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Rainfall-runoff models are frequently used for assessing climate risks by predicting

changes in streamflow and other hydrological processes due to anticipated

anthropogenic climate change, climate variability, and land management. Historical

observations are commonly used to calibrate empirically the performance of conceptual

hydrological mechanisms. As a result, calibration procedures are limited when

extrapolated to novel climate conditions under future scenarios. In this paper,

rainfall-runoff model performance and the simulated catchment hydrological processes

were explored using the JAMS/J2000 model for the Berg River catchment in South Africa

to evaluate the model in the tails of the current distribution of climatic conditions. An

evolutionary multi-objective search algorithm was used to develop sets of parameters

which best simulate “wet” and “dry” periods, providing the upper and lower bounds

for a temporal uncertainty analysis approach to identify variables which are affected

by these climate extremes. Variables most affected included soil-water storage and

timing of interflow and groundwater flow, emerging as the overall dampening of the

simulated hydrograph. Previous modeling showed that the JAMS/J2000 model provided

a “good” simulation for periods where the yearly long-term mean precipitation shortfall

was <28%. Above this threshold, and where autumn precipitation was reduced by

50%, this paper shows that the use of a set of “dry” parameters is recommended to

improve model performance. These “dry” parameters better account for the change

in streamflow timing of concentration and reduced peak flows, which occur in drier

winter years, improving the Nash-Sutcliffe Efficiency (NSE) from 0.26 to 0.60 for the

validation period 2015–2018, although the availability of climate data was still a potential

factor. As the model performance was “good” (NSE > 0.7) during “wet” periods using

parameters from a long-term calibration, “wet” parameters were not recommended for

the Berg River catchment, but could play a large role in tropical climates. The results

of this study are likely transferrable to other conceptual rainfall/runoff models, but may

differ for various climates. As greater climate variability drives hydrological changes

around the world, future empirically-based hydrological projections need to evaluate

assumptions regarding storage and the simulated hydrological processes, to enhanced

climate risk management.
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INTRODUCTION

The frequency, duration and intensity of droughts around
the world are increasing, resulting in the widespread loss
of natural vegetation and wildlife, economic instability and
increases in anthropogenic water use (IPCC, 2021). While in
some situations, specific regions have benefitted in terms of
more favorable climates for crop growth and enhanced carbon
dioxide fertilization (Bond and Midgley, 2012), meteorological
shortfalls and the intensification of dry periods will impact many
vulnerable regions which do not have the economic ability to
adapt (Collier et al., 2008; Allison et al., 2009). The expectation
is that precipitation variability, exaggerated by increasing
temperatures and resulting evapotranspiration, will plague many
parts of Africa for the unforeseen future (Engelbrecht and
Monteiro, 2021). The Western Cape (WC) of South Africa has
been subject to an increased meteorological drought frequency
(1–3 years: Watson et al., 2022) and recently experienced an
intense drought between 2015 and 2018, where reservoir levels
collectively dropped to a low of 17% (DWS, 2018). Research has
mainly focused on the mechanisms affecting local precipitation
(Wilks, 2011), characterizing the meteorological (Archer et al.,
2019) and agricultural drought (Watson et al., 2022). While
recent climate change projections have been developed for Africa
(Haensler, 2010; Haensler et al., 2011; Archer et al., 2018; Weber,
2018; Lim Kam Sian et al., 2021; Majdi et al., 2022), their
bearing on local hydrological condition and function affect the
development of appropriate adaptation strategies and the rate
at which Africa acts to reduce the effects of global warming
(Kusangaya et al., 2014). Furthermore, uncertainty still remains
whether hydrological models can reproduce hydrological flows
considering future non-stationary climatic conditions, which has
been an issue for rainfall-runoff model applications around the
world (Deb and Kiem, 2020; Fowler et al., 2020).

