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Abstract: Botulinum neurotoxin serotype A (BoNT/A) is the most potent protein toxin for humans
and is utilized as a therapy for numerous neurologic diseases. BoNT/A comprises a catalytic Light
Chain (LC/A) and a Heavy Chain (HC/A) and includes eight subtypes (BoNT/A1-/A8). Previously
we showed BoNT/A potency positively correlated with stable localization on the intracellular plasma
membrane and identified a low homology domain (amino acids 268–357) responsible for LC/A1
stable co-localization with SNAP-25 on the plasma membrane, while LC/A3 was present in the
cytosol of Neuro2A cells. In the present study, steady-state- and live-imaging of a cytosolic LC/A3
derivative (LC/A3V) engineered to contain individual structural elements of the A1 LDH showed
that a 59 amino acid region (275–334) termed the MLD was sufficient to direct LC/A3V from the
cytosol to the plasma membrane co-localized with SNAP-25. Informatics and experimental validation
of the MLD-predicted R1 region (an α-helix, residues 275–300) and R2 region (a loop, α-helix, loop,
residues 302–334) both contribute independent steps to the stable co-localization of LC/A1 with
SNAP-25 on the plasma membrane of Neuro-2A cells. Understanding how these structural elements
contribute to the overall association of LC/A1 on the plasma membrane may identify the molecular
basis for the LC contribution of BoNT/A1 to high potency.

Keywords: botulinum toxin; bacterial toxins; SNAP-25; intracellular trafficking; protein modeling

Key Contribution: Transition of a cytosolic LC/A3 derivative (LC/A3V) engineered to contain
individual structural elements of the A1 Low Homology Domain showed that A1 amino acids 275–334
were sufficient to direct LC/A3V from the cytosol to stable localization on the plasma membrane.
Protein modeling and experimental support predicted R1 (an α-helix, residues 275–300) and R2 (a
loop, α-helix, loop, residues 302–334) contributed independent steps for stable co-localization of
LC/A1 with SNAP-25 on the plasma membrane of Neuro-2A cells.

1. Introduction

Botulinum neurotoxin (BoNT), the most potent toxin known to humans with an
estimated lethal dose (LD50) of 1 ng/kilogram of body weight, are a family of protein
toxins produced by several Clostridia species [1,2]. Seven immunologically distinct BoNT
serotypes exist, A–G [3,4], and some Clostridia carry two or even three bont serotypes or
possess a silent bont [5]. Bont gene clusters also vary among serotypes and subtypes of
Clostridia, indicating that the entire gene clusters have undergone horizontal gene transfer
and recombination, leading to diverse protein toxins [6]. In addition, several non-clostridial
bacteria produce BoNT-like proteins, which share overall sequence similarity with the
BoNTs [7–11].

BoNTs are produced as 150-kDa single-chain proteins that are post-translationally
cleaved into disulfide-linked di-chains by a host or endogenous proteases that are classic
AB-type bacterial toxins [12–15]. Cleavage is essential for maximal BoNT potency. For
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example, di-chain BoNT/E has been reported to be ~100-fold more toxic than single-chain
BoNT/E [16]. The BoNT chains consist of an N-terminal ~50 kDa catalytic A subunit, Light
Chain (LC) [17], and a C-terminal ~100 kDa host-receptor binding/translocation B subunit,
Heavy Chain (HC) [18]. BoNT LCs are zinc-metalloproteases containing an (H-E-X-X-
H) motif for zinc coordination and cleave neuronal Soluble N-ethylmaleimide-sensitive
factor Attachment protein REceptors (SNARE) at unique sites [3]. BoNT HC possesses
two domains, the translocation domain (HN) and the receptor binding domain (HC) [19].
The ~80-N-terminal amino acids of the HN, termed the belt, wrap around the LC within
the catalytic groove and are hypothesized to maintain LC inactive until dissociated from
HC [20,21].

BoNT/A entry into neurons follows a multi-step process. First, BoNT-HC binds a
polysialoganglioside, such as GT1b, on the surface of resting neurons [22], followed by
binding to the BoNT/A protein receptor, Synaptic Vesicle Protein-2 (SV2), which is exposed
on the surface of the depolarized plasma membrane after synaptic vesicle (SV) fusion to
the plasma membrane [23]. Upon SV recycling, surface-bound BoNT is sequestered within
the SV lumen [24]. As the SV matures, the lumen of the SV acidifies as the Na+–K+ ATPase
pump reloads neurotransmitters with a proton into the lumen [25]. Acidification of the SV
lumen to pH of 4–5 triggers HN to embed into the membrane of the SV, forming a pore
~15 Å in diameter [26], which allows the unfolded LC to translocate through the HN into
the cytosol [27]. How LC translocates through the membrane is elusive but may follow the
tunnel- or cleft-model for protein translocation [28], and translocation may be initiated at
the LC C terminus [29]. After translocation, the LC-HN interchain disulfide is reduced via
the thioredoxin reductase–thioredoxin system, followed by LC refolding aided by HSP-90
and HN [30,31]. BoNT/A LC (LC/A) then cleaves the substrate SyNaptosomal Associated
Protein of 25 kDa (SNAP-25) [32] on the intracellular face of the plasma membrane. While
previous studies have demonstrated LC/A1 localizes to the plasma membrane [33–35], the
molecular mechanisms of intracellular LC trafficking to the membrane-bound SNAP-25
have not yet been elucidated. Deciphering molecular interactions involved in intracellular
BoNT LC trafficking is fundamental to our understanding of the neuronal cell intoxication
pathways and pathology caused by these toxins.

