data within histograms depend on the endpoints, which can

cause a loss of information. For example, it is possible that a point within a specified bin could be

closer to points in the adjacent bin versus the bin of origin. An approach that alleviates these two

issues is kernel density estimation (Silverman, 1986; Wand & Jones, 1995).

Kernel density estimation (KDE) uses local averaging to create a smooth curve from a sample

of observations. The averaging occurs on the center of each point x within a specified neighborhood

of points close to x. The closer the points are to x the more weight they are assigned and the higher

the density at x (Wilcox, 2001). Although KDE estimates are not frequently reported in social

science research, they have great utility as a tool for identifying outliers and unexpected patterns in

the data not apparent from summary statistics (Behrens, 1997; Marmolejo-Ramos & Matsunaga,

2009). For example, Wilcox (2004; 2006) showed how KDE could be used to graphically depict

effect sizes between groups and how using KDE can assist in finding group differences hidden by

measures of central tendency. Akiskal and Benazzi (2006) used KDE in conjunction with other

measures to corroborate their conclusions that major depressive disorder and bipolar II disorder are

not distinct but lie on a continuum. Additionally, Osberg and Smeeding (2006) mentioned that the

value of KDE lies in presenting a picture that conveys more information than summary statistics.

There are two issues, however, that practitioners must be aware of when utilizing KDE. First,

it is necessary to specify a kernel function to estimate the density. There are several common

types of kernel estimators used in practice such as Normal, Epanechnikov, biweight, triweight,

triangular, and uniform (Scott, 1992). Table 1.1 lists the equations for each kernel. There is no

consensus about what type of kernel is best, but several authors note that the choice of the kernel

is not particularly important because there is a trivial loss of efficiency in picking one kernel over

the other (Scott, 1992; Silverman, 1986; Wand & Jones, 1995). In the present study the Normal

kernel will be used to aid in tractability of the calculations of the discrepancy measure.

The second issue involves selecting the bandwidth or smoothing parameter. There are two

2



Table 1.1: Some Kernels and their Equations

Kernel Normal Uniform Epanechnikov Biweight Triweight Triangle

K(t) (2π)−1/2e
−
(

t2

2

)

1
2

3
4

(

1− t2
)

15
16

(

1− t2
)2 35

32

(

1− t2
)3

1−|t|
Note. For all kernels |t| ≤ 1, 0 otherwise.

commonly used methods of choosing a smoothing parameter in practice, visually and automati-

cally from the data. Visually selecting a bandwidth involves trial and error. This method can be

very effective in determining the shape of the underlying distribution but is flawed. A trial and

error approach can be time consuming and lacks objectivity (Wand & Jones, 1995). For many den-

sity estimation problems in the social and behavioral sciences, visually selecting the bandwidth

would not be recommended. Automatic bandwidth selection methods use the data to generate

a suitable bandwidth automatically. The goal of data driven bandwidth selection is to alleviate

the subjectivity of visually selecting a bandwidth and quickly and accurately select an optimal

smoothing parameter. This has been researched extensively in mathematical statistics (Bowman &

Azzalini, 1997; Cao et al., 1994; Devroye, 1997; Jones et al., 1996; Park & Marron, 1990; Scott,

1992; Silverman, 1986; Scott & Terrell, 1987; Sheather, 1992; Sheather & Jones, 1991; Wand &

Jones, 1995). However, very little research involving the impact of bandwidth selection methods

on graphical illustrations exists in the social and behavioral sciences literature. The next sections

describes KDE and common bandwidth selection algorithms in more detail.

1.2 Background on Kernel Density Estimation

In KDE it is assumed we are given a sample of n identically and independently distributed (iid)

observations X1,X2, . . . ,Xn from which a density will be estimated. Let f (x) be the true probability

density function (PDF) and f̂ (x;h) be the estimated PDF. The kernel density estimate of f (x) is

f̂ (x;h) = n−1h−1
n

∑
i=1

K

(

x−Xi

h

)

, (1.1)
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where K is the kernel function that satisfies
´

K(y)dy= 1,
´

yK(y)dy= 0, and 0<
´

y2K(y)dy<∞,

all odd moments are zero ,and h is the bandwidth or smoothing parameter (Silverman, 1986; Wand

& Jones, 1995). The
´

y2K(y)dy function is denoted by µ2 which indicates the second moment of

a PDF. When µ2 > 0 then the kernel is said to be of order two. The unsigned integral symbol
´

is

taken to be over the real line unless otherwise noted. A more compact way to express Equation 1.1

is by letting u = x−Xi and Kh(u) = h−1K(u/h):

f̂ (x;h) = n−1
n

∑
i=1

Kh(ui). (1.2)

To ensure that f̂ (x;h) is a proper PDF, the kernel K should be chosen to be a unimodal PDF that

is symmetric about zero (Mugdadi & Jeter, 2010; Scott, 1992; Silverman, 1986; Wand & Jones,

1995). If the kernel is not chosen in this fashion and/or we let µ2 = 0 and µ4 > 0 then µ4 is the first

non-zero even order which is known as a higher-order kernel but is not a proper PDF (see Scott,

1992, pp. 110-114 and Wand & Jones, 1995, pp. 32-33 for details). There are reasons for using

higher-order kernels but they are not the focus of this paper and in most practical applications the

sample sizes are not feasible to notice a difference (Wand & Jones, 1995, p. 34). For the present

study the Normal kernel was chosen for K, defined as

K(y) = (2π)−
1
2 exp

(

−
y2

2

)

. (1.3)

1.3 Kernel Density Error Criteria

Suitable error criteria must be evaluated to examine the performance of various bandwidth selec-

tion methods. There are multiple error criteria that could be used such as mean integrated square

error (MISE), mean integrated absolute error (MIAE), mean uniform absolute error (MUAE), and

mean Hellinger distance (MHD) (Cao et al., 1994; Mugdadi & Jeter, 2010; Wand & Jones, 1995).

Most studies, however, have analyzed MISE because it is substantially easier to work with (Jones

et al., 1996; Marron & Wand, 1992; Mugdadi & Jeter, 2010; Park & Marron, 1990; Scott & Ter-
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rell, 1987; Sheather & Jones, 1991). Additionally, Marron and Wand (1992) identified closed form

expressions for the exact MISE of Normal mixture densities with a Normal kernel. For these rea-

sons, the present study used the MISE for the error criterion in evaluating bandwidth selection

performance.