SWAT (Arnold et al., 1998), a common conceptual rainfall-
runoff model, has been used as a predictive tool to assess
the impact of different climate change projections on the
future water resource availability in different African settings
(Akoko et al., 2021; Chomba et al., 2021; Maviza and
Ahmed, 2021; Osman et al., 2021). Using historical conditions,
hydrological process simulations for rainfall-runoff models have
been calibrated with historical streamflow measurements and
other hydroclimatic observations. Accounting for additional
spatial variables has improved rainfall-runoffmodel performance
and the overall inclusion of different hydrological processes
(Vaze et al., 2011; Khakbaz et al., 2012). Furthermore, the
advancement of rainfall-runoff modeling into fully automated
calibration procedures such as the use of the Non-dominated
Sorting Genetic Algorithm (NSGA-II: Deb et al., 2002) and
parameter uncertainty analysis such as the Monte Carlo Analysis
(MCA: Hornberger and Spear, 1981), criteria-based performance
assessments (Krause and Boyle, 2005), Generalized Likelihood
Uncertainty Estimation (GLUE: Beven and Binley, 1992), and
Dynamic Identifiability Analysis (DYNIA: Wagener et al.,
2002) has improved hydrological model applications around
the world. Although physical inputs (e.g., climate, topography,
soil, hydrogeology, and land use) form spatial inputs in

most distributed rainfall-runoff models (e.g., SWAT: Arnold
et al., 1998; J2000: Krause, 2001, PRMS/MMS: Leavesley et al.,
1996), conceptual and empirical parameters which are often
calibrated based on streamflow measurements, are impacted by
non-stationary climate conditions (Deb and Kiem, 2020) and
complex hydrological processes are often inferred from only
river flow measurements (Jakeman and Hornberger, 1993). As
a result, recent concerns have been raised about the ability of
“bucket” type rainfall-runoff models in reproducing hydrological
conditions under future projections and in particular how these
methods assume long-term stationary storage conditions (Fowler
et al., 2020).

In this study, the performance of the JAMS/J2000 rainfall-
runoff model was assessed during periods of climate extremes
between 1984 and 2018 for the Berg River catchment in
South Africa (Figure 1). The different climate extremes were
distinguished using the Soil Moisture Deficit Index (SMDI:
Narasimhan and Srinivasan, 2005; Watson et al., 2022) into
periods of “wet” and “dry”. Yearly average values of 1>
SMDI <−1 were used to differentiate between “wet” and
“dry” years. The NSGA-II (Deb et al., 2002), an evolutionary
multi-objective search algorithm was used to develop sets of
parameters which “best” simulate “wet” and “dry” periods for
the JAMS/J2000 model of the Berg River. To identify parameters
which may vary in both space and time, as a function of a
change in hydroclimatic and other biophysical processes, DYNIA
(Wagener et al., 2002) was used. Further to the temporal
uncertainty of different parameters across “wet” and “dry”
periods, we aim to demonstrate the extent of climatic disturbance
with which a single parameter set can simulate catchment
hydrological processes within a certain degree of efficiency.
As unstable climate conditions begin to affect conceptual
assumptions regarding soil water and aquifer storage, as well as
water use behavioral changes within the system, understanding
temporal parameter variability is required to develop more
dynamic rainfall-runoff models which are required for climate
change-based assessments.

ENVIRONMENTAL SETTING

The Berg River is a meso-scale catchment with an extent of
7,700 km2, which is located on the West coast, South Africa
(Figure 2). The catchment supports a large agricultural sector
(Claassen, 2015), used in inter-basin water supply (Muller, 2002),
as well as hosting an ecologically significant estuary (Sinclair
et al., 1984). The catchment falls within the Cape Fold Belt,
a thrust belt which resulted in the formation of a sequence
of sedimentary rock layers known as the Cape Supergroup
(Johnson et al., 2006). The catchment drains the Hottentots-
Holland and Haweqwa Mountains, which receive the bulk of
precipitation with a maximum of 3,198 mm/annum and are
hosted by the Cambrian Table Mountain Group sandstones
(TMG) in the Southern tip of the catchment. The TMG is
widely known as a highly productive secondary fractured rock
aquifer with estimated recharge values of between 13 and 27%
of Mean Annual Precipitation (MAP) (Weaver and Talma, 2005;
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FIGURE 1 | The long-term (1984–2018) efficiency of the JAMS/J2000 model for the Berg River catchment (after Watson et al., 2022), represented as the yearly

Nash–Sutcliffe [NSE; Nash, 1970] efficiency in standard form (E2) and logarithmic form (logE2) as well as with the Kling- Gupta efficiency (KGE). The simulated Soil

Moisture Deficit Index (SMDI) for the Berg River catchment (black dashed line) and headwater (black line), indicating a reduce performance during “dry” periods when

the simulated SMDI was < −0.5.

