
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2015

How can I improve my app? Classifying user reviews for software
maintenance and evolution

Panichella, Sebastiano ; Di Sorbo, Andrea ; Guzman, Emitza ; Visaggio, Corrado Aaron ; Canfora,
Gerardo ; Gall, Harald C

Abstract: App Stores, such as Google Play or the Apple Store, allow users to provide feedback on apps
by posting review comments and giving star ratings. These platforms constitute a useful electronic mean
in which application developers and users can productively exchange information about apps. Previous
research showed that users feedback contains usage scenarios, bug reports and feature requests, that can
help app developers to accomplish software maintenance and evolution tasks. However, in the case of the
most popular apps, the large amount of received feedback, its unstructured nature and varying quality
can make the identification of useful user feedback a very challenging task. In this paper we present a
taxonomy to classify app reviews into categories relevant to software maintenance and evolution, as well
as an approach that merges three techniques: (1) Natural Language Processing, (2) Text Analysis and
(3) Sentiment Analysis to automatically classify app reviews into the proposed categories. We show that
the combined use of these techniques allows to achieve better results (a precision of 75% and a recall of
74%) than results obtained using each technique individually (precision of 70% and a recall of 67%).

DOI: https://doi.org/10.1109/ICSM.2015.7332474

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-113425
Conference or Workshop Item
Accepted Version

Originally published at:
Panichella, Sebastiano; Di Sorbo, Andrea; Guzman, Emitza; Visaggio, Corrado Aaron; Canfora, Gerardo;
Gall, Harald C (2015). How can I improve my app? Classifying user reviews for software maintenance
and evolution. In: ICSME 2015. IEEE International Conference on Software Maintenance and Evolution,
Bremen, 29 September 2015 - 1 October 2015, IEEE.
DOI: https://doi.org/10.1109/ICSM.2015.7332474



How Can I Improve My App? Classifying User

Reviews for Software Maintenance and Evolution

S. Panichella∗, A. Di Sorbo†, E. Guzman‡, C. A.Visaggio†, G. Canfora† and H. C. Gall∗

∗University of Zurich, Switzerland
†University of Sannio, Benevento, Italy

‡Technische Universität München, Garching, Germany

panichella@ifi.uzh.ch, disorbo@unisannio.it, emitza.guzman@mytum.de, {visaggio,canfora}@unisannio.it, gall@ifi.uzh.ch

Abstract—App Stores, such as Google Play or the Apple Store,
allow users to provide feedback on apps by posting review
comments and giving star ratings. These platforms constitute a
useful electronic mean in which application developers and users
can productively exchange information about apps. Previous
research showed that users feedback contains usage scenarios,
bug reports and feature requests, that can help app developers to
accomplish software maintenance and evolution tasks. However,
in the case of the most popular apps, the large amount of received
feedback, its unstructured nature and varying quality can make
the identification of useful user feedback a very challenging task.
In this paper we present a taxonomy to classify app reviews
into categories relevant to software maintenance and evolution,
as well as an approach that merges three techniques: (1)
Natural Language Processing, (2) Text Analysis and (3) Sentiment
Analysis to automatically classify app reviews into the proposed
categories. We show that the combined use of these techniques
allows to achieve better results (a precision of 75% and a recall
of 74%) than results obtained using each technique individually
(precision of 70% and a recall of 67%).

Index Terms—User Reviews, Mobile Applications, Natural
Language Processing, Sentiment Analysis, Text classification

I. INTRODUCTION

App stores are digital distribution platforms that allow

users to download and rate mobile apps. Notable distribution

platforms for mobile devices include Apple and Android app

stores, in which users can comment and write reviews of

the mobile apps they are using. These reviews serve as a

communication channel between developers and users where

users can provide relevant information to guide app developers

in accomplishing several software maintenance and evolution

tasks, such as the implementation of new features, bug fixing,

or the improvement of existing features or functionalities.

App developers spend considerable effort in collecting and

exploiting user feedback to improve user satisfaction. Previous

work [10], [18], [31] has shown that approximately one third

of the information contained in user reviews is helpful for

developers. However, processing, analyzing and selecting use-

ful user feedback presents several challenges. First of all, app

stores include a substantial body of reviews, which requires a

large amount of effort to manually analyze and process. An

empirical study by Pagano et al. [31] found that mobile apps

received approximately 23 reviews per day and that popular

apps, such as Facebook, received on average 4,275 reviews

per day. Additionally, users usually provide their feedback in

form of unstructured text that is difficult to parse and analyze.

Thus, developers and analysts have to read a large amount

of textual data to become aware of the comments and needs

of their users [10]. In addition, the quality of reviews varies

greatly, from useful reviews providing ideas for improvement

or describing specific issues to generic praises and complaints

(e.g. “You have to be stupid to program this app”, “I love

it!”, “this app is useless”).

To handle this problem Chen et al. [10] proposed AR-

Miner, an approach to help app developers discover the most

informative user reviews. Specifically, the authors use: (i) text

analysis and machine learning to filter out non-informative

reviews and (ii) topic analysis to recognize topics treated

in the reviews classified as informative. In this paper, we

argue that text content represents just one of the possible

dimensions that can be explored to detect informative reviews

from a software maintenance and evolution perspective. In

particular, topic analysis techniques are useful to discover

topics treated in the review texts, but they are not able to reveal

the authors’ intentions (i.e. the writers’ goals) for reviews

containing specific topics. For example, let’s consider the

following two user reviews sentences:

1) “The awful button in the page doesn’t work”

2) “A button in the page should be added”

Topic analysis will reveal that these two reviews are likely

to discuss the same topics: “button” and “page”. However,

these reviews have different intentions: in review (1) the user

has exposed a problem related to the app, while in the review

(2) the author asks for the implementation of a new feature.

