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ABSTRACT

As of today, the majority of environmental microor-
ganisms remain uncultured and is therefore referred
to as ‘microbial dark matter’ (MDM). Hence, ge-
nomic insights into these organisms are limited to
cultivation-independent approaches such as single-
cell- and metagenomics. However, without access to
cultured representatives for verifying correct taxon-
assignments, MDM genomes may cause potentially
misleading conclusions based on misclassified or
contaminant contigs, thereby obfuscating our view
on the uncultured microbial majority. Moreover, grad-
ual database contaminations by past genome sub-
missions can cause error propagations which affect
present as well as future comparative genome anal-
yses. Consequently, strict contamination detection
and filtering need to be applied, especially in the
case of uncultured MDM genomes. Current genome
reporting standards, however, emphasize complete-
ness over purity and the de facto gold standard
genome assessment tool, checkM, discriminates
against uncultured taxa and fragmented genomes.
To tackle these issues, we present a novel contig
classification, screening, and filtering workflow and
corresponding open-source python implementation
called MDMcleaner, which was tested and compared
to other tools on mock and real datasets. MDM-
cleaner revealed substantial contaminations over-
looked by current screening approaches and sen-
sitively detects misattributed contigs in both novel
genomes and the underlying reference databases,
thereby greatly improving our view on ‘microbial dark
matter’.

INTRODUCTION

Genomic information obtained through cultivation-
independent sequencing techniques still remains the
primary source of insight into the earths’ uncultivated
microbiome, the so called ‘microbial dark matter’ (MDM)
(1–6). The continuous advancements in sequencing as
well as (meta-)genome analysis methods have made this
strategy nowadays widely accessible for a broad scientific
community (7). This has led to an exponentially increasing
amount of genome datasets of uncultured organisms in
the form of ‘metagenome-assembled genomes’ (MAGs)
as well as ‘single-amplified genomes’ (SAGs), both having
different intrinsic advantages and disadvantages (4,8–10).
MAGs are the result of so-called ‘binning’ approaches,
which attempt to sort contigs (contiguously assembled
sequence fragments) obtained from the combined genomic
material of a diverse community into separate ‘bins’. While
each bin optimally represents the genome of an individual
species (11), in reality a MAG is most likely a consensus
genome gathered from all possible strain variants present in
the sample (12) and generally excludes genomic islands and
mobile genetic elements such as plasmids (13,14). Another
prominent problem of this approach is the risk of assigning
contigs from different species to the same bin, thereby
constructing contaminated or chimeric MAGs (11,15).
Single-cell genomics (SCG) can circumvent these problems
(4). SAGs are the result of amplifying and sequencing
DNA from individual cells which were physically separated
from their community (2,3,8). In theory, such genomes
are more reliable than MAGs, as they are directly derived
from only a single organism. However, the biased nature
of current whole genome amplification methods based
on multiple displacement amplification (MDA) generally
results in more incomplete SAGs than MAGs (11,16).
In addition, SCG is highly susceptible to contamination
such as traces of residual DNA left over from reagent
production (17) or free environmental DNA fragments that
may have been incidentally sorted together with the actual
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cell of interest (8). Furthermore, microorganisms that form
tight aggregates or biofilms, may accidentally be co-sorted.
As a result, both types of reconstructed MDM genomes
share a common problem: the question of quality control.
Since genomes obtained via both methods are typically
highly fragmented (7,18), it is very hard to distinguish
with confidence between correctly and incorrectly assigned
sequence fragments without a pure reference culture.

An early solution to the problem was the estimation
of completeness and contamination based on universal
marker genes using the tools checkM (19) or Busco (20).
Ever since the publication of recommended genome report-
ing standards represented by the ‘minimum information
about a metagenome-assembled genome’ (MIMAG) and
‘single amplified genome’ (MISAG) (21), checkM has be-
come the de facto gold standard for determining genome
quality. While its widespread use has largely improved the
quality of submitted genomes, this tool also has some oper-
ating principles with serious consequences: In a highly frag-
mented MAG or SAG, many contigs may not contain any
conserved marker genes, making it impossible to reliably
distinguish contaminants from ‘correctly’ assigned genome
fragments. Offering different marker sets for different tax-
onomic levels, as implemented in checkM, might ease this
classification issue a bit. However, the effectiveness of this
approach is extremely limited in the case of under-sampled
or uncultured taxa, for which little to no reference genome
data is available. Furthermore, it must be kept in mind that
checkM does not actually detect contamination directly,
but rather uses a proxy metric to estimate it indirectly, that
is, the multiplicity of assumed single-copy marker genes.
Marker genes occurring more than once are interpreted
as indicators for possible contamination without checking
the phylogeny of said markers. On the one hand, this can
lead to over-estimations since fragmented genes, paralogs,
or closely related homologues might be classified as con-
tamination (22), while on the other hand, actual contami-
nations may easily be missed, even if they encode conserved
marker-genes, as long as this gene occurs only once in the
analysed genome. Therefore, ‘contamination’ is a poten-
tially misleading term for this metric, a more accurate term
would be ‘marker gene multiplicity’.

Other measures to identify and remove contaminating
contigs from MAGs as well as SAGs have been undertaken
in the past, but have not been universally adopted by the sci-
entific community: Rinke et al. (3) analysed GC content dis-
tribution and kmer frequencies, as well as best blast hit clas-
sifications of the total encoded proteins for each contig. A
similar approach is implemented in the tool refineM which
was used to quality check 8000 MAGs obtained by Parks
et al. from numerous metagenomes (9) as well as the tool
ProDeGe which is provided by the Joint Genome Institute
(23), both of which are, however, no longer maintained and
supported. More recent and actively supported tools are
MAGpurify and Gunc (24,25). MAGpurify was originally
developed for the analysis of the human gut microbiome
and consists of multiple modular approaches, such as the
analysis of universal marker genes, GC content as well as
kmer frequency profiles and the consideration of predeter-
mined sets of known contaminants or trusted contigs (25).
The MAGpurify reference database for classifying marker

genes is based on MetaPhlAn2 (26), which excludes several
non-cultured taxa. Gunc, on the other hand, currently does
not support active decontamination of genomes but is de-
signed to provide a robust and sensitive genome assessment
in order to improve the current gold standard of checkM
estimations (24). The underlying database for classifying
protein coding genes is based on the Genome Taxonomy
Database (GTDB) and therefore includes genomes of most
currently known uncultured candidate taxa. Nevertheless,
the high risk of introducing falsely classified sequences into
reference databases and subsequent error propagation when
submitting genome reconstructions of uncultured organ-
isms demands a larger variation of independent contam-
ination screening and filtering approaches. Otherwise, the
potential for systematically overlooking of preventable con-
taminations due to unnoticed shortcomings and pitfalls of
individual screening approaches becomes too high. Fur-
thermore, effective classification, screening and filtering ap-
proaches also need to consider the ongoing problem of con-
taminations in public reference datasets (27,28) (see also
Supplementary Information S1 and Supplementary Tables
S1–S9).