A discrepancy measure between f (x) and f̂ (x;h) at a specific point is the mean squared error

(MSE). The MSE can be expressed as

MSEx f̂ (x;h) = E[ f̂ (x;h)− f (x)]2, (1.4)

which can be stated in terms of the squared bias and variance as

E[ f̂ (x;h)− f (x)]2 = E[( f̂ (x;h)−µ1 +µ1 − f (x))2]

= E[(̂ f (x;h)− f (x))2]+2E[( f̂ (x;h)−µ1)(µ1 − f (x))]+E[(µ1 − f (x))2]

= [µ1 − f (x)]2 +Var[ f̂ (x;h)]

= {Bias[ f̂ (x;h)]}2 +Var[ f̂ (x;h)], (1.5)

where µ1 = E[ f̂ (x;h)] (here µ1 indicates the mean and not the second moment of the distribution

as mentioned previously) (Wand & Jones, 1995, p. 14). Since Equation 1.5 only calculates the dis-

crepancy at a single point, a loss function is needed to assess the error over the real line. Taking the

integral of Equation 1.5 over the real line gives the MISE, which is an average global discrepancy

criterion. The MISE is given by

MISE f̂ (x;h) = E[

ˆ

{ f̂ (x;h)− f (x)}2dx], (1.6)

which by Fubini’s Theorem (see Colley, 2011 pp. 319-320) is equivalent to

MISE f̂ (x;h) =

ˆ

{E[ f̂ (x;h)− f (x)]}2dx+

ˆ

Var[ f̂ (x;h)]dx. (1.7)

5



Taking the expectation of Equation 1.2

E[ f̂ (x;h)] = E[n−1
n

∑
i=1

Kh(x−Xi)]

= n−1nE[Kh(x−X)]

= E[Kh(x−X)],

using the fact that E[g(x)] =
´

g(x) f (x)dx, and the definition of convolution f ∗ g =
´

f (x −

y)g(y)dy,

E[Kh(x−X)] = Kh ∗g

=

ˆ

Kh(x− y)g(y)dy (1.8)

the bias can be written as (Kh ∗ f )(x)− f (x) and the variance {(Kh ∗ f )2(x)}+(Kh ∗ f )2(x)} giving

the MISE as

MISE f̂ (x;h) = n−1

ˆ

{(K2
h ∗ f )(x)− (Kh ∗ f )2(x)}dx+

ˆ

{(Kh ∗ f )(x)− f (x)}2dx. (1.9)

After some manipulation (see Jeter, 2005, pp. 6-7 and Wand & Jones, 1995, pp. 14-16) the MISE

can be expressed as

(nh)−1

ˆ

K2
h (x)dx+(1−n−1)

ˆ

(Kh ∗ f )2(x)dx−2

ˆ

(Kh ∗ f )(x) f (x)dx+

ˆ

f 2(x)dx. (1.10)

Note that convolution is used to multiply two functions together over a specified interval to create

a new function that blends the two expressions together (see Weisstein, 2013 for more details).

Throughout this paper convolution is used for parsimony. Using Equation 1.10 to measure the

performance of a bandwidth selection method is straightforward; however, its dependence on the

bandwidth h is complex.

To understand the relationship between bandwidth and MISE, an asymptotic approximation to

6



the MISE is used called the asymptotic mean integrated squared error (AMISE). To motivate the

AMISE Taylor series expansions of the bias and variance are carried out to a derivative order of

two to ensure that the KDE is a proper density. Using Equation 1.8 and a change of variables by

letting t = (x− y)/h the Jacobian of t is h, then E[ f̂ (x;h)] =
´

K(t) f (x− ht)dt. Using a second

order Taylor expansion for f (x−ht) gives

f (x−ht) = f (x)−ht f ′(x)+
1

2
h2t2 f ′′(x)+O(h4)

which leads to

E[ f̂ (x;h)] = { f (x)−ht f ′(x)+
1

2
h2t2 f ′′(x)+O(h4)}

ˆ

K(t)dt

E[ f̂ (x;h)] = f (x)+
1

2
h2t2 f ′′(x)

ˆ

K(t)dt +O(h4)

E[ f̂ (x;h)]− f (x) =
1

2
h2t2 f ′′(x)

ˆ

K(t)dt +O(h4)

Bias f̂ (x;h) =
1

2
h2 f ′′(x)

ˆ

t2K(t)dt +O(h4)

Bias f̂ (x;h) ≈
1

2
h2

µ2(K) f ′′(x). (1.11)

Note that the symbol O( ˙h4) indicates that there exists a constant c > 0 such that as h approaches

zero then the higher order terms in the Taylor expansion remain bounded by ch4 (see Lange, 2010

pp. 39-43 for details. Using Equation 1.9:

n−1{(K2
h ∗ f )(x) − (Kh ∗ f )2(x)} = (nh)−1

ˆ

K2(t) f (x − th)dt − n−1

ˆ

K(t) f (x − ht)dt

the variance can be approximated via a first order Taylor expansion (see Wolter, 2007, p. 231 for

7



reasoning) as

n−1{(K2
h ∗ f )(x)− (Kh ∗ f )2(x)}= (nh)−1

ˆ

K2(t){ f (x)+ht f ′(x)+ · · ·}dt −n−1

ˆ

K(t) f (x−ht)dt

= (nh)−1

ˆ

K2(t){ f (x)+o(1)}dt −n−1(0)

=
R(K) f (x)

nh
+o

(

1

nh

)

. (1.12)

Where R(g) =
´

g(z)2dz is parsimonious notation for any square integrable function. Note also

that o
(

1
nh

)

means that limx→∞
o(x)

x
= 0. (see Lange, 2010 pp. 39-43 for details. Combining the

square of Equation 1.11 and Equation 1.12 gives the AMISE as

AMISE =
1

4
h4

µ2(K)2R( f ′′)+(nh)−1R(K). (1.13)

Notice that the f (x) term in Equation 1.12 drops out of Equation 1.13 because f (x) is a probability

density and integrates to 1 when integrating with respect to x. The term R( f ′′) from Equation 1.13

appears from squaring and integrating Equation 1.11 which causes f̂ ′′(x) to become
´

f ′′(x)2dx

leading to R( f ′′).

