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Abstract 

Background: Computational methods support nowadays each stage of drug design campaigns. They assist not 

only in the process of identification of new active compounds towards particular biological target, but also help in 

the evaluation and optimization of their physicochemical and pharmacokinetic properties. Such features are not 

less important in terms of the possible turn of a compound into a future drug than its desired affinity profile towards 

considered proteins. In the study, we focus on metabolic stability, which determines the time that the compound can 

act in the organism and play its role as a drug. Due to great complexity of xenobiotic transformation pathways in the 

living organisms, evaluation and optimization of metabolic stability remains a big challenge.

Results: Here, we present a novel methodology for the evaluation and analysis of structural features influencing 

metabolic stability. To this end, we use a well-established explainability method called SHAP. We built several predictive 

models and analyse their predictions with the SHAP values to reveal how particular compound substructures influence 

the model’s prediction. The method can be widely applied by users thanks to the web service, which accompanies the 

article. It allows a detailed analysis of SHAP values obtained for compounds from the ChEMBL database, as well as their 

determination and analysis for any compound submitted by a user. Moreover, the service enables manual analysis of 

the possible structural modifications via the provision of analogous analysis for the most similar compound from the 

ChEMBL dataset.

Conclusions: To our knowledge, this is the first attempt to employ SHAP to reveal which substructural features are 

utilized by machine learning models when evaluating compound metabolic stability. The accompanying web service 

for metabolic stability evaluation can be of great help for medicinal chemists. Its significant usefulness is related not 

only to the possibility of assessing compound stability, but also to the provision of information about substructures 

influencing this parameter. It can assist in the design of new ligands with improved metabolic stability, helping in 

the detection of privileged and unfavourable chemical moieties during stability optimization. The tool is available at 

https:// metst ab- shap. matinf. uj. edu. pl/.
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Background

It is not a mystery that the process of drug design 

and development is very complex and absorbs a huge 

amount of time and money [1, 2]. Although nowadays 

it significantly differs from the drug design strategies 

from the past (the emergence of new medicines used 

to be rather a result of serendipity and fortunate acci-

dents [3]), it is still a subject to relatively high risk of 

failure. Nevertheless, the current strategies of search-

ing for new drugs are much more structured and sev-

eral steps can be distinguished within them, such as 

target identification, finding the lead structure, its 

optimization, preclinical studies and 3 phases of clini-

cal tests [4, 5].
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Finding a new active compound towards a particular 

target is just the first step in the long path of its pos-

sible transformation into a drug. Meeting the affinity 

requirements is not sufficient, as a compound needs 

to possess favourable physicochemical and pharma-

cokinetic properties as well, and it should not display 

any toxic effects [6–8]. Within the set of considered 

parameters it is also important to put attention to 

metabolic stability, because if a compound is trans-

formed in the organism too quickly, it does not have 

enough time to induce a desired biological response 

[9].

Metabolic stability is one of the most difficult 

parameters to be predicted by computational tools 

due to extreme complexity of processes related to 

xenobiotic transformations in the living organisms. 

The main role in xenobiotic metabolism is played by 

cytochrome P450—a group of haemoprotein enzymes 

with monooxidase activity. Almost sixty CYP isoforms 

occur in human organisms; however, it is CYP3A4 

that is responsible for metabolism of the majority of 

drugs [10–12].

A high number of processes that contribute to met-

abolic stability makes the correct prediction of this 

parameter a challenging task. As a result, publications 

on in silico tools for evaluating the speed of compound 

metabolism are scarce. Here, we mention a few exam-

ples of such studies. Schwaighofer et al. [13] analyzed 

compounds examined by the Bayer Schering Pharma 

in terms of the percentage of compound remaining 

after incubation with liver microsomes for 30  min. 

The human, mouse, and rat datasets were used with 

approximately 1000–2200 datapoints each. The com-

pounds were represented by molecular descriptors 

generated with Dragon software and both classifica-

tion and regression probabilistic models were devel-

oped with the AUC on the test set ranging from 0.690 

to 0.835. Lee et al. [14] used MOE descriptors, E-State 

descriptors, ADME keys, and ECFP6 fingerprints to 

prepare Random Forest and Naïve Bayes predictive 

models for evaluation of compound apparent intrin-

sic clearance with the most effective method reaching 

75% accuracy on the validation set. Bayesian approach 

was also used by Hu et al. [15] with accuracy of com-

pound assignment to the stable or unstable class rang-

ing from 75 to 78%. Jensen et al. [16] focused on more 

structurally consistent group of ligands (calcitriol 

analogues) and developed predictive model based 

on the Partial Least-Squares (PLS)  regression, which 

was found to be 85% effective in the stable/unstable 

class assignment. On the other hand, Stratton et  al. 

[17] focused on the antitubercular agents and applied 

Bayesian models to optimize metabolic stability of one 

of the thienopyrimidine derivatives. Arylpiperazine 

core was deeply examined in terms of in silico evalu-

ation of metabolic stability by Ulenberg et  al. [18] 

(Dragon descriptors and Support Vector Machines 

(SVM) were used) who obtained performance of 

 R2 = 0.844 and MSE = 0.005 on the test set. QSPR 

models on a diverse compound sets were constructed 

by Shen et al. [19] with  R2 ranging from 0.5 to 0.6 in 

cross-validation experiments and stable/unstable clas-

sification with 85% accuracy on the test set.