Several BoNT serotypes include genetic variants, which are currently defined as a
new subtype denoted by numbers after the serotype letter if they differ by >2.3% at the
primary amino acid level [36]. These BoNT subtypes retain sensitivity to serotype-specific
antisera, and some subtypes possess unique biological activity. For example, BoNT/A
comprises eight subtypes, A1–A8 [37,38], where BoNT/A1 possesses high potency and a
long duration of action, while BoNT/A4 shows low potency, and BoNT/A3 has a short
duration of action [39].

In a previous study, we observed predominant cytosolic localization of LC/A3 and
determined the N terminus of LC/A and a region of low homology (LHD) between LC/A1
and LC/A3 traffic LC/A1 to the plasma membrane [40]. These studies also characterized an
LC/A3 variant (LC/A3V) as a cytosolic protein. LC/A3V proved to be a platform to resolve
the role of the N terminus as a facilitator of LC/A1-intracellular vesicle interactions and the
LHD as a facilitator of LC/A-plasma membrane interactions. Overall, the N-terminal- and
LHD-mediated interactions were independent, sequential, and additive for the movement
of LC/A1 from the cytosol to the plasma membrane [35].

Since BoNT/A potency correlates with LC trafficking along vesicles and association
with the plasma membrane [35,41], we have further characterized LC/A1 localization
with the plasma membrane in this study. Initial experiments localized the membrane
targeting capacity to the Low Homology Domain of LC/A1 (amino acids 268–357), which
was divided into three structural regions (R1–R3) based upon a co-crystal of LC/A1 bound
to SNAP-25 (PDB: 1XTG) [42]. Steady-state- and live time-lapse-imaging showed that while
individual A1 R regions did not direct LC/A3V to the plasma membrane, the combined
A1 R1:R2 regions, termed the Membrane Localization Domain (MLD) efficiently targeted
LC/A3V to the plasma membrane, which involved interactions with SNAP-25. The current
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study used informatics and experimental validation to resolve how regions R1 and R2 are
required to co-localize BoNT/A1 stably with SNAP-25 on the plasma membrane of Neuro-
2A (N2A) cells, enabling the development of a molecular model for LC/A localization.

2. Results
2.1. Structural Analysis of the Low Homology Domain of LC/A1 Reveals Three Distinct
Structural Regions

The current study sought to establish how the previously identified LHD (268–357)
mediated LC/A1 association with the plasma membrane [35]. A co-crystal of LC/A1 bound
to SNAP-25 (residues 146–204 (PDB: 1XTG)) and the recently solved crystal structure of
LC/A3 [43] showed the LHD to be organized into three sequential structural regions (R1–R3
(Figure 1). R1, residues 275–300, included an α-helix; R2, residues 302–334, included a
loop, α-helix, and loop; and R3, residues 335–357, included an α-helix, loop, and α-helix.
Assessment of the LC/A1-SNAP-25 co-crystal showed R1 was distanced from bound
SNAP-25, R2 had ionic and hydrogen bonds with bound SNAP-25, and R3 had a single
ionic bond bound to SNAP-25 [42]. Next, we determined if R1, R2, and R3 contributed to
the stable association of LC/A1 on the inner plasma membrane of N2A cells [35,40].
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Figure 1. Co-crystal structure of the Botulinum neurotoxin LC/A1 and SNAP-25 (PDB: 1XTG).
(A) The structure of LC/A1 is gray with regions of the LHD colored, with R1 in blue, R2 in smudge
green, R3 in wheat, and SNAP-25 in magenta. (B) Enhancement of the R1:R2:R3 with SNAP-25,
with R1 in blue, R2 in smudge green, R3 in wheat, and SNAP-25 in magenta. (C) Distances between
potential non-covalent interactions were measured with PyMOL. R2 of LC/A1 is highlighted in
smudge green, R3 of LC/A1 is highlighted in wheat, and SNAP-25 is highlighted in magenta.

2.2. Regions R1 and R2 of the A1 LHD Target LC/A3V to the Plasma Membrane

LC/A3V is a cytosolic protein when ectopically expressed in N2A cells, and replacing
the A3 LHD with A1 LHD transitioned LC/A3V from the cytosol to the plasma mem-
brane [35]. Here, LC/A3V was constructed, in which individual (R1, R2, or R3) or dual
(R1:R2, R2:R3, or R1:R3) regions of the LHD with the corresponding A1 region and fusion
proteins with Enhanced Green Fluorescent Protein (EGFP)-LC/A3V(A1 R) were expressed
in N2A cells (Table 1). Cells were imaged to measure the transition from the cytosol
to the plasma membrane (Supplemental Figure S1). Western blotting showed that each
LC/A3V(A1 R) chimera was expressed in N2A cells with the appropriate molecular weight
and at similar expression levels (Supplemental Figure S2).
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Table 1. GFP-LC/A3V (A1 R) chimeras.