The tradeoff between bias and variance is illustrated by the terms in Equation 1.13. The first

term represents the squared bias and the second term represents the variance. If the smoothing

parameter h is chosen to minimize the bias, then the resulting density will have a large variance

and vice versa. The only parameter that is unknown in Equation 1.13 is R( f ′′) which is a measure

of the roughness or curvature of the density. The larger R( f ′′) is, the larger the AMISE is, and vice

versa (Sheather, 2004). In the next chapter, five bandwidth selection algorithms are introduced that

will be the focus of this study.

8



Chapter 2

Kernel Density Bandwidth Selection

Methods

2.1 Normal Rule of Thumb

The Normal rule of thumb (NROT) popularized by Silverman (1986) is well known and imple-

mented in most major software packages. It involves differentiating Equation 1.13 with respect to

h and then setting the derivative equal to zero and solving for h. When this calculation is performed,

the resulting equation is

hAMISE =

[

R(K)

µ2(K)2R( f ′′)

]1/5

n−1/5. (2.1)

The only unknown value in Equation 2.1 is R( f ′′) which must be estimated. NROT estimates f ′′

by using a reference density. The standard choice is to let f ′′ = Φσ2 , the [N(0,σ2)] density. When

a Normal kernel is used and f ′′ = Φσ2 is placed in Equation 2.1, the optimal bandwidth obtained

is

hNROT = 1.06σn−1/5 (2.2)

(Silverman, 1986, p. 45; Wand & Jones, 1995, p. 60). The idea behind the NROT is that if the

random sample is Normally distributed then this selection method should accurately predict the

9



optimal bandwidth. If the random sample is not Normally distributed then the NROT has been

shown to have a tendency to oversmooth densities (Cao et al., 1994; Jones et al., 1996; Scott,

1992; Silverman, 1986; Wand & Jones, 1995).

2.2 Silverman’s Rule of Thumb

Silverman (1986, pp. 47-48) recommended reducing the 1.06 factor in Equation 2.2 to .90 to

avoid missing bimodality and cope better with various non-normal unimodal densities. Further-

more, he recommended using the smaller of two scale estimates, the sample standard deviation and

the sample interquartile range (IQR) divided by 1.34. Thus, this additional estimate is known as

Silverman’s (1986) rule of thumb (SROT) and is defined as:

hSROT = .90An−1/5, (2.3)

where A = min{σ̂ , IQR/1.34}. Silverman (1986, pp. 47-48) conducted small simulations studies

with a sample size of 100 and found that SROT performed well on densities with skewness or

bimodality. Jones et al. (1996) also tested SROT for sample sizes of 100 and 1000 on 15 densities

and found that this selector had a high degree of bias for densities with many features.

2.3 Least Squares Cross-Validation

One of the most well-known bandwidth selection methods is least squares cross-validation (LSCV)

or unbiased cross-validation (UCV). LSCV was first described in the context of density estimation

by Rudemo (1982) and Bowman (1984). Given an estimate f̂ (x;h) of a density f (x), the integrated

square error (ISE) of f̂ (x;h) can be expressed as

ISE f̂ (x;h) =

ˆ

(

f̂ (x;h)− f (x)
)2

dx

=

ˆ

f̂ (x;h)2dx−2

ˆ

f̂ (x;h) f (x)dx+

ˆ

f (x)2dx (2.4)

10



(Silverman, 1986; Wand & Jones, 1995). The
´

f (x)2dx term does not depend on h and can be

safely ignored. The optimal bandwidth will minimize

Z( f̂ (x;h)) =

ˆ

f̂ (x;h)dx−2

ˆ

f̂ (x;h) f (x)dx. (2.5)

The general idea behind LSCV is similar to a leave-one out jackknife procedure. Using Equation

2.5 an estimate of Z( f̂ (x;h)) must be constructed from the data and then minimized with respect

to h to find the optimal bandwidth. Rudemo (1982) noted that the second integral in Equation

2.5 can be written as E[ f̂ (X)] where the expectation is with respect of the point of evaluation (as

mentioned in Scott, 1992, p. 63). Note that E[g(x)] =
´

g(x) f (x)dx by definition. To estimate

f (x), let f̂−i(x) be the density estimate with all the data points except xi giving

f̂−i(xi) = (n−1)−1h−1
n

∑
j 6=i

K

(

x−X j

h

)

. (2.6)

From Equation 2.6 it can be seen that we are taking the average of h−1 ∑
n
i 6= j K(x−X j/h) from all

the points except xi. This procedure is then repeated for all the remaining data points to estimate

the second integral in Equation 2.5. By combining Equation 2.6 with the first term of Equation 2.5

the LSCV function to be minimized is

LSCVh =

ˆ

f̂ (x;h)2dx−
2

n

n

∑
i=1

f̂−i(xi). (2.7)

Minimizing Equation 2.7 with respect to h minimizes the MISE (see Wand & Jones, 1995, p. 63).

While LSCV has been extensively used in practice, research and simulation studies showed

that LSCV tended to under smooth densities and had a high degree of sampling variability present.

For example, Park and Marron (1990) found that LSCV performed poorly on almost all estimated

densities compared with other bandwidth selectors due to the high amount of sampling variability

present. These results were further validated by Cao et al. (1994) and Jones et al. (1996). Loader

(1999), however, criticizes these studies censuring the behavior of LSCV, emphasizing that they
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did not take into account the strengths and weaknesses of LSCV.