Here, we present a new workflow as an alternative
strategy for detecting and removing contaminations that
is aware of potential reference database contamination,
thereby minimizing the danger of error propagation. This
workflow shows high sensitivity for contaminants even in
highly fragmented genomes and in taxa that are underrep-
resented in public reference databases, making it equally ap-
plicable for prokaryotic MAGs as well as SAGs. We provide
a free and open access python implementation of this work-
flow, called ‘MDMcleaner’, a contig classification and re-
finement tool. We also re-assessed the quality of presumed
‘low contamination’ MDM genomes in public datasets to
elucidate how much our current view on the uncultured ma-
jority of microorganisms may be distorted by misattributed
contigs in publicly deposited MAGs and SAGs. Further-
more, we illustrate potential problems in current best prac-
tice standards for genome assessments and propose a refine-
ment of the current MIMAGs/MISAGs standards to reflect
these problems.

MATERIALS AND METHODS

Python implementation of MDMcleaner

The MDMcleaner pipeline is implemented in Python 3,
which allows its use as a standalone tool, a modular pipeline
or as a python module. It requires Python 3.6+ and Biopy-
thon. All components were scripted with the general Unix
principles in mind for easy piping. A general overview of
the workflow is given below as well as in Figure 1. For a
full description of the exact implementation for each step
and the reference databases, please refer to Supplementary
Methods S2 and Supplementary Tables S10–S12.

Basic workflow

Each genome is to be supplied as a fasta file of assem-
bled contigs. Multiple hierarchically ranked levels of marker
genes are extracted from the contigs, that is, small subunit
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Figure 1. Basic MDMcleaner workflow. Ribosomal RNA and conserved as well as total protein coding gene sequences are detected on the input contigs
and either aligned against a combination of GTDB, Silva and RefSeq references, or, in the case of non-coding contigs, indiscriminately assumed to be
artefacts or eukaryotic contaminations. Alignments are then used to derive the least common ancestor (LCA) classification first for each gene, then for
each contig and consequently the majority consensus annotation for the complete input genome. Potential reference database ambiguities are identified at
these steps. Each contig is then evaluated and assigned a ‘trustworthiness’ score. In addition to a detailed contig classification report, separate fasta files
are produced, evaluating the contigs to be kept, deleted or re-evaluated.

(SSU) rRNA genes, large subunit (LSU) rRNA genes, uni-
versal bacterial/archaeal protein coding marker genes, to-
tal coding sequences (CDS), and tRNA-genes (listed in de-
creasing hierarchy). Due to the general high coding density
of bacterial genomes (29–31), non-coding contigs are con-
sidered artefacts or eukaryotic contaminants and therefore
discarded.

All genes are then aligned against a reference database.
In our implementation, an up-to-date database is derived
from GTDB, SILVA and RefSeq (Supplementary Meth-
ods S1). This results in a condensed set of a few curated
representative genomes per species, thereby avoiding bias
from overrepresented, easy to culture taxa. For each gene,
the respective blast-hits are filtered based on relative align-
ment score differences and used for preliminary taxonomic
classifications using a least common ancestor (LCA) ap-
proach. Subsequently, contigs are then taxonomically clas-
sified via LCAs derived from the individual gene classifica-
tions of each marker-level, while subsequently keeping track
of the respective average alignment identities. In order to
avoid over-classification, each resulting taxonomic path is
then pruned to ranks that are actually supported by the re-
spective alignment identities, based on established and com-
monly used cut-off values for 16S rRNA (32,33), as well as
protein coding genes (34,35) (Supplementary Methods S1).

At this point, LCA classifications may become appar-
ent, that are limited to high taxonomic ranks (e.g. domain
or phylum) despite consistently high alignment identities.
Such cases can represent ambiguities or even contamina-
tions in the reference database and may therefore require
further downstream evaluation. The MDMcleaner pipeline

includes a separate workflow for identifying likely reference
database contaminations from such cases, which are then
recorded in a blacklist. When provided to future runs, en-
tries of this blacklist will be ignored during sequence com-
parisons, thereby preventing error propagation.

An overall genome classification is then derived as the
weighted majority consensus of the corresponding individ-
ual contig classifications. Each contig is then assigned a
‘trustworthiness’ score based on how much its contig classi-
fication deviates from the overall genome classification and
on which marker genes and corresponding alignment iden-
tities (if any) were involved. These scores range from 0 (low-
est trustworthiness) to 10 (highest trustworthiness). Out-
puts of this workflow are detailed reports on each contig
including the corresponding ‘trustworthiness’ score and a
division of the contigs into separate fasta files containing
entries to either keep, delete, or possibly evaluate further,
respectively

MAG dataset selection

Due to the sheer number of MAGs available from the Na-
tional Center for Biotechnology Information (NCBI) (cur-
rently containing > 100 000 genomes) a preselection was
necessary. The NCBI assembly database was queried for
entries of bacteria and archaea marked as ‘metagenome
derived’ or ‘derived from environmental sample’ and not
as ‘derived from single cell amplification’, and not marked
as ‘contaminated’ or ‘misassembled’. Focus was then nar-
rowed onto MDM genomes by further limiting the selec-
tion to taxa which showed higher representation by MAGs
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and SAGs than by NCBI RefSeq entries and which con-
tained <500 RefSeq entries in total, resulting in a prelim-
inary dataset of >50 000 genomes. In order to focus on
the currently most trusted MAGs, this dataset was then re-
duced to ‘high quality’ MAGs based on current MIMAGs
standards (checkM completeness estimation ≥ 90% and a
marker gene multiplicity ≤ 5%). This resulted in a final anal-
ysis set of 4011 presumed high quality prokaryotic MAGs
from predominantly uncultured taxa. The corresponding
NCBI accession numbers are provided in Supplementary
Table S1.

SAG dataset selection

Of the 1667 prokaryotic SAGs publicly available from
NCBI (as of November 2020), 1597 displayed <5% marker
gene multiplicity during checkM analyses, indicating low
contamination and qualifying for detailed screening with
MDMcleaner. Of this selection, 149 were >90% complete,
677 were >50% complete and 772 showed <50% complete-
ness qualifying as ‘high quality’, ‘moderate quality’ and
‘low quality’ genomes by current MISAG standards, re-
spectively (21). However, since MDA bias may make it cur-
rently impossible to capture full genomes for some taxa, es-
pecially in the case of high GC organisms (36), it is possible
that some taxa would be better represented by an uncon-
taminated but incomplete SAG than a partially contam-
inated but seemingly complete MAG. Therefore, MISAG
quality terms were of less significance for the selection of
the datasets. Instead, SAGs of all completeness values were
analysed, as long as the contamination estimates repre-
sented by checkM marker gene multiplicity were below the
‘high quality genome’ cut-off of 5%. The corresponding
NCBI accession numbers are provided in Supplementary
Table S2.