Wu, 2005; Miller et al., 2017). Precipitation reduces to 700–800
mm/annum near the town of Paarl, where an alluvial aquifer is
often thick (15–20m) and underlain by the Malmesbury Group
shales (MG). Groundwater recharge rates for the alluvial aquifer
are between 0.2 and 3.4% (Conrad et al., 2004), but as much as 6%
of MAP (Vetger, 1995) while less is known about recharge rates
for the MG.

Precipitation reduced to 300–400 mm/annum toward
Velddrif at the catchment outlet (Lynch, 2004), where the river
flows into the Atlantic ocean. Major reservoirs are present in the
catchment headwaters (Berg River, Wemmershoek and Voëlvlei
dams: 130 (Million) Mm3, 58, and 164 Mm3, respectively),
as well as downstream of these reservoirs on the main river
channel (Misverstand dam: 8 Mm3). Other significant reservoirs
(Theewaterskloof dam: 480 Mm3, Steenbras dam: 33 Mm3,
Clanwilliam dam: 121 Mm3) in the Breede and Olifants/doorn
Water Management Areas (WMAs), comprise the bulk surface
water supply sources in the area.

Precipitation in the Berg River and much of the
Mediterranean winter precipitation parts of the WC, is
generally received in the months June, July August (JJA) with
50%, followed by March, April, May (MAM) with 23% of the
total yearly amount (Watson et al., 2022). September, October,
November (SON) and December, January, February (DJF) make
up the remaining 19 and 8% of the yearly precipitation amounts.
As a result, streamflow is mainly generated JJA, with 61% of the
total flow, followed by the SON, MAM, and DJA months with
26, 9, and 4%, respectively (Watson et al., 2022). The temporal
variability of MAP within the region, over the last 34 years
(1984–2018), shows a higher degree of variability for valley
regions (51% of valley MAP) compared with headwater areas

(34% of headwater MAP) (Watson et al., 2022). Meteorological
droughts have been mostly associated with shortfalls in MAM
precipitation (Archer et al., 2019; Watson et al., 2022) (years
2000, 2015, and 2017) but for the drought years: 1994, 2004, and
2011 <50% was received in DJF (Table 1). In 1997 and 2003
meteorological drought was mainly caused by shortfalls in SON
and JJA, respectively. Hydrological dry periods in the catchment
have been characterized by shortfalls in the SON months with
51% less streamflow, followed byMAM, JJA, and DJF with 38, 32,
and 5% less. The years 2003, 2015, and 2017 had between 60 and
87% less streamflow, although the Berg River dam construction
in 2004 has contributed to more recent reduced streamflow.
Agricultural drought, simulated using the Soil Moisture Deficit
Index (SMDI) and the JAMS/J2000 rainfall/runoff model (with
the same setup as this paper) occurred for the years 1995, 1998–
2000, 2003–2004, 2010–2012, and 2015–2017 (Watson et al.,
2022) (Figure 3). To assist in understanding the environmental
setting and the methodological approach, commonly used
abbreviations and acronyms are summarized in Table 2.