2.4 Biased Cross-Validation

Scott and Terrell (1987) created another cross-validation selection method to improve upon the

short falls of LSCV known as biased cross-validation (BCV). This method is similar to LSCV and

was created to lower the amount of sampling variability that was causing many of the problems

mentioned previously. The difference between LSCV and BCV is that BCV is based on the formula

for AMISE (see Equation 1.13), whereas, LSCV is based on ISE (see Equation 2.4). However, with

BCV we want to replace the unknown estimator R( f ′′), by an estimator

R̃( f ′′) = R
(

f̂ ′′(x;h)
)

− (nh5)−1R(K′′). (2.8)

Scott and Terrell (1987) show that plugging in R( f ′′) directly into Equation 2.1 produces a biased

estimate by the amount (nh)−1R(K′′). This explains why this term is being subtracted out in

Equation 2.8. Plugging Equation 2.8 in Equation 1.13 gives the BCV formula

BCVh =
1

4
h4

µ2(K)2R̃( f ′′)+(nh)−1R(K) (2.9)

(see Scott & Terrell, 1987 and Sheather, 2004 for details). According to Wand and Jones (1995),

the attraction of BCV is that the asymptotic variance of the bandwidth is considerably lower than

that of LSCV. This reduction in variance comes at a cost of BCV’s tendency to oversmooth a

density. Several simulation studies indicated that BCV typically performs better than LSCV (Cao

et al., 1994; Jones et al., 1996; Park & Marron, 1990).
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2.5 Plug-in Methods

Plug-in methods are a popular approach to bandwidth selection where the unknown quantity R( f ′′)

in Equation 2.1 is replaced with an estimate. This method dates back to Woodroofe (1970) and

Nadaraya (1974) who laid the theoretical groundwork, yet the issue of selecting an accurate esti-

mate for R( f ′′) was not addressed until later. Park and Marron (1990) created a plug-in rule that

performed superior to BCV and LSCV in asymptotic rate of convergence and a simulation study.

Sheather and Jones (1991) further refined the plug-in rule created by Park and Marron (1990),

creating the Sheather-Jones plug-in or Sheather-Jones direct plug-in (SJDP), which has performed

well in simulation studies, asymptotic analyses, and on real data sets. To find the SJDP use Equa-

tion 1.13 (which is the equation for the AMISE) and estimate R( f ′′) by R( f̂ ′′g ), where g is a pilot

bandwidth to be estimated. Next, solve Equation 1.13 for g as a pilot bandwidth estimate that must

be estimated. The SJDP approach writes g as a function of h, for the estimate R( f̂ ′′)

g(h) =C(K)

[

R( f ′′)

R( f ′′′)

]1/7

h5/7, (2.10)

where C(K) is a constant. It is necessary to estimate the unknown higher order functionals of

f using kernel density estimates with the NROT method in place of g. The SJDP is given by

estimating g(h) and substituting it into Equation 1.13 which gives

h =

[

R(K)

µ2(K)2R( f̂ ′′
g(h)

)

]1/5

n−1/5. (2.11)

The SJDP is the smoothing parameter that is the solution to Equation 2.11 (Sheather, 2004). See

Sheather and Jones (1991) and Wand and Jones (1995, pp. 67-75) for additional details. The SJDP

has performed excellent in simulation studies and on real data sets (Cao et al., 1994; Salgado-

Ugarte & Perez-Hernandez, 2003; Sheather, 1992; Sheather & Jones, 1991; Jones et al., 1996).
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2.6 The Current Study

The goal of KDE as an EDA approach is to estimate the true underlying density as accurately as

possible. Different bandwidth selection algorithms lead to density estimates with varying levels of

accuracy. The present study compares the five bandwidth selection methods reviewed above with

respect to density recovery using the MISE, with sample size and true density shape as independent

variables. Prior simulations involving more than three bandwidths with multiple densities have

primarily focused on sample sizes of 100 or more (Cao et al., 1994; Devroye, 1997; Jones et al.,

1996). Here, eight different sample sizes will be used, including three that are less than 100,

because smaller samples are common in the social sciences. In addition, previous studies have

considered a strong positively skewed density similar to a lognormal distribution; however, these

studies have not considered a moderately positively skewed density (Cao et al., 1994; Jones et al.,

1996; Marron & Wand, 1992). Here, moderately positively skewed densities are included among

the true density shapes examined.
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Chapter 3

Methods

3.1 Simulation Method

An R program (version 2.15) generated the data, executed, and processed the output. The R pro-

gram utilized the “ks” package to randomly generate data from four Normal mixture densities; a

standard Normal, bimodal, positively skewed, and skewed bimodal (R Core Team, 2012; Duong,

2012). R code for the Standard Normal density is available in the appendix. The equations for the

Normal mixtures are given in Table 3.1 and graphical illustrations are given in Figure 3.1. These

Normal mixtures were chosen to give a general representation of the types of densities most often

encountered in the social and behavioral sciences. The positively skewed density is representative

of psychopathologies such as anxiety and depression (Carleton et al., 2005; Van Dam & Earley-

wine, 2011). Both the bimodal and asymmetric bimodal densities can occur in stereotype research

as well as intergroup relations (Fiske et al., 2002; Van Boven & Thompson, 2003).

Table 3.1: Equations for the Normal Mixture Densities

Density Equation

MW.nm1-Normal N(0,1)

MW.nm2-Skewed 3
5
N
(

0,
(

9
8

)2
)

+ 1
5
N
(

−1
2
,
(

2
3

)2
)

+ 1
5
N
(

−13
12
,
(

5
9

)2
)

MW.nm6-Bimodal 1
2
N
(

−1,
(

2
3

)2
)

+ 1
2
N
(

1,
(

2
3

)2
)

MW.nm8-Skewed Bimodal 3
4
N (0,1)+ 1

4
N
(

3
2
,
(

1
3

)2
)
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Figure 3.1: Normal Mixture Densities

Note. The dashed line indicates a standard Normal density

The density function within the “stats” package of R was used to calculate the respective band-

widths from each Normal mixture distribution using the five different bandwidth selection methods

(NROT, SROT, LSCV, BCV, and SJDP). The Normal kernel was used throughout all simulations

and the number of grid points was set equal to the sample size being evaluated. For each den-

sity and bandwidth selection method eight sample sizes were evaluated: 25, 50, 75, 100, 250,

500, 1000, and 2000. Sample sizes were chosen to both cover a range typically encountered in

psychology, and show how the bandwidth selectors behave with a large sample.

To provide a picture of how the different bandwidth selection methods behave, 32 density

graphs were constructed (four Normal mixtures and eight sample sizes). For each of the graphs, the

base 10 log was taken for both the optimal bandwidth and each of the 1000 bandwidths selected for

16



Table 3.2: Exact MISE for the Optimal Bandwidths

Sample Size Standard Normal Skewed Bimodal Skewed Bimodal

25 0.01373 0.01490 0.01824 0.02219

50 0.00869 0.00948 0.01187 0.01508

75 0.00660 0.00722 0.00907 0.01172

100 0.00541 0.00593 0.00745 0.00972

250 0.00283 0.00311 0.00389 0.00518

500 0.00172 0.00189 0.00234 0.00314

1000 0.00103 0.00113 0.00140 0.00188

2000 0.00061 0.00068 0.00083 0.00112

a given method. Each of the 1000 log draws was subtracted from the log of the optimal bandwidth

and stored in a vector. This was repeated for all bandwidth selection methods in each of the 32

graphs. Then a kernel density estimate was plotted using the SJDP bandwidth method for each

vector. The resulting zero point along the x-axis of each graph represents the optimal bandwidth.

