
http://www.diva-portal.org

Postprint

This is the accepted version of a paper published in IEEE Transactions on robotics. This paper has
been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

Citation for the original published paper (version of record):

Colledanchise, M., Ögren, P. (2017)
How Behavior Trees Modularize Hybrid Control Systems and Generalize Sequential Behavior
Compositions, the Subsumption Architecture, and Decision Trees.
IEEE Transactions on robotics, 33(2): 372-389

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202922

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 1

How Behavior Trees Modularize

Hybrid Control Systems and Generalize

Sequential Behavior Compositions,

the Subsumption Architecture and Decision Trees

Michele Colledanchise, Student Member, IEEE, and Petter Ögren, Member, IEEE

Abstract—Behavior Trees (BTs) is a way of organizing the
switching structure of a Hybrid Dynamical System (HDS), that
was originally introduced in the computer game programming
community. In this paper, we analyze how the BT representation
increases the modularity of a HDS, and how key system proper-
ties are preserved over compositions of such systems, in terms of
combining two BTs into a larger one. We also show how BTs can
be seen as a generalization of Sequential Behavior Compositions,
the Subsumption Architecture and Decisions Trees. These three
tools are powerful, but quite different, and the fact that they
are unified in a natural way in BTs might be a reason for their
popularity in the gaming community. We conclude the paper by
giving a set of examples illustrating how the proposed analysis
tools can be applied to robot control BTs.

Index Terms—Behavior Trees, Finite State Machines, Hybrid
Dynamical Systems, Modularity, Subsumption Architecture, Se-
quential Behavior Compositions, Decision Trees

I. INTRODUCTION

BEHAVIOR Trees (BTs) were developed in the computer

gaming industry, as a tool to increase modularity in

the control structures of in-game opponents [1]–[5]. In this

billion dollar industry, modularity is a key property to enable

reusability of code, incremental design of functionality and

efficient testing of that functionality.

In games, the control structures of in-game opponents are

naturally formulated in terms of Hybrid Dynamical Systems

(HDSs), i.e. dynamical systems that have a continuous part,

such as motion in a virtual environment, and a discrete part,

such as decision making, in terms of switching between dif-

ferent continuous controllers. Furthermore, the discrete parts

of these HDSs are often modeled as Finite State Machines

(FSMs).

However, just as Petri Nets [6] provide an alternative

view of FSMs that emphasize concurrency, BTs provide an

alternative view of FSMs that emphasize modularity. How BTs

modularize HDS will be discussed in Section IV below, but

here we note that the core difference is that the transitions

(one-way control transfers) of the FSM are replaced with

function calls (two-way control transfers) up and down the

tree structure of the BTs.

both authors are with the Center for Autonomous Systems, Dep. Computer
Vision and Active Perception, KTH - Royal Institute of Technology, Stock-
holm, Sweden. e-mail: miccol@kth.se.

Manuscript accepted for publication Oct, 2016.

?

Action 1 Action 2

((a))

R0

F0

S0

F0

R0

R
n

f0 = f1

f0 = f2

((b))

Fig. 1. A minimalist Behavior Tree composition (a) and the corresponding
vector field (b). The second subtree increases the robustness of the composi-
tion by increasing the combined region of attraction.

Following the development in industry, BTs have now also

started to receive attention in academia, see e.g. [7]–[17]

At Carnegie Mellon University, BTs have been used ex-

tensively to do robotic manipulation [12], [15]. The fact that

modularity is the key reason for using BTs is clear from

the following quote: “The main advantage is that individual

behaviors can easily be reused in the context of another higher-

level behavior, without needing to specify how they relate to

subsequent behaviors.” from [12].

BTs have also been used to enable non-experts to do

robot programming of pick and place operations, due to their

“modular, adaptable representation of a robotic task” [17] and

proposed as a key component in brain surgery robotics due to

the “flexibility, reusability, and simple syntax” [16].

The advantage of BTs as compared to FSMs was also the

reason for extending the JADE agent Behavior Model with

BTs in [10], and the benefits of using BTs to control complex

multi mission UAVs was described in [11].

The modularity and structure of BTs were used to address

the formal verification of mission plans in [13] and the

execution times of stochastic BTs were analyzed in [14].

BTs have also been studied in machine learning applications

[7], [8] and details regarding efficient parameter passing was

investigated in [9]. Finally, a Modellica implementation of BTs

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 2

was presented in [18].

In this paper, we investigate the key property of BTs,

modularity, using standard tools from robot control theory. The

benefits of modularity become even clearer when key system

properties can be shown to be preserved across compositions

of smaller modules into bigger systems. We will try to capture

to what extent this holds for BTs. The key properties we inves-

tigate is efficiency, in terms of time to successful completion,

safety, in terms of avoiding particular parts of the state space;

and robustness, in terms of large regions of attraction, see

Figure 1.

As noted above, the reason BTs are more modular than

FSMs is that they use a two-way control transfer, where

behavior execution is defined by the context of the parent

behavior. To capture this formally, we define a functional

version of BTs, and use this model to analyze how the

key properties mentioned above are transferred across BT

compositions.

Performing this analysis, we also show that BTs can be seen

as generalizations of three classical concepts from the robot

control literature, the Subsumption architecture [19], Sequen-

tial behavior compositions [20], and Decision trees [21].

The subsumption architecture [19] is a control structure

where a number of controllers are executed in parallel, and

higher priority controllers subsume (or suppress), the lower

priority ones, whenever needed.

Sequential behavior compositions were introduced in [20]

and built upon in e.g. [22]. The key idea is that the region

of attraction of a controller can be increased by combining a

set of different controllers, where each controller drives the

system state into the region of attraction of another controller,

closer to the overall goal state.

Decision trees [21] is a control structure where the con-

trollers are found at the leaves of the tree, and the interior

nodes of the tree represent state dependent predicates, that

determine what branches to follow from the root to one of the

leaves.

The contributions of this paper is that we formally inves-

tigate and capture the modularity of BTs, by introducing a

functional representation. This formulation enables us to show

results regarding safety, efficiency and robustness of modular

compositions of BTs. We also explore how BTs generalize

three classical concepts from the robot control literature, and

the connection between BTs and FSMs. This paper extends

the conference paper [23] by adding results on the efficiency

of Sequence compositions, the analysis of Decision Trees,

a detailed analysis of the relation between BTs and FSMs,

and more examples illustrating modularity, and the use of the

theoretical results.

The outline of this paper is as follows. In Section II we

review the classical formulation of BTs. Then, in Section III,

we introduce a new compact function call formulation of BTs.

In Section IV we describe how the BTs modularize hybrid

control systems, both conceptually and in terms of how system

properties are preserved under module compositions. Then, the

way in which BTs generalize a number of existing control

structures is investigated in Section V. Finally, a complex

example is given in Section VI, and conclusions are drawn

in Section VII.

II. BACKGROUND: CLASSICAL FORMULATION OF BTS

In this section, we will describe BTs in the classical way,

that can be found in textbooks such as [4], [5] and papers on

game AI such as [1], [3]. The following section (III) will then

provide a functional description of BTs that will be used for

our formal analysis.

Let a BT be a directed tree, with the usual definition of

nodes, edges, root, leaves, children and parents. In a BT, each

node belongs to one of the five categories listed in Table I. Leaf

nodes are either Actions or Conditions, while interior nodes

are either Fallbacks, Sequences or Parallels. A minimalistic

example BT composed of one Fallback node and two Action

nodes can be found in Figure 2.

Enter Building

?

Enter
through

Front Door

Enter
through

Back Door

Fig. 2. A Fallback is used to create an Enter Building BT. The back door
option is only tried if the front door option fails. Fallbacks are denoted by a
white box with a question mark and Actions are denoted by a green box.

When a BT is executed, the root node is ticked with a given

frequency, and corresponding timestep ∆t. This tick will then

progress downwards through the tree, following the rules of

the different node types, until it reaches a leaf node. There,

some computations are made, often taking both internal states

and sensor data into account. If the leaf node is an Action,

it might issue some commands to the robot actuators, and it

returns either Success, Failure or Running to its parent. The

parent node then either returns the same message to its parent,

or chooses to tick another child who in turn returns Success/

Failure / Running and so on. We will now describe how this

works in more detail. The first node type in Table I is the

Fallback.

Fallback.1 Fallbacks are used when a set of actions represent

alternative ways of reaching a similar goal. Thus, Fallbacks

will try each of its children, from left to right, and return

Success as soon as it has found one child that returns Success.

It will return Running as long as the ticked child returns

Running and Failure only when all children have Failed, see

Table I and the pseudo code below.

