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Abstract

Humans can effectively and swiftly recognize objects in complex natural scenes. This outstanding ability has motivated
many computational object recognition models. Most of these models try to emulate the behavior of this remarkable
system. The human visual system hierarchically recognizes objects in several processing stages. Along these stages a set of
features with increasing complexity is extracted by different parts of visual system. Elementary features like bars and edges
are processed in earlier levels of visual pathway and as far as one goes upper in this pathway more complex features will be
spotted. It is an important interrogation in the field of visual processing to see which features of an object are selected and
represented by the visual cortex. To address this issue, we extended a hierarchical model, which is motivated by biology, for
different object recognition tasks. In this model, a set of object parts, named patches, extracted in the intermediate stages.
These object parts are used for training procedure in the model and have an important role in object recognition. These
patches are selected indiscriminately from different positions of an image and this can lead to the extraction of non-
discriminating patches which eventually may reduce the performance. In the proposed model we used an evolutionary
algorithm approach to select a set of informative patches. Our reported results indicate that these patches are more
informative than usual random patches. We demonstrate the strength of the proposed model on a range of object
recognition tasks. The proposed model outperforms the original model in diverse object recognition tasks. It can be seen
from the experiments that selected features are generally particular parts of target images. Our results suggest that selected
features which are parts of target objects provide an efficient set for robust object recognition.
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Introduction

How different objects are recognized in the visual cortex has

been a challenging and major question in the field of vision

neuroscience and machine vision. The visual system of humans

and other mammals can simply and rapidly recognize a wide

variety of objects in various conditions such as changes in size,

position, illumination, viewpoint, etc. in a natural scene. They can

even detect and recognize a specific object in a cluttered scene

without consuming noteworthy amount of time and effort unlike

the best machine vision systems. Achieving a model which can

emulate this remarkable system with such a high performance is a

long-time goal in computational neuroscience. Although present-

ing a model with a high performance in object recognition tasks is

a goal of interest, plausibility with the primate visual system has

much more significance, particularly in the recent decades. A large

number of object recognition models have been introduced up to

now and ,interestingly, a vast majority of them have shown to

perform successfully in different object recognition tasks [1–5].

Nonetheless, a very few models are consistent with psychophysical

and physiological data throughout the different areas of the visual

system [6–10]. Furthermore due to the complexity of the human

visual system, constructing biologically plausible object recognition

models is so difficult.

The first model that qualitatively described simple and complex

cells in the primary visual cortex in non-human primates was

introduced by Hubel & Wiese [11,12]. They described a hierarchy

of cells in the primary visual cortex. Briefly, their model starts by

radially symmetric cells which respond to a spot light (like Lateral

Geniculate Nucleus cells, LGN) and alternates by simple cells that

respond to bars or edges stimuli at a particular orientation,

position and phase within their receptive fields. The next stage of

hierarchy is complex cells, they respond well to oriented bars or

edges anywhere within their receptive fields and are not sensitive

to both location and the phase of the bar. The final stage of the

hierarchy is hypercomplex cells which are not only invariant to the

position and phase of the bar; they are also selective for the length

of the bar. Since then, by their pioneering work, a large number of

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e32357



hierarchical models of the visual cortex have been developed. One

successful model which mimic the hierarchical structure of the

visual cortex is Neocognitron. It was shown to perform extremely

well in the field of digit recognition [6,13]. Another model of the

visual system that is constructed of several layers of Self-

Organizing Map (SOM) networks is VisNet [9]. The VisNet has

been shown that is able to develop view-invariant representations

of the individual synthesic objects [14]. A more complex model of

the visual cortical circuits is LAMINART that models the neural

circuits in the visual system at an inimitable level of details [7,15].

By now, very few numbers of models of the visual system have

been extended to deal with a variety of real-world image databases

[10,16,17]. One biologically motivated model in this among is the

HMAX model which firstly proposed by [10] and then extended

by [17] (http://cbcl.mit.edu/software-datasets/index.html). This

hierarchical model of the visual system is based on Hubel & Wiesel

model and has tried to quantitatively model the visual ventral

pathway during visual processing and object recognition tasks

based on recent neurophysiological and psychophysical evidence

(Visual information in the ventral pathway is conducted from the

retina to the LGN, then to primary visual cortex, V1, V1 sends

projections to higher visual areas V2 and V4, the projections from

V4 are sent to the last visual area along the ventral stream, inferior

temporal cortex, IT. There are projections from IT to prefrontal

cortex, PFC; this area is associated with perception, memory and

action) [18,19]. The HMAX model has exhibited outstanding

performance on a variety of different object categories. It has also

shown to be able to learn features from very few training examples

with no prior knowledge [17]. In its simplest architecture, the

HMAX model consists of a hierarchy of four layers of

computational units (S1, C1, S2 and C2) in order to, firstly, increase

specificity and ,secondly, invariance along the hierarchy. The

simple S units alternate with complex C units. The S units combine

their inputs with Gaussian-like tuning to increase object selectivity

and build more complex features from simple ones, while C units

perform a nonlinear MAX pooling operation over units tuned to

the same feature but at different positions and scales to make the

response more invariant to translation and scale (more explanation

of the HMAX model is described in Materials and Methods

section). During training stage in the HMAX model, a large

number of image parts, named patches, of various sizes and at

random positions are extracted from a training set of images at the

level of the C1 layer for all orientations (0u, 45u, 90u, 135u),(i.e., a

patch P of size n*n contains n*n*4 elements –n varies from 4 pixel

to 16 pixel by step 4). This pool of patches has an important role in

training process and finally in the task of recognizing different

objects.