The more concentrated the density estimate is around this point, the better the performance.

3.2 Exact MISE Calculations

To compare the performance of each method, the optimal bandwidth that minimizes the MISE must

be calculated for each condition. When using the Normal kernel, a Normal mixture density’s MISE

has a closed form expression and can be calculated (Marron & Wand, 1992). The calculations

to solve for the optimal bandwidth were conducted with the “Hmise.mixt” function within the

“ks” R package (Duong, 2012). The “Hmise.mixt” function calculates the optimal bandwidth by

specifying a Normal mixture density and a sample size by numerically minimizing the closed form

expressions for the MISE given in Equation 1.10. These values were used to calculate the bias and

MSE for each normal mixture density. In addition, the “ks” package calculated the exact MISE

for each condition using the “mise.mixt” function for each sample size for each of the four normal

mixture densities. The MISEs are presented in Table 3.2.
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Chapter 4

Results

4.1 Overview

Results are presented in Tables 4.1-4.4 for each true density. The optimal bandwidth is given in

bold to the right of each sample size. For each of the five bandwidth selection methods, the mean

bandwidth (M), standard deviation (STD), bias, and MSE were calculated for each condition. The

density graphs using each bandwidth selection algorithm for a given Normal mixture and sample

size are depicted in Figures 4.1-4.4.

To summarize the results and provide practical conclusions, a ranking system was devised

based on Cao et al. (1994). Although the ranking strategy was arbitrary, it was designed to provide

practitioners with a general idea of relative performance of the bandwidth selection methods given

the conditions of the present study. Each of the five bandwidth selection methods was given one

total score reflecting how close it was on average to the optimal bandwidth (bias), how variable

the bandwidth was over replications (STD), and the interaction between the bias and STD over

replications (MSE). The ideal bandwidth selection method should have a low bias, low standard

deviation, and low MSE. For each bandwidth selection method, the best bandwidth for a given

sample size and true density was given five points for the lowest outcome (best performance), four

points for second lowest, and so on to one point for the highest outcome (worst performance). A
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higher number of points correspond to better performance.

Table 4.1: Results for the Standard Normal Density by Sample Size and Method

Method M STD Bias MSE* Method M STD Bias MSE*

Norm

n = 25 0.609 n = 50 0.5199

SJDP 0.496 0.123 -0.114 2.816 SJDP 0.453 0.083 -0.067 1.130

NROT 0.502 0.099 -0.107 2.130 NROT 0.457 0.060 -0.063 0.751

SROT 0.426 0.084 -0.183 4.057 SROT 0.388 0.051 -0.132 1.992

LSCV 0.517 0.155 -0.093 3.266 LSCV 0.454 0.126 -0.066 2.036

BCV 0.594 0.086 -0.016 0.767 BCV 0.521 0.054 0.001 0.288

n = 75 0.475 n = 100 0.446

SJDP 0.421 0.064 -0.054 0.698 SJDP 0.399 0.057 -0.047 0.545

NROT 0.422 0.046 -0.052 0.481 NROT 0.403 0.037 -0.043 0.323

SROT 0.359 0.039 -0.116 1.497 SROT 0.342 0.032 -0.104 1.175

LSCV 0.422 0.105 -0.053 1.377 LSCV 0.392 0.101 -0.053 1.309

BCV 0.475 0.040 0.000 0.160 BCV 0.449 0.034 0.004 0.117

n = 250 0.365 n = 500 0.315

SJDP 0.341 0.032 -0.024 0.158 SJDP 0.297 0.022 -0.018 0.082

NROT 0.344 0.019 -0.021 0.080 NROT 0.301 0.012 -0.014 0.034

SROT 0.292 0.016 -0.073 0.557 SROT 0.256 0.010 -0.059 0.363

LSCV 0.329 0.076 -0.036 0.711 LSCV 0.285 0.064 -0.030 0.504

BCV 0.373 0.019 0.008 0.045 BCV 0.321 0.016 0.006 0.028

n = 1000 0.272 n = 2000 0.236

SJDP 0.261 0.015 -0.011 0.035 SJDP 0.227 0.010 -0.009 0.018

NROT 0.264 0.007 -0.008 0.013 NROT 0.230 0.004 -0.005 0.005

SROT 0.224 0.006 -0.048 0.237 SROT 0.196 0.004 -0.040 0.163

LSCV 0.250 0.053 -0.022 0.331 LSCV 0.217 0.045 -0.018 0.238

BCV 0.277 0.012 0.005 0.017 BCV 0.238 0.010 0.002 0.010

Note. * indicates that the value of MSE has been multiplied by 100.
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Table 4.2: Results for the Skewed Density by Sample Size and Method