Looking at the example BT in Figure 2, the Fallback has

two actions, Enter through Front Door and Enter through Back

Door, each with the common purpose of Enter Building (the

name of the whole BT). The root of the BT is the Fallback,

and the Actions are the leaves. According to the pseudocode

above, when the root/Fallback is ticked, it ticks its first child.

The Action Enter through Front Door then starts executing

1Fallbacks are sometimes also called Selectors.

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 3

TABLE I. The five node types of a BT.

Node type Succeeds Fails Running

Fallback If one child succeeds If all children fail If one child returns running

Sequence If all children succeed If one child fails If one child returns running

Parallel If ≥ M children succeed If > N −M children fail else

Action Upon completion When impossible to complete During completion

Condition If true If false Never

Algorithm 1: Pseudocode of a Fallback node with N
children

1 for i← 1 to N do

2 childStatus ← Tick(child(i))
3 if childStatus = running then

4 return running

5 else if childStatus = success then

6 return success

7 return failure

the corresponding continuous robot controller, and returns

Running. The Fallback/root also returns Running. Then, after

the given time step ∆t, a new tick is sent from the root,

and the whole process is repeated. The return statuses of the

different nodes probably remain the same for a number of

time steps. Then, at some point, Enter through Front Door

does not return Running anymore, but instead returns either

Success if it managed to enter through the door, or Failure

if it did not manage. In case of Success, the Fallback also

returns Success, but in case of Failure, the Fallback instead

starts ticking Enter through Back Door, which probably returns

Running for a number of ticks. Finally, when Enter through

Back Door returns either Success or Failure, the fallback will

return the corresponding thing, as there are no more options

to try in case of Failure, and no more options needed in case

of Success.

The second node type is Sequence, and a minimalistic BT

using a Sequence can be found in Figure 3.

Enter through Front Door

-->

Open Front
Door

Pass
through

Door

Fig. 3. A Sequence is used to to create an Enter Through Front Door BT.
Passing the door is only tried if the opening action succeeds. Sequences are
denoted by a white box with an arrow.

Sequence. Sequences are used when some actions are meant

to be carried out in sequence, and when the success of one

action is needed for the execution of the next. Thus, Sequences

find and execute the first child that does not return success.

A Sequence will return immediately with a status code failure

or running when one of its children returns failure or running,

see Table I and the pseudo code below. The children are ticked

in order, from left to right.

Algorithm 2: Pseudocode of a Sequence node with N
children

1 for i← 1 to N do

2 childStatus ← Tick(child(i))
3 if childStatus = running then

4 return running

5 else if childStatus = failure then

6 return failure

7 return success

Looking at the example BT in Figure 3, the Sequence has

two actions, Open Front Door and Pass through Door. If

both succeed, the whole BT, Enter through Front Door, will

succeed. But if the first action fails, the overall task has failed,

and there is no point in trying the second action.

Remark 1. The definition above corresponds to so-called

memoryless Sequences. Most BT implementations also include

a Sequence with memory, where a subtree that returned

Succeed is never executed again.

The third node type is Parallel, and a minimalistic BT using

a parallel node can be found in Figure 4.

-->

-->

Ball

Tracker

Approach

Ball

Fig. 4. The two actions Ball Tracker (sensing) and Approach Ball (actuator
control) are ticked and executed in parallel. Parallel nodes are denoted by a
white box with two arrows.

Parallel. A parallel node ticks all its children simultane-

ously. If M out of the N children return success, then so does

the parallel node. If more than N − M return failure, thus

rendering success impossible, it returns failure. If none of the

conditions above are met, it returns running. We will now

define the two types of leaf nodes.

Action. An Action node performs an action, and returns

Success if the action is completed, Failure if it can not be

completed and Running if completion is under way.

Condition. A Condition node determines if a given condition

has been met, therefore, success/failure are often interpreted as

true/false. Conditions are technically a subset of the Actions,

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 4

Algorithm 3: Pseudocode of a parallel node with N
children and success threshold M

1 for i← 1 to N do

2 childStatus(i) ← Tick(child(i))
3 if Σi:childStatus(i)=success1 ≥M then

4 return Success

5 else if Σi:childStatus(i)=failure1 > N −M then

6 return failure

7 return running

but are given a separate category and graphical symbol to

improve readability of the BT and emphasize the fact that

they never return running and do not change any internal

states/variables of the BT. Examples of Conditions can be

found in Figure 5 below.

Guarantee
Power Supply

-->

Battery Level
> 20 %
and Not

Recharging

Recharge
Battery

?
Do Other

Task

Fig. 5. A Condition is used to decide when to recharge the batteries. In each
tick of the tree, the battery levels are checked, and the Do Other Task Action
is stopped whenever the battery level is getting too low.

We conclude this section with an illustration of how smaller

BTs can be combined into larger ones and a remark on Non-

reactive BTs.

The BT in Figure 6 is a straightforward combination of

Figures 2 and 3. If we add the battery power check of Figure 5,

and some additional actions such as Close Front Door (in

Sequence with Pass through Front Door) and Smash Back

Door (as a fallback of Open Back Door), we get the BT of

Figure 7.

?

-->

Open Front
Door

Pass
through

Door

-->

Open Back
Door

Pass
through

Door

Fig. 6. The two BTs in Figures 2 and 3 are combined to larger BT. If e.g.
the robot opens the front door, but does not manage to pass through it, it will
try the back door.

? -->

?
Do Other

Task

-->

Open Front
Door

Pass
through

Front Door

Close
Front Door

-->

Open Back
Door

?
Pass

through
Back Door

Smash
Back Door

-->

Battery Level
> 10 %

Recharge
Now!

Fig. 7. Combining the BTs above and some additional Actions, we get a
flexible BT for entering a building and performing some task.

Remark 2. Some BT implementations do not include the

Running return status [4]. Instead, they let each action run

until it returns Failure or Success. We denote these BTs

Non-reactive, since they do not allow actions other than the

currently active one to react to changes. This is a significant

limitation on Non-reactive BTs, which was also noted in [4].

III. A NEW FUNCTIONAL FORMULATION OF BTS

In this section we present a new functional formulation of

the BTs described above. The new formulation is more formal,

and will allow us to analyze how properties are preserved over

modular compositions of BTs. In the functional version, the

tick is replaced by a recursive function call that include both

the return status, the system dynamics and the system state.

The details of the formulation are derived from the pseudo

code of Section II, above.

Definition 1 (Behavior Tree). A BT is a three-tuple

Ti = {fi, ri,∆t}, (1)

where i ∈ N is the index of the tree, fi : R
n → R

n is the

right hand side of an ordinary difference equation, ∆t is a

time step and ri : R
n → {R,S,F} is the return status, that

can be equal to either Running (R), Success (S), or Failure

(F). Let the Running/Activation region (Ri), Success region

(Si) and Failure region (Fi) correspond to a partitioning of

the state space, defined as follows

Ri = {x : ri(x) = R} (2)

Si = {x : ri(x) = S} (3)

Fi = {x : ri(x) = F}. (4)

Finally, the execution of a BT Ti is a standard ordinary

difference equation

xk+t(tk+1) = fi(xk(tk)), (5)

tk+1 = tk +∆t. (6)

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 5

The return status ri will be used when recursively combin-

ing BTs, as explained below.

Assumption 1. From now on we will assume that all BTs

evolve in the same continuous space R
n using the same time

step ∆ti.

Remark 3. It is often the case, that different BTs, controlling

different vehicle subsystems evolving in different state spaces,

need to be combined into a single BT. Such cases can be

accomodated in the assumption above by letting all systems

evolve in a larger state space, that is the cartesian product of

the smaller state spaces.

The five node types of Table I are given functional repre-

sentations as follows. BTs that satisfy Definition 1 directly,

without calling other subtrees, are called Actions and Con-

ditions, with the later ones never returning Running. The

three composition nodes, corresponding to Algorithms 1-3 are

defined below.

Definition 2 (Sequence compositions of BTs). Two or more

BTs can be composed into a more complex BT using a

Sequence operator,

T0 = Sequence(T1, T2).

Then r0, f0 are defined as follows

If xk ∈ S1 (7)

r0(xk) = r2(xk) (8)

f0(xk) = f2(xk) (9)

else

r0(xk) = r1(xk) (10)

f0(xk) = f1(xk). (11)

T1 and T2 are called children of T0. Note that when

executing the new BT, T0 first keeps executing its first child

T1 as long as it returns Running or Failure. The second child

is executed only when the first returns Success, and T0 returns

Success only when all children have succeeded, hence the

name Sequence. For notational convenience, we write

Sequence(T1, Sequence(T2, T3)) = Sequence(T1, T2, T3),
(12)

and similarly for arbitrarily long compositions.

Definition 3 (Fallback compositions of BTs). Two or more

BTs can be composed into a more complex BT using a Fallback

operator,

T0 = Fallback(T1, T2).