Several studies have been done to select patches which are more

informative than randomly extracted patches by the HAMX

model. T. Serre et al. [20], found that the original HMAX model

[10] failed to recognize faces in cluttered background and this led

to a poor recognition performance. They used a clustering

algorithm such as K-means to learn object class-specific visual

features of intermediate complexity in order to improve the

performance of the model in the task of face detection. E. Meyers

et al. [21], used the HMAX model for face processing and

modified the standard model in order to create a new set of

features which is useful for face identification and finally achieved

a higher performance in this specific task. Their major

modification to the HMAX model was a linear combination of

the C1 outputs to build face identification specific features. They

used kernelized and regularized version of the relevant component

analysis algorithm (KR-RCA), to obtain the linear combination

weights from a training set of images. Although using the KR-

RCA algorithm to find the linear combination weights may not be

biologically plausible, the performance level was significantly

improved. E. Krupka et al. [22] proposed a method which tried to

learn to select high-quality features from its properties. They tested

their algorithm on the standard model of HMAX. For this

purpose, they assumed that each feature is described by a set of

properties and they suggested a new algorithm called Meta-

Feature based Predictive Feature Selection (MF-PFS) which uses

predicted quality to select new good features, while omitting many

low-quality features. They eventually compared their results with

another selection method, Recursive Feature Elimination (RFE)

and reported improvement in the performance.

Evolutionary algorithms such as genetic algorithms play a

considerable role in feature selection [23–26] and system

optimization [27–31]. They are widely employed to select a

subset of informative features for the purpose of attaining to a

higher classification rate. In our study we incorporate Genetic

Algorithm (GA) with the biologically motivated hierarchical

model, HMAX, in order to select optimized features in the

learning stage. Biologically evidence suggests that both genetic

factors and visual experience at the time of developing and after

that can determine the connectivity and functional properties of

units [32–34]. It is assumed that the learning plays a key role in

determining the wiring and the synaptic weights for the S and the

C layers. The proposed model uses these optimized features in

different object recognition tasks and successfully achieves a high

recognition performance. To test the proposed model, we use

various image data sets from the well-known CalTech101 (http://

www.vision.caltech.edu/Image_Datasets/Caltech101) [4], Cal-

Tech5 [1] from CalTech image data set (http://www.robots.ox.

ac.uk/,vgg/data/data-cats.html) and GRAZ-01, GRAZ-02 [35]

from the PASCAL Object Recognition Database Collection

(http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html)

and compare our results with [17,35,36]. As the results represent,

the proposed model is completely task independent unlike [20,21]

and outperforms the HMAX model in different object recogni-

tion tasks as well as Moment Invariants, SIFT, SM, and Basic

moment in [35]. It also outperforms the EBIM in some cases

[36].

Materials and Methods

The biologically motivated object recognition model
The standard HMAX model is based on the hierarchical theory

of visual processing and its architecture is derived from the well-

known model of Hubel & Wiesel [11,12]. It models the ventral

visual pathway from V1 (the very first processing part in the visual

cortex) to higher levels of visual cortex such as IT cortex and PFC.

The first processing units in the HMAX model (S1, C1) play the

role of simple and complex cells in the Hubel & Wiesel model

which are consistent with the cells in V1. The simple cells are

selective to a bar (edge) with a specific position and orientation in

their receptive fields. The complex cells receive their inputs from

several simple cells so they can easily respond to bars in different

positions and orientations within their receptive fields. The

combination of these two types of cells builds up the position

and size invariance properties. The model consists of four

alternative layers of Simple (S) and Complex (C) units [17]. The

S layers employ a Gaussian-shaped function for combining their

inputs in order to create the selectivity property in the model and

C layers apply a nonlinear operator such as maximum (MAX) to

their inputs for building invariance. The basic architecture of the

HMAX model has four layers of processing units called S1, C1, S2
and C2 which the selectivity and invariance rise as the layers

Impact of Optimized Feature in Object Recognition
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progress along the hierarchical structure of the model. These

layers of processing units imitate the behavior of cells from V1 to

IT cortex. In the following paragraphs, the functional details of

each layer are described.

The lowest layer of the HMAX model, named S1, receives a

gray-value image as its input. Afterward, this input image is

applied to a set of edge detector filters. These filters are built based

on the Gabor function [37]. Gabor filter fit very well the receptive

field weight functions found in simple cells in primary visual cortex

[38]. The following equations describe two dimensional Gabor

filter.