LC/A3V(A1-LHD) Chimeras * Designation Chimera Schematic

EGFP-LC/A3V(A1 275–300) LC/A3V(R1)
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At steady-state, individual A1 R regions did not transition cytosolic LC/A3V from
the cytosol to the plasma membrane (Figure 2). In contrast, the dual-A1 R region chimera tar-
geted LC/A3V(R1:R2) to the plasma membrane, while LC/A3V(R2:R3) and LC/A3V(R1:R3)
were expressed in the cytosol. Thus, A1 R1:R2 was necessary and sufficient to target
LC/A3V to the plasma membrane.
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Figure 2. Intracellular localization of GFP-LC/A3V (A1-LHD) chimeras. (Left) After overnight
transfections with EGFP-LC/A derivatives and fixation with 4% paraformaldehyde, N2A cells were
imaged for EGFP fluorescence (excitation 488 nm, emission 509 nm). Representative images show the
steady-state intracellular localization of CONTROL (EGFP, EGFP-LC/A1, EGFP-LC/A3V), SINGLE
(EGFP-LC/A3V (A1 R1), EGFP-LC/A3V (A1 R2), EGFP-LC/A3V (A1 R3)), or DOUBLE (EGFP-
LC/A3V (A1 R1:R2), EGFP-LC/A3V (A1 R2:R3), EGFP-LC/A3V (A1 R1:R3)), and EGFP-LC/A3V
(A1- LHD). (Right) Percentage of cells containing membrane signal for 7 h post-transfection and
overnight. Ten random fields were selected and counted for membrane localization with wheat germ
agglutinin. Mean and SEM were evaluated as described previously [35]; ns—not significant.

At 7 h post-transfection, when EGFP fluorescence was initially detected, LC/A3V(A1
R) chimeras showed similar localization as observed for steady-state expression; only
LC/A3V(R1:R2) localized on the plasma membrane (Figure 2). Live imaging at 7 h post-
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transfection also showed a stable accumulation of LC/A3V(R1:R2) on the plasma membrane
directly from the cytosol with no observed membrane dissociation over a 10 min measure-
ment (Figure 3). Thus, the exchange of only A1 R1:R2 into LC/A3V was necessary and suf-
ficient to target LC/AV3 from the cytosol to the plasma membrane, similar to LC/A3V(A1
LHD) described earlier [35]. We also noted that the association of LC/A3V(R1:R2) was
stable on the plasma membrane. We termed this newly defined region, which spans amino
acids 275–334, the membrane localization domain (MLD).
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Figure 3. Time-lapse imaging of GFP-LC/A3V (A1-LHD) chimeras. After a seven-hour transfection
with plasmids encoding (A) EGFP-LC/A3V (A1 R1), (B) EGFP-LC/A3V (A1 R2), (C) EGFP-LC/A3V
(A1 R3), (D) EGFP-LC/A3V (A1 R1:R2) or EGFP-LC/A3V [MLD], (E) EGFP-LC/A3V (A1 R2:R3), and
(F) EGFP-LC/A3V (A1 R1:R3) were obtained as indicated. N2A cells were imaged every ten seconds
for ten minutes on a Nikon Eclipse Ti-inverted microscope, using a 60× oil-immersion objective
(1.4 NA objective) hardware with Eclipse software for data analysis. Images are from the initial image
+0 s and the final image +600 s unless otherwise specified.

2.3. The A1 MLD and N Terminus Have Additive Functions in the Transition of LC to Vesicles,
and the Plasma Membrane

Earlier studies showed that the N terminus and the LHD of LC/A1 contribute in an
additive manner to target LC/A3V from the cytosol to vesicles and then to the plasma
membrane, respectively [35].

Therefore, the A1 MLD was tested as a minimal substitute for the A1 LHD to coordi-
nate the transition of LC/A1 from vesicles to the plasma membrane. Utilizing the cytosolic
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LC/A3V platform, EGFP-LC/A3 fusion proteins were created, replacing the MLD and
17 aa N-terminal regions with the corresponding regions of A1, and expressed in N2A cells.
At 7 h post-transfection, time-lapse imaging showed LC/A3V(A1 N, A1 MLD) associated
with intracellular vesicles with stable accumulation on the plasma membrane (Figure 4) [35].
Similar to the A1 LHD, A1 MLD coordinated with the N terminus to anterograde traffic
LC/A3V from the cytosol to the plasma membrane.
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Figure 4. A1 MLD retains the LHD function. (A) Representative images show the steady-state
intracellular localization of EGFP-A3V(A1 N, A1 MLD) residues 1–17 and 275–334 and EGFP-A3V(A1
N, A1 LHD) residues 1–17 and 268–357, indicated with a cartoon schematic. (B) After a seven-
hour transfection, EGFP-A3V(A1 N, MLD). Live cell images were obtained every 10 s for 600 s; the
initial frame (0 s) and final frame (600 s) are shown. (C) Percentage of cells containing membrane
fluorescence for 7 h post-transfection and overnight were analyzed. Mean and SEM were evaluated
as described previously [35]; ns—not significant.