Then r0, f0 are defined as follows

If xk ∈ F1 (13)

r0(xk) = r2(xk) (14)

f0(xk) = f2(xk) (15)

else

r0(xk) = r1(xk) (16)

f0(xk) = f1(xk). (17)

Note that when executing the new BT, T0 first keeps

executing its first child T1 as long as it returns Running or

Success. The second child is executed only when the first

returns Failure, and T0 returns Failure only when all children

have tried, but failed, hence the name Fallback.

For notational convenience, we write

Fallback(T1, Fallback(T2, T3)) = Fallback(T1, T2, T3), (18)

and similarly for arbitrarily long compositions.

Parallel compositions only make sense if the BTs to be

composed control separate parts of the state space, thus we

make the following assumption.

Assumption 2. Whenever two BTs T1, T2 are composed in

parallel, we assume that there is a partition of the state space

x = (x1, x2) such that f1(x) = (f11(x), f12(x)) implies

f12(x) = 0 and f2(x) = (f21(x), f22(x)) implies f21(x) = 0
(i.e. the two BTs control different parts of the system).

Definition 4 (Parallel compositions of BTs). Two or more BTs

can be composed into a more complex BT using a Parallel

operator,

T0 = Parallel(T1, T2).

Let x = (x1, x2) be the partitioning of the state space

described in Assumption 2, then f0(x) = (f11(x), f22(x)) and

r0 is defined as follows

If M = 1

r0(x) = S If r1(x) = S ∨ r2(x) = S (19)

r0(x) = F If r1(x) = F ∧ r2(x) = F (20)

r0(x) = R else (21)

If M = 2

r0(x) = S If r1(x) = S ∧ r2(x) = S (22)

r0(x) = F If r1(x) = F ∨ r2(x) = F (23)

r0(x) = R else (24)

IV. HOW BTS MODULARIZE HYBRID DYNAMICAL

SYSTEMS

In this section we will show how BTs modularize the

FSMs in HDS. We believe that this modularity is important

when designing, testing and reusing complex task switching

structures.

First we show how FSMs can be given the structure of BTs,

then we make an informal argument based on a comparison

of function calls with Goto-statements. Then we will make a

formal argument by showing how some system properties are

preserved under modular compositions of BTs.

A. Giving an FSM the structure of a BT

As described above, each BT returns Success, Running

or Failure. Imagine we have a state in an FSM that has 3

transitions, corresponding to these 3 return statements. Adding

a Tick source that collect the return transitions and transfer the

execution back into the state, as depicted in Figure 8, we have

a structure that resembles a BT.

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 6

We can now compose such FSM states using both Fallback

and Sequence constructs. The FSM corresponding to the

Fallback example in Figure 2 would then look like the one

shown in Figure 9.

Similarly, the FSM corresponding to the Sequence example

in Figure 3 would then look like the one shown in Figure 10,

and a two level BT, such as the one in Figure 6 would look

like Figure 11.

A few observations can be made from the above examples.

First, it is perfectly possible to design FSMs, and therefore

HDSs with a structure taken from BTs. Second, considering

that a BT with 2 levels corresponds to the FSM in Figure 11, a

BT with 5 levels, such as the one in Figure 7 would correspond

to a somewhat complex FSM.

Third, and more importantly, the modularity of the BT

construct is illustrated in Figures 8-11. Figure 11 might be

complex, but that complexity is encapsulated in a box with a

single in-transition and three out-transitions, just as the box in

Figure 8.

Fourth, the decision of what to do after a given sub-BT

returns is always decided on the parent level of that BT. The

sub-BT is ticked, and returns Success, Running or Failure and

the parent level decided whether to tick the next child, or

return something to its own parent. Thus, the BT ticking and

returning of a sub-BT is similar to a function call in a piece

of source code. A function call in Java, C++ or Python moves

execution to another piece of the source code, but then returns

the execution to the line right below the function call. What to

do next is decided by the piece of code that made the function

call, not the function itself. As we will see below, this is quite

different from standard FSMs where the decision of what to

do next is decided by the state being transitioned to, in a way

that resembles the Goto statement.

B. Function calls and Goto statements

In this section, we will argue that the switching structure

provided by BTs supports modularity.

The switching structure of a HDS is given by the transitions

of an FSM. These transitions are intuitive, straightforward and

compact. However, they represent control transfers that are so-

called one-way and thus share the drawbacks that made the

Goto-statement obsolete.

40 years ago, a control flow statement called Goto was

used extensively in computer programming. Today, this feature

Generic BT
S

F

RIn
Atomic action

or
Composition

Tick
Source

Fig. 8. An FSM behaving like a BT, made up of a single normal state, three
out transitions Success (S), Running (R) and Failure (F), and a Tick source.

Fallback(Use Front Door, Use Back Door)
S

F

RIn

Use Front Door S

F

RIn

Use Back Door S

F

RIn

Fig. 9. An FSM corresponding to the Fallback BT in Figure 2. Note how
the second state is only executed if the first fails.

Sequence(Open Door, Pass Through Door)
S

F

RIn

Open Door S

F

RIn

Pass Through Door S

F

RIn

Fig. 10. An FSM corresponding to the Sequence BT in Figure 3. Note how
the second state is only executed if the first succeeds.

has been abandoned by most general purpose programming

languages, and the reasons for this was formulated in a

famous quote by Edsgar Dijkstra in his paper Goto statement

considered harmful [24]: “The Goto statement as it stands is

just too primitive; it is too much an invitation to make a mess

of one’s program”.

To understand the rationale behind Dijkstas statement, we

note that Goto statements are one-way control transfers,

where the execution is transfered somewhere in a more or

less memoryless fashion. The alternative to one-way control

transfers is the two-way control transfer embodied in e.g.

function calls. Here, control is transfered back to the place

of the function call, together with a result of the computation

in the function. Thus, the implementation of the function does

not depend on how the results will be used, and the user of the

function does not have to know how it is implemented. On the

contrary, in one-way control transfers, the implementation of

the functionality must also include instructions of what to do

next. This fact couples implementation and usage, and makes

modular design less straightforward.

Looking at the state machines in HDSs, we note that the

state transitions are indeed one-way control transfers. The

called state must also include instructions of what to do next.

As above, this fact sometimes makes designing a modular

HDS using FSMs quite difficult.

One final, and smaller, drawback of FSMs lies in the

graphical representation. The FSM has arrows for possible

transitions, but the actual conditions for the transfers has no

graphical representation. For BTs, it is clear from the tree

structure and node types what a success/failure will mean for

the future execution.

Note however, that there are no claims that BTs are superior

to FSMs from a purely theoretical standpoint. On the contrary,

all BTs can most likely be formulated in terms of an FSM,

just as most general purpose programing languages are equiv-

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 7

Fallback(Sequence(Open Front Door,Pass Front Door), Sequence(Open Back Door,Pass Back Door))

S

F

RIn

Sequence(Open Front Door,Pass Front Door)
S

F

RIn

Open Front Door S

F

RIn

Pass Front Door S

F

RIn

Sequence(Open Back Door,Pass Back Door)
S

F

RIn

Open Back Door S

F

RIn

Pass Back Door S

F

RIn

Fig. 11. An FSM corresponding to the BT in Figure 6.

alent in the sense of Turing completeness, but still differ in

modularity, readability and reusability of code.

C. How BTs Modularize Efficiency and Robustness

In this section we will show how some aspects of time

efficiency and robustness carry across modular compositions

of BTs. This result will then enable us to conclude, that if

two BTs are ‘efficient’, then their composition will also be

‘efficient’, if the right conditions are satisfied. We also show

how the Fallback composition can be used to increase the

region of attraction of a BT, thereby making it more robust to

uncertainties in the initial configuration.

Note that in this paper, as in [20], by robustness we

mean large regions of attraction. We do not investigate e.g.

disturbance rejection, or other forms of robustness.

Many control problems, in particular in robotics, can be

formulated in terms of achieving a given goal configuration in

a way that is time efficient and robust with respect to the initial

configuration. Since all BTs return either Success, Failure or

Running, the definitions below will include a finite time, at

which Success must be achieved.

In order to formalize the discussion above, we say that

efficiency can be measured by the size of the time bound τ
in Definition 5 and robustness can be measured by the size of

the region of attraction R′ in the same definition.

Definition 5 (Finite Time Successful). A BT is Finite Time

Successful (FTS) with region of attraction R′, if for all starting

points x(0) ∈ R′ ⊂ R, there is a time τ , and a time τ ′(x(0))
such that τ ′(x) ≤ τ for all starting points, and x(t) ∈ R′ for

all t ∈ [0, τ ′) and x(t) ∈ S for all t ≥ τ ′)

As noted in the following Lemma, exponential stability

implies Finite Time Success, given the right choices of the

sets S, F,R.