This example illustrates that understanding the intention in

user reviews could add useful information for accomplishing

software maintenance and evolution tasks. We conjecture that

a deep analysis of the sentences structure in user reviews can

be exploited to determine the intention of a given review. In

addition, also the sentiment expressed in the two user reviews

can be exploited to distinguish different kinds of informative

reviews. For example, in review sentence (1) which reports a

bug, the sentiment expressed by the user is negative (i.e., awful

button) while, for review (2) the sentiment expressed is more

neutral. In this paper we investigate whether the (i) structure,

(ii) sentiment and (iii) text features contained in user reviews

can be used to classify and select the user reviews that are

helpful for developers to maintain and evolve their app. Thus,



we propose an approach that combines Natural Language

Processing (NLP), Sentiment Analysis (SA) and Text Analysis

(TA) techniques for the extraction of information present in

user reviews that is relevant to the maintenance and evolution

of mobile apps. Furthermore, we use machine learning (ML)

to combine the three techniques and through a quantitative

evaluation show that the combination of the three techniques

outperforms the performance of each individual technique. To

the best of our knowledge, this is the first work that merges

Natural Language Processing, Sentiment Analysis and Text

Analysis to extract app store reviews that are relevant for

software maintenance and evolution. The main contributions

of this paper are as follows:
• A high level taxonomy of categories of sentences con-

tained in app user reviews that are relevant for the

maintenance and evolution of mobile apps.

• A novel approach to extract users’ intentions expressed in

app store reviews based on Natural Language Processing.

• An empirical study that investigates to what extent NLP,

SA and TA features help to detect app store reviews

relevant for the maintenance and evolution of mobile

apps.
Paper structure: Section II presents the approach and tech-

niques we used. Section III reports the dataset and the evalua-

tion methods we employed. Section IV presents and discusses

the results of the study. Section V deals with the threats that

could affect the validity of our work. Section VI illustrates the

related literature and Section VII concludes the paper outlining

future research directions.

II. APPROACH

The main goal of our research is to help developers of

mobile apps to categorize information from user reviews that

is relevant for software maintenance and evolution. Thus, the

research questions that guided our work are:

• RQ1: Are the language structure, content and sentiment

information able to identify user reviews that could help

developers in accomplishing software maintenance and

evolution tasks?

• RQ2: Does the combination of language structure, con-

tent and sentiment information produce better results than

individual techniques used in isolation?

This Section describes the research approach we performed

to answer our research questions.

A. Approach Overview

Figure 1 depicts the research approach we followed to

answer our research questions. Specifically, our approach

consisted of four steps:

1) Taxonomy for Software Maintenance and Evolution:

we manually analyzed users reviews of seven Apple

Store and Google Play apps and rigorously deduced a

taxonomy of the reviews containing useful content for

software maintenance and evolution. The output of this

phase consisted of a taxonomy of user reviews categories

that can lead the developers to select the reviews more

Fig. 1. Overview Research Approach

useful for a specific maintenance task (i.e. bug fixing,

feature adding, etc.).

2) Feature Extraction: the goal of this step was to extract

a set of meaningful features from user reviews data to

train ML techniques and automatically label app review

content according to the taxonomy deduced in the first

step. Thus, we designed three different techniques based

on (i) Text Analysis, (ii) Natural Language Processing

and (iii) Sentiment Analysis, that analyzed the content of

app reviews and extracted features for the learning phase

of our approach. The output of this phase was represented

by a set of NLP, TA and SA features.

3) Learning Classifiers: in this step we used the NLP,

TA and SA features extracted in the previous phase

of the approach to train ML techniques and classified

app reviews according to the taxonomy deduced in the

first step. Moreover, we also experimented with different

combinations of NLP, TA and SA features to train ML

approaches.

4) Evaluation: in this step we evaluated the performance

of the ML techniques experimented in the previous step

relying on widely adopted metrics for machine learning

evaluation.

B. Taxonomy for Software Maintenance and Evolution

The goal of this first step is to deduce a taxonomy of user

reviews categories that is relevant to software maintenance and

evolution. To achieve this objective, we analyse user reviews

data at the sentence-level granularity because within a raw

user review some sentences are relevant to software evolution

and maintenance, while others are not. We argue that the

definition of such a taxonomy requires the understanding of

which kind of feedback developers look for in user reviews.

Developers usually exchange messages on development com-

munication channels, such as mailing lists and issue trackers,

to plan and discuss maintenance and evolution tasks. There-

fore, we conjecture that the analysis of discussions occurring

in such communication means can guide us in defining a

taxonomy of sentence categories that developers perceive as

important for software maintenance and evolution. For this

reason we (i) investigate the types of discussions occurring

among developers through the manual inspection of messages

exchanged by developers in development mailing lists of two



open source projects namely, Qt Project1 and Ubuntu2 (also in

this case we perform the manual analysis at the sentence-level

granularity); (ii) we perform a systematic mapping between

categories of sentences reported in mailing lists messages with

a previously defined taxonomy of content generally present

in user reviews. A taxonomy of high-level categories of

TABLE I
INITIAL SET OF CATEGORIES OF SENTENCES

sentences was obtained by manually classifying development

emails, using grounded theory [19]. To address this purpose,

300 emails (exchanged in the period between 01-11-2014

and 01-01-2015) have been extracted from the development

mailing lists of Qt and Ubuntu (150 for each of them).

Two authors of this work and an external validator (a PhD

student in Computer Science) manually grouped all extracted

emails according to the categories defined by Guzzi et al.

[21] for developer communication: implementation, technical

infrastructure, project status, social interactions, usage and

discarded. In a second step, for each group of emails (with

the exception of discarded) significant sentences have been

selected and extracted relying on a finer-grained taxonomy

proposed by Guzzi et al. [22]. This second taxonomy tries to

model the reasons why developers need to communicate about

source code and consists of three categories: coordination,

seeking information, and courtesy. A manual analysis of the

extracted sentences convinced the annotators of the importance

of reshaping and extending this second taxonomy through

the identification of categories with a closer connection to

software maintenance and evolution activities. Table I shows

the identified categories and their respective descriptions.

We performed a systematic mapping (see Table II) between

this initial set of categories and the taxonomy proposed by

Pagano et al. [31] which describes a set of 17 common

topics present in app reviews. Additionally, we evaluated the

relevance of each of the topics proposed by Pagano et al.

for developers performing software evolution and maintenance

tasks. We noticed that some of the categories we previously

identified (see Table I) were irrelevant in the domain of app

1http://qt-project.org
2http://www.ubuntu.com

user reviews (see Table II). The results of the systematic

mapping highlight that eight of the topics reported in the

taxonomy of Pagano et al. [31] were relevant for developers.

Table II shows the (i) categories of topics proposed by Pagano

et al. , (ii) their relevance for software maintenance and

evolution tasks and (iii) the mapping to the sentence categories

in the initial taxonomy presented in Table I. These topics

TABLE II
TOPICS MAPPING WITH IDENTIFIED CATEGORIES OF SENTENCES

match with four of the six categories of sentences we identified

in the context of development mailing lists:

• Information Giving: sentences that inform or update

users or developers about an aspect related to the app.