In silico evaluation of particular compound prop-

erty constitutes great support of the drug design 

campaigns. However, providing explanation of pre-

dictive model answers and obtaining guidance on the 

most advantageous compound modifications is even 

more helpful. Searching for such structural-activity 

and structural-property relationships is a subject of 

Quantitative Structural-Activity Relationship (QSAR) 

and Quantitative Structural-Property Relationship 

(QSPR) studies. Interpretation of such models can 

be performed e.g. via the application of Multiple Lin-

ear Regression (MLR) or PLS approaches [20, 21]. 

Descriptors importance can also be relatively easily 

derived from tree models [20, 21]. Recently, research-

ers’ attention is also attracted by the deep neural nets 

(DNNs) [21] and various visualization methods, such 

as the ‘SAR Matrix’ technique developed by Gupta-

Ostermann and Bajorath [22]. The ‘SAR Matrix’ is 

based on the matched molecular pair (MMP) formal-

ism, which is also widely used for QSAR/QSPR mod-

els interpretation [23, 24]. The work of Sasahara et al. 

[25] is one of the most recent examples of the devel-

opment of interpretable models for studies on meta-

bolic stability.

In our study, we focus on the ligand-based approach 

to metabolic stability prediction. We use datasets of 

compounds for which the half-lifetime (T1/2) was 

determined in human- and rat-based in  vitro experi-

ments. After compound representation by two  key-

based fingerprints, namely MACCS keys fingerprint 

(MACCSFP) [26] and Klekota & Roth Fingerprint 

(KRFP) [27], we develop classification and regres-

sion models (separately for human and rat data) with 

the use of three machine learning (ML) approaches: 

Naïve  Bayes classifiers [28], trees [29–31], and SVM 

[32]. Finally, we use Shapley Additive exPlanations 

(SHAP) [33] to examine the influence of particular 

chemical substructures on the model’s outcome. It 

stays in line with the most recent recommendations 

for constructing explainable predictive models, as the 

knowledge they provide can relatively easily be trans-

ferred into medicinal chemistry projects and help in 

compound optimization towards its desired activity 
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or physicochemical and pharmacokinetic profile [34]. 

SHAP assigns a value, that can be seen as  importance, 

to each feature in the given prediction. These val-

ues are calculated for each prediction separately and 

do not cover a general information about the entire 

model. High absolute SHAP values indicate high 

importance, whereas values close to zero indicate low 

importance of a feature.

The results of the analysis performed with tools 

developed in the study can be examined in detail 

using the prepared web service, which is available at 

https:// metst ab- shap. matinf. uj. edu. pl/. Moreover, the 

service enables analysis of new compounds, submit-

ted by the user, in terms of contribution of particular 

structural features to the outcome of half-lifetime pre-

dictions. It returns not only SHAP-based analysis for 

the submitted compound, but also presents analogous 

evaluation for the most similar compound from the 

ChEMBL  [35] dataset. Thanks to all the above-men-

tioned functionalities, the service can be of great help 

for medicinal chemists when designing new ligands 

with improved metabolic stability. All datasets and 

scripts needed to reproduce the study are available at 

https:// github. com/ gmum/ metst ab- shap.

Results

Evaluation of the ML models

We construct separate predictive models for two 

tasks: classification and regression. In the former 

case, the compounds are assigned to one of the 

metabolic stability classes (stable, unstable, and  of 

middle stability) according to their half-lifetime 

(the T1/2 thresholds used for the  assignment to 

particular stability class are provided in the Meth-

ods section), and the prediction power of ML mod-

els is evaluated with the Area Under the Receiver 

Operating Characteristic Curve (AUC) [36]. In the 

case of regression studies, we assess the prediction 

correctness with the use of the Root Mean Square 

Error (RMSE); however, during the hyperparam-

eter optimization we optimize for the Mean Square 

Error (MSE). Analysis of the dataset division into 

the training and test set as the possible source of 

bias in the results is presented in the Appendix 1. 

The model evaluation is presented in Fig.  1, where 

the performance on the test set of a single model 

selected during the hyperparameter optimization is 

shown.

In general, the predictions of compound half-

lifetimes are satisfactory with AUC values over 

0.8 and RMSE below 0.4–0.45. These are slightly 

higher values than AUC reported by Schwaighofer 

et  al. (0.690–0.835), although datasets used there 

were different and the model performances cannot 

be directly compared [13]. All class assignments 

performed on human data are more effective for 

KRFP with the improvement over MACCSFP rang-

ing from ~ 0.02 for SVM and trees up to 0.09 for 

Naïve Bayes. Classification efficiency performed on 

rat data is more consistent for different compound 

representations with AUC variation of around 1 per-

centage point. Interestingly, in this case MACCSFP 

Fig. 1 Global prediction power of the ML algorithms in a classification and b regression studies. The Figure presents global prediction accuracy 

expressed as AUC for classification studies and RMSE for regression experiments for MACCSFP and KRFP used for compound representation for 

human and rat data

https://metstab-shap.matinf.uj.edu.pl/
https://github.com/gmum/metstab-shap
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provides slightly more effective predictions than 

KRFP. When particular algorithms are considered, 

trees are slightly preferred over SVM (~ 0.01 of 

AUC), whereas predictions provided by the Naïve 

Bayes classifiers are worse—for human data up to 

0.15 of AUC for MACCSFP. Differences for particu-

lar ML algorithms and compound representations 

are much lower for the assignment to metabolic sta-

bility class using rat data—maximum AUC variation 

is equal to 0.02.