Lemma 1 (Exponential stability and FTS). A BT for which xs

is a globally exponentially stable equilibrium of the execution

(5), and S ⊃ {x : ||x− xs|| ≤ ǫ}, ǫ > 0, F = ∅, R = R
n \S,

is FTS.

Proof. Global exponential stability implies that there exists

a > 0 such that ||x(k)−xs|| ≤ e−ak for all k. Then, for each

ǫ there is a time τ such that ||x(k)− xs|| ≤ e−aτ < ǫ, which

implies that there is a τ ′ < τ such that x(τ ′) ∈ S and the BT

is FTS.

We are now ready to look at how these properties extend

across compositions of BTs.

Lemma 2. (Robustness and Efficiency of Sequence Com-

positions) If T1, T2 are FTS, with S1 = R′

2 ∪ S2, then

T0 = Sequence(T1, T2) is FTS with τ0 = τ1+τ2, R′

0 = R′

1∪R
′

2

and S0 = S1 ∩ S2.

Proof. First we consider the case when x(0) ∈ R′

1. Then, as

T1 is FTS, the state will reach S1 in a time k1 < τ1, without

leaving R′

1. Then T2 starts executing, and will keep the state

inside S1, since S1 = R′

2 ∪ S2. T2 will then bring the state

into S2, in a time k2 < τ2, and T0 will return Success. Thus

we have the combined time k1 + k2 < τ1 + τ1.

If x(0) ∈ R′

2, T1 immediately returns Success, and T2 starts

executing as above.

The Lemma above is illustrated in Figure 12, and Example 1

below.

R′

1

R′

1

S1

S1

R′

2
S2

Fig. 12. The sets R′

1
, S1, R

′

2
, S2 of Example 1 and Lemma 2.

Example 1. Consider the BT in Figure 3. If we know that

Open Front Door is FTS and will finish in less than τ1 seconds,

and that Pass through Door is FTS and will finish in less than

τ2 seconds. Then, as long as S1 = R′

2 ∪ S2, Lemma 2 states

that the combined BT in Figure 3 is also FTS, with an upper

bound on the execution time of τ1+τ2. Note that the condition

S1 = R′

2 ∪ S2 implies that the action Pass through Door will

not make the system leave S1, by e.g. accidentally colliding

with the door and thereby closing it without having passed

through it.

The result for Fallback compositions is related, but with a

slightly different condition on Si and R′

j .

Lemma 3. (Robustness and Efficiency of Fallback Com-

positions) If T1, T2 are FTS, with S2 ⊂ R′

1, then T0 =
Fallback(T1, T2) is FTS with τ0 = τ1 + τ2, R′

0 = R′

1 ∪ R′

2

and S0 = S1.

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 8

Proof. First we consider the case when x(0) ∈ R′

1. Then, as

T1 is FTS, the state will reach S1 before k = τ1 < τ0, without

leaving R′

1. If x(0) ∈ R′

2 \R
′

1, T2 will execute, and the state

will progress towards S2. But as S2 ⊂ R′

1, x(k1) ∈ R′

1 at

some time k1 < τ2. Then, we have the case above, reaching

x(k2) ∈ S1 in a total time of k2 < τ1 + k1 < τ1 + τ2.

The Lemma above is illustrated in Figure 13, and Example 2

below.

R1

F1

R1
S1

S2

R2

F2

R2

R
n

Fig. 13. The sets S1, F1, R1 (solid boundaries) and S2, F2, R2 (dashed
boundaries) of Example 2 and Lemma 3.

Enter through Front Door (implicit Sequence)

?

Pass
through

Door

Open Front
Door

Fig. 14. An Implicit Sequence created using a Fallback, as described in
Example 2 and Lemma 3.

Remark 4. As can be noted, the necessary conditions in

Lemma 2, including S1 = R′

2 ∪ S2 might be harder to

satisfy than the conditions of Lemma 3, including S2 ⊂ R′

1.

Therefore, Lemma 3 is often preferable from a practical point

of view, e.g. using implicit sequences as shown below.

Example 2. This example will illustrate a particular way of

using Fallbacks that we call Implicit sequences. Consider the

BT in Figure 14. During execution, if the door is closed, then

Pass through Door will fail and Open Front Door will start to

execute. Now, right before Open Front Door returns Success,

the first action Pass through Door (with higher priority) will

realize that the state of the world has now changed enough

to enable a possible success and starts to execute, i.e. return

Running instead of Failure. The combined action of this BT

will thus make the robot open the door (if necessary) and then

pass through if.

Thus, even though a Fallback composition is used, the result

is sometimes a sequential execution of the children in reverse

order (from right to left). Hence the name Implicit sequence.

The example above illustrates how we can increase the

robustness of a BT. If we want to be able to handle more

diverse situations, such as a closed door, we do not have

to make the door passing action more complex, instead we

combine it with another BT that can handle the situation and

move the system into a part of the statespace that the first BT

can handle. The sets S0, F0, R0 and f0 of the combined BT are

shown in Figure 15, together with the vector field f0(x)− x.

As can be seen, the combined BT can now move a larger set

of initial conditions to the desired region S0 = S1.

R0

F0

S0

F0

R0

R
n

f0 = f1

f0 = f2

Fig. 15. The sets S0, F0, R0 and the vector field (f0(x)−x) of Example 2
and Lemma 3.

Lemma 4. (Robustness and Efficiency of Parallel Composi-

tions) If T1, T2 are FTS, then T0 = Parallel(T1, T2) is FTS

with

If M = 1

R′

0 = {R′

1 ∪R′

2} \ {S1 ∪ S2} (25)

S0 = S1 ∪ S2 (26)

τ0 = min(τ1, τ2) (27)

If M = 2

R′

0 = {R′

1 ∩R′

2} \ {S1 ∩ S2} (28)

S0 = S1 ∩ S2 (29)

τ0 = max(τ1, τ2) (30)

Proof. The parallel composition executes T1 and T2 indepen-

dently. If M = 1 the parallel composition returns success

if either T1 or T2 returns success, thus τ0 = min(τ1, τ2). It

returns running if either T1 or T2 returns running and the other

does not return success. If M = 2 the parallel composition

returns success if and only if both T1 and T2 return success,

thus τ0 = max(τ1, τ2). It returns running if either T1 or T2
returns running and the other does not return failure.

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 9

D. How BTs Modularize Safety

Besides being efficient and robust, we also want our robot

system to be safe, in the sense that it by design never enters a

particular part of the statespace, that we for simplicity denote

the Obstacle Region. We make the following definition.

Definition 6 (Safe). A BT is Safe, with respect to the obstacle

region O ⊂ R
n, and the initialization region I ⊂ R, if for all

starting points x(0) ∈ I , we have that x(t) 6∈ O, for all t ≥ 0.

In order to make statements about the safety of composite

BTs we also need the following definition.

Definition 7 (Safeguarding). A BT is Safeguarding, with

respect to the step length d, the obstacle region O ⊂ R
n,

and the initialization region I ⊂ R, if it is safe, and FTS with

region of attraction R′ ⊃ I and a success region S, such that

I surrounds S in the following sense:

{x ∈ X ⊂ R
n : inf

s∈S
||x− s|| ≤ d} ⊂ I, (31)

where X is the reachable part of the state space R
n.

This implies that the system, under the control of another

BT with maximal statespace steplength d, cannot leave S
without entering I , and thus avoiding O, see Lemma 5 below.

Example 3. To illustrate how safety can be improved using

a Sequence composition, we consider the UAV control BT in

Figure 16. The sets Si, Fi, Ri are shown in Figure 17. As T1
is Guarrantee altitude above 1000 ft, its failure region F1 is

a small part of the state space (corresponding to a crash)

surrounded by the running region R1 that is supposed to

move the UAV away from the ground, guaranteeing a minimum

altitude of 1000 ft. The success region S1 is large, every state

sufficiently distant from F1. The BT that performs the mission,

T2, has a smaller success region S2, surrounded by a very

large running region R2, containing a small failure region F2.

The function f0 is governed by Equations (9) and (11) and is

depicted in form of the vector field (f0(x)− x) in Figure 18.

-->

Guarantee

Altitude >

1000ft

Perform

Mission

Fig. 16. The Safety of the UAV control BT is Guaranteed by the first Action.

The discussion above is formalized in Lemma 5 below.

Lemma 5 (Safety of Sequence Compositions). If T1 is safe-

guarding, with respect to the obstacle O1 initial region I1, and

margin d, and T2 is an arbitrary BT with maxx ||x−f2(x)|| <
d, then the composition T0 = Sequence(T1, T2) is Safe with

respect to O1 and I1.