• Information Seeking: sentences related to attempts to

obtain information or help from other users or developers.

• Feature Request: sentences expressing ideas, sugges-

tions or needs for improving or enhancing the app or

its functionalities.

• Problem Discovery: sentences describing issues with the

app or unexpected behaviours.

We consider such categories as the base categories in our

taxonomy and thus, they represent the output of this first phase

of our research approach.

C. Text Analysis

This section discusses the approach we used to extract

textual features from app reviews. Specifically, it consists of

two steps:

1) Preprocessing: all terms contained in our set of user

reviews are used as an information base to build a textual

corpus that is preprocessed applying stop-word removal

(using the english standard stop-word list) and stemming

(English Snowball Stemmer) to reduce the number of

text features for the ML techniques. The output of this

phase corresponds to a Term-by-Document matrix M

where each column represents a sentence and each row



represents a term contained in the given sentence. Thus,

each entry M[i,j] of the matrix represents the weight

(or importance) of the i−th term contained in the j−th

sentence.

2) Textual Feature Weighting: words are weighted using the

the tf (term frequency), which weights each words i in a

review j as:

tfi,j =
rfi,j∑m

k=1 rfk,j

where rfi,j is the raw frequency (number of occurrences)

of word i in review j.

We used the tf (term frequency) instead of tf-idf indexing

because the use of the inverse document frequency (idf)

penalises too much terms appearing in many reviews [15].

In our work, we are not interested in penalising such terms

(e.g., ”fix”,”problem”, or ”feature”) that actually appear in

many reviews because they may constitute interesting features

that guide ML techniques in classifying sentences containing

useful feedback from the software maintenance and evolution

perspective. The weighted matrix M represents the output of

this phase and the input for ML strategies as described in the

Section II-F.

D. Natural Language Processing

We assume that when users write app reviews (e.g., to

report bugs or propose new features) they tend to use recurrent

linguistic patterns. For instance let’s consider the sentence

“You should add a new button”. A developer who reads this

sentence can easily understand that the writer’s intention is

to make a feature request. Observing the sentence syntax, we

can notice that the sentence presents a well defined predicate-

argument structure:

• “add” constitutes the principal predicate of the sentence

• “you” represents the subject of the sentence

• “button” represents the direct object of the predicate

• “new” represents an attribute of the direct object

• “should” is the auxiliary of the principal predicate

We argue that this sentence matches a recurrent linguistic

pattern that can be exploited for the recognition of sentences

belonging to the feature request category of the taxonomy

presented in Section II-B. Our conjecture is that this and

similar patterns are intrinsically related to the intentions of

the users that wrote the text. Furthermore, we believe that

user intentions relevant for our purposes can be mapped to

the categories defined in our taxonomy. Therefore, recurrent

linguistic patterns can be exploited to recognize sentences of

others categories belonging to our taxonomy.

Through a manual inspection of 500 reviews (different from

the reviews described in Section III)) from different kinds

of apps (games, communication, productivity, photography,

etc.) we identified 246 recurrent linguistic patterns3. For each

identified linguistic pattern we formalized and implemented

an NLP heuristic to automatically recognize it. For instance,

3http://www.ifi.uzh.ch/seal/people/panichella/Appendix.pdf

for the previous example we define the general NLP heuristic

“[someone] should add [something]”. The implementation of

a NLP heuristic enables the automatic detection of a sentence

which matches a specific structure (e.g. “add” or a synonym

as principal predicate, “should” in the auxiliary role of the

principal predicate, a generic subject indicating who makes

the request and a generic direct object indicating the request

object).

To automatically detect sentences containing our defined

NLP heuristics we used the Stanford Typed Dependencies

(STD) parser [13] which is a tool able to represent dependen-

cies between individual words contained in sentences and to

label each of them with a specific grammatical relation. It uses

the Stanford Dependencies (SD) representation, which was

successfully used in a range of downstream tasks, including

Textual Entailments [12] and BioNLP [17], thus, becoming

a de-facto standard for parser evaluation in English [7] [30].

In this step, the NLP parser we implemented assigns each

sentence in the input to its corresponding NLP heuristic. If

the sentence structure does not match any of the defined NLP

heuristics the NLP parser simply labels the sentence as others.

The output of this step is a mapping between each sentence

contained in a review and its corresponding NLP heuristic.

We then use the NLP heuristic extracted for each sentence

to train different ML techniques, as will be explained in the

Section II-F.

E. Sentiment Analysis

Sentiment analysis is the process of assigning a quantitative

value to a piece of text expressing an affect or mood [27].

We consider sentiment analysis as a text classification task

which assigns each given sentence in a user review to one

corresponding class. For our purpose, the classes are defined as

three different levels of sentiment intensity: positive, negative

and neutral. In our approach we use Naive Bayes for predicting

the sentiment in the user reviews. Previous work [33] found

that Naive Bayes performed better than other machine learn-

ing algorithms traditionally used for text classification when

analyzing the sentiment in movie reviews. For our sentiment

analysis task we performed the same preprocessing steps per-

formed in the TA technique (stop word removal, stemming and

transformation to a Term-by-Document matrix). Additionally,

we performed a selection of the words considered to be most

important for determining sentiment according to the Chi-

squared x2 metric. We trained our classifier with a set of

2090 App Store and Google Play review sentences which were

randomly selected from the dataset described in Section III-A.

The sentences were manually labeled by two annotators, an

author of the paper and a graduate student in Computer Sci-

ence with experience in sentiment analysis. To assure that both

annotators had a similar understanding of the task to be done, a

short clarification session was held and examples of annotated

sentences were shown. The disagreement rate between both

annotators was 5%. We computed the final sentiment score of

each manually labeled sentence by averaging the two scores.

We performed the sentiment analysis task using the Weka



tool [37] generating as output of this step an integer value

in the [1,-1] range to each of the input sentences. The value

of 1 determines positive sentiments, whereas 0 and -1 denote

neutral and negative sentiments respectively.