When regression experiments are considered, the 

KRFP provides better half-lifetime predictions than 

MACCSFP for 3 out of 4 experimental setups—only 

for studies on rat data with the use of trees, the RMSE 

is higher by 0.01 for KRFP than for MACCSFP. There 

is ~ 0.02–0.03 RMSE difference between trees and 

SVMs with the  slight preference (lower RMSE) for 

SVM. SVM-based evaluations are of similar predic-

tion power for human and rat data, whereas for trees, 

there is ~ 0.03 RMSE difference between the predic-

tion errors obtained for human and rat data.

Regression vs. classification

Besides performing ‘standard’ classification and 

regression experiments, we also pose an additional 

research question related to the efficiency of the 

regression models in comparison to their classifica-

tion counterparts. To this end, we prepare the fol-

lowing analysis: the outcome of a regression model 

is used to assign the stability class of a compound, 

applying the same thresholds as for the classification 

experiments. Accuracy of such classification is pre-

sented in Table 1.

Analysis of the classification experiments performed 

via regression-based predictions indicate that depend-

ing on the experimental setup, the predictive power 

of particular method varies to a relatively high extent. 

For the human dataset, the ‘standard classifiers’ always 

outperform class assignment based on the regression 

models, with accuracy difference ranging from ~ 0.045 

(for trees/MACCSFP), up to ~ 0.09 (for SVM/KRFP). 

On the other hand, predicting exact half-lifetime value 

is more effective basis for class assignment when work-

ing on the  rat dataset. �e accuracy differences are 

much lower in this case (between ~ 0.01 and 0.02), with 

an exception of SVM/KRFP with difference of ~ 0.75. 

�e accuracy values obtained in classification experi-

ments for the  human dataset are similar to accuracies 

reported by Lee et al. (75%) [14] and Hu et al. (75–78%) 

[15], though one must remember that the datasets used 

in these studies are different from ours and therefore a 

direct comparison is impossible.

Global analysis of all ChEMBL data

We analyzed the predictions obtained on the ChEMBL 

data with the use of SHAP values in order to find these 

substructural features, which have the highest contribu-

tion to particular class assignment (Fig. 2) or prediction 

of exact half-lifetime value (Fig.  3); class 0—unstable 

compounds, class 1—compounds of middle stability, 

class 2—stable compounds.

Analysis of Fig.  2 reveals that among the 20 fea-

tures which are indicated by SHAP values as the most 

important overall, most features contribute rather to 

the assignment of a compound to the group of unsta-

ble molecules than to the stable ones—bars referring 

to class 0 (unstable compounds, blue) are significantly 

longer than green bars indicating influence on classify-

ing compound as stable (for SVM and trees). However, 

we stress that these are averaged tendencies for the 

whole dataset and that they consider absolute values of 

SHAP. Observations for individual compounds might be 

significantly different and the set of highest contributing 

features can vary to high extent when shifting between 

particular compounds. Moreover, the high absolute 

values of SHAP in the case of the unstable class can be 

caused by two factors: (a) a particular feature makes the 

compound unstable and therefore it is assigned to this 

Table 1 Comparison of accuracy of standard classification and 

class assignment based on the regression output

Comparison of e�ciency of  classi�cation experiments (standard and using 

class assignment based on the regression output) expressed as accuracy. Higher 

values in a particular comparison setup are depicted in bold

Dataset Human Rat

Model Representation Class Class. via 
regression

Class Class. via 
regression

SVM MACCS 0.745 0.695 0.676 0.686

KRFP 0.759 0.672 0.676 0.751

Trees MACCS 0.737 0.692 0.659 0.686

KRFP 0.734 0.661 0.670 0.676

Fig. 2 The 20 features which contribute the most to the outcome of classification models for a Naïve Bayes, b SVM, c trees constructed on human 

dataset with the use of KRFP

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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class, (b) a particular feature makes compound stable—

in such case, the probability of compound assignment 

to the unstable class is significantly lower resulting in 

negative SHAP value of high magnitude.

For both Naïve Bayes classifier as well as trees it is 

visible that the primary amine group has the highest 

impact on the compound stability. As a matter of fact, 

the primary amine group is the only feature which is 

indicated by trees as contributing mostly to compound 

instability. However, according to the above-mentioned 

remark, it suggests that this feature is important for 

unstable class, but because of the nature of the analysis 

it is unclear whether it increases or decreases the pos-

sibility of particular class assignment.

Amines are also indicated as important for evalu-

ation of metabolic stability for regression models, 

for  both SVM and trees. Furthermore, regression 

models indicate a number of nitrogen- and oxygen-

containing moieties as important for prediction 

of compound half-lifetime (Fig.  3). However, the 

contribution of particular substructures should be 

analyzed separately for each compound in order to 

verify the exact nature of their contribution.