Benchmarking datasets

257 genomes of isolates representing novel taxa at least on
genus, and even up to phylum level were downloaded from
NCBI RefSeq to ensure that these were not already repre-
sented in the applied reference database and to most ac-
curately represent ‘microbial dark matter’ (Supplementary
Table S3). The genomes were then randomly cut into frag-
ments representing contig size ranges realistic for SAGs and
MAGs (0.2–20 kb, with a median length of 10 kb). 25% of
each genome was then randomly replaced with fragments
of all other 256 genomes as well as fractions of the hu-
man genome, in order to produce mock bins with a known
completeness of ∼75% and known contamination fractions
of 25%, each. Size-skewed mock genomes were generated
from a smaller subset of four of the above mentioned iso-
late genomes and were also cut to fragment sizes between
200 bp and 20 kb, but were skewed towards a specific major
fragment length by addition of contaminating fractions of
25% obtained from the other mock genomes cut to specific
size ranges. This resulted in 180 size-skewed mock genomes
(Supplementary Table S4). Statistical testing to compare the
contamination averages gained from the used tools was ei-
ther done with Welch’s t-test or Welch’s ANOVA with post
hoc Games-Howell pairwise comparison. Welch’s testing

was selected because all variances were previously deter-
mined to be unequal by a Levene’s test. T-tests were used for
the pairwise comparison of two data sets and ANOVA test-
ing was done for the comparison of more than two data sets.
In order to assess performance on eukaryotic contaminants
the same four bacterial genomes were chosen, however, this
time human genome fragments were used as contamination
(Supplementary Table S5).

RESULTS AND DISCUSSION

The initial situation

The genome analysis of uncultured bacteria remains a
constantly evolving field due to frequent and drastic im-
provements in sequencing and bioinformatics methods.
Nonetheless, for the ‘darkest’ parts of microbial dark mat-
ter (MDM), especially the so-called ‘candidate phyla’ with
not a single cultured representative available, MAGs and
SAGs are currently our only source of genomic information
(3,6,8,37,38). Therefore, high caution is advisable when de-
riving general conclusions from such datasets, as any resid-
ual contaminations in these genomes could greatly bias our
assumptions on their metabolic properties and evolution.
The MDMcleaner pipeline has been developed based on
experiences gained during past MAG and SAG analyses
(2,8,22,39), and is designed specifically to combat this issue:
contaminations in MAG and SAG datasets as well as refer-
ence databases (Figure 1). This workflow maximizes the ref-
erence genome information used for MAG and SAG eval-
uation by integrating the GTDB and SILVA databases as
well as curated eukaryotic and viral reference datasets from
NCBI RefSeq. It also maximizes the analysable sequence
information by applying multiple marker gene levels in de-
creasing priority (rRNA, conserved marker proteins and to-
tal proteins, respectively). Furthermore, the MDMcleaner
workflow utilizes a least common ancestor (LCA) contig
classification approach that is aware of reference database
contamination and is therefore resistant to error propaga-
tion by contaminated reference genomes (see Material and
Methods).

The current genome reporting standards for MAGs and
SAGs, designated MIMAGs and MISAGs, respectively, de-
fine up to five percent contamination as acceptable for ‘high
quality’ genomes (21). The exact fraction of contamina-
tion reported for a given genome and therefore the ques-
tion which genomes exactly exceed this cut-off is highly
subjective, as it is dependent on the method of contamina-
tion detection (Figure 2A). Today, the tool checkM repre-
sents the de facto gold standard for such anaysis (19,21).
MAGpurify excludes a smaller number of MAGs from the
MIMAGs ‘high quality’ status than checkM. Gunc, on the
other hand, identifies much larger fractions of contaminat-
ing contigs in the analysed genomes, with the exact frac-
tion depending on the considered taxonomic levels, effec-
tively including fewer genomes within the 5% contamina-
tion cut-off. All three tools appear to agree that SAGs gener-
ally display smaller fractions of contaminating contigs than
MAGs, which also explains the rising popularity of single-
cell genomics for analysis of MDM. Counter-intuitively,
the analysed prokaryotic domain also appears to have a
strong influence: checkM tends to report a smaller portion
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Figure 2. Current assessments of database contaminations. (A) Distribution of contamination estimations by different tools for bacterial and archaeal
MAGs and SAGs, respectively. The current MIMAG/MISAG ‘high quality’ cut-off is marked by a horizontal dotted line. The fraction of genomes fulfilling
‘high quality’ criteria is highly dependent on the applied assessment tool and corresponding settings, but also on the genome type and microbial domain.
(B) MDMcleaner re-assessment of assumed ‘high quality’ genomes, displayed as scatterplots, plotting the number of contaminated contigs against the
number of total contigs per analysed genome. Contamination fractions determined by MDMcleaner are additionally indicated by colour, as per colour
code on the right side. Significant fractions of potentially contaminating contigs are found, even in genomes that are considered ‘high quality’ based on
checkM assessments and current MIMAGs/MISAGs standards

of archaeal MAGs as contaminated than bacterial ones,
whereas the exact opposite is true for Gunc. This crucial
detail is indicative of another subjective factor influencing
genome assessments: the representation of the applied refer-
ence databases. Since there are far fewer cultured represen-
tatives available for archaea than for bacteria, the reference
set for classifying archaeal genomes is generally smaller.
Gunc makes use of the GTDB reference database (24,40),
which includes curated genomes from uncultured taxa.
CheckM categorically excludes MAG and SAG datasets as
references (19), thereby specifically discriminating against
under-cultured taxa. MAGpurify marker gene classifica-
tions are based on the MetaPhlAn2 database (25,41), which
was originally compiled in 2012 and is much smaller than
the representative genome database of GTDB, with 17 000
genomes compared to more than 32 000 (and even >250
000 total) GTDB genome entries. Consequently, it seems
likely that checkM and MAGpurify may mis- or under-
classify archaea, leading to a potential underestimation of
the contamination fractions for genomes in this domain.
The same problem is most likely to also affect bacterial
MDM, such as underrepresented bacterial candidate phyla.
When genomes that were incorrectly assumed to be ‘high

quality’ on this basis are then added to reference databases,
future genome assessments are further affected due to error
propagation caused by misclassified reference sequences.
The ultimate consequence is a highly problematic dilemma
for MDM genomics: The fewer cultured representatives
there are available for a taxon, the more reliant the sci-
entific community becomes on MAG and SAG datasets,
while at the same time these datasets become less and less
reliable.

We therefore decided to specifically re-examine the pre-
sumed ‘high quality’ and/or ‘low contamination’ MAG
and SAG datasets with our revised MDMcleaner work-
flow. Interestingly, MDMcleaner screenings of these subject
genomes indicated frequent instances of far >5% contami-
nation. Occasionally, even more than half of the contigs in
the assembly showed problematic assignments, likely rep-
resenting contaminations (Figure 2B). This short analysis
questions the trustworthiness of current MDM evaluations
and clearly illustrates the need for stricter and more sen-
sitive contamination filtering procedures. Furthermore, the
question remains whether up to 5% contamination can be
truly assumed to be likely ‘false positives’ and therefore tol-
erable for submitted reference genomes. To answer this, we
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validated the MDMcleaner workflow and other contami-
nation assessment tools on known reference datasets before
further examining our findings on contaminated MAGs
and SAGs, as presented in the following sections.