Method M STD Bias MSE* Method M STD Bias MSE*

Norm

n = 25 0.595 n = 50 0.501

SJDP 0.507 0.121 -0.088 2.234 SJDP 0.453 0.080 -0.048 0.877

NROT 0.521 0.103 -0.074 1.614 NROT 0.474 0.066 -0.027 0.511

SROT 0.442 0.088 -0.152 3.093 SROT 0.403 0.056 -0.099 1.291

LSCV 0.534 0.162 -0.061 3.003 LSCV 0.458 0.136 -0.044 2.030

BCV 0.619 0.092 0.025 0.900 BCV 0.542 0.061 0.041 0.539

n = 75 0.455 n = 100 0.425

SJDP 0.421 0.062 -0.034 0.497 SJDP 0.400 0.053 -0.026 0.344

NROT 0.441 0.047 -0.015 0.239 NROT 0.420 0.041 -0.006 0.171

SROT 0.374 0.040 -0.081 0.815 SROT 0.356 0.035 -0.069 0.598

LSCV 0.420 0.117 -0.035 1.495 LSCV 0.401 0.104 -0.024 1.138

BCV 0.493 0.044 0.037 0.330 BCV 0.463 0.040 0.038 0.301

n=250 0.345 n=500 0.296

SJDP 0.334 0.031 -0.011 0.106 SJDP 0.290 0.021 -0.006 0.045

NROT 0.358 0.022 0.013 0.063 NROT 0.313 0.014 0.017 0.049

SROT 0.304 0.019 -0.041 0.206 SROT 0.266 0.012 -0.030 0.106

LSCV 0.329 0.081 -0.016 0.681 LSCV 0.285 0.063 -0.011 0.414

BCV 0.376 0.028 0.031 0.176 BCV 0.318 0.022 0.022 0.094

n=1000 0.254 n=2000 0.220

SJDP 0.251 0.014 -0.004 0.022 SJDP 0.218 0.010 -0.002 0.009

NROT 0.274 0.009 0.020 0.046 NROT 0.240 0.005 0.020 0.044

SROT 0.233 0.007 -0.022 0.052 SROT 0.204 0.004 -0.016 0.027

LSCV 0.245 0.053 -0.009 0.292 LSCV 0.212 0.043 -0.007 0.193

BCV 0.268 0.017 0.013 0.045 BCV 0.229 0.013 0.009 0.024

Note. * indicates that the value of MSE has been multiplied by 100.
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Table 4.3: Results for the Bimodal Density by Sample Size and Method

Method M STD Bias MSE* Method M STD Bias MSE*

Norm

n=25 0.603 n=50 0.472

SJDP 0.584 0.112 -0.019 1.281 SJDP 0.504 0.082 0.032 0.771

NROT 0.657 0.080 0.054 0.930 NROT 0.580 0.045 0.108 1.371

SROT 0.558 0.068 -0.045 0.657 SROT 0.493 0.038 0.021 0.186

LSCV 0.569 0.186 -0.034 3.575 LSCV 0.482 0.148 0.010 2.196

BCV 0.716 0.076 0.113 1.858 BCV 0.623 0.049 0.151 2.526

n=75 0.418 n=100 0.385

SJDP 0.449 0.068 0.032 0.557 SJDP 0.421 0.059 0.035 0.476

NROT 0.536 0.033 0.119 1.513 NROT 0.507 0.026 0.122 1.555

SROT 0.455 0.028 0.038 0.219 SROT 0.431 0.022 0.045 0.255

LSCV 0.429 0.127 0.012 1.628 LSCV 0.398 0.117 0.013 1.387

BCV 0.572 0.042 0.154 2.561 BCV 0.536 0.047 0.151 2.499

n=250 0.304 n=500 0.258

SJDP 0.332 0.035 0.027 0.197 SJDP 0.275 0.022 0.017 0.077

NROT 0.422 0.014 0.117 1.389 NROT 0.368 0.008 0.109 1.203

SROT 0.358 0.012 0.053 0.299 SROT 0.312 0.007 0.054 0.295

LSCV 0.308 0.082 0.003 0.675 LSCV 0.255 0.056 -0.003 0.317

BCV 0.391 0.054 0.087 1.050 BCV 0.299 0.036 0.041 0.292

n=1000 0.221 n=2000 0.190

SJDP 0.232 0.014 0.011 0.032 SJDP 0.197 0.008 0.007 0.012

NROT 0.320 0.005 0.099 0.981 NROT 0.278 0.003 0.089 0.789

SROT 0.272 0.004 0.051 0.259 SROT 0.236 0.003 0.047 0.219

LSCV 0.219 0.043 -0.002 0.186 LSCV 0.186 0.033 -0.004 0.107

BCV 0.242 0.020 0.021 0.083 BCV 0.201 0.012 0.012 0.028

Note. * indicates that the value of MSE has been multiplied by 100.

21



Table 4.4: Results for the Skewed Bimodal Density by Sample Size and Method

Method M STD Bias MSE* Method M STD Bias MSE*

Norm

n=25 0.555 n=50 0.408

SJDP 0.527 0.107 -0.027 1.210 SJDP 0.465 0.077 0.057 0.911

NROT 0.586 0.084 0.031 0.809 NROT 0.529 0.047 0.121 1.680

SROT 0.498 0.072 -0.057 0.842 SROT 0.450 0.039 0.041 0.325

LSCV 0.516 0.180 -0.038 3.387 LSCV 0.427 0.147 0.018 2.203

BCV 0.649 0.079 0.094 1.512 BCV 0.572 0.049 0.163 2.906

n=75 0.351 n=100 0.318

SJDP 0.414 0.061 0.063 0.773 SJDP 0.386 0.050 0.068 0.713

NROT 0.486 0.034 0.135 1.951 NROT 0.461 0.029 0.143 2.130

SROT 0.413 0.029 0.062 0.470 SROT 0.391 0.025 0.073 0.600

LSCV 0.371 0.128 0.020 1.681 LSCV 0.340 0.109 0.023 1.250

BCV 0.522 0.038 0.172 3.089 BCV 0.494 0.035 0.176 3.211

n=250 0.242 n=500 0.201

SJDP 0.295 0.032 0.053 0.385 SJDP 0.241 0.021 0.040 0.201

NROT 0.385 0.014 0.144 2.080 NROT 0.335 0.009 0.134 1.795

SROT 0.327 0.012 0.085 0.744 SROT 0.284 0.008 0.083 0.697

LSCV 0.248 0.070 0.006 0.492 LSCV 0.205 0.048 0.003 0.228

BCV 0.386 0.052 0.144 2.345 BCV 0.274 0.050 0.072 0.778

n=1000 0.170 n=2000 0.144

SJDP 0.197 0.014 0.028 0.094 SJDP 0.163 0.008 0.018 0.039

NROT 0.292 0.006 0.122 1.489 NROT 0.254 0.003 0.109 1.197

SROT 0.248 0.005 0.078 0.609 SROT 0.215 0.003 0.071 0.506

LSCV 0.171 0.034 0.001 0.117 LSCV 0.142 0.025 -0.002 0.064

BCV 0.199 0.023 0.030 0.141 BCV 0.159 0.012 0.015 0.036

Note. * indicates that the value of MSE has been multiplied by 100.