In order to examine to what extent the choice of 

the ML model influences the features indicated as 

important in particular experiment, Venn diagrams 

visualizing overlap between sets of features indicated 

by SHAP values are prepared and shown in Fig. 4. In 

each case, 20 most important features are considered.

When different classifiers are analyzed, there is only 

one common feature which is indicated by SHAP for 

all three models: the primary amine group. The low-

est overlap between pairs of models occurs for Naïve 

Bayes and SVM (only one feature), whereas the high-

est (8 features) for Naïve Bayes and trees. For SVM 

and trees, the SHAP values indicate 4 common fea-

tures as the highest contributors to the assignment 

to particular stability class. Nevertheless, we should 

remember that for Naïve Bayes the prediction accu-

racy was significantly lower than for SVM or trees; 

and therefore, the features indicated by this approach 

are also less reliable.

Finally, 4 features are common for SVM and trees in 

the  case of regression experiments: the already men-

tioned primary amine group, alkoxy-substituted phe-

nyl, secondary amine, and ester. This is in line with 

the intuition on the possible transformations that 

can occur for compounds containing these chemical 

moieties.

Case studies

In order to verify the applicability of the developed 

methodology on particular case, we analyze the out-

put of an example compound (Fig. 5).

The highest contribution to the stability of 

CHEMBL2207577 is indicated to be the aromatic ring 

with the chlorine atom attached (feature 3545) and 

thiophen (feature 1915), the secondary amine (feature 

677) lowers the probability of assignment to the stable 

class. All these features are present in the examined 

compounds and their metabolic stability indications 

are already known by chemists and they are in line 

with the results of the SHAP analysis.

Web service

The results of all experiments can be analyzed in 

detail with the use of the web service, which can be 

found at https:// metst ab- shap. matinf. uj. edu. pl/. In 

addition, the user can submit their own compound 

and its metabolic stability will be evaluated with the 

use of the constructed models and the contribution 

of particular structural features will be evaluated 

with the use of the SHAP values (Fig. 6). Moreover, in 

order to enable manual comparisons, the most simi-

lar compound from the ChEMBL set (in terms of the 

Tanimoto coefficient calculated on Morgan finger-

prints) is provided for each submitted compound (if 

the similarity is above the 0.3 threshold).

Obtaining such information enables optimization 

of metabolic stability as the substructures influencing 

this parameter are detected. Moreover, the compari-

son of several ML models and compound representa-

tions allows to provide a comprehensive overview of 

the problem.

An example analysis of the output of the presented 

web service and its application in the compound opti-

mization in terms of its metabolic stability is pre-

sented in Fig. 7.

The analysis of the submitted compound (evaluated 

in the classification studies as stable) indicates that the 

highest positive contribution to its metabolic stability 

has benzaldehyde moiety, and the feature which has a 

negative contribution to the assignment to the stable 

(See figure on next page.)

Fig. 3 The 20 features which contribute the most to the outcome of regression models for a SVM, b trees  constructed on human dataset with the 

use of KRFP

https://metstab-shap.matinf.uj.edu.pl/
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Fig. 3 (See legend on previous page.)
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class is aliphatic sulphur. The most similar compound 

from the ChEMBL dataset is CHEMBL2315653, 

which differs from the submitted compound only by 

the presence of a fluorine atom. For this compound, 

the substructure indicated as the one with the highest 

positive contribution to compound stability is fluo-

rophenyl. Therefore, the proposed structural modi-

fications of the submitted compound involves the 

addition of the fluorine atom to the phenyl ring and 

the substitution of sulfone by ketone.

Conclusions

In the study, we focus on an important chemical 

property considered by medicinal chemists—met-

abolic stability. We construct predictive models of 

both classification and regression type, which can be 

used for computational assessment of this parameter 

with the use of the provided on-line tool. Moreo-

ver, we use an explainability method called SHAP to 

develop a methodology for indication of structural 

contributors, which have the strongest influence on 

the particular model output. Finally, we prepared a 

web service, where user can analyze in detail predic-

tions for CHEMBL data, or submit own compounds 

for metabolic stability evaluation. As an output, not 

only the result of metabolic stability assessment is 

returned, but also the SHAP-based analysis of the 

structural contributions to the provided outcome is 

given. In addition, a summary of the metabolic stabil-

ity (together with SHAP analysis) of the most similar 

compound from the ChEMBL dataset is provided. 

All this information enables the user to optimize the 

submitted compound in such a way that its metabolic 

stability is improved. The web service is available at 

https:// metst ab- shap. matinf. uj. edu. pl/.

Methods

Data

We use CHEMBL-derived datasets describing human 

and rat metabolic stability (database version used: 

23). We only use these measurements which are given 

in hours and refer to half-lifetime (T1/2), and which 

are described as examined on’Liver’,’Liver micro-

some’ or’Liver microsomes’. The half-lifetime val-

ues are log-scaled due to long tail distribution of the 

metabolic stability measurements. In case of multiple 

measurements for a single compound, we use their 

median value. In total, the human dataset comprises 

3578 measurements for 3498 compounds and the rat 

dataset 1819 measurements for 1795 compounds. 

The resulting datasets are randomly split into train-

ing and test data, with the test set being 10% of the 

whole data set. The detailed number of measurements 

and compounds in each subset is listed in Table  2. 