Proof. T1 is safeguarding, which implies that T1 is safe and

thus any trajectory starting in I1 will stay out of O1 as long

R1S1

F1
F2

S2R2

R2

R
n

Fig. 17. The sets S1, F1, R1 (solid boundaries) and S2, F2, R2 (dashed
boundaries) of Example 3 and Lemma 5.

R0

R0

F0F0

S0

R
n

f0 = f1

f0 = f2

Fig. 18. The sets S0, F0, R0 and the vector field (f0(x)−x) of Example 3
and Lemma 5.

as T1 is executing. But if the trajectory reaches S1, T2 will

execute until the trajectory leaves S1. We must now show that

the trajectory cannot reach O1 without first entering I1. But

any trajectory leaving S1 must immediately enter I1, as the

first state outside S1 must lie in the set {x ∈ R
n : infs∈S1

||x−
s|| ≤ d} ⊂ I1 due to the fact that for T2, ||x(k)−x(k+1)|| =
||x(k)− f2(x(k))|| < d.

We conclude this section with a discussion about undesired

chattering in switching systems.

The issue of undesired chattering, i.e., switching back

and fourth between different sub-controllers, is always an

important concern when designing switched control systems,

and BTs are no exception. As is suggested by the right part

of Figure 18, chattering can be a problem when vector fields

meet at a switching surface.

Although the efficiency of some compositions can be com-

puted using Lemma 2 and 3 above, the efficiency of others

can be significantly reduced by chattering, as noted above.

Inspired by [25] the following result can give an indication of

when chattering is to be expected.

Let Ri and Rj be the running region of Ti and Tj respec-

tively. We want to study the behavior of the system when

a composition of Ti and Tj is applied. In some cases the

execution of a BT will lead to the running region of the other

BT and vice-versa. Then, both BTs are alternatively executed

and the state trajectory chatters on the boundary between Ri

and Rj . We formalize this discussion in the following lemma.

Lemma 6. Given a composition T0 = Sequence(T1, T2),
where fi depend on ∆t such that ||fi(x) − x|| → 0 when

∆t → 0. Let s : R
n → R be such that s(x) = 0 if

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 10

x ∈ δS1 ∩R2, s(x) < 0 if x ∈ interior(S1) ∩R2, s(x) > 0 if

x ∈ interior(Rn \ S1) ∩R2, and let

λi(x) = (
∂s

∂x
)T (fi(x)− x).

Then, x ∈ δS1 is chatter free, i.e., avoids switching between

T1 and T2 at every timestep, for small enough ∆t, if λ1(x) < 0
or λ2(x) > 0.

Proof. When the condition holds, the vector field is pointing

outwards on at least one side of the switching boundary.

Note that this condition is not satisfied on the right hand side

of Figure 18. This concludes our analysis of BT compositions.

V. HOW BTS GENERALIZE DECISION TREES, THE

SUBSUMPTION ARCHITECTURE AND SEQUENTIAL

BEHAVIOR COMPOSITIONS

In this section, we will describe Decision Trees, the Sub-

sumption Architecture and Sequential Behavior Compositions,

and see how each of these architectures can be seen as a special

case of BTs.

A. How BTs Generalize Decision Trees

Decision Trees are tree structures that aggregate a number of

If clauses, that leads to a given decision or prediction. Each

leaf of the tree represents a particular decision, prediction,

conclusion, or action to be carried out, and each non-leaf

represent a predicate to be checked.

Have Task
to do?

Task is
Urgent?

Battery Level
> 10% ?

Perform
Task!

Recharge
Now!

Battery Level
> 30% ?

Perform
Task!

Recharge
Now!

Recharge
Now!

yes no

no

no noyes

yes

yes

Fig. 19. The Decision Tree of a robot control system. The decisions are
interior nodes, and the actions are leaves.

A typical decision tree is shown in Figure 19. The pred-

icates, evaluating to True/False are found in the interior

nodes of the Tree, while the Actions/Conclusions are found

at the leaves. Without loss of generality we consider binary

Decision Trees, the extension to multiple choice nodes is

straightforward.

In the Decision Tree of Figure 19, the robot has to decide

whether to perform a given task or recharge its batteries. This

decision is taken based upon the urgency of the task, and

the current battery level. The following Lemma shows how to

create an equivalent BT from a given Decision Tree.

Lemma 7. A Decision Tree, can be recursively described as

follows

DTi =

{

DTi1 if predicate Pi is true

DTi2 if predicate Pi is false
(32)

where DTi1, DTi2 are either atomic actions, or sub DTs

with identical structure. Given such a DTi, we can create

an equivalent BT by setting

Ti = Fallback(Sequence(Pi, Ti1), Ti2) (33)

for non-atomic actions, Ti = DTi for atomic actions and

requiring all actions to return Running all the time.

The original Decision Tree and the new BT are equivalent

in the sense that the same values for Pi will always lead to the

same atomic action being executed. The lemma is illustrated

in Figure 20.

Proof. Informally, first we note that by requiring all actions to

return Running, we basically disable the feedback functionality

that is built into the BT. Instead whatever action that is ticked

will be the one that executes, just as the Decision Tree. Second

the result is a direct consequence of the fact that the predicates

of the Decision Trees are essentially ‘If ... then ... else ...’

statements, that can be captured by BTs as shown in Figure

20. More formally, the BT equivalent of the Decision Tree is

given by

Ti = Fallback(Sequence(Pi, Ti1), Ti2)

For the atomic actions always returning running we have ri =
R, for the actions being predicates we have that ri = Pi. This,

together with Definitions 2-3 gives that

fi(x) =

{

fi1 if predicate Pi is true

fi2 if predicate Pi is false
(34)

which is equivalent to (32)

?

-->

Predicate

Todo when
False

Todo when
True

Predicate

Todo when
True

Todo when
False

yes no

Fig. 20. The basic building blocs of Decision Trees are ‘If ... then ... else ...’
statements (left), and those can be created in BTs as illustrated above (right).

Note that this observation opens up possibilities of using the

extensive literature on learning Decision Trees from human

operators, see e.g. [21], to create BTs. These learned BTs

can then be extended with safety or robustness features, as

described in Section IV above.

We finish this section with an example of how BTs general-

ize Decision Trees. Consider the Decision Tree in Figure 19.

Applying Lemma 7 we get the equivalent BT of Figure 21.

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 11

?

-->

Have Task To
Do?

Recharge
Now!

?

-->

Task is
Urgent?

?

-->

Battery Level
> 10% ?

Perform
Task!

Recharge
Now!

?

-->

Battery Level
> 30% ?

Perform
Task!

Recharge
Now!

Fig. 21. A BT that is equivalent to the Decision Tree in Figure 19. A more
compact version of the same tree can be found in Figure 22.

However the direct mapping does not always take full advan-

tage of the features of BTs. Thus a more compact, and still

equivalent, BT can be found in Figure 22, where again, we

assume that all actions always return Running.

?

-->

Have Task To
Do?

Recharge
Now!

?

Battery Level
> 30% ?

-->

Task is
Urgent?

Battery Level
> 10% ?

Perform
Task!

Fig. 22. A more compact formulation of the BT in Figure 21.

B. How BTs Generalize the Subsumption Architecture

In this section we will see how the subsumption architecture,

proposed by Brooks [19], can be realized using a Fallback

composition. The basic idea in [19] was to have a number of

controllers set up in parallel and each controller was allowed to

output both actuator commands, and a binary value, signaling

if it wanted to control the robot or not. The controllers

were then ordered according to some priority, and the highest

priority controller, out of the ones signaling for action, was

allowed to control the robot. Thus, a higher level controller

was able to subsume the actions of a lower level one.

Recharge if
Needed

Sensors
Do Other

Tasks

Stop if
Overheated

Actuators

Fig. 23. The Subsumption architecture. A higher level behavior can subsume
(or surpress) a lower level one.

An example of a Subsumption architecture can be found

in Figure 23. Here, the basic level controller Do Other Tasks

is assumed to be controlling the robot for most of the time.

However, when the battery level is low enough, the Recharge

if Needed controller will signal that it needs to command the

robot, subsume the lower level controller, and guide the robot

towards the recharging station. Similarly, if there is risk for

overheating, the top level controller Stop if Overheated will

subsume both of the lower level ones, and stop the robot until

it has cooled down.

Lemma 8. Given a Subsumption architecture, we can create

an equivalent BT by arranging the controllers as actions under

a Fallback composition, in order from higher to lower priority.

Furthermore, we let the return status of the actions be Failure

if they do not need to execute, and Running if they do. They

never return Success. Formally, a subsumption architecture

composition Si(x) = Sub(Si1(x), Si2(x)) can be defined by

Si(x) =

{

Si1(x) if Si1 needs to execute

Si2(x) else
(35)

Then we write an equivalent BT as follows

Ti = Fallback(Ti1, Ti2) (36)

where Tij is defined by fij(x) = Sij(x) and

rij(x) =

{

R if Sij needs to execute

F else.
(37)

Proof. By the above arrangement, and Definition 3 we have

that

fi(x) =

{

fi1(x) if Si1 needs to execute

fi2(x) else,
(38)

which is equivalent to (35) above. In other words, actions will

be checked in order of priority, until one that returns running

is found.