Validating sensitivity and precision of the MDMcleaner
workflow

MDMcleaner was validated on genomes obtained from iso-
lates, which are more likely to be free from contamination.
For this purpose, 257 isolate genomes not yet present in the
applied version of the GTDB database were selected, all of
which are novel at least on genus level in order to most
closely mimic MDM. This also includes instances where
multiple species represent the same novel genus in order
to reflect all levels of inter-taxon homologies. The genomes
were randomly cut into fragments representing contig size
ranges realistic for SAGs and MAGs (0.2 to 20 kb, with a
median length of 10 kb) and 25% of each genome was ran-
domly replaced with fragments of the other 256 genomes as
well as fractions of the human genome, in order to produce
mock bins with a known completeness of ∼75% and known
contamination fractions of 25%, respectively.

A preliminary checkM analysis showed that the com-
pleteness was predominantly correctly estimated with a
median value ∼77%. The checkM ‘contamination’ met-
ric based on marker gene multiplicities, however, largely
underestimated the actual contamination fraction with a
median value of ∼14% and a large outlier range of 0–
93% (Figure 3A). The average contamination fraction re-
ported by MDMcleaner, however, was close to the actual
value of 25%. In contrast, MAGpurify routinely underes-
timated the contaminating fraction with a median value
of 9%. Gunc correctly assessed all mock genomes as con-
taminated, based on unmistakably high ‘Cluster separation
score’ (CSS) (24) values averaging at a median of 0.98 (Sup-
plementary Table S3). The actual proportion of contami-
nation in each genome was, however, misjudged by Gunc
with estimates ranging from 3 to 61% (median: 11%). This
indicates that Gunc may be a good indicator for deciding
whether a genome is likely to be contaminated, but not well
suited for filtering the affected contigs. This observation is
also represented in the fact that Gunc, similar to checkM,
is currently being provided as a contamination assessment,
not as a filtering tool. ANOVA testing proved that the ob-
served differences were not random, with P values below
0.0001 (‘extremely significant’).

For MDMcleaner and MAGpurify, results were further
analysed regarding true and false positives, reflecting sen-
sitivity and precision, respectively. MDMcleaner demon-
strated exemplary sensitivity with median true positive rates
of 90% (Figure 3B). In comparison, MAGpurify identi-
fied significantly fewer true positives with a median of only
34%, illustrating that a large fraction of potential contam-
ination would be missed by this screening tool. Regard-
ing precision, MDMcleaner appeared to display a larger
range of false positive fractions than MAGpurify on these
test sets: MAGpurify yielded only up to 3% false positives,
with a median value of 0.2%, while the respective fractions
returned by MDMcleaner averaged at a median value of
1.6%, with some isolated extreme cases even reaching up to

27%. Both observations were tested via Welch’s t-test, with
P values <0.0001 (‘extremely significant’). Most false pos-
itives in these cases represented taxonomic conflicts below
class or order level (Supplementary Table S3), showing that
taxa on domain and phylum levels were robustly assigned.
The few extreme cases in which a significant number of
phylum-level conflicts were found, mostly represented taxa
which were uniquely reorganized on phylum level within the
GTDB taxonomy (e.g. the splitting of the former Firmi-
cutes into five separate phyla designated ‘Firmicutes’ and
‘Firmicutes A-D’) which are not yet officially recognized by
the broader taxonomic community, possibly indicating the
need for future fine-adjustments of the GTDB taxonomy.
Alternatively, it may also be possible that these taxa possess
a higher genome plasticity and therefore more inter-phyla
homologies than most other phyla.

Since actual metagenome and single-cell genome assem-
blies are often skewed towards short contig lengths (18), a
separate analysis was performed in order to elucidate the
exact influence of contig size on the efficiency of contam-
ination detection. For this, a smaller genome subset was
selected consisting of Atribacter laminatus RT761 (42) (as
the first and only isolate of its phylum and therefore a good
representative for actual MDM), and three additional ran-
domly selected reference genomes, each representing dif-
ferent bacterial phyla. As above, the genomes were again
randomly cut to contig size ranges of 200 bp to 20 kb in
triplicates. Contaminant contigs were cut into five differ-
ent size ranges and added to produce a total set of 180
differently size-skewed prokaryotic mock genomes. Again,
MDMcleaner correctly identified the vast majority (>90%)
of true positive contaminants, displaying extraordinary sen-
sitivity, while maintaining relatively low false positive rates
(Figure 4, top panel). In contrast, MAGpurify appeared to
be increasingly biased when contig size distributions were
skewed towards shorter contig lengths between 200 bp and
2 kb, with the major source for misclassifications by MAG-
purify being GC content analyses. A point where MAG-
purify achieved significantly lower false positive rates than
MDMcleaner was only reached when contig lengths were
skewed towards large sizes of 5 kb and above (Figure 4).
The true positive rate of MAGpurify on the size-skewed
mock datasets on the other hand, remained consistently
below those yielded by MDMcleaner even at large contig
sizes. This is a significant advantage of MDMcleaner re-
garding both precision and sensitivity for analysing highly
fragmented MAGs and SAGs.

When closely examining the taxonomic divergencies ob-
served at different taxonomic levels, the majority of false
positives reported by MDMcleaner occur at species and
genus level. At such lower levels, taxon-delineation becomes
less exact, partly due to the fact that horizontal gene trans-
fer is more common between closely related organisms (43),
but also due to the fact that different clades are not evenly
represented in reference databases. This is also reflected in
the fact that Gunc, by default, performs contamination as-
sessment only down to genus level (24). The vast majority of
true positives, however, were based on contig annotations
on family level or below, which was therefore selected as
the default cut off level for MDMcleaner. With this cut off,
MDMcleaner yielded false positive rates that consistently
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Figure 3. Benchmarking the MDMcleaner workflow on mock microbial dark matter SAGs. (A) Overall contamination fractions reported by different
tools. The boxplots show the distribution of contamination values reported among the testgenomes by each tool, regardless of actual true positive or false
positive rates. On average, MDMcleaner reported contamination values closest to the actual known contamination rate of 25%. CheckM, MAGpurify,
and Gunc tended to underestimate the contamination fractions. (B) Detailed distribution of the false positive and false negative screening results among
the test genomes, returned by MDMcleaner and MAGpurify. Since checkM and Gunc do not return the actual assumed contaminants, these tools were
omitted from this analysis. MDMcleaner identified almost all contaminant contigs, with more than twice the success rate compared to MAGpurify.

averaged at a median value of 1.6%, even at very short con-
tig lengths.