F. Learning Classifiers

This section discusses how we trained machine learning

techniques to classify user reviews, while Section III describes

the data used as training and test set (below we refer them

as T1 and T2), as well as, the procedure we followed to

manually create the truth set. Formally, given a training set

of app reviews sentences T1 and a test set of app reviews

sentences T2, we automatically classify the reviews content in

T2, by performing the following steps:

1) NLP, TA and SA features: The first step uses the NLP,

TA and SA approaches discussed in the previous sections

to compute the corresponding features contained in the

sets of app reviews sentences T1 and T2. In particular,

the output of this phase corresponds to a matrix M

where each column represents an app review sentence

and each row represents a feature extracted using NLP,

TA and SA approaches. Thus, each entry M[i,j] in the

matrix represents the value of the metric i−th of the

corresponding j−th app review sentence.

2) Split training and test features: The second step splits the

matrix M (the output of the previous step) in two sub-

matrices Mtraining and Mtest . Specifically, Mtraining

and Mtest represent the matrix that contains the sentences

(i.e., the corresponding columns in M) of T1 and the

matrix that contains the sentences (i.e., the corresponding

columns in M) of T2 respectively.

3) Oracle building: The third step aims at building the oracle

to allow ML techniques to train from Mtraining and

predict on Mtest . Thus, in this stage, the sentences in

T1 and T2 are manually classified and assigned to one

of the categories defined in Section II-B (as described in

Section III two human evaluators performed this manual

labelling).

4) Classification: The fourth step automatically classifies

sentences relying on the output data obtained from the

previous step, that is Mtraining and Mtest (with classified

sentences). Specifically, we experimented (relying on

the Weka tool) different machine learning techniques,

namely, the standard probabilistic naive Bayes classifier,

Logistic Regression, Support Vector Machines, J48, and

the alternating decision tree (ADTree). The choice of

these techniques is not random since they were success-

fully used for bug reports classification [1], [38] and for

defect prediction in many previous works [3], [5], [8],

[29], [39], thus allowing to increase the generalisability

of our findings.

To answer RQ1 we experimented the ML techniques described

above performing a training on the NLP, TA, and SA features.

Furthermore, to answer RQ2 we investigate whether specific

combinations of NLP, TA and SA features allow to obtain a

better classification. Specifically, we learn the ML techniques

using different combination of features: (i) NLP+TA, (ii)

NLP+SA and (iii) NLP+TA+SA.

III. EVALUATION

In this section we describe the dataset and methodology we

used during the evaluation.

A. Dataset

To answer our research questions we evaluated our approach

on the set of reviews collected by Guzman and Maalej [20]

wich contains reviews of the AngryBirds, Dropbox and Ev-

ernote apps available in Apple’s App Store4 and reviews

from the apps TripAdvisor, PicsArt, Pinterest and Whatsapp

available in Android’s Google Play5 store. All seven apps were

in the list of the most popular apps in the year 2013 in their

respective app store and belong to different app categories.

The diversity of the chosen apps allows for evaluating the

robustness of the approach by classifying reviews which

contain different vocabularies and are written by different

user audiences. Table III shows for each app considered in

our dataset: (i) the application name, (ii) the app category

it belongs to, (iii) the platform from which comments were

collected, and (iv) the number of collected reviews.

TABLE III
OVERVIEW OF THE DATASET

App# Category# Platform# Total#Reviews#

AngryBirds* Games* App*Store 1538

Dropbox* Productivity* AppStore* 2009

Evernote* Productivity* App*Store* 8878

TripAdvisor* Travel* App*Store* 3165

PicsArt* Photography* Google*Play* 4438

Pinterest* Social* Google*Play* 4486

Whatsapp* Communication* Google*Play* 7696

B. Evaluation Methodology

To address the two research questions presented in Section

II we applied our research approach on the dataset discussed

in Section III-A. We then compared our results against a

manually labelled truth set by using metrics commonly used

in machine learning and NLP tasks. In the following sections

we describe the procedure for creating the truth set and the

used metrics.

1) Creation of Truth Set: To create our truth set we first

use AR-miner [10] to filter out non-informative reviews in

our dataset. Then, we manually labeled a sample of dataset

sentences. The sentences were selected through a stratified

random sampling strategy. During the sampling we verified

that the percentage of the number of extracted sentences per

app was the same as the percentage of reviews per app in the

original set. In total we sampled 1421 sentences out of 7696

reviews (18.46%).

Two authors of this work manually labeled the sample

according to the categories of our taxonomy (see Section II-B).

4https://itunes.apple.com/us/genre/ios/id36
5https://play.google.com/store?hl=en



An additional category, named other, was used whenever the

sentences did not match any of the predetermined categories.

To assure that both annotators applied the same criteria when

labeling the results, the definitions of each category were dis-

cussed among them before any labeling was done. Then, each

annotator labeled a set of 20 sentences. All disagreements were

deliberated and the definitions for each taxonomy category

were updated to avoid further misunderstandings. Afterwards,

each annotator labeled half of the remaining set independently

of each other. Whenever the annotators were unsure about the

appropriate category for a sentence they marked the sentence

as unsure and labeled it with the category they thought would

suit best. Afterwards, the other annotator labeled all sentences

that were marked as unsure by the original annotator. For the

cases were the second annotator was also unsure about the

category, both annotators discussed the final labeling and a

decision was made. In total there were 88 sentences (6.2%

of the whole truth set) where at least one annotator was

unsure about the labeling, indicating that most of the times the

annotators were confident about their work. The disagreement

for the unsure cases was of 2.81%.

TABLE IV
PERCENTAGES OF LABELED SENTENCES IN THE TRUTH SET

Category #*Reviews Proportion

Information*Seeking 101 0.07107671

Information*Giving 583 0.41027445

Feature*Request 218 0.15341309

Problem*Discovery 488 0.34342013

Others 31 0.02181562

Total 1421 1

Only 31 sentences were labeled in the other category. i.e.,

2.18% of the truth set, indicating that our taxonomy covers

most of the evolution topics discussed in sentences that are

informative for developers. After this annotation process our

truth set comprised 1390 sentences.

Table IV shows the number of reviews in the truth set that

were labeled as belonging to a certain category. Information

giving was the most common category, making 41% of the

truth-set, problem discovery followed with 34% of the truth-

set, whereas feature request and information seeking were only

present in 15% and 7% of the sentences respectively. The

truth-set is used to generate the training and test sets for the

machine learning phase of our approach. Specifically, we used

278 items from our fully manually labeled truth set (20%) as

a training set for the different ML techniques we employed,

while the remaining 1112 sentences (80%) of the truth set

constituted the test set.