A BT version of the example in Figure 23 can be found

in Figure 24. The fact that the two control structures are

equivalent is illustrated by Table II where the executing action

of all 23 possible return status combinations are listed. Note

that no action is executed if all actions return Failure.

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 12

?

Recharge if
Needed

Do Other
Tasks

Stop if
Overheated

Fig. 24. A BT version of the subsumption example in Figure 23.

TABLE II. Possible outcomes of Subsumption-BT example.

Stop

if over

heated

Recharge

if Needed

Do Other

Tasks

Executed

Action

Running Running Running Stop ...

Running Running Failure Stop ...

Running Failure Running Stop ...

Running Failure Failure Stop ...

Failure Running Running Recharge
...

Failure Running Failure Recharge
...

Failure Failure Running Do other
...

Failure Failure Failure -

C. How BTs Generalize Sequential Behavior Compositions

In this section, we will see how the Fallback composition,

and Lemma 3, can also be used to implement the Sequential

Behavior Compositions proposed in [20].

The basic idea proposed by [20] is to extend the region

of attraction by using a family of controllers, where the

asymptotically stable equilibrium of each controller was either

the goal state, or inside the region of attraction of another

controller, positioned earlier in the sequence.

We will now describe the construction of [20] in some

detail, and then see how this concept is captured in the BT

framework. Given a family of controllers U = {Φi}, we

say that Φi prepares Φj if the goal G(Φi) is inside the

domain D(Φj). Assume the overall goal is located at G(Φ1).
A set of execution regions C(Φi) for each controller was then

calculated according to the following scheme:

1) Let a Queue contain Φ1. Let C(Φ1) = D(Φ1), N = 1,

D1 = D(Φ1).
2) Remove the first element of the queue and append all

controllers that prepare it to the back of the queue.

3) Remove all elements in the queue that already has a

defined C(Φi).
4) Let Φj be the first element in the queue. Let C(Φj) =

D(Φj) \DN , DN+1 = DN ∪D(Φj) and N ← N + 1.

5) Repeat steps 2, 3 and 4 until the queue is empty.

The combined controller is then executed by finding j such

that x ∈ C(Φj) and then invoking controller Φj .

Looking at the design of the Fallback operator in BTs, it

turns out that it does exactly the job of the Burridge algorithm

above, as long as the subtrees of the Fallback are ordered in

the same fashion as the queue above. We formalize this in

Lemma 9 below.

Lemma 9. Given a set of controllers U = {Φi} we define

the corresponding regions Si = G(Φi), R
′

i = D(Φi), Fi =
Complement(D(Φi)), and consider the controllers as atomic

BTs, Ti = Φi. Assume S1 is the overall goal region. Iteratively

create a larger BT TL as follows

1. Let TL = T1.

2. Find a BT T∗ ∈ U such that S∗ ⊂ R′

L

3. Let TL ← Fallback(TL, T∗)
4. Let U ← U \ T∗
5. Repeat steps 2, 3 and 4 until U is empty.

If all Ti are FTS, then so is TL.

Proof. The statement is a direct consequence of iteratively

applying Lemma 3.

Thus, we see that BTs generalize the Sequential Behavior

Compositions of [20], with the execution region computations

and controller switching replaced by the Fallback composition,

as long as the ordering is given by Lemma 9 above.

VI. EXAMPLES

In this section we will give three examples of how BTs

can be used in robotics. The first example illustrates how

the functional representation of Section III can be used to

guarantee safety in term of avoiding empty batteries. The

second example illustrates how the functional representation

can be used to increase robustness, in terms of increasing the

region of attraction for a robot executing a task. Then, the third

example illustrates the modularity of a larger BT by combining

the two smaller examples with additional subtrees that add

some additional robot capabilities.

All BTs were implemented using our publicly available ROS

BT package2. To illustrate the modularity, the leaf nodes are

a mix of behaviors from the NAO Software Development Kit,

such as Stand Up, Sit Down, and Lie Down and behaviors we

developed ourselves, such as Approach Ball, Grasp Ball, and

Throw Ball, see below.

Example 4 (Safety). To illustrate Lemma 5 we choose the BT

of Figure 25, which is actually a compact version of the BT

of Figure 5. The idea is that the first BT in the sequence is

to guarantee that the combination does not run out of battery,

under very general assumptions about what is going on in the

second BT.

First we describe the sets Si, Fi, Ri and the corresponding

vector fields of the functional representation. Then we apply

Lemma 5 to see that the combination does indeed guarantee

against running out of batteries.

Let T1 be Guarantee Power Supply and T2 be Do other tasks.

Let furthermore xk = (x1k, x2k) ∈ R
2, where x1k ∈ [0, 100]

is the distance from the current position to the recharging

station and x2k ∈ [0, 100] is the battery level. For this example

∆t = 10s.

2library available at http://wiki.ros.org/behavior tree.

http://wiki.ros.org/behavior_tree

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 13

-->

Guarantee
Power
Supply

Do Other
Task

Fig. 25. A BT where the first action guarantees that the combination does
not run out of battery.

For Guarantee Power Supply, T1, we have that

S1 = {x : 100 ≤ x2 or (0.1 ≤ x1, 20 < x2)} (39)

R1 = {x : x2 ≤ 20 or (x2 < 100 and x1 < 0.1)} (40)

F1 = ∅ (41)

f1(x) =

(

x1

x2 + 1

)

if x1 < 0.1, x2 < 100 (42)

=

(

x1 − 1
x2 − 0.1

)

else (43)

that is, when running, the robot moves to x1 < 0.1 and

recharges. While moving, the battery level decreases and while

charging the battery level increases. If at the recharge position,

it returns Success only after reaching x2 ≥ 100. Outside of

the recharge area, it returns Success as long as the battery

level is above 20. A phase portrait of f1(x) − x is shown in

Figure 26.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

x
1
 [m]

x
2
 [
%

]

Fig. 26. The Guarantee Power Supply Action

For Do Other Task, T2, we have that

S2 = ∅ (44)

R2 = R
2 (45)

F2 = ∅ (46)

f2(x) =

(

x1 + (50− x1)/50
x2 − 0.1

)

(47)

that is, when running, the robot moves towards x1 = 50
and does some important task, while the battery level keeps

on decreasing. A phase portrait of f2(x) − x is shown in

Figure 26.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

x
1
 [m]

x
2
 [
%

]

Fig. 27. The Do Other Task Action

Given T1 and T2, the composition T0=Sequence(T1, T2) is

created to improve the safety of T2, as described below.

Informally, we can look at the phase portrait in Figure 28

to get a feeling for what is going on. The obstacle to be

avoided is the Empty Battery state O = {x : x2 = 0},
and T0 makes sure that this state is never reached, since the

Guarantee Power Supply action starts executing as soon as Do

Other Task brings the battery level below 20%. The remaining

battery level is also enough for the robot to move back to the

recharging station, given that the robot position is limited by

the reachable space, i.e., x1k ∈ [0, 100].

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

x
1
 [m]

x
2
 [
%

]

Fig. 28. Phase portrait of T0=Sequence(T1, T2). Note that T1 guarantees that
the combination does not run out of battery. The dashed line is a simulated
execution, starting at (80, 50).

Formally, we state the following Lemma

Lemma 10. Let the obstacle region be O = {x : x2 = 0} and

the initialization region be I = {x : x1 ∈ [0, 100], x2 ≥ 15}.

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 14

Furthermore, let T1 be given by (39)-(43) and T2 be an

arbitrary BT satisfying maxx ||x − f2(x)|| < d = 5, then

T0=Sequence(T1, T2) is Safe with respect to I and O, i.e. if

x(0) ∈ I , then x(t) 6∈ O, for all t > 0.

Proof. First we see that T1 is Safe with respect to O and I .

Then we notice that T1 is Safeguarding with margin d = 10
for the reachable set X = {x : x1 ∈ [0, 100], x2 ∈ [0, 100]}.
Finally we conclude that T0 is Safe, according to Lemma 5.

Note that if we did not constraint the robot to move in some

reachable set X = {x : x1 ∈ [0, 100], x2 ∈ [0, 100]}, it would

be able to move so far away from the recharging station that

the battery would not be sufficient to bring it back again before

reaching x2 = 0.