2.4. Role of A1 R1:R2 in MLD Transition of LC/A3V from the Cytosol to the Plasma Membrane

Properties of R1. Sequence alignment showed that the N-terminal residues 275–286
of A1-R1 are polar and acidic, while A3-R1 residues are polar and basic (Figure 5A) [43].
Thus, a chimera containing the N terminus of A3-R1 fused to the C terminus of A1-R1
(A1-287–334) was engineered to investigate the contribution of the N-terminal region
of A1-R1 in targeting LC/A3V from the cytosol to the plasma membrane. At 7 h- and
steady-state-post-transfection, LC/A3V(A1-287–334) was cytosolic, analogous to LC/A3V
(Figure 5B,C). Time-lapse imaging 7 h post-transfection showed LC/A3V(A1-287–334)
retained a cytosolic phenotype with no detected temporal accumulation at the plasma
membrane (Figure 5D). Together, the steady-state and time-lapse imaging indicate that
A1-R1 (residues 275–286) is necessary to localize LC/A3V to the plasma membrane.
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Figure 5. The N terminus of the R1 region of the MLD is necessary for LC/A1 membrane localization.
(A) The crystal structure of LC/A1 (PDB: 1XTG) and the crystal structure of LC/A3LM (PDB: 7DVL)
were analyzed for amino acid differences. Residues 275–300 comprise a surface-exposed α-helix.
The primary amino acid sequences of A3LM (top) ACA57525 and A1 (bottom) ACS66881were an-
alyzed by Blastp. Below, A3R1 and A1R1 depict identical amino acids between A3 LM and A1 (*);
conserved amino acids (:); and non-conserved amino acids ( ). The bottom line is the A3R1:A1R1
chimera sequence. (B) A representative image shows the steady-state intracellular localization
of EGFP-A3V(A1-287–334). (C) The percentage of cells containing membrane fluorescence at 7 h
post-transfection and overnight were analyzed. Mean and SEM were evaluated as described pre-
viously [35]; **** p < 0.0001. (D) After a 7 h transfection, EGFP-A3V(A1-287–334) was imaged as
indicated above. Live cell images were obtained every 10 s for 600 s. Images are from the initial frame
(0 s) and the final frame (600 s).

Properties of R2. Using the LC/A1-SNAP-25 co-crystal structure (PDB: 1XTG) (Figure 6A),
R2 residue Y312 was reported to bond with SNAP-25 D172, N174, and R176 [42,43]. Further
examination of the LC/A1-SNAP-25 co-crystal structure also predicted two additional
R2 residues, T306 and T307, to bind SNAP-25 R176 and Q177, respectively (Figure 6A).
Site-directed mutagenesis of T306, T307, and Y312 to A resulted in a new chimera (MLD-
A306A307A312, termed MLD-AAA). At both 7 h- and steady-state-post-transfection,
LC/A3V(A1MLD-AAA) was expressed as a cytosolic protein in all transfected cells. A
subpopulation of transfected cells ~8%, LC/A3V(A1MLD-AAA) that were cytosolically
expressed also possessed detectable localization on the plasma membrane, indicating
T306, T307, and Y312 to A306, A307, and A312 resulted in an intermediate phenotype
(Figure 6B,C). Time-lapse imaging showed both the movement of LC/A3V(A1MLD-AAA)
off the plasma membrane, indicating that LC/A3V(A1MLD-AAA) was less stable on the
plasma membrane than LC/A3V(A1MLD) with the diffusion of LC/A3V(A1MLD-AAA)
into the cytosol during the 10 min exposure (Figure 6D, time lapse images) and stable
plasma membrane bound LC/A3V(A1MLD-AAA) (Figure 6D 0 sec, upper right corner of
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cell). These findings showed that alanine mutations at T306, T307, and Y312 transitioned
LC/A3V(A1MLD-AAA) to the cytosol, with ~8% also bound either stably or reversibly on
the plasma membrane relative to the stable membrane association of LC/A3V(A1MLD),
implicating a role for A1R2 in the interaction with SNAP-25 on the plasma membrane.
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on the plasma membrane [35]. The MLD of BoNT/A4 had six amino acid changes relative 
to BoNT/A1 at R1 (K279, K280, S283) and R2 (A327, T328, and L332). Despite these six amino acid 
changes, EGFP-LC/A4 was expressed in N2As primarily as a plasma membrane-localized 
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Figure 6. MLD-SNAP-25 interaction within the R2 is necessary for stable plasma membrane associa-
tion of LC/A1. (A) The LC/A1-SNAP-25 co-crystal crystal structure (PDB: 1XTG) was analyzed for
possible interactions. The distances between potential non-covalent interactions were measured with
PyMOL. R2 of LC/A1 is highlighted in smudge green, with SNAP-25 highlighted in magenta. (B) The
representative image shows the steady-state intracellular localization of EGFP-A3V(A1 MLD) AAA.
(C) Percentage of cells containing membrane fluorescence for 7 h post-transfection and overnight
were analyzed. Mean and SEM were evaluated as described previously [35]; **** p < 0.0001. (D) After
a seven-hour transfection, EGFP-A3V(A1MLD-AAA) was imaged as indicated above. Red circles
indicate membrane localized EGFP-LC/A3V(A1MLD-AAA) that diffused into the cytosol over 240 s.
Live cell images were obtained every 10 s for 600 s; the indicated time frames are shown.