MATERIALS AND METHODS

The Berg River was modeled using the JAMS/J2000 distributed
rainfall-runoff model (Krause, 2001, 2002; Krause and Kralisch,
2005) which was used to simulate the catchment hydrological
processes (Figure 1). These include the model’s ability to
conceptually simulate processes which result in the generation
of surface runoff, interflow (sub-surface runoff) and baseflow, as
well as flow dynamics at a hillslope/small scale (Figure 4). The
model was run on a daily timestep for the periods 1983–2018 with
a 1-year initialization period (1983). The spatial modeling units
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FIGURE 2 | (a) Location of the Western Cape (WC) within South Africa, (b) Berg River Water Management Area (WMA) surrounded by other WMA’s within the WC

(Breede, Olifants/doorn), (c) Berg River catchment showing locations of precipitation stations (red points), streamflow monitoring (black star), G1H013 gauge

(red-star), the modeling domain and locations of major towns, reservoirs (Berg River, Wemmershoek, Voëlvlei and Misverstand dams), the major town of Paarl in

context with the mountain ranges of the Hawequa and Hottentots Holland and headwater areas (>300M A.S.L: red polygon).

were determined by following a Hydrological Response Unit
(HRU) delineation procedure after Flügel (1995), together with a
river reach delineation after Pfennig et al. (2009). Together with
a minimum sub-basin size (7.2 km2), HRU size (0.4 km2) and a
map overlay procedure the web-based GRASS-HRU delineation
tool (Schwartze, 2008) was used to create the model HRUs and
reach segments. The climate forcings were determined through
a model regionalization approach, using local input data. Below
a description is provided of the model input data, the model
calibration/validation, the streamflow time of concentration and
the sensitivity analysis. The methodological approach focused
on the modifications made between the long-term, “dry” and
“wet” period calibrations, as well as the analysis using DYNIA
for temporal model uncertainty. For further details regarding the
HRU delineation, the regionalization procedure of the climate

data and model based calculations refer to Watson et al. (2020)
and Krause (2001). Furthermore, only a summary of the model
input data was presented, as a detailed breakdown of the model
input data is available in Watson et al. (2020, 2021a, 2022).

Model Inputs
The input data for the JAMS/J2000 model include spatial
and temporal data. The climate forcings (including all climate
variables) and streamflow measurements form the temporal data
for the model, while a Digital Elevation Model (DEM) and maps
of hydrogeology, soil and land use form the spatial data used
in the HRU delineation. The climate forcings were collected
from the World Meteorological Organization (WMO) as Global
Surface Summary of the Day (GSOD) data (NOA, 2016), the
Agricultural Research Council (ARC), the South AfricanWeather

Frontiers in Climate | www.frontiersin.org 4 June 2022 | Volume 4 | Article 859303

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Watson et al. Rainfall-Runoff Model Performance Climate Extremes

TABLE 1 | The difference in precipitation of a three-month split of the long-term

average for the years (– value shows increase, + values decrease) 1994, 1997,

2000, 2003–2004, 2011, 2015, and 2017 for the catchment.

Dry

years

Total

shortfall

(%)

MAM

(% avg)

JJA

(% avg)

SON

(% avg)

DJF

(% avg)

1994 12 31 −2 7 57

1997 18 29 0 41 46

2000 27 53 30 −5 13

2003 25 29 35 7 −13

2004 23 45 19 −4 52

2011 21 −2 28 18 50

2015 34 70 13 55 2

2017 32 70 21 0 64

Years 1994 and 1997 (red highlights major shortfalls) resulted in a low simulated Soil

Moisture deficit Index (SMDI) for the following years 1995 and 1998, while low SMDI in the

years 2000, 2003–2004, 2011, 2015, and 2017 was simulated within the respective year.

Services (SAWS) and the Department of Water Affairs and
Sanitation (DWS). The gap filled SRTM 90m (Shuttle Radar
TopographyMission), was the DEMwhich was used. A 1:250,000
geological map (Visser and Theron, 1973; Theron, 1990; CGS:
Gresse, 1997), the Harmonized World Soil Database (HWSD)
(Version 1.2) (Batjes et al., 2012) and the 2013–2014 South
African National Land-Cover dataset (GeoTerraImage, 2015)
formed the maps of hydrogeology, soil and land use which were
used. Additionally, regional literature and pedotransfer functions
(Schaap, 2002) were used to parameterize the spatial data for
the model.