Because a massive influence of eukaryotic contamina-
tions on curated prokaryotic reference datasets has been
reported (44), a third and final benchmark was performed
to gauge the effectiveness of our workflow and other tools
to eliminate eukaryotic contaminants. For this purpose, the
test genomes were purposely contaminated exclusively from
human genomes. However, in reality eukaryotic contam-
inants in microbial metagenome analyses may stem from
multiple unsuspected or at least unknown sources. For
this reason, although it is possible to supply the human
genome as a ‘known contaminant’ to MAGpurify for tar-
geted screening purposes, this option was not used in or-
der to assess how well each tool can identify unsuspected
eukaryotic contaminations under standard settings. Under
these conditions, some cases of human DNA contaminated
mock genomes actually passed the Gunc assessment, indi-
cating that Gunc may not be as reliable for detecting con-

taminations from eukaryotic sources as from prokaryotic
sources. MDMcleaner also showed a 5× higher sensitiv-
ity than MAGpurify (Supplementary Figure S1). Further-
more, false negative contigs missed by MDMcleaner were
almost exclusively ‘unclassified’ (thereby yielding a low trust
value of five), indicating that CDS were predicted on this
contig but did not yield significant BLAST results for mean-
ingful LCA classifications. Such spurious prokaryotic CDS
predictions are likely to occur from time to time on longer
non-coding eukaryotic DNA stretches. In fact, such erro-
neous CDS assignments on contaminating eukaryotic con-
tigs in bacterial genomes have already led to the assign-
ment of entire spurious ‘conserved protein families’ in the
past (44). However, in the case that eukaryotic contami-
nants are a likely problem, the resulting unclassified con-
tigs can be specifically extracted from the MDMcleaner out-
put and subjected to nucleotide level alignments against
eukaryotic reference genome databases (this was omitted
from the current python implementation due to the large
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Figure 4. Influence of contig size and screening categories. Barcharts show
average fractions of contaminant contigs and genome contigs classified
as ‘contamination’ (representing ‘true positives’ and ‘false positives’, re-
spectively) among the test genomes at different contig size distributions.
The corresponding taxonomic level (MDMcleaner) or assessment metric
(MAGpurify) that caused the respective contaminant classifications is in-
dicated by the colour code below. MDMcleaner yielded consistent high
true positive and low false positive rates, regardless of average contig size.
Potential false positives were predominantly based on species and genus
level classifications, which hardly contributed to the true positive fractions.
MAGpurify showed optimal results only at contig sizes larger than 5 kb,
with low true positive but high false positive rates, predominantly based on
GC content analyses at lower contig sizes. No results were obtained for the
MAGpurify screening category ‘tetramer frequencies’, which is therefore
not shown here.

size of the additionally required reference databases), or
assessed with dedicated eukaryotic metagenome classifiers
such as Tiara, EukRep or Whokaryote (45–47). In sum-
mary, MDMcleaner outperformed other currently available
tools in this benchmarking approach and provided exem-
plary sensitivity for contaminations, while having a compar-
atively low false positive rate on fragmented query genomes
such as MAGs and SAGs.

Assessment of current microbial dark matter genomes: how
clear is our view?

A general overview of the MDMcleaner findings in the anal-
ysed 6508 MAG and SAG datasets are presented in Fig-
ure 5. Potentially problematic contigs reported by MDM-
cleaner can be divided into one of the three following cate-
gories: (A) ‘non-coding’ contigs, (B) ‘divergent taxonomy’,
which can range from virus/domain to species level (with
divergence above family level being however ignored by de-
fault) and (C) ‘reference database ambiguities’ (representing

potential contaminations within the reference database but
not necessarily within the analysed MAG & SAG datasets)
(Figure 5A). Non-coding contigs, which do not encode
any detectably prokaryotic RNA gene or CDS are usually
not considered by other screening tools. However, due to
the comparatively high average coding density of prokary-
otes (29–31), they may be seen as indicative for either eu-
karyotic contamination or amplification artefacts, such as
primer-dimers (48). Such non-coding contigs occur drasti-
cally more often in the analysed SAGs than MAGs (Figure
5A), thereby most likely representing MDA artefacts. Taxo-
nomic divergence, on the other hand, indicates a contig with
a taxonomic classification that does not match the majority
classification of the corresponding genome. The exact rank
at which this divergence occurs is relevant for estimating the
likelihood of the contig being an actual contaminant as re-
gions of high identity are more likely to be shared between
related species than separate phyla, as already indicated in
the benchmarking tests (Figure 4). Accordingly, divergences
on genus and species level were generally more frequently
observed within the analysed MAGs and SAGs than on
class to family level, and are, by default, ignored during con-
tamination filtering by MDMcleaner. By far the most sig-
nificant potential contaminations seem to occur at phylum
level. In archaeal genomes, especially archaeal MAGs, even
divergences on domain level are frequent. Since the knowl-
edge on archaeal genomics is even more limited compared
to their bacterial counterparts, such substantial contami-
nations could drastically distort our view on the entire ar-
chaeal domain.

Examining the exact phylogenetic composition of con-
taminants detected on high-ranking domain or phylum lev-
els shows that the most common source of potential do-
main level contaminants in archaea are of presumed bacte-
rial origin (Figure 5B). Of course, this may partially be sim-
ply caused by the lower representation of archaea in refer-
ence databases compared to bacteria, resulting in a possible
bias towards bacterial classifications. However, since almost
half of these could be further classified to lower ranks even
down to genus and species and furthermore, since the frac-
tion of bacterial contigs is far higher in the MAGs than at
the SAGs level, it appears evident that archaeal dark matter
genomes actually contain a substantial number of bacterial
contaminants. Interestingly, except this general influence of
bacterial contaminants in archaeal genomes, no clear trend
of specific systematic contaminant sources is visible within
the MAG and SAG datasets (Figure 5B). In fact, the poten-
tial contaminants appear to originate from a huge variety
of different source organisms, with each affected genome
possessing a more or less unique composition of potential
contaminants. This is of high relevance for the interpreta-
tion of SAGs, as it stresses the need to apply strict contam-
ination assessment and filtering approaches beyond simply
screening for known MDA contaminants: With no clear
dominance of specific individual contaminants, it appears
unlikely that residual contaminants from the manufactur-
ing process of MDA reagents (17) are the only contami-
nant source here. Likewise, it seems unlikely that unsterile
work conditions are the major contamination source, as this
would likely result in a dominance of contaminants origi-
nating from common lab organisms or human cells. Instead,
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Figure 5. Detailed results of contig classifications by MDMcleaner on public MAGs and SAGs. (A) Categories of ‘low trustworthy’ and therefore potentially
problematic contigs. Such contigs may represent reference database ambiguities, viral sequences, taxonomic divergences on domain to species level or
non-coding contigs, as indicated by the colour code below. High fractions of reference database ambiguities, potentially representing reference database
contaminations, are reported in all cases, while large fractions of non-coding contigs are far more prevalent in SAGs than in MAGs. (B) Radial charts
showing the diversity of the most obviously contaminating contigs (i.e. with divergent taxonomic classification at domain or phylum level) in the analysed
genomes. The innermost ring represents classifications on domain level, while the outermost represents classifications up to species level. Different domains
are indicated by different colours. Apart from an apparent prevalence of bacterial contaminations in archaeal genomes, no clear overrepresentation of
systematic contaminants can be recognized. (C) Breakdown of detected reference database ambiguities into the categories ‘Potential reference database
contaminations’ (showing moderate to high identity blast hits to different phyla), ‘Fringe cases’ (showing hits to multiple phyla, but only at relatively low
identities) or ‘SILVA/GTDB conflicts’ (representing differences in the GTDB and SILVA taxonomic systems). Potential reference database contaminations
can be further distinguished into fractions requiring ‘low priority’ or ‘high priority’ evaluation or even directly categorized as ‘delete’ based on average
blast identities to different reference genomes.

it appears that contaminants originate from the respective
environmental sample that was sorted, e.g. caused by acci-
dentally sorting multiple cells or by capturing free environ-
mental DNA fragments together with individual cells (8).