4.2 Aggregated Tabular Results

The aggregated results are as follows (scores are in parentheses): SJDP (314), SROT (311), NROT

(306), BCV (287), and LSCV (222). As can be seen, the overall winner is the SJDP closely

followed by SROT and NROT. However, these results do not tell the whole story because they are

aggregated. To provide further detail, the rankings are broken down by sample size and presented

in Table 4.5. One result that is consistent between both the aggregated results and the results in

Table 4.5 is that LSCV is last in every category. Considering Tables 4.1-4.4, LSCV typically has

the lowest bias but it always has the highest variance. Table 4.5 better describes how the optimal
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method depends on sample size. Looking at sample sizes of 25 to 100, SROT is the best method

closely followed by NROT, and then SJDP. Once the sample size increases to 250, SJDP supplants

SROT and dominates for sample sizes of 250 to 2000. A final interesting result is the unique

behavior of the BCV at higher sample sizes. When sample sizes are 25 to 100, BCV closely tails

SJDP, and at a sample size of 250 is several points behind both SROT and NROT. At a sample size

of 500, BCV ties with NROT, and at 1000 and 2000 BCV, surpasses both SROT and NROT.

Table 4.5: Rankings of Bandwidth Selection Methods Aggregated by Sample Size

Sample Size

25 50 75 100

Method Total Method Total Method Total Method Total

NROT 42 SROT 44 SROT 42 SROT 42

BCV 41 NROT 43 NROT 41 NROT 40

SROT 38 SJDP 33 SJDP 35 SJDP 36

SJDP 34 BCV 33 BCV 34 BCV 34

LSCV 25 LSCV 27 LSCV 28 LSCV 28

Sample Size

250 500 1000 2000

Method Total Method Total Method Total Method Total

SJDP 43 SJDP 45 SJDP 45 SJDP 43

NROT 39 SROT 36 BCV 38 BCV 41

SROT 39 NROT 35 NROT 34 SROT 36

BCV 31 BCV 35 SROT 34 NROT 32

LSCV 28 LSCV 29 LSCV 29 LSCV 28

4.3 Graphical Results

Results are graphically shown in Figures 4.1-4.4. The vertical black line at zero on the x-axis

denotes the optimal bandwidth, with plots left and right of this line indicating oversmoothing and

undersmoothing respectively. For all true density shapes, LSCV varied tremendously in every

condition shown by the large tail of its distribution. SJDP had greater variability in sample sizes

25 to 100 compared with samples of 250 to 2000. For samples of 250 to 2000, SJDP had the best

balance of small bias, variance, and MSE for all true density shapes. SROT slightly undersmoothed

for the Normal and positively skewed curves (Figures 4.1 and 4.2) with sample sizes of 100 or
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smaller and the undersmoothing became more pronounced for samples of 250 to 2000. SROT

oversmoothed the bimodal and skewed bimodal curves (Figures 4.3 and 4.4) for sample sizes of

250 or larger. NROT performed quite well for the Normal distribution (Figure 4.1) with most of its

distribution centered around the optimal bandwidth and similarly for sample sizes of less than 100

for the positively skewed distribution (Figure 4.2), with slight oversmoothing occurring for sample

sizes 250 and greater. NROT oversmoothed the bimodal and skewed bimodal curves (Figures 4.3

and 4.4) for all sample sizes with the degree of oversmoothing increasing with sample size. BCV

oversmoothed for all density shapes in sample sizes of 100 or less and for all density shapes BCV

started approaching the optimal bandwidth with the degree of convergence increasing with sample

size.
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Figure 4.1: Graphical Densities of Standard Normal
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Figure 4.2: Graphical Densities of Skew Normal
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Figure 4.3: Graphical Densities of Bimodal
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Figure 4.4: Graphical Densities of Skewed Bimodal
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Chapter 5

Empirical Example

An empirical data set was analyzed to illustrate KDE and the bandwidth selection algorithms. The

variable is the summed score distribution on the Obsessive-Compulsive Inventory-Revised (OCI-

R; Foa et al., 1998) in a sample of 544 undergraduate students from data described by Tolin et al.

(2003). The mean age of participants was 19.01 (SD = 1.87), 74.45% were female and 25.55%

were male, 25% were members of ethnic groups other than Caucasian, and 75% were Caucasian.

Summed scores are frequently used by psychologists and often presumed to have certain statistical

properties. It is a useful exploratory tactic to examine the distribution with KDE.

The summed scores on the entire OCI-R were calculated in R (version 2.15) and the densities

of the summed scores were plotted using the density function in the stats package. Each of the

five bandwidth selection methods (SJDP, NROT, SROT, LSCV, and BCV) were used to estimate

the density of summed scores. The bandwidths chosen by each method are: SJDP (1.77), NROT

(2.47), SROT (2.10), LSCV (1.22), and BCV (1.95). The graphs are shown in Figure 5.1.

Consistent with simulation results, LSCV is probably undersmoothing, which creates the spu-

rious modes seen in Figure 5.1. NROT provides the most smoothing, tends to smooth away the

mode at around 31, and completely smoothed away the mode around 42. In this example BCV,

SROT, and SJDP provide very similar estimates; however, SJDP gives the most vivid picture of

the second mode around 31 without spurious artifacts of the data. Given that the sample size is
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544, coupled with the results of the simulation study, we prefer the SJDP density for this example.

The distribution is clearly skewed and multimodal which is useful information for researchers and

practitioners using the OCI-R scores.
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Figure 5.1: Density Plots of Discrimination Parameters for the FNE
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Chapter 6

Discussion

This study compared the performance of five bandwidth selection methods with respect to density

recovery using the MISE, for varying sample sizes and true density shapes. Simulations showed

that overall the SJDP bandwidth selector performed best on the three outcome criteria (bias, STD,

and MSE). This result is consistent with previous research (Cao et al., 1994; Jones et al., 1996;

Mugdadi & Jeter, 2010). Also consistent with previous research was the result that LSCV per-

formed poorly and is not recommended for general use (Cao et al., 1994; Scott & Terrell, 1987;

Jones et al., 1996).

The performance of the bandwidth selection methods varied according to sample size. First,

for sample sizes at or below 100, SROT was best. Mugdadi and Jeter (2010) compared SJDP, BCV,

and LSCV for sample sizes of 10 to 100 using three of the same true densities in the present study.