Climate Forcings and Streamflow Data
Daily totals of precipitation, solar radiation, as well as daily
average windspeed, relative humidity and air temperature were
collected for the periods 1983-11-01 to 2018-12-31 (±35 years).
Additionally, daily minimum and maximum air temperature

FIGURE 3 | The number of dry days where the simulated Soil Moisture Deficit Index (SMDI) was between −2 and−4 for the periods 1984–2018 for the Berg River

catchment. Severely dry years included: 1995, 2000, and 2003/2004, where >250 dry days were simulated for parts of the catchment. The droughts of 1995, 2000,

and 2012 were influenced by prior dry years (>120 dry days). Unlike these droughts, 2003/2004 and 2015/2017 were preceded by wet years. While similarities

between the onset of the 2003/2004 drought, the 2015/2017 drought was significantly drier and possibly influenced by anthropogenic water use (after Watson et al.,

2022). Source: https://www.elsevier.com/about/policies/copyright.
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TABLE 2 | A list of the commonly used acronyms and abbreviations used for this

study.

Acronyms and abbreviations

MAP Mean Annual Precipitation

MAM March, April, May

JJA June, July, August

SON September, October, November

DJF December, January, February

NSGA-II Non-dominated Sorting Genetic Algorithm

MCA Monte-Carlo-Analysis

DYNIA Dynamic Identifiability Analysis

NSE Nash-Sutcliffe Efficiency standard squared form (E2)

LogNSE logarithmic Nash-Sutcliffe Efficiency (logE2)

pBias Relative volume error

KGE Kling-Gupta Efficiency

HRU Hydrological Response Unit

SMDI Soil Moisture deficit index

IDW Inverse Distance Weighting

MPS Middle Pore Storage

LPS Large Pore Storage

RD1 Surface runoff

RD2 Interflow (sub-surface runoff)

RG1 Fast groundwater flow (upper aquifer)

RG2 Slow groundwater flow (lower aqufier)

were required for the calculation of potential evapotranspiration
rate using calculations by Allen et al. (1998). The total number of
stations were 49 for precipitation, 16 for air temperature, 11 for
relative humidity, 14 for windspeed and six for solar radiation.
Of these stations, not all records covered the 35-year simulation,
which was important for the selection of the regionalization
approach. Although Kriging and other geostatistical approaches
result in a lower measurement bias (Borga and Vizzaccaro, 1997),
Inverse Distance Weighting (IDW) was used as it performs well
for dense station networks (Dirks et al., 1998), as well as being
more robust in terms of missing records (Ly et al., 2013; Watson
et al., 2020). To understand the relative HRU to precipitation
station distance which impacts model temporal uncertainty, a
separate modeling approach which computes the regionalization
statistics for each HRU, as well as a spatial aggregate for the entire
model run was used (Watson et al., 2020).

Daily average streamflow was available from 27 gauging
locations across the catchment. Although, of these gauges, 19 had
poor record quality and were impacted by upstream reservoirs.
While a multi-gauged calibration could be used to constrain
differences in sub-basin hydrological processes for the Berg River,
the bulk signal from the most downstream gauge was used in
this study. Records from the most downstream, relatively natural
G1H013 (Drieheuwels) 1983-11-01 to 2018-12-31 were used
as the bulk of the catchment river flow (Figure 2). Additional
reservoir outflow from the Berg River dam (G1H077 gauge)
and Wemmershoek dam (G1H080 gauge) for the periods 2006-
06-01 to 2018-10-01 were included in the model. To account
for reservoir operations, the outflow from each reservoir was
included by substituting the observed data with the simulated

streamflow for reservoir reach segments for time periods where
reservoir release data was available. For further detail and a
description on the simulation of reservoir outflow using the
JAMS/J2000 refer to Watson et al. (2022).