G(x,y)~S(x,y):w(x,y)

Where s(x, y) is a sinusoidal function called the carrier, and w(x,

y) is a two dimensional Gaussian-shaped function, called the

envelope.

w(x,y)~e
({

X2
zc2Y2

2s2
)

, s(x,y)~cos(
2p

l
X )

G(x,y)~e
({

X2
zc2Y2

2s2
)
|cos(

2p

l
X )

X~x cos hzy sin h , Y~{x sin hzy cos h

The parameters of Gabor function are defined as follow; s

width of Gaussian function, h Gaussian orientation, c aspect ratio

and l wavelength. In the HMAX model input image is analyzed

by a pyramid of filters in different sizes and orientations. The filter

sizes start from 7*7 to 37*37 by the steps of 2, therefore, they come

in 16 different sizes. The orientations take four angles 0u, 45u, 90u

and 135u. Thus, the complete pyramid consists of 4*16= 64 filters

(4 orientations and 16 sizes). These set of filters are divided into 8

bands and each band has a specific size and parameters for the

filter window. The parameters of all bands are represented in

Table 1 in [17]. Applying this pack of filters to an input image in

S1 layer, yield 64 filtered images as S1 layer outputs.

The outputs of S1 are sent to the C1 layer. The behavior of C1

layer is analogous to the complex cells in the primary visual

cortex. These types of cells are shown to be position and size

invariance within their receptive filed. This property was simply

provided by using a maximum operation in C1 layer [10]. The

outputs of C1 layer is attained by applying the maximum operator

to outputs of S1 layer. Conceptually, the maximum of two

adjacent filter sizes in S1 (e.g. 7*7 and 9*9 with the same

orientations) is calculated with the maximum operator in order to

create some position and size invariance features from S1 to C1.

Therefore, by taking maximum over outputs of S1 layer, we have

32 maps in C1 layer (4 orientations and 8 bands). The next stage

in C1 is computing the maximum value in a grid with the cells of

size NS * NS over each map in C1. The size of N
S starts from 8 in

band1 to 22 in band8 with the overlap of Ds. Figure 1

demonstrates the results of this process. In the runtime the

Euclidean distance between prototypes which are obtained in the

learning stage and new input is calculated. This process occurs for

all bands in C1 and as a result, S2 maps are obtained. The C2

layer is the final processing stage in the HMAX model. In this

layer the global maximum is taken over all S2 responses in all

position and scales. The output of C2 layer is a vector with the

length of the number of patches (features) for an input image.

The C2 responses then are applied to a classifier such as a

Supported Vector Machine (SVM). In the learning stage a large

number of patches are extracted in random positions from C1

activations of training images. The range of patch sizes is 4*4,

8*8, 12*12, and 16*16 in all four orientations.

Genetic Algorithms Introduction
Genetic algorithms (GA) are a family of computational models

which are inspired by evolutionary procedure in biological

systems. These algorithms are a general adaptive optimization

search technique firstly proposed by [39]. GA is an iterative

procedure that works with a constant-sized of individuals called

population. Each individual of this population present a solution in

the search space (the search space contains all possible solutions).

Theoretically, it is proved that the GA obtains the best individual

as the optimal solution after infinite iterative computations [40].

The GA can deal with those problems that have large search

spaces, and have more chance to find the optimal solution than

other conventional algorithms.

The GA initially generates a population of individuals. Each

individual consists a series of genes. The quality of each individual

is assessed based on some criterion and its fitness value is

computed. This process is done by a fitness function. Individuals

are selected based on their fitness values to produce a new

population. There are various methods for selecting individuals.

The simplest one was proposed by [39] and is proportional with

the probability of individuals’ fitness. Several other selecting

methods are Roulette wheel, rank selection (which was used in this

study), and Boltzmann selection, etc. This procedure eventually

leads to the selection of high performing individuals for producing

the new population. The fitter individuals have a higher chance to

be selected for recombination. Selecting process cannot solely add

any new individual to the population; this is done by using two

main genetic operators, crossover and mutation. Crossover is a

randomly selecting mechanism for exchanging genes between two

selected parents in order to create new offspring. Some well-known

crossover methods are single point crossover, two point crossover,

and uniform crossover –the latter is employed in this work. One-

point crossover is not invariant under changes in the order of

patches. When using one-point crossover the assumption is that

the order matters, whereas for uniform crossover this is not the

case [41]. Generally, it is in not desired. Therefore, uniform

crossover was used. One of the benefits of using more crossover

points is that the problem space may be searched more thoroughly

[42]. Therefore, crossover combines the features of two individuals

Table 1. Image data sets [1,3,4].