2.5. The LC MLD and Membrane Localization Are Conserved amongst BoNT/A Subtypes Other
Than A3

Clustal alignment of BoNT/A(A1–A8) showed the MLDs of BoNT/A1, /A5, /A6,
and /A8 MLD were identical (Figure 7). The two amino acid differences, V293 and I304, of
BoNT/A2 compared to A1 do not influence intracellular localization since LC/A2 localizes
on the plasma membrane [35]. The MLD of BoNT/A4 had six amino acid changes relative to
BoNT/A1 at R1 (K279, K280, S283) and R2 (A327, T328, and L332). Despite these six amino acid
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changes, EGFP-LC/A4 was expressed in N2As primarily as a plasma membrane-localized
protein (Figure 8), indicating these residues do not contribute to membrane localization.
The MLD of BoNT/A7 had four residue changes relative to BoNT/A1 in R1: E292, V293,
I296, and in R2 I304. Despite these four amino acid changes, EGFP-LC/A7 was expressed
in N2As primarily as a plasma membrane-localized protein (Figure 8), indicating these
residues do not contribute to membrane localization. Extrapolation of the data on LC/A1,
/A2, /A4, and /A7 predicts LC/A5, /A6, and /A8 will localize at the plasma membrane,
as the MLDs are identical to LC/A1. Thus, among the BoNT/A subtypes, only BoNT/A3
shows limited membrane localization [35].
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Figure 7. Clustal Omega alignment of BoNT/A subtypes residues 275–334. Alignment of LC/A1
ACS66881, LC/A2 CAA51824, LC/A3 ACA57525, LC/A4 ACQ51417, LC/A5 ACG50065, LC/A6
ACW83608, LC/A7 AFV13854, and LC/A8 AJA05787 were aligned using Clustal Omega [44]. Num-
ber and secondary structure elements (green α-helix) are shown for the LC/A subtypes. Percent
identity (PID) was determined off the LC/A1 sequence. The image was adapted by the MView
tool [45]. Background indicates conserved residue, and the color schematic corresponds to the side
chain properties; the key is below the sequence.
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Figure 8. Intracellular localization of LC/A4 and LC/A7. N2A cells were transfected with pEGFP-
LC/A4 or LC/A7. After overnight transfections, N2A cells were fixed with 4% paraformaldehyde
and imaged for EGFP fluorescence (excitation 488 nm, emission 509 nm). (A) A Representative
image shows the steady-state intracellular localization of EGFP-LC/A4 and EGFP-LC/A7, with white
arrows indicating membrane localization. (B) Percentage of cells containing membrane fluorescence.
Ten random fields were selected and counted for membrane localization. Mean and SEM were
evaluated as described previously [35]; ns = no significant statistical significance determined between
indicated transfected cells.
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3. Discussion

Earlier studies showed the LHD (residues 268–357) of BoNT/A1 was necessary for
stable LC/A1 localization at the plasma membrane [35]. The current study’s structural anal-
ysis of LC/A1-SNAP-25 co-crystal (PDB: 1XTG) revealed that the LHD domain comprised
three regions: R1, which was physically separated from SNAP-25; R2, which contributed to
the SNAP-25 binding pocket; and R3, which was juxtaposed to a SNAP-25 α-helix. Utilizing
EGFP-LC/A3V as a reporter platform [35], R1–R2, residues 275–334, termed the membrane
localization domain (MLD), targeted EGFP-LC/A3V stably to the intracellular plasma
membrane of N2A cells at 7 h and overnight steady-state expression (Figure 2). The 7 h
post-transfection was investigated to observe if any EGFP-LC/A overexpression occurred
at steady-state, leading to false-positive localization. As previously observed [35], adding
the LC/A1 N terminus, residues 1–17, facilitated the transition to the plasma membrane
(Figure 4). Loss of membrane localization for LC/A3V(A1R1) or LC/A3V(A1R2) supported
roles for R1 and R2 to mediate a stable association with SNAP-25 (Figure 2). Interestingly,
R1 may mimic another SNAP-25 binding protein, rabphilin-3a, targeting the N terminus
of SNAP-25; we propose that this association, together with the association of R2 with
the C terminus of SNAP-25, combine to mediate the stable co-localization with SNAP-25.
These findings support the sequential step model for the intracellular localization of LC/A1
described in [35], where the N terminus of LC/A1 targets LC anterograde trafficking on
vesicles, and the MLD targets LC/A1 to stably co-localize with SNAP-25 on the plasma
membrane (Figure 9).