Spatial Parameters
Local hydrogeological literature (Conrad et al., 2004; SRK, 2009),
bulk aquifer properties (Domenico and Schwartz, 1990; Tankard
et al., 2012) and previous JAMS/J2000 models for the region
(Bugan, 2014; Treumer, 2016; Watson et al., 2018, 2019, 2020,
2021a,b, 2022) were used to determine: (1) maximum storage
capacity, (2) storage coefficient, (3) maximum aquifer thickness,
and (4) recession coefficient of the upper and lower aquifer.
The upper (primary) aquifer is a conceptual representation
of quaternary sediments, weathered material and fractured
rock aquifers and is indicative of fast groundwater within the
JAMS/J2000 model. The lower (secondary) aquifer represents the
regional groundwater contribution of shales and the basement
aquifer, as slow groundwater in JAMS/J2000.

The Rosetta lite pedotransfer function (Schaap, 2002) within
the HYDRUS model (Šimunek et al., 2006), together with the
HWSD textural characteristics [% Sand, Silt and Clay (SSC)] were
used to determine the input soil parameters for the JAMS/J2000
model. The model makes use of two soil pore storages namely;
Middle Pore Storage (MPS: 0.2–50µm) and Large Pore Storage
(LPS: >50µm). The soil textural characteristics were used to
generate soil hydraulic properties (theta vs. depth), using a
constant upper and lower head boundary, for 0, 60, and 15,000
mbar pressure ranges. The available water holding capacity
(AWC) of the soil, represented as MPS, was determined by
subtracting the soil water holding at 15,000 and 60 mbar. LPS
was determined by the subtraction of the water holding capacities
at 0 and 60 mbar. The effective water holding capacity of these
soil water storages were determined by multiplying the derived
water holding capacities by the effective soil depth from HWSD.
Two calibration parameters, AC adaption (LPS) and FC adaption
(MPS) were additionally used to scale the air capacity and AWC
of the soil according to the simulated streamflow.

The land use parameters: (1) albedo (%), (2) monthly surface
resistances assuming sufficient water supply, (3) Leaf Area Index
(LAI) for vegetational growth periods, (4) effective vegetation
heights for growth periods, (5) root depth, and (6) sealed grade
value (impervious areas) are required by the JAMS/J2000 model.
Local and international literature (Johnson, 1983; Van, 1984;
Crain, 1998; Amer and Hatfield, 2004; Munitz et al., 2017) were
used to determine the land use parameters for the respective map
land use classes. Additionally, vegetation interception (a_rain)
and linear reduction of potential evapotranspiration (soilLinRed)
calibration factors were used to scale evapotranspiration and
interception according to the simulated streamflow.

Model Calibration and Validation
In general, conceptual rainfall-runoff models can be written after
Wagener et al. (2002) as:

(

ŷt
∣

∣θ
)

= g (t|I, θ) (1)
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FIGURE 4 | A schematic of the process-oriented JAMS/J2000 distributed rainfall-runoff model (after Krause, 2002), the input data, Hydrological Response Unit

Delineation (HRU) and variables required for the base model (after Watson et al., 2020), the addition of the Soil Moisture Deficit Index (SMDI) component (after Watson

et al., 2022) used for the assessment of “wet” and “dry” years. The use of the NSGA-II (Non-dominated Sorting Genetic Algorithm: Deb et al., 2002) to refine

parameters for “wet” and “dry” years which form the upper and lower bounds (θdry; θwet ) used in the Dynamic Identifiability Analysis (DYNIA: Wagener et al., 2002).

where I is a matrix system input, t is the timestep, θ is
a parameter vector or parameter set, g(.) is a collection of
usually non-linear functions and ŷ is the simulated system
output at timestep t using parameter set θ . The objective of the
automated calibration procedure, the Non-dominated Sorting
Genetic Algorithm NSGA-II (Deb et al., 2002), was to estimate
θ that best represents the conditions of the natural system
using pre-defined parameter vector thresholds (θmax|θmin). The
evaluation of θ is performed as:

ε (t|θ) = y (t) − ŷ (t|θ) (2)

where y (t) is the observed system output. The residual, which
represents the objective function (OF) and used to assess model
performance efficiency, made use of different criteria to assess
aspects of the simulated hydrograph (Legates and McCabe, 1999;
Moriasi et al., 2007; Kundzewicz et al., 2018). The selected
efficiency criteria used by the NSGA-II included the Nash-
Sutcliffe Efficiency (NSE; Nash, 1970) in standard squared form
(E2), logarithmic form (logE2), with the relative volume error
(pBias) and the Kling-Gupta-Efficiency (KGE; Gupta et al., 2009)
used as post-hoc performance evaluation outside the optimization

process. The calibration procedure was applied three times,
10,000 model runs each, optimizing the objective function for
the different periods: 1984–1995 as a long-term series, 1995,
1998, 2000, 2003–2004, and 2011 as dry periods only and
1984–1997, 1999, 2001–2002, and 2005–2010 as wet periods
only (after Watson et al., 2022). These calibrations resulted
in the determination of θlong−term; θdry and θwet which best
represent the natural system during the selected periods. A
subsequent validation using θlong−term was performed for the
periods 1996–2004, 2009–2014, and 2015–2018 using θdry. The
validation included assessing the model’s performance prior and
post the Berg River reservoir construction and where release
data was not measured (from either of the reservoirs: 1996–
2004) and where reservoir release data was available (2009–
2014). The validation of θdry.parameter set was evaluated in
terms of the most recent drought (2015–2018). Given that there
were limited high altitude available precipitation stations, the
modeling approachwas not tailored to simulating flood extremes,
as future more frequent droughts are the most concern for the
WC. As a result, the evaluation of θwet was done using the entire
“wet” timeseries (calibration only) to contrast the parameters for
θlong−term and θdry.
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Streamflow Time of Concentration
The rate at which simulated streamflow reaches the catchment
outlet using the different parameter sets (θlong−term, θdry, and
θwet) was determined through a theoretical model procedure.
This involved modifying the input precipitation data, selecting
a long model initialization period with no precipitation events
and removing the reservoir outflow components from the model.
A timeseries which includes one large precipitation event (100
mm/day on 01-01-1985, zero values for the other timesteps)
for a single station/interpolation position was used as the input
precipitation data. To ensure that the peak flow rate could be
easily detected, a long model initialization was used (2 years-
01-01-1983) to allow the storages to stabilize. The streamflow
time of concentration was then calculated as the difference
between the time of the one event and the flow rate peak at the
catchment outlet.

Sensitivity Analysis
The Monte-Carlo-Analysis (MCA), together with the Dynamic
Identifiability Analysis (DYNIA: Wagener et al., 2002) was
used to understand the relative importance/uncertainty of the
different parameters in the simulated hydrological processes of
the Berg River using the J2000/JAMS model. The approach
utilized 5000 model runs with the Nash-Sutcliffe Efficiency (NSE;
Nash, 1970) in standard squared form (E2) and logarithmic form
(logE2) as evaluation criteria. In order to understand the relative
sensitivities of the parameters θ and ones influenced by climatic
disturbances, θdry values were compared with θwet from the
NSGA-II calibration. To reduce the overall number of parameters
and to include parameters with the most notable solution
direction differences, parameters identified as the most sensitive
in a previous study were selected for the MCA and DYNIA
(Watson et al., 2021b). These parameters likewise were presumed
to have the largest impact (most sensitive) on the simulated
streamflow time of concentration. Using a met-model approach
the MCA parameters were increased/decreased between θdry and
θwet . Furthermore, the effects of these increases/decreases on
the simulated streamflow were determined. The results from the
MCA were analyzed using DYNIA for the periods 1984–2014
with a moving window of 300 days and a fixed box count of 10
with an interval of 100.

RESULTS

To understand the factors which impact model performance
during periods of drought, these results included the simulated
and observed streamflow during dry periods (1995, 1998, 2000,
2003–2004, and 2011) using parameter sets θlong−term and θdry.
Additionally, parameters set θlong−term and θwet were used
as a comparison for wet (1984–1997, 1999, 2001–2002, and
2005–2010) periods. The different parameter sets were used
to understand conceptual rainfall-runoff relationship changes
which occur during these periods and how the model parameter
adjustments were required to capture this behavior. The analysis
of these different parameter sets included the breakdown of
the water balance, with particular reference to the storage
changes. The temporal uncertainty analysis (DYNIA), together

with the SMDI simulation of the catchment (after Watson
et al., 2022) were used to identify parameters affected by “dry”
and “wet” periods. Surface runoff as RD1, interflow as RD2,
fast groundwater flow as RG1 and slow groundwater flow as
RG2 represent the conceptual simulated flow components by
the model. Likewise, they are visualized using the hydrographs
but also spatially as a sub-catchment flow contribution in the
results. For further region-specific drought characterization refer
to Section ENVIRONMENTAL SETTING (Watson et al., 2020,
2022).