2) Used Metrics: We evaluate our results using the preci-

sion, recall, and F-measure metrics commonly used in machine

learning. In our evaluation we compare the human gener-

ated truth set with the automatically generated classification.

For each category, the correctly classified items have been

computed as true positives, the items incorrectly labeled as

belonging to that specific category have been considered

false positives and the items incorrectly labeled as belonging

to other categories have been computed as false negatives.

Precision is computed by dividing the number of true positives

by the sum of true positives and false positives. Recall is

computed by dividing the number of true positives by the

sum of true positives and false negatives. We compute the

F-measure by using its general form definition, which returns

the harmonic mean of the precision and recall.

3) Statistical Tests: In order to compare if the differences

between the different input features and classifiers were statis-

tically significant we performed a Friedman test, followed by

a post-hoc Nemenyi test, as recommended by Demšar [14].

IV. RESULTS

A. RQ1: Are the language structure, content and sentiment

information able to identify user reviews that could help de-

velopers in accomplishing software maintenance and evolution

tasks?

Table V gives an overview of the main results obtained

through different configuration of machine learning algo-

rithms: (i) NLP features only, (ii) TA features only, (iii) both

NLP and SA features, (iv) both NLP and TA features, (v)

all NLP, SA, and TA features. For reason of space the table

does not report the results achieved when learning the ML

techniques by using only SA features since in that case we

obtain the worst results with a precision and recall that never

exceeds the threshold of 20% and 10% respectively. These

results are not surprising because SA features are characterised

by only three possibile values, that are insufficient to assign

the reviews to one of the four categories of our taxonomy.

The results in Table V show that the NLP+TA+SA config-

uration had the best results with the J48 algorithm, among all

possible feature inputs and classifiers with 75% precision and

74% recall. Therefore, we base the forthcoming result analysis

on the NLP+TA+SA configuration with the J48 classifier.

Table VI shows the precision, recall and F-Measure for each

category (see Section II-B) obtained through the J48 algorithm,

using the NLP+TA+SA features. In particular, problem dis-

covery was the class with the highest F-measure, followed by

the information giving and information seeking categories. On

the other hand, the feature request category was the category

with the lowest F-measure. This mirrors the high performance

obtained in terms of both precision and recall by three of

the categories (average precision of 76% and average recall of

79%). The only exception is the feature request category where

the precision is 70% but the recall value is very low (23%).

This means that for feature request the classifier marks relevant

sentences accurately, but not all sentences belonging to that

category are detected. The results suggest that app users very

often rely on common/recurrent patterns, successfully detected

by our approach, when their intention is to communicate a bug

or a problem. On the other hand, app users can request new

features in many different ways, making it hard to identify

common patterns to detect them. The outcome can also be

in part explained by the low amount of feature requests in

the truth set (see Table IV). Indeed, information seeking and

feature request are the least assigned categories in the truth



TABLE V
RESULTS OF COMBINATION OF NLP, TA AND SA APPROACHES

Classifier Precision Recall F/Measure Precision Recall F/Measure Precision Recall F/Measure Precision Recall F/Measure Precision Recall F/Measure

Bayes 0.572 0.661 0.609 0.665 0.584 0.545 0.572 0.661 0.609 0.687 0.677 0.65 0.691 0.683 0.655

SVM 0.577 0.662 0.61 0.592 0.614 0.584 0.643 0.658 0.639 0.679 0.684 0.666 0.676 0.682 0.664

Logistic:Regression 0.577 0.662 0.61 0.462 0.46 0.457 0.561 0.643 0.585 0.492 0.492 0.485 0.453 0.419 0.427

J48 0.577 0.662 0.61 0.572 0.58 0.563 0.726 0.73 0.702 0.696 0.687 0.664 0.752 0.742 0.72

ADTree 0.697 0.67 0.63 0.619 0.611 0.591 0.79 0.719 0.672 0.713 0.707 0.694 0.79 0.719 0.672

NLP TA NLP<+<SA NLP<+<TA NLP<+<TA<+<SA

set. While the information seeking category involves easily

recognisable structures (e.g. the question mark at the end

of the sentence, or the use of known words as ”how” or

”what”), feature requests are more complex to detect because

of the variety of structures, words and sentiments they could

implicate. Thus, the use of a larger set of feature requests in

the truth set could improve the performance for this kind of

sentences. However, observing Table VII, that shows examples

of sentences and the related categories that were assigned

to them by J48 (using the NLP+TA+SA features), we can

notice that such classifier detects with high precision very

useful feature requests posted by users of mobile apps from a

developer perspective.

TABLE VI
RESULTS BY CATEGORY FOR THE J48 ALGORITHM

Category Precision Recall F1Measure

Feature'Request 0.704 0.225 0.341

Problem'Discovery 0.875 0.776 0.822

Information'Seeking 0.712 0.684 0.698

Information'Giving 0.68 0.904 0.776

Weighted'Avg. 0.752 0.742 0.72

TABLE VII
EXAMPLES OF SENTENCES AND THEIR CATEGORY AS CLASSIFIED BY THE

J48 ALGORITHM

B. RQ2: Does the combination of language structure, content

and sentiment information produce better results than individ-

ual techniques used in isolation?

To answer RQ2 we train ML techniques using different

combinations of TA, SA and NLP features as shown in

Table V. Among the different kinds of features used indi-

vidually, the NLP features allow to obtain the best results

with the alternating decision tree (ADTree) classifier with 70%

precision and 67% recall, although the results of the other

machine learning algorithms are also positive (58% precision

and 66% recall). On the other hand, the single TA input

achieves the best results with the alternating decision tree

(ADTree) classifier (62% precision and 61% recall), and the

worst results through the Logistic Regression technique with a

precision and a recall of 46%. Furthermore, as discussed in the

previous section, sentiment information alone is insufficient

to classify reviews. Nevertheless, SA in combination with

the other techniques adds valuable information that allow

classifiers to improve their performances (see Table V).

The NLP+TA configuration achieves the best results through

the alternating decision tree (ADTree) classifier with both

precision and recall of 71% while the NLP+SA configuration

obtains the best results through the J48 classifier with both

precision and recall of 73%. For all the considered configura-

tions, Logistic Regression and Naive Bayes proved to be the

worst techniques to identify relevant sentences from a software

maintenance and evolution perspective, while the ADTree and

J48 classifiers are the best. As discussed in the previous

section, the best performance is achieved by the NLP+TA+SA

combination with the J48 classifier.