Finally, the training data is split into five cross-valida-

tion folds which are later used to choose the optimal 

hyperparameters.

In our experiments, we use two compound repre-

sentations: MACCSFP [26] calculated with the RDKit 

package [37] and Klekota & Roth FingerPrint (KRFP) 

[27] calculated using PaDELPy (available at https:// 

github. com/ ECRL/ PaDEL Py)—a python wrapper for 

PaDEL descriptors [38].  These compound representa-

tions are based on the widely known sets of structural 

keys—MACCS, developed and optimized by MDL for 

similarity-based comparisons, and KRFP, prepared 

upon examination of the 24 cell-based phenotypic 

assays to identify substructures which are preferred 

for biological activity and which enable differentiation 

between active and inactive compounds. Complete 

list of keys is available at https:// metst ab- shap. matinf. 

uj. edu. pl/ featu res- descr iption.  Data preprocessing is 

model-specific and is chosen during the hyperparam-

eter search.

For compound similarity evaluation, we use Morgan 

fingerprint, calculated with the RDKit package with 

1024-bit length and other settings set to default.

Tasks

We perform both direct metabolic stability predic-

tion (expressed as half-lifetime) with regression mod-

els and classification of molecules into three stability 

classes (unstable, medium, and stable). The true class 

for each molecule is determined based on its half-life-

time expressed in hours. We follow the cut-offs from 

Podlewska et al. [39]:

•  ≤ 0.6—low stability,

• (0.6 − 2.32 > —medium stability,

•  > 2.32—high stability.

Fig. 4 Overlap of important keys for a classification studies and b regression studies; c) legend for SMARTS visualization. Analysis of the overlap of 

the most important keys (in the number of 20) indicated by SHAP values for a classification studies and b regression studies; c legend for SMARTS 

visualization (generated with the use of SMARTS plus (https:// smarts. plus/); Venn diagrams generated by http:// bioin forma tics. psb. ugent. be/ webto 

ols/ Venn/

(See figure on next page.)

https://metstab-shap.matinf.uj.edu.pl/
https://github.com/ECRL/PaDELPy
https://github.com/ECRL/PaDELPy
https://metstab-shap.matinf.uj.edu.pl/features-description
https://metstab-shap.matinf.uj.edu.pl/features-description
https://smarts.plus/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Fig. 4 (See legend on previous page.)
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Models

In our experiments, we examine Naïve Bayes classi-

fiers, Support Vector Machines (SVMs), and several 

models based on trees. We use the implementations 

provided in the scikit-learn package [40]. The optimal 

hyperparameters for these models and model-spe-

cific data preprocessing is determined using five-fold 

cross-validation and a genetic algorithm implemented 

in TPOT [41]. The hyperparameter search is run on 

5 cores in parallel and we allow it to last for 24 h. To 

determine the optimal set of hyperparameters, the 

regression models are evaluated using (negative) mean 

square error, and the classifiers using one-versus-one 

area under ROC curve (AUC), which is the average 

Fig. 5 Analysis of the metabolic stability prediction for CHEMBL2207577 for human/KRFP/trees predictive model. Analysis of the metabolic stability 

prediction for CHEMBL2207577 with the use of SHAP values for human/KRFP/trees predictive model with indication of features influencing its 

assignment to the class of stable compounds; the SMARTS visualization was generated with the use of SMARTS plus (https:// smarts. plus/)

Fig. 6 Screens of the web service a main page, b submission of custom compound, c stability predictions and SHAP-based analysis for a submitted 

compound. Screens of the web service for the compound analysis using SHAP values. a main page, b submission of custom compound for 

evaluation, c stability predictions for a submitted compound and SHAP-based analysis of its structural features

(See figure on next page.)

https://smarts.plus/
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Fig. 6 (See legend on previous page.)
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AUC of all possible pairwise combinations of classes. 

We use the scikit-learn implementation of ROC_AUC 

score with parameter multiclass set to ’ovo’.

The hyperparameters accepted by the models 

and their values considered during hyperparameter 

optimization are listed in Tables 3, 4, 5, 6, 7, 8, 9. After 

the optimal hyperparameter configuration is deter-

mined, the model is retrained on the whole training 

set and evaluated on the test set.

Fig. 7 Custom compound analysis with the use of the prepared web service and output application to optimization of compound structure. 

Custom compound analysis with the use of the prepared web service, together with the application of its output to the optimization of compound 

structure in terms of its metabolic stability (human KRFP classification model was used); the SMARTS visualization generated with the use of 

SMARTS plus (https:// smarts. plus/)

https://smarts.plus/
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Explainability

We assume that if a model is capable of predicting 

metabolic stability well, then the features it uses 

might be relevant in determining the true metabolic 

stability. In other words, we analyse machine learn-

ing models to shed light on the underlying factors 

that influence metabolic stability. To this end, we 

use the SHapley Additive exPlanations (SHAP) [33]. 