Example 5 (Robustness and Efficiency). To illustrate Lemma

3 we look at the BT of Figure 29 controlling a NAO robot. The

BT has three actions Walk Home, which is first tried, if that

fails (the robot cannot walk if it is not standing up) it tries

the action Sit to Stand, and if that fails, it tries Lie down to

Sit Up. Thus, each fallback action brings the system into the

running region of the action to its left, e.g., the result of Sit

to Stand is to enable the execution of Walk Home.

Let xk = (x1k, x2k) ∈ R
2, where x1k ∈ [0, 0.5] is the

horizontal position of the robot head and x2k ∈ [0, 0.55] is

vertical position (height above the floor) of the robot head. The

objective of the robot is to get to the destination at (0, 0.48).

?

Walk
Home

Sit to
Stand

Lie down to
Sit up

Fig. 29. The combination T3=Fallback(T4, T5, T6) increases robustness by
increasing the region of attraction.

First we describe the sets Si, Fi, Ri and the corresponding

vector fields of the functional representation. Then we apply

Lemma 3 to see that the combination does indeed improve

robustness. For this example ∆t = 1s.

For Walk Home, T4, we have that

S4 = {x : x1 ≤ 0} (48)

R4 = {x : x1 6= 0, x2 ≥ 0.48} (49)

F4 = {x : x1 6= 0, x2 < 0.48} (50)

f4(x) =

(

x1 − 0.1
x2

)

(51)

that is, it runs as long as the vertical position of the robot head,

x2, is at least 0.48m above the floor, and moves towards the

origin with a speed of 0.1m/s. If the robot is not standing up

x2 < 0.48m it returns Failure. A phase portrait of f4(x)−x is

shown in Figure 30. Note that T4 is FTS with the completion

time bound τ4 = 0.5/0.1 = 10 and region of attraction R′

4 =
R4

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

x
1
 [m]

x
2
 [

m
]

Fig. 30. The Action Walk Home, keeps the head around x2 = 0.5 and moves
it towards the destination x1 = 0.

For Sit to Stand, T5, we have that

S5 = {x : 0.48 ≤ x2} (52)

R5 = {x : 0.3 ≤ x2 < 0.48} (53)

F5 = {x : x2 < 0.3} (54)

f5(x) =

(

x1

x2 + 0.05

)

(55)

that is, it runs as long as the vertical position of the robot

head, x2, is in between 0.3m and 0.48m above the floor. If

0.48 ≤ x2 the robot is standing up, and it returns Success. If

x2 ≤ 0.3 the robot is lying down, and it returns Failure. A

phase portrait of f5(x)−x is shown in Figure 31. Note that T5
is FTS with the completion time bound τ5 = ceil(0.18/0.05) =
ceil(3.6) = 4 and region of attraction R′

5 = R5

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

x
1
 [m]

x
2
 [

m
]

Fig. 31. The Action Sit to Stand moves the head upwards in the vertical
direction towards standing.

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 15

For Lie down to Sit Up, T6, we have that

S6 = {x : 0.3 ≤ x2} (56)

R6 = {x : 0 ≤ x2 < 0.3} (57)

F6 = ∅ (58)

f6(x) =

(

x1

x2 + 0.03

)

(59)

that is, it runs as long as the vertical position of the robot

head, x2, is below 0.3m above the floor. If 0.3 ≤ x2 the

robot is sitting up (or standing up), and it returns Success. If

x2 < 0.3 the robot is lying down, and it returns Running. A

phase portrait of f6(x)− x is shown in Figure 32. Note that

T6 is FTS with the completion time bound τ6 = 0.3/0.03 = 10
and region of attraction R′

6 = R6

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

x
1
 [m]

x
2
 [

m
]

Fig. 32. The Action Lie down to Sit Up moves the head upwards in the
vertical direction towards sitting.

Informally, we can look at the phase portrait in Figure 33

to get a feeling for what is going on. As can be seen the

fallbacks make sure that the robot gets on its feet and walks

back, independently of where it started in {x : 0 < x1 ≤
0.5, 0 ≤ x2 ≤ 0.55}.

Formally, we can use Lemma 3 to compute robustness in

terms of the region of attraction R′

3, and efficiency in terms

of bounds on completion time τ3. The results are described in

the following Lemma.

Lemma 11. Given T4, T5, T6 defined in Equations (48)-(59).

The combined BT T3 = Fallback(T4, T5, T6) is FTS, with

region of attraction R′

3 = {x : 0 < x1 ≤ 0.5, 0 ≤ x2 ≤ 0.55},
completion time bound τ3 = 24.

Proof. We note that T4, T5, T6 are FTS with τ4 = 10, τ5 = 4,

τ6 = 10 and regions of attractions equal to the running regions

R′

i = Ri. Thus we have that S6 ⊂ R5 = R′

5 and S5 ⊂ R4 =
R′

4. Applying Lemma 3 twice now gives the desired results,

R′

3 = R′

4 ∪ R′

5 ∪ R′

6 = {x : 0 ≤ x1 ≤ 0.5, 0 ≤ x2 ≤ 0.55}
and τ3 = τ4 + τ5 + τ6 = 10 + 4 + 10 = 24.

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

x
1
 [m]

x
2
 [

m
]

Fig. 33. The combination Fallback(T4, T5, T6) first gets up, and then walks
home.

Below we will use a larger BT to illustrate modularity, as

well as the applicability of the proposed analysis tools to more

complex problems.

Example 6 (Big BT). The BT in Figure 34 was designed for

controlling a NAO humanoid robot in an interactive capability

demo, and includes the BTs of Figures 25 and 29 as subtrees,

as discussed below.

The top left part of the tree includes some exception

handling, in terms of battery management, and backing up

and complaining in case the toe bumpers are pressed. The top

right part of the tree is a parallel node, listening for new user

commands, along with a request for such commands if none

are given and an execution of the corresponding activities if

a command has been received.

The subtree Perform Activities is composed of checking

of what activity to do, and execution of the corresponding

command. Since the activities are mutually exclusive, we let

the Current Activity hold only the latest command and no

ambiguities of control commands will occur.

The subtree Play Ball Game runs the ball tracker, in parallel

with moving closer to the ball, grasping it, and throwing it.

As can be seen, the design is quite modular. A HDS imple-

mentation of the same functionality would need an extensive

amount of transition arrows going in between the different

actions.

We will now apply the analysis tools of the paper to the

example, initially assuming that all atomic actions are FTS,

as described in Definition 5.

Comparing Figures 25 and 34 we see that they are identical,

if we let Do Other Task correspond to the whole right part

of the larger BT. Thus, according to Lemma 10, the complete

BT is safe, i.e. it will not run out of batteries, as long as the

reachable state space is bounded by 100 distance units from

the recharging station and the time steps are small enough

so that maxx ||x − f2(x)|| < d = 5, i.e. the battery does not

decrease more than 5% in a single time step.

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 16

Perform Activities

Play Ball Game

?

-->

Toe Bumpers
Pressed

-->
-->

Say: "Ouch
My Foot!"

Back off
0.2m

-->
-->

-->

New user
suggestion

(voice/button)

-->

Set Current
Activity

?

I know what
to do

?

Activity is "Ball
Game"?

-->

Activity is "Sit"?

-->

Activity is "Stand
up"?

-->

Activity is
"Sleep"?

-->

Activity is "Say
Goodbye"?

-->

Wave
Say:"Good

bye!"

-->
-->

-->
-->

-->

Ball Close?

?

Approach
Ball

Ball Grasped?

?

Grasp Ball

Ball
Tracker

Throw Ball

Say: "What do
you want me to

do?"

-->

Guarantee
Power
Supply

?

Lie down to
Sit up

Sit to
Stand

?

Lie down to
Sit up

Stand to
Sit

?

Lie down to
Sit up

Sit to
Stand

?

Stand to
Sit

Sit to Lie
Down

Fig. 34. A BT that combines some capabilities of the NAO robot in an interactive and modular way. Note how atomic actions can easily be replaced by
more complex sub-BTs.

The design of the right subtree in Play Ball Game is

made to satisfy Lemma 2, with the condition S1 = R′

2 ∪
S2. Let T1 = Fallback(Ball Close?, Approach Ball), T2 =
Fallback(Ball Grasped?, Grasp Ball), T3 = Throw Ball. Note

that the use of condition action pairs makes the success

regions explicit. Thus S1 = R′

2 ∪ S2, i.e. Ball Close is

designed to describe the Region of Attraction of Grasp Ball,

and S2 = R′

3∪S3, i.e. Ball Grasped is designed to describe the

Region of Attraction of Throw Ball. Finally, applying Lemma 2

twice we conclude that the right part of Play Ball Game is FTS

with completion time bound τ1 + τ2 + τ3, region of attraction

R′

1 ∪R′

2 ∪R′

3 and success region S1 ∩ S2 ∩ S3.