These results are encouraging, if we consider that we used

just 20% of our dataset to train the different ML algorithms

and predicted in the remaining 80%. Indeed, using a larger

number of points in the training set (e.g., using 40% of our

dataset as a training set and the remaining 60% as a test set)

is likely to result in higher performances for feature requests

and, in general, for all the categories. Table VIII reports the

precision, recall and F-measure values achieved when training

the J48 classifier using different combinations of features and

varying the size of the training set (20%, 40% and 60%). In

general, with the exception of some fluctuations (few cases

in which we have a slightly decreases of the performances)

the performances achieved by the J48 algorithm improve with

the addition of more training data. Specifically, when J48

is trained using combinations of features such as, NLP, TA,

NLP+SA, NLP+TA the improvements in terms of F-measure

range between 2% and 12%. The best results are achieved by

the J48 classifier with the combination of NLP+SA features

when the size of the training set is 60%: 85% precision, 85%

recall and 84% F-measure. This result is interesting because it

suggests that for classifying user reviews content with high

precision and recall it is sufficient to rely on approaches

that extract information about the sentiment and intention

(structure) of a user review. Clearly, such results also confirm

the importance of training the classifier with a larger training

set. To evaluate the performances of the proposed approach

we also randomly sampled 20% of the dataset as training



TABLE VIII
RESULTS BY CATEGORY FOR THE J48 ALGORITHM WHEN VARYING THE SIZE OF THE TRAINING SET.

TA

Training(set(% Precision Recall F3Measure Precision Recall F3Measure Precision Recall F3Measure Precision Recall F3Measure Precision Recall F3Measure

J48320 0.577 0.662 0.61 0.572 0.58 0.563 0.726 0.73 0.702 0.696 0.687 0.664 0.752 0.742 0.72

J48340 0.736 0.683 0.654 0.624 0.638 0.623 0.737 0.725 0.724 0.812 0.802 0.796 0.743 0.721 0.717

j48360 0.684 0.651 0.639 0.603 0.612 0.591 0.845 0.847 0.838 0.678 0.66 0.657 0.743 0.721 0.717

NLP(+(SANLP NLP(+(TA NLP(+(TA(+(SA

data and repeated the process 100 times. Thus, we learned

the J48 classifier using (i) NLP+TA and (ii) NLP+SA+TA

sets of features respectively. The results of the J48 classifier

are again pretty positive and stable: when the J48 classifier

is trained using NLP+TA our approach achieves, in average,

79% precision, 78% recall and 77% F-Measure; when the J48

classifier is trained using NLP+SA+TA our approach achieves,

in average, 80% precision, 80% recall and 79% F-Measure.

Moreover, we used (i) NLP+TA and (ii) NLP+SA+TA sets of

features to perform a ten-fold cross validation and our results

are again quite stable: 80% (or above) precision, 80% (or

above) recall and 79% (or above) F-Measure.

The results of the Friedman test revealed that the difference

in performance among the classifiers is not statistical signifi-

cant in terms of F-Measure. Thus, we can conclude that when

comparing classifiers’ performance and using different input

configurations, the choice of the classifier does not affect the

results in a significant manner.

To analyse how the language structure, content and sen-

timent information affected the classification results we exe-

cuted a Friedman test on the F-Measure scores obtained by

the J48 algorithm for each possible input combination. The

test concluded that the difference in the results when having

different inputs is statistically significant (p−value = 0.007).

To gain further insight about the groups that are statistically

different from each other we performed a Nemenyi test. The

test revealed that there is a marginally significant difference

between the TA and NLP+TA+SA combinations (p−value =

0.09). Moreover, it also highlighted a statistically significant

difference between results achieved when relying only on TA

features and when using NLP+SA features (p − value =

0.0061). This result confirms the importance of NLP and

SA features over TA features when classifying reviews into

categories relevant to maintenance and evolution tasks.

V. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-

tween the theory and the observation. For the truth set creation

we rely on error-prone human judgement, because there is

a level of subjectivity in deciding if a sentence falls within

a specific category. To alleviate this issue we built a truth

set based on the judgement of two annotators. Furthermore,

definitions for each of the labeling categories were presented

and discussed. Moreover, an initial set of 20 sentences was

preliminarily labelled by both annotators and all disagreements

were discussed between them. Additionally, annotators marked

all of the sentences where they were unsure of the assigned

category and then the other annotator re-labelled these sen-

tences, increasing the confidence level of the truth set.

Threats to internal validity concern any confounding factor

that could influence our results. A threat to internal validity

could involve the taxonomy we selected for classifying the

sentences, as the categories could present intersections among

them. To alleviate this issue we inferred an initial set of

categories by observing the communications occuring among

developers and then tried to match these categories with topics

often treated in app reviews (see Section II-B), as well as with

categories from previously defined taxonomies. Moreover, we

assumed that each recognised sentence belongs to only one of

the categories we defined. Sentences often contain a variety

of intents: a major intent and some minor intents (i.e. How

can I access to my profile? Please fix the bug). Thus, for each

sentence we tried to focus on the major intent (i.e. problem

discovery) and discarded the minor intents (i.e. information

seeking) to allow developers to understand user needs and

opinions more easily and prioritize their work accordingly.

However, some information could be lost and this is therefore

a threat to construct validity in our work. Another threat to the

internal validity can be represented by the problem of the tests

overfitting of the machine learning. To handle this problem we

(i) randomly sampled 20% of the dataset as training data and

repeated the process 100 times and (ii) applied a ten-fold cross

validation. Also in this case the proposed approach obtains

good results (see Section IV).

Threats to external validity concern the generalisation of

our findings. A threat to the external validity could be repre-

sented by the particular apps we selected to extract reviews

used in our experimentation. Experimental results may be

applicable only on the extracted reviews. To reduce this issue

we selected seven different apps belonging to six different

app categories from two different app stores with different

characteristics (see Section III-A).

VI. RELATED WORK

Harman et al. [23] introduced app store mining and analyzed

technical and business aspects of apps by extracting app

features from the official app descriptions. Chandy and Gu

[9] classified spam in the AppStore through a latent model

capable of classifying apps, developers, reviews and users into

the normal and malicious categories. Pagano and Maalej [31]

investigated the types of user feedback present in user reviews

useful for developers. We map some of their findings into the

labels we used in this work.