Data sets Number of images sizes (pixel)

Face 435 Different sizes

Face-easy 435 Different sizes

Car-side 123 300*190

Airplane 800 Different sizes

Motorcycle 800 Different sizes

Car (rear) 526 360*240

Leaf 186 896*592

Leopard 200 Different sizes

doi:10.1371/journal.pone.0032357.t001
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to create two offspring. The mutation is an operator which allows

diversity. During the mutation stage the genes of a selected

individual may randomly be changed. For instance, in a binary

string, one or more bits (gene) convert their value from 0 to 1 or

vice versa in a random position in the string. This operator inserts

new information into the population. Offspring replaces the old

population using the elitism or diversity replacement strategy and

creates a new population in the next generation. This iterative

process progresses until the termination criteria are satisfied.

Figure 2 is a general illustration of the crossover, mutation, and the

GA evolutionary process.

The proposed model
In this paper, we use a genetic algorithm approach to select

more effective features in diverse object recognition tasks. Genetic

algorithms generate a powerful method to find nearly the best and

most optimized solutions for a complex problem. Sometimes,

however, they fail to reach this goal because of falling in a local

optimum. Nevertheless, they have been widely used in various

applications such as feature selection [23–26] and parameter

optimization in recent decades [27–31].

From the pattern recognition point of view, feature selection is

an important issue that can impact on the classification accuracy.

The proposed model employs an evolutionary approach for

selecting proper features in several object recognition tasks. In our

study, extracted patches from C1 activation in the HMAX model

are considered as features. In order to select effective features by

GA, we should design the chromosome structure, fitness function,

and system architecture.

Chromosome Structure. The first phase of the proposed

model is to design an appropriate structure for chromosomes. We

used the binary coding approach to represent a chromosome.

Therefore, a chromosome is a binary string with a length of N to

represent the presence or absence of each of the N possible features

(patches) by 1 or 0, respectively. Each bit of this binary vector is

related to a feature. If the value of a bit is 1, then it represents the

presence of a particular patch in the learning procedure of the

HMAX model; on the other hand, if the bit is 0, it indicates this

patch does not have any effect on the learning process. Figure 3

illustrate the chromosome structure.

In Figure 3, the first row demonstrates the binary structure of a

chromosome and the second row shows the patches that

participate in the learning phase of the HMAX model (gray

squares are patches which participate in learning). The initial

population of GA algorithm consists of a pool of these

chromosomes.

Figure 1. The architecture of the HMAX model. (S1), In this layer an input image is analyzed with a pyramid of filters (16 filter sizes64
orientations = 64) and finally 64 filtered images are produced as S1 outputs for an input image. (All filtered images shown in S1 column are only for the
orientation 45u for all filter sizes). (C1), In this layer, the local maximum between 2 adjacent scales with the same orientation is taken.(S2), The
Euclidean distances between stored prototypes, which are obtained in the learning stage, and new input is calculated. This process occurs for all
bands in C1 and as a result, S2 maps are obtained. (C2), The global maximum is computed over all S2 responses in all positions and scales in this layer.
doi:10.1371/journal.pone.0032357.g001
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Fitness Function. The chromosomes should be evaluated

with an appropriate evaluation function. This is an important

phase for making a successful application of GA for a feature

selection problem. The chromosome with high fitness value has

more chance to be preserved in the next generation. So, choosing

a suitable fitness function can have a considerable impact on

selecting the appropriate patches. In our research, all data were

randomly divided into three subsets including train, evaluation,

and test. The fitness function, r, was the classification performance

of the model on the evaluation subset. The GA selects a set of

patches that maximize the r or minimize the F= 1-r.

System Architecture. In order to construct the proposed

model, several main steps should be considered.

1. Extracting a Pool of Patches from C1 Activations: Firstly, the training

images are analyzed by a set of Gabor filters and produce S1
outputs. The S1 responses applied to C1 layer and then C1

activations are created. The next stage is patch extraction, in

this phase a large number of patches in random positions are

extracted from C1 responses in all four orientations (0, 45u, 90u,

135u) and sizes (4, 8, 12, 16). It is important to point out that we

only use Band 2 parameters in Table 1 of [17] to extract patches

from C1 responses.

2. GA Initial Population: After extracting patches, an initial

population of chromosomes is generated by GA. The length

of each chromosome is equal to the length of extracted patches

in the first step (N). Based on the position of 1 s and 0 s in the

binary string of chromosome structure, some patches are

selected from the pool of patches. Figure 3.

3. Obtaining C2 Features: selected patches are used to create S2
responses and then C2 features for all images (the details of the

HMAX model were previously described). let P be the number

of selected patches, then C2 features for an arbitrary input

image will be a vector of length P*1. If we have K images, the

dimension of C2 matrix will become P*K. Each row of this

matrix is associated with a particular patch response.

4. Evaluation of Chromosomes: for each chromosome representing

selected patches, the classification performance on evaluation

subset is calculated using a linear SVM classifier. Each

chromosome is evaluated by fitness function F=1-r.

5. Termination criteria: in this step the termination condition is

checked and if the GA meets the criterion, the process ends;

otherwise, it moves on to the next generation.

6. GA operations: classical GA operators such as selection,

crossover, mutation, and replacement are applied to the

chromosomes for finding a better solution (best patches).