SHAP allows to attribute a single value (the so-called 

SHAP value) for each feature of the input for each 

prediction. It can be interpreted as a feature impor-

tance and reflects the feature’s influence on the 

prediction. SHAP values are calculated for each pre-

diction separately (as a result, they explain a single 

prediction, not the entire model) and sum to the dif-

ference between the model’s average prediction and 

its actual prediction. In case of multiple outputs, as 

is the case with classifiers, each output is explained 

individually. High positive or negative SHAP values 

suggest that a feature is important, with positive val-

ues indicating that the feature increases the model’s 

output and negative values indicating the decrease 

in the model’s output. The values close to zero indi-

cate features of low importance.

The SHAP method originates from the Shapley 

values from game theory. Its formulation guarantees 

three important properties to be satisfied: local accu-

racy, missingness and consistency. A SHAP value for a 

given feature is calculated by comparing output of the 

model when the information about the feature is pre-

sent and when it is hidden. The exact formula requires 

collecting model’s predictions for all possible subsets 

of features that do and do not include the feature of 

interest. Each such term if then weighted by its own 

coefficient. The SHAP implementation by Lundberg 

et  al. [33], which is used in this work, allows an effi-

cient computation of approximate SHAP values.

In our case, the features correspond to presence or 

absence of chemical substructures encoded by MAC-

CSFP or KRFP. In all our experiments, we use Kernel 

Explainer with background data of 25 samples and 

parameter link set to identity.

The SHAP values can be visualised in multiple ways. 

In the case of single predictions, it can be useful to 

exploit the fact that SHAP values reflect how sin-

gle features influence the change of the model’s pre-

diction from the mean to the actual prediction. To 

this end, 20 features with the highest mean absolute 

Table 2 Number of measurements and compounds in the 

ChEMBL datasets

The table presents the number of measurements and compounds present in 

particular datasets used in the study—human and rat data, divided into training 

and test sets

Dataset Subset Number of 
measurements

Number of 
compounds

Human Train 3221 3149

Test 357 349

Total 3578 3498

Rat Train 1634 1616

Test 185 179

Total 1819 1795

Table 3 Hyperparameters accepted by different Naïve Bayes 

classifiers

The table lists the hyperparameters which are accepted by di�erent Naïve Bayes 

classi�ers

alpha Fit_prior norm var_smoothing

BernoulliNB ✓ ✓

ComplementNB ✓ ✓ ✓

GaussianNB ✓

MultinomialNB ✓ ✓

Table 4 The values considered for hyperparameters for Naïve 

Bayes classifiers

The table lists the values of hyperparameters which were considered during 

optimization process of di�erent Naïve Bayes classi�ers

Hyperparameter Considered values

Alpha 0.001, 0.01, 0.1, 1, 10, 100

var_smoothing 1e−11, 1e−10, 1e−9,  
  1e−8, 1e−7, 1e−6, 1e−5,  
  1e−4

fit_prior True, False

Norm True, False

Table 5 Hyperparameters accepted by different tree models

The table lists the hyperparameters which are accepted by di�erent tree classi�ers

n_estimators max_depth max_samples splitter max_features bootstrap

ExtraTrees ✓ ✓ ✓

DecisionTree ✓ ✓ ✓

RandomForest ✓ ✓ ✓ ✓



Page 14 of 20Wojtuch et al. J Cheminform           (2021) 13:74 

SHAP value are plotted side by side starting from the 

actual prediction and the most important feature at 

the top. The SHAP values of the remaining features 

are summed and plotted collectively at the bottom of 

the plot and ending at the model’s average prediction. 

In case of classification, this process is repeated for 

each of the model outputs resulting in three separate 

plots—one for each of the classes.

The SHAP values for multiple predictions can be 

averaged to discover general tendencies of the model. 

Initially, we filter out any predictions which are incor-

rect, because the features used to provide an incorrect 

answer are of little relevance. In case of classification, 

the class returned by the model must be equal to the 

true class for the prediction to be correct. In case of 

regression, we allow an error smaller or equal to 20% 

of the true value expressed in hours. Moreover, if both 

the true and the predicted values are greater than or 

equal to 7 h and 30 min, we also accept the prediction 

to be correct. In other words, we use the following 

condition: ŷ  is correct if and only if (0.8y ≤ ŷ   ≤ 1.2y) 

or (y ≥ 7.5 and ŷ  ≥ 7.5), where y is the true half-life-

time expressed in hours, and ŷ  is the predicted value 

converted to hours. After finding the set of correct 

predictions, we average their absolute SHAP val-

ues to establish which features are on average most 

important. In case of regression, each row in the fig-

ures corresponds to a single feature. We plot 20 most 

important features with the most important one at the 

top of the figure. Each dot represents a single correct 

prediction, its colour the value of the corresponding 

feature (blue—absence, red—presence), and the posi-

tion on the x-axis is the SHAP value itself. In case of 

classification, we group the predictions according to 

their class and calculate their mean absolute SHAP 

values for each class separately. The magnitude of 

the resulting value is indicated in a bar plot. Again, 

the most important feature is at the top of each fig-

ure. This process is repeated for each output of the 

model—as a result, for each classifier three bar plots 

are generated.

Hyperparameter details

The hyperparameter details are gathered in Tables  3, 

4, 5, 6, 7, 8, 9: Table 3 and Table 4 refer to Naïve Bayes 

(NB), Table 5 and Table 6 to trees and Table 7, Table 8, 

and Table 9 to SVM.