Despite low checkM marker gene duplicity values, the
MIMAGs/MISAGs high quality cut-off of up to 5% con-
tamination (21) was exceeded in 15% of the MAGs and 12%
of the SAGs according to MDMcleaner results (Supple-
mentary Tables S1 and S2). In extreme cases, MDMcleaner
estimations even reached 48% contamination for MAGs
and 69% for SAGs. The most contaminated MAG from
the MDMcleaner results is Nitrosopumilaceae archaeon
Plut 88877 (NCBI acc. no. GCA 012271085.1) (49) (Table
1). This genome displayed very good checkM assessment
metrics of 96-99% completeness and marker gene multiplic-
ity of 3.41%, officially qualifying the genome as ‘high qual-

ity’ and understandingly giving the researchers little reason
to perform additional decontamination steps. In this par-
ticular example, the majority of the presumed contaminant
contigs detected by MDMcleaner were classified as bacte-
rial and therefore appear to be misattributed on domain
level (Supplementary Figure S2A), an assessment that is
also strongly supported by BLAST alignments of encoded
marker genes against the NCBI RefSeq databases. Further-
more, this finding is also strongly supported by both Gunc
and MAGpurify (Table 1).

The most contaminated SAG, with >69% contamina-
tion is a presumed Rhizobiales strain (NCBI acc. no.
GCA 000464375.1) which, however, actually appears to
be a ‘Frankenstein’ mix of contigs from different organ-
isms such as Proteobacteria, Bacteroidetes, Verrucomicro-
bia and Planctomycetes (Supplementary Figure S2B). This
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Table 1. Most contaminated genomes of different types and completeness categories, according to MDMcleaner. All genomes fulfil the MIMAG/MISAG
contamination criteria for ‘high quality’ genomes based on checkM, but GCA 000464375 would be nonetheless considered ‘low quality’ due to the lack
of universal single copy marker genes causing low completeness

Genome info MIMAG/ checkM MDMcleaner Mpurify Gunc Taxonomic classification

Assembly acc type
MISAG
quality compl. contam ambig contam contam CSS Domain Phylum

Lowest taxon
classification

GCA 012271085 MAG high 96.26 3.41 0.1% 48.0% 53.0% 0.99 Archaea Thermo-
proteota

Nitrosopumilaceae
(family)

GCA 000464375 SAG low 0 0 5.7% 69.3% 17.4% 0.94 Bacteria Alphaproteo-
bacteria

Sphingomonas
(genus)

GCA 000510525 SAG high 97.44 1.72 0.2% 3.5% 3.4% 0.65 Bacteria Bacteroidota Tannerella (genus)

MAG even contains multiple rRNA genes of different or-
ganisms, including unambiguous planctomycetal and acti-
nobacterial 23S rRNA gene sequences. Gunc and MAGpu-
rify also yielded high contamination values for this genome,
with MAGpurify reporting a drastically lower, albeit still
notably high, contamination estimate of 17%. Since no uni-
versal single copy marker genes could be found, the checkM
assessment of this genome yielded 0% completeness esti-
mates and hence 0% marker gene multiplicity. This makes
this genome appear pure, although obviously incomplete.
In fact, observed discrepancies between low checkM marker
gene duplicity values and high MDMcleaner contamination
reports, generally increased with decreasing genome com-
pleteness estimates (Supplementary Table S2). This indi-
cates that checkM tends to increasingly underestimate con-
taminations the less complete the analysed genomes are.
Similar observations reported by Becraft et al. (16) support
this assessment. However, this directly contradicts current
MIMAGs/MISAGs reporting standards, which allow for
even higher contamination values at lower genome com-
pleteness levels (21).

Curiously, the presumed Nocardiodes SAG is far from
being the only case of publicly deposited genomes con-
taining misattributed ribosomal RNA contigs. We identi-
fied 381 cases among the herein analysed SAGs and MAGs
alone (Supplementary Table S6). Furthermore, reference
database ambiguities detected during the corresponding
MDMcleaner analyses indicate the presence of at least
175 instances even among representative GTDB reference
genomes (Supplementary Table S7). The 56 most striking
cases of almost full length 16S rRNA genes misattributed
at phylum level or above are illustrated in Supplementary
Figure S3.

When focusing exclusively on SAGs showing >90% com-
pleteness (qualifying as ‘high quality genomes’), the highest
observed contamination was only 3.5% (Table 1, Supple-
mentary Figure S2C) for an uncultivated Tannerella mem-
ber (NCBI acc. no. GCA 000510525). Incidentally, simi-
lar contamination values were also reported by MAGpurify
and Gunc for this genome, showing that this fraction is un-
likely to simply be the result of spurious false positive con-
taminant detection but instead represents actual contami-
nation. While such a relatively small fraction may seem neg-
ligible in comparison to the higher contamination rates ob-
served in numerous MAGs, it nonetheless represents avoid-
able contamination that will cause misleading comparison
results and can lead to error propagation, thereby exponen-

tially increasing its effect on gradual reference database cor-
ruption. Overall, MDMcleaner reported at least minimal
contamination fractions in the majority (70%) of MAGs but
only 44% of the SAGs (Supplementary Tables S1 and S2).
This severe difference indicates that, despite the involved
contamination sensitive MDA procedure, SAGs are gener-
ally less prone to misattributed contigs than MAGs. This
is especially noteworthy when considering that, in contrast
to the analysed MAGs, the majority of the herein analysed
SAGs would not have been categorized as ‘high quality’ by
current MISAG standards due to lower genome complete-
ness estimations.

In direct comparisons of the respective analyses results,
MDMcleaner does not yield larger outlier and interquar-
tile ranges than MAGpurify or Gunc, showing that the
presumed slightly higher false positive rate indicated in
the benchmark tests does not lead to systematic over-
estimations of contaminations in actual genome data (Sup-
plementary Figure S4A). In fact, much greater extreme val-
ues were observed by MAGpurify, even reaching an implau-
sible 100% in the case of two MAGs (GCA 003712165.1
and GCA 014762685.1). Close inspection showed that
these were almost exclusively classified based on nucleotide
signatures such as tetranucleotide frequencies, which has al-
ready been proven most error prone during our benchmark-
ing tests (Figure 4). Neither Gunc, nor MDMcleaner sup-
ported high contamination fractions in these genomes (Sup-
plementary Table S1), indicating that MAGpurify may be
more prone to false positives on actual genome data than
our benchmarks originally suggested. This assumption may
be supported by the fact that MAGpurify showed the low-
est overlap with the other two assessment tools in the pro-
portion of genomes reported as ‘contaminated’, especially
in the case of the generally more incomplete SAGs (Sup-
plementary Figure S4B). Gunc, on the other hand, repre-
sented the highest interquartile range of detected contam-
inant fractions. It also achieved the broadest outlier range
when including genomes that nonetheless passed the Gunc
assessment with CSS values <0.45 (Supplementary Figure
S4A), meaning that, due to the way Gunc assesses apparent
taxonomic conflicts within genomes (24), it is possible for
a genome to have an estimated ‘contamination’ fraction of
>80% but still be considered uncontaminated, depending
on the reported CSS value. This illustrates that Gunc is well
suited for genome assessments, but not for filtering/removal
of respective individual contaminating contigs. Gunc gen-
erally reported by far the fewest genomes as contaminated,
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while MDMcleaner reported the most (Supplementary Fig-
ure S4B). MDMcleaner consistently showed large overlaps
to the other assessment tools, for example, with the major-
ity of Gunc assessments consistently also being backed by
MDMcleaner results, indicating a high reliability.