Figure 4 illustrates the whole model structure. After selecting the

best group of patches we test them on testing data. It is important

to point out that all GA parameters were tuned one time on the

evaluation set and no other changes occurred along test

experiments.

Image date sets
In order to evaluate the proposed model, we used a variety of

object image data sets.

CalTech. We tested the model on five of the databases, i.e.,

the face, motorcycle, rear-car, and airplane data sets from [1] as

well as the leaf data set from [3] and leopard, car-side and face-

easy from [4]. On these data sets, we followed the same way as in

the corresponding studies. Object classes were used as target

images and a background folder as negative examples. Each of

these data sets contains different number of images in various sizes;

Table 1 shows the sizes and the number of images for each data

set. In spite of many serious concerns raised about the Caltech-101

data set [16,43], that test is still widely used in the object

Figure 2. Genetic operations and evolutionary cycle. (A), The crossover and mutation operation. (B),The evolutionary of genetic algorithm.
doi:10.1371/journal.pone.0032357.g002

Figure 3. Chromosome structure. A chromosome is a binary string with a length of N to represent the presence or absence of each of the N
possible features. Each bit of this binary vector is related to a feature. If the value of a bit is 1, then it represents the presence of a particular patch in
the learning procedure, and if the bit is 0, it shows this patch does not have any effect on learning process.
doi:10.1371/journal.pone.0032357.g003
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recognition community and thus most state-of-the-art algorithms

have reported accuracy on Caltech-101 in the literature [44–49].

Nonetheless, in order to show the effectiveness of the proposed

model, it was also tested on some more challenging and updated

image date sets.

GRAZ. The GRAZ database which is part of the PASCAL

Object Recognition Database Collection and was built by Opelt

et al [35], consists of two challenging data sets. First, The GRAZ-

01 data set contains three classes which are varied in locations,

scales and viewpoints. Next, the GRAZ-02 data set was built with

the purpose of increasing the independence of background

context for categorization. In addition, they increased the

complexity of object appearances and car images also were

added as a new category. Figure 5 shows some samples of each

object category for both data sets. For the GRAZ data set, we

follow the way in [35].

Figure 5. Some image samples of GRAZ data set. (A), Sample images of GRAZ-02, bike, car, and person images. (B), Sample images of GRAZ-01,
bike and person images.
doi:10.1371/journal.pone.0032357.g005

Figure 4. The architecture of the proposed model.
doi:10.1371/journal.pone.0032357.g004
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Experiential design
We firstly evaluated the performance of the proposed model in

the object present/absent experiment using several object classes

from CalTech data set. In this experiment, each data set was

randomly divided into three subsets with equal number of

images, the first subset, called training examples, was used for

extracting a pool of patches, the second subset was the

evaluation data, this set of images was used for GA patch

selection procedure, and the last subset was used for testing the

proposed model. We also investigated the effect of the number of

training examples on the recognition performance. In this

experiment, the model was trained on various numbers of

positive training images (1, 3, 6, 15, 30, and 40) and 50 negative

training images to compare with [17]. The number of testing

images was 50 positive images and 50 negative images. All

images were converted to gray-scale and resized to 140 pixels in

height and the width resized proportionally to height variation.

All experiments were tested on 10 random runs and the average

and standard deviation were reported. In order to compare the

influence of our selected patches and randomly extracted patches

on the recognition performance, the proposed model was run on

different data sets with various numbers of patches. The model

selected P effective patches from N randomly extracted patches

by the HMAX model (the number of P is variable and depends

on the N and task). The following section discusses the

experimental results. We report the error rate at equilibrium

point as the accuracy measure for the performances in all

experiments. For the sake of proving that the difference between

the performances of the HMAX model and the proposed model

are statistically significant, we used two non-parametric statistical

tests, i.e. Wilcoxon rank sum [50] and two-Sample Kolmogorov-

Smirnov test [51].

For the GRAZ-01 data set, 100 positive and 100 negative

images were randomly selected as training samples and 50 other

positive and 50 negative images were selected as testing samples, as

used in [35]. We also followed the same way in [35] for GRAZ-02,

150 positive and 150 negative images were selected at random as

training samples and 75 other positive and 75 negative images

were randomly selected as testing samples. All the experiments

were run 20 times and the average ROC area under curve (AUC)

and Equal-Error rate (EER, which means the detection rate at

equal-error-rate of the ROC curve.) were reported as performance

measurement. A comparison was drawn on these data sets

between the proposed model and some other feature extraction

methods: Moment Invariants, SIFT, SM, Basic moment in [35]

and EBIM in [36].

Results

In this section, we report the results of several classification

experiments performed on different object classes. Table 2

compares the results of the proposed model with the HMAX

model for CalTech image data sets. This experiment is a simple

object absent/present one. We divided each object category to

three equal-sized parts, one for training, another for evaluation

and the third one for testing the HMAX model and the proposed

model. We used linear SVM classifier in all experiments. The

results in Table 2 indicate that the proposed model outperforms

the HMAX model in different object recognition tasks.