They concluded that SJDP performed better overall than BCV and LSCV, but they did not compare

SROT and NROT at those sample sizes. The finding of SROT being superior at lower sample sizes

is interesting because it shows that for these four densities SROT would be the recommended

method, closely followed by the NROT, which has not been found before. At some point between

a sample size of 100 and 250, SJDP usurps SROT and becomes the best performer. It can be seen

that SJDP outperforms the other methods by a sizeable amount, which explains the method being

superior overall. This finding is consistent with past research (Cao et al., 1994; Jones et al., 1996).
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Thus, SJDP is recommended at higher sample sizes.

The simulation results should be qualified by several limitations. First, results are specific to

the four true densities. While these densities were chosen to be representative of those frequently

observed in psychological research, the underlying density of a random sample is always unknown

and the present results may not generalize to all other density shapes that may be observed in

practice. Second, although the choice of the kernel is trivial, results are specific to the Normal

kernel and it is unknown how these results would differ if other kernels were used.

Future research in this area could look at how adaptive KDE algorithms perform on the four true

densities used here and whether they outperform the standard methods. Adaptive KDE algorithms

alter the bandwidth size across the area of the density depending on the concentration of the points

surrounding the point of interest. Bandwidth size is smaller when there are a large number of points

concentrated around the point of interest and lower with a low concentration of points. Wilcox

(2004) used an adaptive KDE algorithm to illustrate the utility of the method, but no simulation

study was conducted. It would also be interesting to compare the performance of the five bandwidth

selection methods with additional true density shapes in the future.
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Appendix A

R Code for Standard Normal Simulation

#######################################################################################

##################Kernel Density Simulation Code SS 25#######################################

###Clear the workspace rm(list=ls())

###Set Working Directory setwd(’C:/Users/Jared Harpole/Desktop/R_Working.Directory/Normal Densi-

ty/KS_NormalDensity/GraphsGray’)

library(nor1mix)

library(ks)

sink("KDESimulation_25Norm_ks_Gray.txt", append = TRUE) #####################################

reps <- 1000 #Specifies the number of replications

Bandwidth <- matrix(NA, reps, 6) #Specifies the bandwidth matrix for analyzing bandwidth results across

replications

BW.sd <- list() # Specifies the Result CI for Density [j]

BW.mn <- list() # Specifies the Bandwidth CI for Density [j]

colnames(Bandwidth) <- c("SJ-ste","SJ-dpi", "nrd","nrd0", "ucv", "bcv") #Specifies the column names

of Bandwidth

#Generate data for positively skewed distribution

mus <- c(0, 0)

sigmas <- c(1, 1)

props <- c(.5, .5)

N <- 25

#Specifies the number of observations sampled from the mixture distribution #######
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set.seed(10001) #####################################################################################

for (i in 1:reps) {

#Randomly Draw N observations from Marron & Wand Mixture Distribution specified above.

MW1_10 <- rnorm.mixt(n=N, mus, sigmas, props)

# Calculate the density values using each bandwidth method (aka, SJ, Normal, LSCV, BCV)

MW1_10_SJ <-density(MW1_10, bw="SJ-ste", n=N)

MW1_10_SJdp <- density(MW1_10, bw="SJ-dpi", n=N)

MW1_10_nrd <-density(MW1_10, bw="nrd", n=N)

MW1_10_nrd0 <- density(MW1_10, bw="nrd0", n=N)

MW1_10_ucv <-suppressWarnings(density(MW1_10, bw="ucv", n=N))

MW1_10_bcv <-suppressWarnings(density(MW1_10, bw="bcv", n=N))

# Calculates the bandwidths used in each repetition

SJbw <- MW1_10_SJ$bw

SJdpbw <- MW1_10_SJdp$bw

NRDbw <- MW1_10_nrd$bw

NRD0bw <- MW1_10_nrd0$bw

UCVbw <- MW1_10_ucv$bw

BCVbw <- MW1_10_bcv$bw

#Creates a vector with the bandwidths used in each repetition

Bandwidth[i,] <- c(SJbw,SJdpbw, NRDbw,NRD0bw, UCVbw, BCVbw)

}

#Output of Bandwidth

temp2 <- as.data.frame(Bandwidth)

BW.mn <- sapply(temp2, mean)

BW.sd <- sapply(temp2, sd)

print("Mean Bandwidth By Method")

print(BW.mn)

print("Standard Deviation By Method")

print(BW.sd) sink()

###Graph the bandwidths

samp <- N

hmise.opt <- hmise.mixt(mus=mus, sigmas=sigmas, props=props, samp=samp, deriv.order=0)

hmise.opt
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###Create Bandwidth.g matrix for graphing the density

BW2 <- log10(hmise.opt)-log10(Bandwidth[,2])

BW3 <- log10(hmise.opt)-log10(Bandwidth[,3])

BW4 <- log10(hmise.opt)-log10(Bandwidth[,4])

BW5 <- log10(hmise.opt)-log10(Bandwidth[,5])

BW6 <- log10(hmise.opt)-log10(Bandwidth[,6])

###Function for plotting multiple densities

plot.5.dens <- function(s) {

knot.x <- NULL

knot.y <- NULL

for (i in 1:length(s)) {

knot.x <- c(knot.x, density(s[[i]])$x)

knot.y <- c(knot.y, density(s[[i]])$y)

}

xr <- range(knot.x)

yr <- range(knot.y)

plot(density(s[[1]], bw = "SJ-dpi"), xlim = xr, ylim = yr, ylab = "Density", xlab ="Log10(hmise) - Log10(h)",

main = "Normal Density Sample Size 25")

for (i in 1:length(s)) { lines(density(s[[i]], bw = "SJ-dpi"), xlim = xr, ylim = yr, col = i*(2*i)^((1+(-1)^i)/2),

lty = i, lwd = 2) } }

###Plotting the densities

plot.5.dens(list(BW2, BW3, BW4, BW5,BW6))

abline(a = NULL, b = NULL, h = NULL, v = 0, lwd=2)

lines(density(BW2, bw = "SJ-dpi"), col = 1, lty = 1, lwd = 2)

lines(density(BW4, bw = "SJ-dpi"), col = 1, lty = 3, lwd = 2)

lines(density(BW6, bw = "SJ-dpi"), col = 1, lty = 5, lwd = 2)

### Copy plot to file

dev.copy(png, ’Normal_SS_25.png’) dev.off()
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