How affected are reference datasets?

Most reference database ambiguities reported by MDM-
cleaner among the analysed MAGs and SAGs represent
potential reference database contaminations for which ad-
ditional evaluations by the user are either required or at
least recommended (Figure 5C). The majority of these were
based on conflicting taxonomies at domain or phylum level,
with average alignment identities below the genus or fam-
ily cut-offs. They were therefore considered ‘moderate’ and
‘low’ indications for contaminants, respectively. While it is
recommended to verify these contigs by independent anal-
yses, it may still be justified to include such contigs in
the genome submission if high genome plasticity or low
contamination rates are expected. A considerable fraction
of ambiguities, however, represented taxonomic conflicts
at domain or phylum level with average alignment iden-
tities above genus level. Such cases demand a ‘high ur-
gency’ of close evaluation by the user. Until such a con-
taminant can be traced exclusively to misattributed ref-
erence contigs and the correct assignment could be veri-
fied, such contigs should not be included in genome sub-
missions. The question whether a specific contig yielding
a reference database ambiguity represents a contamina-
tion only in the reference database, or also in an anal-
ysed genome, can be verified by re-aligning against differ-
ent independent reference databases (e.g. GTDB, NCBI
nr & NCBI RefSeq) and cross-examining the results. An
example of easily verified reference database contamina-
tions are misattributed 16S rRNA genes. However, our
analyses show that genomes are not routinely scanned
for these most obvious of phylogenetic markers, even
within curated databases (Supplementary Table S7, Sup-
plementary Figure S4). However, numerous unambigu-
ous examples of reference database contaminations ex-
ist also on protein level, for example the presence of eu-
karyotic contigs (i.e. NCBI acc. no. NZ LZSC01000001,
NZ AAXW01000147 and NZ AMRJ01000061.1) in refer-
ence genomes GCF 001665235.1, GCF 000169335.1 and
GCF 000300995.1) (Supplementary Table S7), which are
likely misattributed due to error propagation caused by a
hypothetical ‘endonuclease’ or ‘DUF175’ gene encoded on
these contigs, homologues of which are mostly found in
draft genomes of organisms obtained from human clin-
ical samples. Incidentally, these three specific examples
were also recently reported as eukaryotic contaminants by
Steinegger et al. (28).

Based on these observations, we were able to compile
a list of 865 contaminant contigs within GTDB reference
datasets which can be provided as a ‘blacklist’ to future
MDMcleaner runs to prevent further misattributions. This
list is hosted within the public MDMcleaner repository
and is expected to be extended with ongoing usage of
this pipeline. We encourage users of our workflow to con-
tribute further additions to this list, obtained from individ-

ual MDMcleaner runs on different subject genomes, in the
form of issues or pull requests to the MDMcleaner reposi-
tory. This way, the revision and refinement of the involved
reference databases is effectively crowd-sourced, preventing
continuous database contaminations and actually allowing
an increasingly clear view on MDM genomes with every
new analysed MAG or SAG.

The consequences: a proposal for revised MIMAG/MIMAG
genome reporting standards

The herein presented MDMcleaner assessments confirm
suspicions that publicly available MAG and SAG datasets
of uncultured microbes are not always necessarily reliable
references, even if regarded more or less contamination
free by common screening procedures. However, all of the
genomes identified as contaminated by MDMcleaner had
been processed and published according to current best
practice standards. Therefore, we want to use these exam-
ples to emphasize and discuss the need to revise these stan-
dards as they do not seem to be universally effective, espe-
cially for underrepresented members of MDM. This is being
viewed as an increasing problem due to gradually increas-
ing reference database corruption (27,28,50). The MDM-
cleaner workflow is a suitable countermeasure due to its
high sensitivity for contaminant contigs even at small frag-
ment sizes and its resilience against error propagation from
contaminated reference database entries. Despite the broad
range of outliers in the reported contamination fractions,
cultivation-independent sequencing approaches can never-
theless be seen as effective sources for accurate genome
information, as long as reference database error propa-
gation can be further minimized through strict and thor-
ough contamination screening. Correspondingly, the aver-
age decrease in genome length after filtering with MDM-
cleaner appears to be minimal, but the impact on the over-
all datasets is nonetheless huge as potential contaminations
were removed from far more than half of the MAGs and
almost half of the SAGs (Figure 6A and B). This indicates
that MDMcleaner can provide a substantial improvement
of overall genome quality for average genome completeness.

Another recently proposed countermeasure was the gen-
eral exclusion of short contigs below 1.5 kb (27). This might
indeed reduce the number of undetected contaminations
simply by increasing the likelihood of finding conserved
marker genes on the remaining contigs. However, this would
nevertheless still cause a problematic fraction of misclassi-
fied contigs to remain undetected using classical contami-
nation filtering approaches (Figures 1 and 2), considering
that contigs marked as contaminants frequently exceeded 5
kb even at such robustly assignable taxonomic ranks such
as domain and phylum (Figure 6C). Given the generally
low loss of data but contrastingly large improvement impact
of filtering, the here presented MDMcleaner workflow is a
preferable alternative. Nonetheless, strict contamination fil-
tering should apply even in cases where genome complete-
ness would be negatively impacted. Of course, this would
likely also exclude many traces of actual HGT events from
the resulting genomes. However, genomes obtained exclu-
sively from current cultivation independent methods would
not be the correct basis for analysis of recent HGT events
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Figure 6. Impact of contig filtering by MDMcleaner. (A) Comparison of genome size distributions before and after MDMcleaner filtering. By applying
MDMcleaner, no drastic reduction in average genome size is observed, except for a few extreme outliers. (B) Stacked histograms showing the extent of
MDMcleaner filtering on the analysed genomes. The number of genomes of different sizes are indicated by bar-heights, while the respective fractions of
contaminants filtered from the corresponding genomes are indicated by colour. Despite the low overall reduction of sequence data by MDMcleaner, the
vast majority of genomes have been affected at least in a small way. (C) Size distribution of contigs classified as contaminants or reference ambiguities. In all
cases, contaminant contigs frequently exceeded 1 kb, and often even 5 kb, demonstrating that contig size cut-offs do not sufficiently exclude contaminations.
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Table 2. Summary of major findings