We also studied the influence of different number training

examples on the resulting classification performance. Figure 6

makes a comparison between the performance of the proposed

model and the HMAX model for different numbers of training

images (1, 3, 6, 15, 30, 40) using the SVM classifier. In this

experiment, several object classes such as Face, Leopard, Airplane,

Leaf, Car-Rear, Motorcycle and Face-Easy from Caltech data set

were used as target (positive) images. Each object category was

randomly divided into three subsets as was described in the

experimental design. The background folder of this data set also

was used as the negative images.

The experiment was carried out as follows: Firstly, the HMAX

model was run with 1000 randomly extracted patches. Then, the

proper patches (P) were selected and the performance of them was

calculated on testing images. Finally, for fair comparison, the same

number of patches (P,1000) was randomly extracted by the

HMAX model and the recognition performance was computed on

the same testing images that used for the proposed model. Figure 6

compares the results of the HMAX model with the proposed

model. The white bars show the performance of the HMAX

model with P randomly extracted patches and the red bars point

out the proposed model performance. These two bars (white and

red) represent a fair comparison between the HMAX model and

ours. In addition to this, we ran the HMAX model with 1000

random patches to compare the HMAX model with the proposed

model for another level of comparison; the results of this

experiment are represented with cyan bars. In both cases (the

HMAX model with 1000 patches and the HMAX model with P

patches), the proposed model shows significant improvement in

recognition performance. Figure 6A demonstrates the perfor-

mances for one positive training image (all other image sets, i.e.

negative training, positive test and negative test consist of 50

images). In most data sets the performance for all three cases are

almost equal because we have only one training. As the number of

Table 2. Comparison between the HMAX and the proposed model for different image data sets.

Performance of

HMAX [17]

Performance of Proposed

Model Statistical Significance

Data sets Eq pt Eq pt Two-Sample Kolmogorov-Smirnov Test [51]

Wilcoxon rank sum test

[50]

p-value p-value

Airplane 94.9 97.2 0.3129 0.2853

Face 98.1 98.7 0.3127 0.0949

Leaf 95.9 98.8 0.3129 0.1175

Motor 97.4 99.3 0.0310 0.0134

Car (rear) 99.8 99.8 1.0 0.9095

doi:10.1371/journal.pone.0032357.t002
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Figure 6. The performance which was obtained with different number of training examples for our model and the HMAXmodel. (A),
The performances for one positive training image (all other image sets, negative training, positive test and negative test consist of 50 images), in
most data sets the performance for all three cases are almost equal. (B, C), The performance for 3 and 6 training examples respectively. (D, E, F),
Performance of the models for 15, 30, and 40 training images respectively. White bars show the performance of the HMAX model with P randomly
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training images increase (i.e. 6 and 15), the difference between the

performance of the proposed model and two other cases becomes

more considerable, Figure 6C, 6D.

It illustrates that the proposed model achieves a recognition

performance comparable to [17] on a few training examples (less

than 30). While the number of training images reaches 30 and 40,

as it is predictable, this difference goes down, since the more

training images there are, a better performance is achievable.

Our goal was to select proper patches in various object

recognition tasks. For this, we extracted a large number of patches

in different sizes (4, 8, 12, and 16) from training images. Then, the

most effective patches were selected. An important question is:

which patches of what sizes have more influence on the

recognition performance? We explored the final population of

selected patches and best individuals of GA to answer this

question. Briefly, The GA starts with an initial population and

terminates by generating the fittest population and individuals.

The length of each chromosome in the final population in our

research is equal to the number of randomly extracted patches and

the size of population is 20. For instance, if the number of

extracted patches for each size is 50, then the chromosome is a

binary vector of size 1*200 and each bit is associated with the

presence or absence of a particular patch in the learning phase (see

the proposed model). Therefore, the dimension of population

matrix will be 20*200. The position of 1 s and 0 s in the final

population along with the fittest chromosome can represent which

patches have been selected more than others. In Figure 7 the

population matrix is shown as an image for the sake of

visualization, Figure 7A represents initial population and

Figure 7B shows the final population (this is the final population

for face images). It depicts the diversity of final population. Each

white pixel indicates the presence of a patch and each black pixel

the absence of a patch. Each row of this matrix is a chromosome

that represents which patches are selected. It is clear from Figure 7

that some patches (white columns) are more informative than

others and have the same position in most chromosomes, so, they

are selected more than other patches. It can also be seen that some

patches from particular sizes have been selected more than other

patch sizes (i.e. in Figure 7 the number of patches of size 8 and 12

in the final population for face images are more than other sizes).

The extracted patches by the HMAX model are from random

position in an image. So, these patches may come from

background or other irrelevant objects rather than the target

object. The C2 features that are obtained from these patches are

not very useful for recognizing a target object. They may also

make the feature space more complex for classification. The

proposed model selects those patches which are more informative.

Figure 8 shows random patches extracted by the HMAX model

and selected patches by the proposed model for face images.