Description of the GitHub repository

All scripts are available at https:// github. com/ gmum/ 

metst ab- shap/. In folder ‘models’ there are scripts 

Table 6 The values considered for hyperparameters for different 

tree models

The table lists the values of hyperparameters which were considered during 

optimization process of di�erent tree models

Hyperparameter Considered values

n_estimators 10, 50, 100, 500, 1000

max_depth 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, None

max_samples 0.5, 0.7, 0.9, None

splitter Best, random

max_features np.arrange(0.05, 1.01, 0.05)

bootstrap True, False

Table 7 Hyperparameters accepted by SVMs with different kernels for classification experiments

The table lists the hyperparameters which are accepted by di�erent SVMs in classi�cation experiments

kernel c loss dual penalty gamma coe�0 degree tol epsilon Max_oter probability

linear ✓ ✓ ✓ ✓ ✓

rbf ✓ ✓ ✓ ✓ ✓

poly ✓ ✓ ✓ ✓ ✓ ✓ ✓

sigmoid ✓ ✓ ✓ ✓ ✓ ✓

Table 8 Hyperparameters accepted by SVMs with different kernels for regression experiments

The table lists the hyperparameters which are by di�erent SVMs in regression experiments

kernel c loss dual penalty gamma Coe�0 degree tol epsilon Max_oter probability

linear ✓ ✓ ✓ ✓ ✓

rbf ✓ ✓ ✓ ✓ ✓

poly ✓ ✓ ✓ ✓ ✓ ✓ ✓

sigmoid ✓ ✓ ✓ ✓ ✓ ✓

https://github.com/gmum/metstab-shap/
https://github.com/gmum/metstab-shap/
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which can be used to train the models presented in 

our work and in folder ‘metstab_shap’, the implemen-

tation to reproduce the full results, which includes 

hyperparameter tuning and calculation of SHAP val-

ues. We encourage the use of the experiment tracking 

platform Neptune (https:// neptu ne. ai/) for logging 

the results, however, it can be easily disabled. Both 

datasets, the data splits and all configuration files are 

present in the repository. The code can be run with 

the use of Conda environment, Docker container or 

Singularity container. The detailed instructions to run 

the code are present in the repository.

Appendix 1

Training/test set analysis

In order to ensure that the predictions are not biased 

by the dataset division into training and test set, we 

prepared visualizations of chemical spaces of both 

training and test set (Fig. 8), as well as an analysis of 

the similarity coefficients which were calculated as 

Tanimoto similarity determined on Morgan finger-

prints with 1024 bits (Fig.  9). In the latter case, we 

report two types of analysis—similarity of each test 

set representative to the closest neighbour from the 

training set, as well as similarity of each element of 

the test set to each element of the training set.

The PCA analysis presented in Fig.  8 clearly shows 

that the final train and test sets uniformly cover the 

chemical space and that the risk of bias related to 

the structural properties of compounds presented in 

either train or test set is minimized. Therefore, if a 

particular substructure is indicated as important by 

SHAP, it is caused by its true influence on metabolic 

stability, rather than overrepresentation in the train-

ing set.

The analysis of Tanimoto coefficients between train-

ing and test sets (Fig.  9) indicates that in each case 

the majority of compounds from the test set has the 

Tanimoto coefficient to the nearest neighbour from 

the training set in range of 0.6–0.7, which points to 

not very high structural similarity. The distribution 

of similarity coefficient is similar for human and rat 

data, and in each case there is only a small fraction 

of compounds with Tanimoto coefficient above 0.9. 

Next, the analysis of the all pairwise Tanimoto coef-

ficients indicates that the overall similarity between 

Table 9 The values considered for hyperparameters for different 

SVM models

The table lists the values of hyperparameters which were considered during 

optimization process of di�erent SVM models during classi�cation and 

regression

hyperparameter Considered values

C 0.0001, 0.001, 0.01, 0.1, 0.5, 1.0, 5.0, 10.0, 15.0, 20.0, 
25.0

loss (SVC) hinge, squared_hinge

loss (SVR) epsilon_insensitive, squared_epsilon_insensitive

dual True, False

penalty 11, 12

gamma [auto, scale] + [10 ** i for i in range (− 6, 0)]

coef0 [10 ** i for i in range (− 6, 0)] + [0.0] + [10 ** i for i in 
range (− 1, − 7, − 1)]

degree 1…9

tol 1e−05, 0.0001, 0.001, 0.01, 0.1

epsilon 0.0001, 0.001, 0.01, 0.1, 1.0

max_iter 2000

probability True

Fig. 8 Chemical spaces of training (blue) and test set (red) for a human and b rat data. The figure presents visualization of chemical spaces of 

training and test set to indicate the possible bias of the results connected with the improper dataset division into the training and test set part. The 

analysis was generated using ECFP4 in the form of the principal component analysis with the webMolCS tool  available at http:// www. gdbto ols. 

unibe. ch: 8080/ webMo lCS/

https://neptune.ai/
http://www.gdbtools.unibe.ch:8080/webMolCS/
http://www.gdbtools.unibe.ch:8080/webMolCS/
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Fig. 9 Tanimoto coefficients between training and test set for a, b the closest neighbour, c, d all training and test set representatives. The figure 

presents histograms of Tanimoto coefficients calculated between each representative of the training set and each element from the test set. a, b 

report only the highest values calculated for particular element from the test set and c, d present outcome of all pairwise comparisons

training and test sets is low, with over 95% of Tani-

moto values below 0.2.