Toxins 2022, 14, x FOR PEER REVIEW 10 of 16 
 

 

analysis of LC/A1-SNAP-25 co-crystal (PDB: 1XTG) revealed that the LHD domain 
comprised three regions: R1, which was physically separated from SNAP-25; R2, which 
contributed to the SNAP-25 binding pocket; and R3, which was juxtaposed to a SNAP-25 
α-helix. Utilizing EGFP-LC/A3V as a reporter platform [35], R1–R2, residues 275–334, 
termed the membrane localization domain (MLD), targeted EGFP-LC/A3V stably to the 
intracellular plasma membrane of N2A cells at 7 h and overnight steady-state expression 
(Figure 2). The 7 h post-transfection was investigated to observe if any EGFP-LC/A 
overexpression occurred at steady-state, leading to false-positive localization. As 
previously observed [35], adding the LC/A1 N terminus, residues 1–17, facilitated the 
transition to the plasma membrane (Figure 4). Loss of membrane localization for 
LC/A3V(A1R1) or LC/A3V(A1R2) supported roles for R1 and R2 to mediate a stable 
association with SNAP-25 (Figure 2). Interestingly, R1 may mimic another SNAP-25 
binding protein, rabphilin-3a, targeting the N terminus of SNAP-25; we propose that this 
association, together with the association of R2 with the C terminus of SNAP-25, combine 
to mediate the stable co-localization with SNAP-25. These findings support the sequential 
step model for the intracellular localization of LC/A1 described in [35], where the N 
terminus of LC/A1 targets LC anterograde trafficking on vesicles, and the MLD targets 
LC/A1 to stably co-localize with SNAP-25 on the plasma membrane (Figure 9).  

 
Figure 9. Intracellular localization of BoNT/A subtypes- LC/A1, LC/A3LM, and LC/A3V. The N 
terminus (green N) associates LC/A1 and (yellow N) LC/A3LM with a synaptic vesicle, while the N 
terminus (red N) fails to associate LC/A3V with synaptic vesicles. LC/A1 MLD (green MLD) 
possesses a high affinity for localization at the plasma membrane where the (yellow MLD) 
LC/A3LM or (yellow MLD) LC/A3V fails to localize to the plasma membrane stably. LC/A3V can 
anterograde traffic (diffusion) to the plasma membrane but does not stably associate with the 
plasma membrane, while LC/A3LM can traffic to the plasma membrane but does not stably 
associate with the plasma membrane, leading to the three phenotypes of the respective LCs imaged. 

SNAP-25, a member of the SNARE family, is essential for exocytosis within neuronal 
cells. SNARE proteins are classified into five subfamilies depending on the structure, with 
SNAP-25 classified as a Qbc-SNARE [46]. While most SNARE proteins possess a 
transmembrane domain, SNAP-25 is a soluble protein that requires palmitoylation for 
association with the plasma membrane [47]. Before palmitoylation, SNAP-25 interacts 
with syntaxin-1, which is hypothesized to mediate the initial membrane binding of SNAP-
25 [48,49]. After priming and uncoupling, SNAP-25 recycles to the trans-Golgi network 
and recycling endosomes before trafficking back to the plasma membrane [50]. While 
recycling back to the plasma membrane, SNAP-25 and LC/A1 remain segregated and 
populated on different vesicles, while LC/A1 co-localized with plasma membrane-
associated SNAP-25 (Supplemental Figure S3), suggesting that the trafficking of LC/A1 to 

Figure 9. Intracellular localization of BoNT/A subtypes- LC/A1, LC/A3LM, and LC/A3V. The N
terminus (green N) associates LC/A1 and (yellow N) LC/A3LM with a synaptic vesicle, while the
N terminus (red N) fails to associate LC/A3V with synaptic vesicles. LC/A1 MLD (green MLD)
possesses a high affinity for localization at the plasma membrane where the (yellow MLD) LC/A3LM
or (yellow MLD) LC/A3V fails to localize to the plasma membrane stably. LC/A3V can anterograde
traffic (diffusion) to the plasma membrane but does not stably associate with the plasma membrane,
while LC/A3LM can traffic to the plasma membrane but does not stably associate with the plasma
membrane, leading to the three phenotypes of the respective LCs imaged.

SNAP-25, a member of the SNARE family, is essential for exocytosis within neuronal
cells. SNARE proteins are classified into five subfamilies depending on the structure, with
SNAP-25 classified as a Qbc-SNARE [46]. While most SNARE proteins possess a transmem-
brane domain, SNAP-25 is a soluble protein that requires palmitoylation for association
with the plasma membrane [47]. Before palmitoylation, SNAP-25 interacts with syntaxin-1,
which is hypothesized to mediate the initial membrane binding of SNAP-25 [48,49]. Af-
ter priming and uncoupling, SNAP-25 recycles to the trans-Golgi network and recycling
endosomes before trafficking back to the plasma membrane [50]. While recycling back
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to the plasma membrane, SNAP-25 and LC/A1 remain segregated and populated on
different vesicles, while LC/A1 co-localized with plasma membrane-associated SNAP-25
(Supplemental Figure S3), suggesting that the trafficking of LC/A1 to the plasma membrane
mediated by the N terminal-17 amino acids of LC/A1 is uncoupled from SNAP-25 cycling
to the plasma membrane. Our data support the current models for the trafficking pathway
of SNAP-25.