Figure 8A shows samples of input images. We extracted 50 patches

for each size and then selected the most informative ones. Each

row from the top to the bottom in Figure 8B represents patches

from a particular size (4, 8, 12, and 16). It can be seen from

Figure 8C that some selected patches are a part of a target image

such as eye, a part of a face and in some cases a complete face

(they are depicted by green frames). Since, the HMAX model uses

a template matching approach and computes the distance between

sorted prototypes and input image, therefore, patches that are

parts of target object are more informative than other patches in

recognizing an object, because the matching degree between these

patches and target image is much more than non-discriminating

patches.

We can see that some selected patches (i.e. from lager sizes

particularly in face images) are the most important parts of the

target objects; thus, the C2 features which are formed from these

patches are very discriminative and can differentiate between the

target objects and other distractors. For instance, in face images,

patches of size 8 and 16 are selected more than other patch sizes.

But, are the same patch sizes selected more than others for other

object categories? For further study, we explored the number of

selected patches of each size for different object images. In this

experiment, we extracted N random patches from each training set

of different object classes (N=1000) and then selected P patches.

We then calculated the selection percentage of each patch size 4,

8, 12, 16. Figure 9 illustrates the selection percentage of each patch

size for different object images. The results are the average of 10

random runs.

It can be seen that some particular patch sizes in different object

images have been picked up more frequently. For example, in face

images patches of size 8 and 16 (and 12 with a small difference) are

extracted patches and the red bars illustrate the proposed model performance, cyan bars show the performance of the HMAX model for 1000
patches.
doi:10.1371/journal.pone.0032357.g006

Figure 7. Final and initial population of GA. (A), The initial population of GA. (B), The final population of GA (each white pixel shows the
presence of a patch in learning procedure).
doi:10.1371/journal.pone.0032357.g007
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more effective than other sizes. These sizes can usually cover some

important parts of a face, so they are useful in recognizing the

target images. In motorcycle images, patches with the size of 8 and

12 have been selected more than others or in leopard class selected

patches are mostly of size 12 and 16. Therefore, it shows that some

particular patch sizes in various object recognition tasks have more

influence than others.

The number of C2 features directly depends on the number of

patches which are extracted during the training phase in the

HMAX model or selected in the proposed model. Here, we

compared the performance of the proposed model when different

number of patches was used with the HMAX model in several

categorization tasks. We considered four object images from

Caltech data sets, Face, Leopard, Motorcycle and Car-rear.

Firstly, we extracted a set of random patches from training images

and then selected a subset of them. Then, the performance of

selected patches and random patches were computed on the same

testing images. Figure 10 makes a comparison on several object

classes for different number of features between the HMAX model

and the proposed model. In all cases, the proposed model

outperforms the HMAX model. As it is mentioned above, some

irrelevant patches that come from other objects can decrease the

recognition performance and may cause complexity in features

space. Eliminating these patches can improve the quality of C2

features and consequently the performance of the model will be

increased, even by making use of a very small number of patches.

As Figure 10 shows, the performance of the proposed model for

face images is approximately 94% for 15 patches, whereas it is

about 86% for the HMAX model. The proposed model has

reached 97% in performance with 60 patches while the HMAX

model achieved this amount with almost 250 patches. An

important result is that despite the fewer number of patches in

Figure 8. Selected patches. (A), Examples of face images from Caltech image data sets. (B), Randomly extracted patches by the HMAX model. (C),
Informative patches which are selected by our model.
doi:10.1371/journal.pone.0032357.g008
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Figure 9. Selection percentage for different patch sizes. (A), The selection percentage for motorcycle images. (B), The selection percentage for
face images. (C, D, E, F), The selection percentage for leaf, car, leopard and car(side) data sets respectively.
doi:10.1371/journal.pone.0032357.g009
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Figure 10. Recognition performance for different number of features. (A), Comparison between the HMAX model and the proposed model
for different numbers of patches for face images.(B, C, D), The performance for Car, Leopard and Motorbike images respectively for the proposed
model and HMAX.
doi:10.1371/journal.pone.0032357.g010

Table 3. Comparison between several feature extraction
methods on Graz-01.

Data sets

Methods Bike Person

EER AUC EER AUC

Moment Invariants [35] 73.5 76.5 63.0 68.7

SIFT [35] 78.0 86.5 76.5 80.8

SM [35] 83.5 89.6 56.5 59.1

EBIM [36] 84.1 90.5 86.0 91.8

HMAX 75.5 85.2 74.8 81.5

The Proposed Model 80.2 88.5 84 90.8

The measures are EER (Equal-Error Rate) and AUC (ROC-Area Under Curve). (Our
reported results are the average of 20 independent runs).
doi:10.1371/journal.pone.0032357.t003

Table 4. Comparison between several feature extraction
methods on Graz-02.