Appendix 2

Prediction correctness analysis

In addition, the overlap of correctly predicted com-

pounds for various models is examined to verify, 

whether shifting towards different compound rep-

resentation or ML model can improve evaluation of 

metabolic stability (Fig.  10). The prediction correct-

ness is examined using both the training and the test 

set. We use the whole dataset, as we would like to 

examine the reliability of the analysis carried out for 

all ChEMBL data in order to derive patterns of struc-

tural factors influencing metabolic stability.

In case of regression, we assume that the prediction 

is correct when it does not differ from the actual T1/2 

value by more than 20% or when both the true and 

predicted values are above 7 h and 30 min.

The first observation coming from Fig.  10 is that 

the overlap of correctly classified compounds is much 

higher for classification than for regression studies. 

The number of compounds which are correctly clas-

sified by all three models is slightly higher for KRFP 

than for MACCSFP, although the difference is not sig-

nificant (less than 100 compounds, which constitutes 

around 3% of the whole dataset).

On the other hand, the rate of correctly predicted 

compounds overlap is much lower for regression 
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Fig. 10 Venn diagrams for experiments on human data presenting the number of correctly evaluated compounds in different setups (ML algorithms/

compound representations): a classification on KRFP, b regression on KRFP, c classification and regression on KRFP, d classification on MACCSFP, e 

regression on MACCSFP, f classification and regression on MACCSFP, g classification with Naïve Bayes, h classification with SVM, i classification 

with trees, j regression with SVM, k regression with trees. The figure presents Venn diagrams showing the overlap between correctly predicted 

compounds in different experiments (different ML algorithms/compound representations) carried out on human data. Venn diagrams were 

generated with http:// bioin forma tics. psb. ugent. be/ webto ols/ Venn/

studies and MACCSFP seems to be more effective 

representation when the consensus for different pre-

dictive models is taken into account. Moreover, the 

total number of correctly evaluated compounds is 

also much lower for regression studies in comparison 

to standard classification (this is also reflected by the 

lower efficiency of classification via regression for the 

human dataset).

When both regression and classification experi-

ments are considered, only 20–25% of compounds are 

correctly predicted by all classification and regression 

models. The exact percentage of compounds depends 

on the compound representation and is higher for 

MACCSFP. There is no direct relationship between 

the prediction correctness and the compound struc-

ture representation or its half-lifetime value. Consid-

ering the model pairs, the highest overlap is provided 

by Naïve Bayes and trees in ‘standard’ classification 

mode.

Examination of the overlap between compound rep-

resentations for various predictive models show that 

the highest overlap occurs for trees—over 85% of the 

total dataset is correctly classified by both models. 

On the other hand, the lowest overlap for different 

http://bioinformatics.psb.ugent.be/webtools/Venn/
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Fig. 11 Parity plots showing the misclassification distribution in classification-via-regression experiments with reference to the half-lifetime 

values for a KRFP/SVM, b KRFP/trees, c MACCSFP/SVM, d MACCSFP/trees, e KRFP/SVM, f KRFP/trees, g MACCSFP/SVM, h MACCSFP/trees. The figure 

presents differences between true and predicted metabolic stability classes in the class assignment task performed based on the exact predicted 

value of half-lifetime in regression studies

compound representations within the classification 

models occurs for Naïve Bayes; however, it is also the 

model for which there is the lowest total number of 

correctly predicted compounds (less than 75% of the 

whole dataset). When regression models are com-

pared, the fraction of correctly predicted compounds 

is higher for SVM, although the number of com-

pounds correctly predicted for both compound repre-

sentations is similar for both SVM and trees (~ 1100, a 

slightly higher number for SVM).

Another type of prediction correctness analysis was 

performed for regression experiments with the use 

of the parity plots for ‘classification via regression’ 

experiments (Fig. 11).

Figure 11 indicates that there is no apparent corre-

lation between the misclassification distribution and 

the half-lifetime values as the models misclassify mol-

ecules of both low and high stability.

Analogous analysis was performed for the classifi-

ers (Fig. 12). One general observation is that in case 

of incorrect predictions the models are more likely 

to assign the compound to the neighbouring class, 

e.g. there is higher probability of the assignment of 

stable compounds (yellow dots) to the class of mid-

dle stability (blue) than to the unstable class (red). 

For compounds of middle stability, there is no direct 

tendency of class assignment when the prediction is 

incorrect—there is similar probability of predicting 

such compounds as stable and unstable ones. In the 

case of classifiers, the order of classes is irrelevant; 

therefore, it is highly probable that the models dur-

ing training gained the ability to recognize reliable 

features and use them to correctly sort compounds 

according to their stability.

Evaluation of the predictive power of the obtained 

models allows us to state, that they are capable of 

assessing metabolic stability with high accuracy. 

This is important because we assume that if a model 

is capable of making correct predictions about the 

metabolic stability of a compound, then the struc-

tural features, which are used to produce such pre-

dictions, might be relevant for provision of desired 

metabolic stability. Therefore, the developed ML 

models underwent deeper examination to shed light 

on the structural factors that influence metabolic 

stability.
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