Clustal alignment showed 100% identity for the MLDs of A1, A5, A6, and A8. LC/A2
was previously shown to localize with the plasma membrane despite having several
conserved differences in the MLD relative to LC/A1 (Figure 7). LC/A4 and LC/A7
presented as membrane-localized proteins (Figure 8), demonstrating that despite amino
acid differences within the MLD, residues that contribute to membrane localization are
conserved. In contrast, the LC/A3 WT variant LC/A3 Loch Maree (LC/A3LM), which
localizes on SV and the cytosol, has the lowest homology, 56.6% within the MLD relative to
LC/A1 [35]. Our earlier data correlate with BoNT/A potency and intracellular localization,
where A3LM and A3V have consecutively lower potency than A1 and increased cytosolic
presence (Figure 9) [35,51].

The average duration of a eukaryotic protein is 90 min to 48 h [52–54]. Proteins with
longer half-lives are classified as long-lived proteins (LLPs); these LLPs have been identified
within synaptosomes and protein complexes [55]. In non-dividing cells such as neurons,
components of the nuclear pore complex and some histones are preserved for years, as
neurons within brains are hypothesized not to turn over [56–58]. Analyzing LLPs correlates
membrane localization to protein duration, as cytosolic forms of the LLPs have a higher
turnover rate than the respective plasma membrane LLP derivative [55]. The differences
in localization suggest that cytosolic proteins are more accessible to the degradation ma-
chinery, resulting in a higher turnover. In addition to localization, two more factors have
been shown to contribute to protein turnover: the primary sequence and incorporation into
protein complexes or cellular structures [55]. The molecular basis for stable interactions
between LLPs and intracellular membranes remains to be determined. Data show that
in primary rodent neurons, the duration of action, a function of the LC, of BoNT/A1,
BoNT/A2, and BoNT/A4 is >9 months, while that of BoNT/A3LM is <5 months [40,59].
Additionally, analysis of BoNT/A in a mouse model of botulism [39] showed a rapid
recovery upon local intoxication with BoNT/A3 compared to BoNT/A1 and BoNT/A2.
Analyzing the intracellular localization of the BoNT/A LCs: A1, A2, and A4 are plasma
membrane-localized and co-localized with SNAP-25 [33–35] (Figure 8), while LC/A3LM is
cytosolic and vesicle based [35]. Another protein interaction of LC/A1 that participates in
stabilization may be the previously observed interaction of the C terminus, a deubiquitinat-
ing enzyme VCIP-135, which removes ubiquitin [60]. Therefore, intracellular localization
and protein–protein interactions of BoNT/A LCs may be associated with duration of action,
as subtypes with long durations, namely, A1, A2, A4, and A7, are membrane-localized. In
contrast, shorter durations correlate with non-plasma membrane-localized LCs, such as
LC/A3LM [39] and LC/E [61].

4. Conclusions

The current study provides novel insight into the mechanism behind the stable intra-
cellular localization of LC/A1 in N2A cells, a model for primary motor neurons, based
upon differences in the primary amino acid sequences of the LC/A subtypes, despite a
conserved secondary amino acid structure. This level of refinement to identify unique
host protein–BoNT interactions reveals new details that will aid in developing novel BoNT
therapeutics and mechanisms targeting the duration of action of BoNTs.

5. Materials and Methods
5.1. Light Chain Structural Alignment

Co-crystal structures of BoNT LC/A1 bound to SNAP-25 (PDB: 1XTG) and LC/A3 Loch
Maree (LM) (PDB: 7DVL) were obtained from the protein data bank (https://www.rcsb.org

https://www.rcsb.org
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(14 January 2021)) and aligned using PyMol (PyMOL Molecular Graphic System, Version
2.0 Schödinger, LLC. (New York, NY, USA)). Images were enhanced using the “ray” trace
command and exported as a PNG file.

5.2. BoNT-LC/A1 and /A3V Sequence Alignment

BoNT/A1 (ACS66881) and BoNT/A3 (ABY56337) were obtained from Uniprot [62]
and aligned using the Blastp Suite (USS National Library of Medicine) [63] to identify
residues within regions of interest within the low homology domain (LHD) residues
268–357. Regions within the LC/A1 LHD were assigned: R1 (275–300), R2 (302–334), and
R3 (335–357) (Supplemental Figure S4).

5.3. Engineering of GFP-LC/A3V (A1 LHD) Chimera Expression Plasmids

DNA encoding LC/A1 (1–450) and LC/A3V (1–446) were engineered as enhanced
green fluorescent protein (EGFP)-fusions [35] within pEGFP-C3 by subcloning the LC genes
into the SacI-BamHI restriction sites. New England Biolabs® NEBaseChanger® was used to
design primers to engineer the chimeras EGFP-LC/A3V-A1, EGFP-LC/A3V(A1 275–300),
EGFP-LC/A3V(A1 302–334), EGFP-LC/A3V(A1 335–357), EGFP-LC/A3V(A1 275–334),
EGFP-LC/A3V(A1 302–357), EGFP-LC/A3V(A1 275–300, 335–357), EGFP-LC/A3V (A1
268–357), EGFP-LC/A3V (A1 1–17, 275–334), EGFP-LC/A3V (A1 287–334), and EGFP-
LC/A3V (A1 275–334) T306A, T307A, Y312A (Table 1).