Data sets

Methods Bike Person Car

Moment Invariants [35] 72.5 81.1 67.0

Basic moment [35] 76.5 77.2 70.2

SIFT [35] 76.4 10.0 68.9

SM [35] 74.5 74.1 56.5

EBIM [36] 80.8 83.2 72.2

HMAX 81 80 72

J. Mutch et. al. [46] 80.5 81.7 70.1

The Proposed Model 82.6 82.3 75.6

The measures are EER (Equal-Error Rate). (Our reported results are the average
of 20 independent runs).
doi:10.1371/journal.pone.0032357.t004
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the proposed model the evolutionary feature selection mechanism

is able to find good results in different object recognition tasks.

The proposed model was also run on GRAZ data set for making

a comparison with other feature extraction methods. Table 3

shows the results of this comparison on GARZ-01 data set.

Table 4 and Figure 11 depict the obtained results for the same

comparison on GRAZ-02 data set.

Discussion

Several brain areas in a primate visual cortex are involved in

object recognition. Many years of research in neurophysiology and

neuroscience have disclosed substantial amount of information

about visual object processing [18,19]. One commonly accepted

property is the hierarchical processing of objects in the visual

cortex. According to this, different visual features are selected and

analyzed in different stages along the hierarchy. In the earliest

processing stages, from retina to LGN then to primary visual

cortex V1, the object image is represented by a set of simple

features such as oriented bars and edges. After these primary

stages, some more complex features are represented in interme-

diate stages by combining simple ones in V2 and V4 and finally in

IT cortex. Based on these data, a computational object recognition

model was proposed by [10,17]. In this model a set of hierarchical

units are used to create a large set of features from images in order

to categorize target objects in a scene.

Briefly, after early processing stages in this model (S1, C1), a set

of patches are randomly extracted from an input image. Since, the

target object (i.e. face) does not occupy a large area in an image,

therefore, this random mechanism may extract patches from

irrelevant parts of an image rather than target object. As it is

demonstrated in Figure 8, we found that some C2 features which

are created based on these random patches could be due to those

image parts that belong to the target object (i.e. eyes, as a part of a

Figure 11. Comparison of several approaches on GRAZ-02 database. (A), ROC curves for Bike images. (B,C), ROC curves for Car and Person
images respectively.
doi:10.1371/journal.pone.0032357.g011
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face or in some cases a complete face in face images) and some

other C2 features are related to nondiscriminating parts such as

background and other objects. These nondiscriminating patches

can decrease the recognition performance.

In this paper, a biologically motivated object recognition model

is proposed based on the HMAX model. The random mechanism

of patch extraction in the HMAX model is considered as a

limitation. To overcome this problem, we extended the HMAX

model by modifying the patch extraction mechanism using a

genetic algorithm approach. The main idea behind the proposed

model is that an efficient and biologically inspired feature selection

mechanism can substantially reduce the dimension of feature

space in the higher levels of processing for the sake of better

classification rate. An important result is the fact that despite the

fewer number of patches in the proposed model are used it is still

able to find better results in different object recognition tasks which

reveals the ability of our proposed mechanism in extracting

informative patches. After selecting a set of patches in the

proposed model, we have studied the final population of patches

and found that some particular patches are selected more than

others along several generations. It was found from the

experimental results that most of these selected patches are parts

of target objects.. We compared the recognition results obtained

using optimal features with those obtained using the HMAX

random mechanism. Our results showed that the proposed model

outperforms the HMAX model in different object recognition

tasks with fewer numbers of patches. From the feature selection

point of view, in visual processing, our results have two significant

implications: First, they show that visual features, which are more

informative, are prevalently come from target objects. Second,

they show that the model can achieve a higher recognition

performance (or the same recognition performance in a few cases)

with fewer numbers of patches.

It is probable that the visual system uses a similar mechanism to

recognize objects. Biologically evidence suggests that both genetic

factors and visual experience can determine the functional

properties of units in the visual cortex [32,33].The development

of human visual system is mainly influenced by genetic factors and

visual experiences. However, how genetic factors can affect neural

activations in the visual cortex is not completely clear. Recently, an

interesting study has been done on twins’ visual cortex using

functional magnetic resonance imaging (fMRI) [33]. The focus of

this study was on the neural activity patterns in twins’ visual cortex

which were related with some objects categories (such as faces and

places) to appraise the role of genetics in determining the neural

activity patterns associated with these visual categories. Their

results demonstrated that these patterns are significantly more

similar in monozygotic twins than dizygotic twins. These results

simply suggest that genetics may play a significant role in the

plasticity of visual cortex and cortical responses to some object

categories.

Since we use GA in the training procedure to select informative

patches, one may think that the proposed model is time-

consuming. Although the training phase may take pretty long

computational time, the testing phase is much faster, because we

have only a few numbers of patches though differentiating ones.

Furthermore, an analogy can be drawn between this time-

consuming process of GA and the development of neural circuits

involved in a visual recognition task throughout years which is also

a time-consuming process. Finally, it worth saying that compared

to the complexity of the human visual system, our model ,like all of

the other biologically inspired object recognition models, may

describe only a little of capabilities and flexibility of this admirable

system.
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