Iacob and Harrison [24] extracted feature requests from app

reviews by means of linguistic rules and used Latent Dirichlet

Allocation (LDA) [6] to group the feature requests. Differently

from this work, we employed linguistic rules, text analysis,



and sentiment analysis to mine a wider range of information

from user reviews (not only feature requests). LDA was also

used for: (i) feature based sentiment analysis of reviews [20],

(ii) user reviews summarization [18], and (iii) the identifica-

tion of incorrectly rated reviews [16]. In contrast with these

past works, we also investigated text structure and sentiment

dimensions and proved that the analysis of these dimensions

could overcome some of the limitations of traditional lexicon-

based approaches. Chen et al. [10] used Naive Bayes for

finding informative review sentences and LDA for grouping

sentences with similar content. They then rank the groups of

reviews. In our study we filtered non-informative reviews using

Chen’s et al. approach and used a combination of techniques to

identify relevant sentences. Similarly to Chen et al. we could

rank the sentences that are considered more important in each

category. Li et al. [28] analyze user reviews to measure user

satisfaction by matching words or phrases with a predefined

dictionary. Our purpose is to overcome the limitations coming

from standard words matching. Khalid et al. [25] mined the

Apple iOS App Store, focusing on reviews with one- or two-

star ratings, in order to categorize the types of complaints by

users and evaluate how complaints affect ratings while Bavota

et al. [4] empirically demonstrated the relationship between

the success of apps (in terms of user ratings), and the change-

and fault-proneness of the underlying APIs. Our work is

rather focused in investigating how different techniques could

be combined in order to catch in an automated way useful

information from app reviews for accomplishing maintenance

and evolution tasks.

Bacchelli et al. [2] presented an approach to extract useful

information from development emails i.e. text, junk, source

code, patch and stack traces. Previous works addressed the

problem of bugs misclassification in issue trackers [1], [26]

building ML classifiers which relying on textual features in

bug reports try to classify (or reclassify) the issues. Several

works focused on the API documentation trying to: (i) cate-

gorize source code and textual descriptions in API discussion

forums [38], (ii) detect knowledge items in API reference

documentation [11], or (iii) infer formal method specifications

from API documents [32]. Sharama et al. [35] proposed a

new approach based on a language model that can help

developers in identifying software related tweets. Panichella

et al. [34], [36] mined bug reports, development mailing lists

and StackOverflow in order to discover descriptions that can

suitably explain methods.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach which uses Natural

Language Processing, Sentiment Analysis and Text Analysis

in order to detect and classify sentences in app user reviews

that could guide and help app developers in accomplishing

software maintenance and evolution tasks. The classification

is performed according to a taxonomy of sentences categories

deduced by analysing reviews and development emails. Re-

sults of our study show that the combination of NLP, TA and

SA techniques allows to detect useful sentences for app devel-

opers with appreciable levels of precision (75.2%) and recall

(74.2%). We also proved that some configurations substantially

improve both precision and recall when increasing the size of

the training set. Additionally, we found that a classifier trained

with structure (with NLP) and sentiment (with SA) features

performs significantly better than when only trained with text

(with TA) features.

Results also highlighted that structure (with NLP), senti-

ment (with SA), and text (with TA) features contained in user

reviews could be useful in extracting not only sentences which

mention specific topics, but in understanding the intentions

of the writers concerning the mentioned topics. This, in our

opinion, could allow developers to (i) filter relevant informa-

tion in user reviews, (ii) understand more quickly the software

maintenance tasks to apply, and, consequently, (iii) be more

responsive to users requests. As a first direction for future work

we plan to extend our study to a larger number and variety of

apps, involving several developers of different communities to

empirically confirm the benefits that developers can achieve

when relying on automated intention mining. Furthermore, we

also plan to complement our approach with topic modeling

techniques. Specifically, topics models can be used to cluster

sentences in each of the categories of our taxonomy (Section

II-B). For example, grouping together sentences of the cate-

gory feature request that are related to the same functionality

of a given app. Finally, we also plan to improve our approach

by adding more NLP rules and by experimenting with others

ways to combine NLP, SA and TA techniques.

ACKNOWLEDGMENTS

We thank Francesco Mercaldo (Ph.D. Student at the Uni-

versity of Sannio) for his help in the results’ manual val-

idation. Sebastiano Panichella gratefully acknowledges the

Swiss National Science foundation’s support for the project

“Essentials” (SNF Project No. 200020−153129).

REFERENCES

[1] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, Y. Guhneuc, Is it a bug

or an enhancement?: a text-based approach to classify change requests.
CASCON, 2008:23.

[2] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza. Content clas-

sification of development emails. In Proceedings of the 34th International
Conference on Software Engineering (ICSE), 2012, pp. 375-385.

[3] V. R. Basili, L. C. Briand, and W. L. Melo, A validation of object oriented

design metrics as quality indicators, IEEE Trans. Software Eng., vol. 22,
no. 10, pp. 751-761, 1996.

[4] G. Bavota, M. L. Vásquez, C. E. Bernal-Cárdenas, M. Di Penta, R.
Oliveto, and D. Poshyvanyk, The Impact of API Change- and Fault-

Proneness on the User Ratings of Android Apps. IEEE Trans. Software
Eng. 41(4), pp.384-407, 2015.

[5] M. Bezerra, A. L. I. Oliveira, and S. R. L. Meira, , A constructive

rbf neural network for estimating the probability of defects in software

modules, in Neural Networks, 2007. IJCNN 2007. International Joint
Conference on, 2007, pp. 2869-2874.

[6] D. M. Blei, A.Y. Ng, and M. I. Jordan, Latent dirichlet allocation, in
Journal of Machine Learning Research (JMLR), Vol. 3, 2003, pp. 993-
1022.

[7] D. Cer, M.C. de Marneffe, D. Jurafsky, and C.D. Manning, Parsing

to Stanford dependencies: Trade-offs between speed and accuracy, in
Proceedings of the 7th International Conference on Language Resources
and Evolution (LREC), 2010.



[8] E. Ceylan, F. Kutlubay, and A. Bener, Software defect identification using

machine learning techniques, in Software Engineering and Advanced
Applications (SEAA), 2006, pp. 240-247.

[9] R. Chandy and H. Gu. Identifying spam in the iOS app store. In
Proceedings of the 2nd Joint WICOW/AIRWeb Workshop on Web Quality
(WebQuality), 2012, pages 56-59.