5.4. Expression, Capture, and Analysis of Immunofluorescent EGFP-LC/A Plasmids

EGFP-LC/A expression plasmids were transfected into Neuro-2A (N2A) cells and
scored following the protocol previously described [35]. Cells were plated onto 24-well
plates (Fisher Scientific, Chicago, IL, USA) at a seeding density of 50,000 cells/well in
complete essential media supplemented with 10% fetal bovine serum, 1× penicillin–
streptomycin, 0.1% sodium bicarbonate, 1 mM sodium pyruvate, and 1% nonessential
amino acids in humidified 5% CO2 at 37 ◦C. The following day, N2A cells were transfected
as described by the manufacturer (Lipofectamine LTX; Invitrogen™ (Waltham, MA, USA))
with 500 ng of the indicated plasmid in antibiotic-free complete essential media supple-
mented with 10% fetal bovine serum, 0.1% sodium bicarbonate, 1 mM sodium pyruvate,
and 1% nonessential amino acids. Following a 7 h or overnight incubation, N2A cells were
subjected to a membrane stain, wheat germ agglutinin (WGA): Alexa Fluor647 (1:1000),
for 30 min at 4 ◦C. N2A cells were fixed with 4% paraformaldehyde for 15 min prior to
staining with a nuclear marker, Hoechst (1:10,000), for five minutes and mounting to a
glass coverslip with 8 µL of Prolong™ Gold Antifade Mountant (Invitrogen, Waltham, MA,
USA). After staining, N2A cells were imaged on a Nikon Eclipse Ti-inverted microscope,
using a 60× oil-immersion objective (1.4 NA objective) hardware with Eclipse software for
data analysis. For each transfection condition, ten random fields of N2A cells were scored
for EGFP localization for a total of ~100 N2A cells, as previously described [35]. EGFP
was scored membrane-bound when fluorescence co-localized with wheat germ agglutinin.
EGFP empty vector co-localized in the cytosol and with Hoechst in the nucleus. Cells
positive for membrane determined by localization with wheat germ agglutinin (WGA)
were scored as a % of total cells utilizing the following equation [40]: (% of cells expressing
membrane localization/total number of cells with EGFP fluorescence) × 100. Immunofluo-
rescence results were graphed utilizing GraphPad Prism 9.3.1 (San Diego, CA, USA) and
subjected to a statistical test using ordinary one-way ANOVA with Dunnett’s multiple
comparisons with LC/A3V (A1-LHD) as the control column. Western blotting showed that
each EGFP-LC/A fusion protein expressed and migrated to the correct molecular weight
as indicated by SDS-PAGE (Supplemental Figure S2).

5.5. Live-Cell Imaging

Cells were plated and analyzed as previously described [35,64]. Cells were plated onto
a 35 mm dish (MatTek, Ashland, MA, USA) at a seeding density of 300,000 cells in complete
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essential media supplemented with 10% fetal bovine serum, 1× penicillin–streptomycin,
0.1% sodium bicarbonate, 1 mM sodium pyruvate, and 1% nonessential amino acids in
humidified 5% CO2 at 37 ◦C. The following day, N2A cells were transfected as described by
the manufacturer (Lipofectamine LTX; Invitrogen™ (Waltham, MA, USA)) with 2000 ng of
the indicated plasmid in antibiotic-free complete essential media supplemented with 10%
fetal bovine serum, 0.1% sodium bicarbonate, 1 mM sodium pyruvate, and 1% nonessential
amino acids. Seven hours post-transfection, N2A cells were live-imaged on a Nikon Eclipse
Ti-inverted microscope using a 60× oil-immersion objective (1.4 NA objective) with a
heated stage at 37 ◦C (Frank E. Fryer A-50) with Eclipse software for data analysis. Images
were acquired every ten seconds for 10 min. Videos and images were compiled utilizing
Nikon Elements AR 1.60.00 64-bit software (Melville, NY, USA) and Image J [65,66].

5.6. Western Blotting Confirming Chimera Molecular Weight

After overnight transfection, N2A cells were lysed using a 2× Protein Sample Buffer
(150 µL) and boiled at 100 ◦C for five minutes. Cell lysates were resolved to a 13.5% SDS-
PAGE and transferred to an Immobilon-P polyvinylidene difluoride membrane (PVDF)
(Millipore, Billerica, MA, USA). PVDF membranes were fixed with methanol, air dried,
rehydrated with methanol and rinsed in H2O, and then incubated for 30 min in a blocking
solution (2% powder milk w/v in 0.1% TBST). After blocking, PVDF membranes were
probed with primary rat α-EGFP-monoclonal IgG (1:2000) (3H9, Chromotek, Planegg, Ger-
many) for 60 min. Bound primary antibodies were recognized with α-rat IgG conjugated
with horseradish peroxidase (1:10,000) (Life Technologies, Waltham, MA, USA). Secondary
antibodies were visualized using Super Signal™ West Pico PLUS Chemiluminescent Sub-
strate (34578, Thermo, Rockford, IL, USA) on an Azure C600 Imaging System (Dublin, CA,
USA), using 20-second exposure.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxins14120814/s1, Figure S1: Intracellular localization of BoNT/A
LC/A1; Figure S2: Western blotting of GFP-LC/A3V (A1-LHD) chimeras; Figure S3: Z-stack series of
GFP-LC/A1 and SNAP-25; Figure S4: Blastp alignment of LC/A3 LM with LC/A1.
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