The parallel composition at the top of Play Ball Game

combines Ball Tracker which always returns Running, with the

subtree discussed above. The parallel node has M = 1, i.e. it

only needs the Success of one child to return Success. Thus, it

is clear from Definition 4 that the whole BT Play Ball Game

has the same properties regarding FTS as the right subtree.

Finally, we note that Play Ball Game fails if the robot is

not standing up. Therefore, we improve the robustness of that

subtree in a way similar to Example 5 in Figure 29. Thus we

create the composition Fallback(Play Ball Game, T5, T6), with

T5 = Sit to Stand, T6 = Lie Down to Sit Up.

Assuming that that high dimensional dynamics of Play

TRANSACTIONS ON ROBOTICS (ACCEPTED) 2016 17

Ball Game is somehow captured in the x1 dimension we can

apply an argument similar to Lemma 11 to conclude that the

combined BT is indeed also FTS with completion time bound

τ1+τ2+τ3+τ5+τ6, region of attraction R′

1∪R
′

2∪R
′

3∪R
′

5∪R
′

6

and success region S1 ∩ S2 ∩ S3.

The rest of the BT concerns user interaction and is thus not

suitable for doing performance analysis.

Finally, we conclude the example by noting that the assump-

tion on all atomic actions being FTS is fairly strong. In partic-

ular, the NAO grasping capabilities are somewhat unreliable.

But we believe that a deterministic analysis such as this one is

still useful for making good design choices. An analysis using

a stochastic approach, modeling the probabilities of success

and failure, is also conceivable, but outside the scope of this

paper.

VII. CONCLUSIONS

In this paper, we have provided a theoretical description of

how properties such as efficiency, robustness and safety are

preserved in modular compositions of BTs, enabled by a new

functional formulation of BTs.

It was shown that under certain circumstances, the compo-

sition of a particular class of BTs with a very general class,

can still be guaranteed to be safe. A result that is potentially

useful in areas where there is a need to both guarantee key

properties of a piece of software, and continuously adding

functionality to that same software. Regarding robustness, it

was shown how the region of attraction of a controller can be

extended by compositions of controllers.

The proposed analysis tools were illustrated using two

smaller and one more complex example, where safety as well

as robustness of different action combinations were analyzed.

We have also shown how BTs generalize the important,

but quite different concepts of Decision Trees, the Subsump-

tion Architecture and Sequential Behavioral Compositions. As

Decision Trees are an important tool in machine learning,

this opens up possibilities of learning BTs, while the results

for the Subsumption Architecture and Sequential Behavior

Compositions are more useful for designing and analyzing

robust robot controllers.

All examples were implemented using our publicly avail-

able ROS BT implementation3, and a combination of atomic

actions created by others and ourselves.

To conclude, we believe that the strength of BTs lie in their

modularity, and that BTs can complement FSM in robotic

software development, much like one programming language

can complement another.

ACKNOWLEDGEMENTS

The authors thank Professor Magnus Egerstedt for his valu-

able input into this paper. This work has been supported by the

SARAFun project, partially funded by the EU within H2020

(H2020-ICT-2014/H2020-ICT-2014-1) under grant agreement

no. 644938. The authors gratefully acknowledge the support.

3library available at http://wiki.ros.org/behavior tree.

REFERENCES

[1] D. Isla, “Handling Complexity in the Halo 2 AI,” in Game Developers

Conference, 2005.
[2] A. Champandard, “Understanding Behavior Trees,” AiGameDev. com,

vol. 6, 2007.
[3] D. Isla, “Halo 3-building a Better Battle,” in Game Developers Confer-

ence, 2008.
[4] I. Millington and J. Funge, Artificial intelligence for games. CRC Press,

2009.
[5] S. Rabin, Game AI Pro. CRC Press, 2014, ch. 6. The Behavior Tree

Starter Kit.
[6] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-

ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.
[7] C. Lim, R. Baumgarten, and S. Colton, “Evolving Behaviour Trees

for the Commercial Game DEFCON,” Applications of Evolutionary

Computation, pp. 100–110, 2010.
[8] M. Nicolau, D. Perez-Liebana, M. O’Neill, and A. Brabazon, “Evolu-

tionary behavior tree approaches for navigating platform games,” IEEE

Transactions on Computational Intelligence and AI in Games, vol. PP,
no. 99, pp. 1–1, 2016.

[9] A. Shoulson, F. M. Garcia, M. Jones, R. Mead, and N. I. Badler,
“Parameterizing Behavior Trees,” in Motion in Games. Springer, 2011.

[10] I. Bojic, T. Lipic, M. Kusek, and G. Jezic, “Extending the JADE Agent
Behaviour Model with JBehaviourtrees Framework,” in Agent and Multi-

Agent Systems: Technologies and Applications. Springer, 2011, pp.
159–168.

[11] P. Ögren, “Increasing Modularity of UAV Control Systems using Com-
puter Game Behavior Trees,” in AIAA Guidance, Navigation and Control

Conference, Minneapolis, MN, 2012.
[12] J. A. D. Bagnell, F. Cavalcanti, L. Cui, T. Galluzzo, M. Hebert,

M. Kazemi, M. Klingensmith, J. Libby, T. Y. Liu, N. Pollard, M. Piv-
toraiko, J.-S. Valois, and R. Zhu, “An Integrated System for Autonomous
Robotics Manipulation,” in IEEE/RSJ International Conference on In-

telligent Robots and Systems, October 2012, pp. 2955–2962.
[13] A. Klökner, “Interfacing Behavior Trees with the World Using Descrip-

tion Logic,” in AIAA conference on Guidance, Navigation and Control,

Boston, 2013.
[14] M. Colledanchise, A. Marzinotto, and P. Ögren, “Performance Analysis

of Stochastic Behavior Trees,” in Robotics and Automation (ICRA), 2014

IEEE International Conference on, June 2014.
[15] T. Galluzzo, M. Kazemi, and J.-S. Valois, “Bart - behavior architecture

for robotic tasks, https://code.google.com/p/bart/,” Tech. Rep., 2013.
[16] D. Hu, Y. Gong, B. Hannaford, and E. J. Seibel, “Semi-autonomous

simulated brain tumor ablation with raven ii surgical robot using behav-
ior tree,” in IEEE International Conference on Robotics and Automation

(ICRA), 2015.
[17] K. R. Guerin, C. Lea, C. Paxton, and G. D. Hager, “A framework for

end-user instruction of a robot assistant for manufacturing,” in IEEE

International Conference on Robotics and Automation (ICRA), 2015.
[18] A. Klöckner, F. van der Linden, and D. Zimmer, “The Modelica Be-

haviorTrees Library: Mission planning in continuous-time for unmanned
aircraft,” in Proceedings of the 10th International Modelica Conference,
2014.

[19] R. Brooks, “A Robust Layered Control System for a Mobile Robot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23,
1986.

[20] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential Com-
position of Dynamically Dexterous Robot Behaviors,” The International

Journal of Robotics Research, vol. 18, no. 6, pp. 534–555, 1999.
[21] C. Sammut, S. Hurst, D. Kedzier, and D. Michie, Imitation in Animals

and Artifacts. MIT Press, 2002, ch. Learning to Fly, p. 171.
[22] J. Le Ny and G. J. Pappas, “Sequential Composition of Robust Con-

troller Specifications,” in Robotics and Automation (ICRA), 2012 IEEE

International Conference on. IEEE, 2012, pp. 5190–5195.
[23] M. Colledanchise and P. Ögren, “How Behavior Trees Modularize

Robustness and Safety in Hybrid Systems,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), June 2014.
[24] E. W. Dijkstra, “Letters to the editor: go to statement considered

harmful,” Commun. ACM, vol. 11, pp. 147–148, March 1968. [Online].
Available: http://doi.acm.org/10.1145/362929.362947

[25] A. Filippov and F. Arscott, Differential Equations with Discontinuous

Righthand Sides: Control Systems, ser. Mathematics and its
Applications. Kluwer Academic Publishers, 1988. [Online]. Available:
http://books.google.se/books?id=KBDyZSwpQpQC

http://wiki.ros.org/behavior_tree
http://doi.acm.org/10.1145/362929.362947
http://books.google.se/books?id=KBDyZSwpQpQC

	Introduction
	Background: Classical formulation of BTs
	A New Functional Formulation of BTs
	How BTs Modularize Hybrid Dynamical Systems
	Giving an FSM the structure of a BT
	Function calls and Goto statements
	How BTs Modularize Efficiency and Robustness
	How BTs Modularize Safety

	How BTs Generalize Decision Trees, the Subsumption Architecture and Sequential Behavior Compositions
	How BTs Generalize Decision Trees
	How BTs Generalize the Subsumption Architecture
	How BTs Generalize Sequential Behavior Compositions

	Examples
	Conclusions
	References