[10] N. Chen, J. Lin, S.C.H. Hoi, X. Xiao, B. Zhang, AR-miner: mining

informative reviews for developers from mobile app marketplace. In Pro-
ceedings of the 36th International Conference on Software Engineering
(ICSE), 2014, pp. 767-778.

[11] Y. B. Chhetri and M. P. Robillard, Recommending Reference API

Documentation, in Empirical Software Engineering, 2014. To appear
[12] I. Dagan, O. Glickman, and B. Magnini, The PASCAL recognizing

textual entailment challenge, in Proceedings of The First International
Conference on Machine Learning Challenges: evaluating Predictive Un-
certainly Visual Object Classification, and Recognizing Textual Entail-
ment, 2005, pp. 177-190.

[13] M.C. de Marneffe, B. MacCartney, and C.D. Manning, , Generating

typed dependency parses from phrase structure parses, in Proceedings of
LREC, 2006, pp. 449-454.

[14] J. Demšar, Statistical comparisons of classifiers over multiple data sets,
in Journal of Machine Learning Research v.7, 2006, pp. 1-30.

[15] W. B. Frakes and R. Baeza-Yates, Information Retrieval: Data Structures

and Algorithms?. Prentice-Hall, Englewood Cliffs, NJ, 1992.
[16] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh. Why people

hate your app: Making sense of user feedback in a mobile app store.. In
Proc. of the International Conference on Knowledge Discovery and Data
Mining (KDD), 2013, pages 1276-1284.

[17] K. Fundel, R. Küffner, and R. Zimmer, RelEx - Relation extraction using

dependency parse trees, in Bioinformatics, v.23, n.3, 2007, pp. 365-371.
[18] L. V. Galvis Carreno and K. Winbladh. Analysis of user comments: an

approach for software requirements evolution. In Proceedings of the 2013
International Conference on Software Engineering (ICSE), 2013, pages
582-591.

[19] B. Glaser, and A. Strauss. The discovery of grounded theory: Strategies

of qualitative research. New York, NY:Aldine de Gruyter, 1967.
[20] E. Guzman, and W. Maalej How Do Users Like This Feature? A Fine

Grained Sentiment Analysis of App Reviews. In Proceedings of the 22nd
IEEE International Requirements Engineering Conference (RE), 2014, pp.
153-162

[21] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van Deursen,
Communication in open source software development mailing lists, in
Proceedings of the 10th Working Conference on Mining Software Repos-
itories (MSR), 2013, pp 277-286.

[22] A. Guzzi, A. Begel, J.K. Miller, and K. Nareddy, Facilitating Enterprise

Software Developer Communication with CARES, in Proceedings of the
34th International Conference on Software Engineering (ICSE), 2012, pp
1367-1370.

[23] M. Harman, Y. Jia, and Y. Zhang. App store mining and analysis: MSR

for app stores. In Proc. of the Working Conference on Mining Software
Repositories (MSR) 2012, pages 108-111.

[24] C. Iacob and R. Harrison. Retrieving and analyzing mobile apps feature

requests from online reviews. In Proc. of the Working Conference on
Mining Software Repositories (MSR), 2013, pages 41-44.

[25] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan. What Do Mobile

App Users Complain About?. IEEE Software, vol.32, no. 3, 2015, pp. 70-
77.

[26] P. S. Kochhar, F. Thung, and D. Lo. Automatic Fine-Grained Issue Re-

port Reclassification. in Proceedings of the 19th International Conference
on Engineering of Complex Computer Systems (ICECCS), 2014, pp. 126-
135.

[27] O. Kucuktunc, B. B. Cambazoglu, I. Weber, and H. Ferhatosmanoglu.
A large-scale sentiment analysis for Yahoo! Answers, In Proceedings of
the International Conference on Web Search and Data Mining (WSDM),
2012, pp 633-642.

[28] H. Li, L. Zhang, L. Zhang, and J. Shen. A user satisfaction analysis

approach for software evolution. In Proc. of the Progress in Informatics
and Computing Conference (PIC), 2010, volume 2, pages 1093-1097.

[29] Y. Liu, T. M. Khoshgoftaar, and N. Seliya, , Evolutionary optimization of

software quality modeling with multiple repositories, IEEE Trans. Softw.
Eng., vol. 36, no. 6, Nov. 2010, pp. 852-864.

[30] J. Nivre, L. Rimell, R. McDonald, and C. Gómez-Rodrı́guez, Evaluation

of dependency parsers on unbounded dependencies, in Proceedings of
COLING, 2010, pp. 813-821.

[31] D. Pagano, and W. Maalej User Feedback in the AppStore: An Empirical

Study. In Proceedings of the 21st IEEE International Requirements
Engineering Conference (RE), 2013, pp.125-134.

[32] R. Pandita, X.Xiao, H. Zhong, and T. Xie, Inferring method specifica-

tions from natural language API descriptions, in Proceedings of the 34th
International Conference on Software Engineering (ICSE), 2012, pp. 815-
825

[33] B. Pang, L. Lee, and S. Vaithyanathan, Thumbs up?: sentiment classi-

fication using machine learning techniques, Proceedings of the ACL-02
Conference on Empirical Methods in Natural Language Processing, pp.
79-86, 2002.

[34] S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and G. Canfora Mining

source code descriptions from developers communications, in Proceedings
of the 20th IEEE International Conference on Program Comprehension,
2012, pp. 63-72.

[35] A. Sharma, Y. Tian, D. Lo. NIRMAL: Automatic identification of

software relevant tweets leveraging language model. In Proceedings of
the 22nd IEEE International Conference on Software Analysis, Evolution,
and Reengineering, (SANER), 2015, pp. 449-458.

[36] C. Vassallo, S. Panichella, M. Di Penta, and G. Canfora, CODES: mining

source code description from developers discussions, in Proceedings of
the 22th IEEE International Conference on Program Comprehension
(ICPC), 2014, pp. 106-109.

[37] I. Witten and E. Frank, Data Mining: Practical Machine Learning Tools

and Techniques. Morgan Kaufmann, 2005.
[38] Y. Zhou, Y. Tong, R. Gu, H. Gall, Combining Text Mining and Data

Mining for Bug Report Classification?. In Proceeding of 30th Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
2014, pp. 311-320.

[39] T. Zimmermann and N. Nagappan, , Predicting defects with program

dependencies, in Empirical Software Engineering and Measurement,
2009. ESEM 2009. 3rd International Symposium on, 2009, pp. 435-438.