Contaminations are widespread among even ‘high quality’ public microbial dark matter genomes, with SAGs being less affected
than MAGs

potential contaminations were reported in 70% of analysed MAGs (‘high quality’)
Highest contamination observed in analyzed MAGS: 47% (‘high quality’)
potential contaminations were reported in 40% of analyzed SAGs (‘low contamination’ and ‘high quality’)
Highest contamination observed in analyzed SAGs: 50% (overall ‘low-contamination’) & 3% (‘high quality’)

Even ribosomal rRNA sequences frequently overlooked by current contamination screening methods
At least 178 ribosomal RNA sequences were misattributed on phylum level or above in representative genomes of public

reference datasets
381 cases of misattributed rRNA genes were found in analysed public MAGs and SAGs alone

Current genome quality assurance standards are not sufficient to tackle these problems
checkM assessments are increasingly inaccurate with decreasing genome completeness
Common nucleotide signature based approaches are suboptimal for fragmented genomes
Current MIMAG/MISAG standards emphasize quality over purity

MDMcleaner approach helps minimize contamination in microbial dark matter genomes.
Among compared screening tools, MDMcleaner was best suited for filtering contaminations in highly fragmented genomes

(i.e. most MAGs and SAGs)
MDMcleaner could detect a substantial amount of contaminations in the analysed datasets, without greatly impacting

average genome completeness
MDMcleaner detects and blacklists reference database contaminations, thereby preventing error propagation

anyway. Genome fragments transferred via HGT events
that happened so recently, that the sequence composition
has not yet adapted to the new host sufficiently enough to
distinguish it from potential contamination, require an ad-
ditional degree of confidence that currently is only provided
by genomes from cultured isolates.

Our assessment of current publicly deposited MAGs and
SAGs indicates the presence of contaminating contigs in
a significant number of ‘high quality’ genomes, some of
which even passed GTDB quality checks and were regarded
as representative genomes for reference database purposes.
The most striking cases are numerous misattributed SSU
rRNA gene sequences representing cross-domain contam-
inations (Supplementary Figure S4). We therefore strongly
propose a reassessment of the current definitions of MAG
and SAG quality standards. Since genomic data gathered
via cultivation-independent approaches are not directly and
objectively verifiable, a higher emphasis needs to be placed
on purity rather than completeness. Due to the risk of error
propagation, for example, through incorrect conclusions
based on best blast hit analyses, even low fractions of avoid-
able contamination need to be excluded.

However, with the current genome reporting standards,
researchers are being motivated to submit as complete
genomes as possible in order to ensure a ‘high quality’ sta-
tus. In contrast, the labels ‘moderate’ and ‘low quality’ im-
ply a lower scientific value. Unfortunately, the removal of
potential contaminants is likely to affect completeness esti-
mations more than, for example, the checkM marker gene
multiplicities generally interpreted as contamination. This
can give the false impression that decontamination proce-
dures can be counter-productive if these lead to a down-
grade in MIMAG/MISAG genome ‘quality’ despite the
overall genome accuracy actually being improved.

In this regard, a ‘90% complete’ genome that contains
contamination, should be seen as counter-productive for
reference database purposes, even if the contaminating frac-
tion is less than 5%. Instead, genomes that appear to be free
from potential contamination should be prioritized, even
if they show lower completeness. Moreover, since marker
gene multiplicity appears to be a less effective proxy for con-

tamination estimation at lower completeness levels (16,51)
(Supplementary Tables S1 and S2), stricter contamination
cut-offs should apply for less complete genomes. Unfortu-
nately, the opposite is enforced with the current MIMAG
and MISAG standards, where higher contamination esti-
mates are being tolerated at lower genome completeness
levels, as represented by the ‘medium-quality’ and ‘low-
quality’ genome standards (21). Addressing this this issue
requires the application of additional screening and filter-
ing procedures that perform direct contamination detection
such as MDMcleaner, in addition to the more indirect esti-
mations already in place.

Consequently, we propose to replace the misleading
term ‘quality’ with two separate terms reporting ‘com-
pleteness’ and ‘contamination’ individually. The current
MIMAG/MISAG cut-offs appear suitable for reporting
completeness values, but in the case of contamination the
stricter cut-offs of <1%, <5% and ≥5% for reporting ‘low’,
‘moderate’ and ‘high’ contamination, respectively, may be
more adequate. In order to reflect that contamination values
may be subjective, depending on the exact applied method,
contamination should optimally be assessed using multi-
ple independent screening procedures and reported as a
range, for example, ‘low to moderate contamination’. Fur-
thermore, the marker gene duplicity-based contamination
estimation procedure of checkM should not be applied if
genome completeness estimations are below the ‘high com-
pleteness’ cut-off of 90%.

CONCLUSION

While contaminations are indeed prevalent in publicly sub-
mitted microbial dark matter genome datasets, cultivation-
independent genome sequencing methods still remain an in-
dispensable tool for investigating uncultivated organisms,
as long as contaminations are minimized, and error prop-
agation can effectively be prevented. However, our analy-
ses show that current approaches are not sufficient to ad-
dress this problem (Table 2), especially in the case of under-
represented and/or uncultured taxa (the major use case for
metagenomics and single-cell genomics). Common pitfalls
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that may have led to these short-comings include the applied
method of contig classification, the selection of analysed
marker genes and the underlying reference database as well
as the application of nucleotide signature based approaches.
A detailed description and discussion of these pitfalls is pro-
vided in Supplementary Data S1 and Supplementary Ta-
bles S1–S9, in the hope that this may help improve future
contamination screening methods. We here present an easy
to implement alternative workflow for detection and filter-
ing of potential contaminants in partial and fragmented
MAGs and SAGs. This approach also effectively crowd-
sources the detection of reference database contamination
to individual researchers applying the pipeline to different
novel genomes, allowing a continuous curation of the refer-
ence database and thereby preventing gradual database cor-
ruption through error propagation. This will prevent resid-
ual contaminants in submitted genomes from gradually ob-
fuscating our view on microbial dark matter and ensure an
increasingly clearer view with every new analysed and sub-
mitted MAG or SAG.

DATA AVAILABILITY

The python implementation of the MDMcleaner work-
flow is available at GitLab under https://github.com/KIT-
IBG-5/mdmcleaner and is being distributed under a GNU
general public licence v.3.0. The version used during the
preparation of this publication is v0.6.0. A list of cur-
rently verified reference database contaminations, which
can be passed to MDMcleaner runs in order to avoid cor-
responding misclassifications and error propagation, is also
provided and maintained in this repository. Users are en-
couraged to submit additions to this blacklist, determined
during individual analyses, via this repository. The refer-
ence database used by MDMcleaner expands with grow-
ing numbers of high-quality SAGs and MAGs submitted
to public databases. The exact version used throughout
this manuscript, and the here used benchmarking datasets,
are provided at Zenodo.org under 10.5281/zenodo.5698995
and 10.5281/zenodo.5698732, respectively.
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