Simulated and Observed Streamflow
While the JAMS/J2000 model was run on a daily timestep and
performance evaluated using daily data, the resultant plots and
tables aggregate streamflow as daily averages each month, and as
an average three-month yearly split (DJF, MAM, JJA, SON) to
depict the model’s ability to simulate the seasonal dynamics of
the catchment. In general, and using the long-term parameters,
the model was able to achieve a E2 of 0.59, LogE2 of 0.50 and bias
of 0.15 for the dry periods compared with the long term (1984–
1995) calibration with an E2 of 0.81, LogE2 of 0.87 and bias of
−0.07 (Table 3, Figure 5). The long-term parameters generally
underestimated streamflow during DJF months by 38% with an
average simulated streamflow of 1.7 m3s−1 for January months
compared with the observed of 3.0 m3s−1 (Figure 5). MAM and
SON months were better simulated with an average difference of
10%,most noticeably with an average simulated streamflow of 7.3
m3s−1 compared with the observed of 7.3 m3s−1 for the October
months. Unlike the model under simulations for DJF, MAM and
SON months, the model tended to over simulate streamflow in
JJA by as much as 29%, highlighted by an average simulated
streamflow of 31.1 m3s−1 compared with the observed of 21.8
m3s−1. The 1996–2004 model validation using the long-term
parameters achieved a E2 of 0.77, LogE2 of 0.70 and bias of−0.01
compared with a E2 of 0.80, LogE2 of 0.82 and bias of 0.02 for the
periods 2009–2014 (Watson et al., 2022).

Using the dry parameters, the model calibration was able to
achieve a E2 of 0.77, LogE2 of 0.76 and bias of 0.03 for the dry
periods (Figure 5B). The dry parameters generally overestimated
streamflow by 5% for DJF and JJA months, while streamflow
for MAM months were overestimated by as much as 13%. The
best simulated streamflow was for February months with 3.0
m3s−1 compared with an observed of 3.0 m3s−1. The worst
months include May with a simulated streamflow of 11.0 m3s−1

compared with 8.4 m3s−1 which was observed. Unlike the model
overestimations for DJF, JJA, and MAM months, SON was
underestimated by around 9% with most noticeable deviations
for September months with a simulated streamflow of 11.7
m3s−1 compared with 14.5 m3s−1 observed. For the validation
period the “dry” parameters achieved an E2 of 0.60, while LogE2
was 0.28.

For the wet periods, the model calibration achieved a E2 of
0.74, LogE2 of 0.82 and bias of 0.01 using the wet parameters
(Figure 5B). In comparison, the long-term parameters resulted
in a E2, LogE2 and bias of 0.70, 0.78, and −0.04, respectively, for
the wet periods. In general, the wet parameters underestimated
streamflow in DJF and SON by as much as 27%, highlighted by
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TABLE 3 | The selected parameters (from the NSGA-II) used for the JAMS/J2000 model to capture the hydrological behavior of the Berg River catchment, showing the

Nash-Sutcliffe Efficiency (NSE; Nash, 1970) in standard form (E2), logarithmic form (logE2) results for the calibration (long-term 1984–1995, dry 1995, 1998, 2000,

2003–2004, and 2011, and wet 1983–1997, 1999, 2001–2002, and 2005–2010) and validation periods (1: long-term 1996–2004, 1: dry 2015–2018) (2: long-term

2009–2014).

Name of parameter Type Description of parameter Calibration

range

Parameter sets

Long term Dry Wet

AC_Adaptation Soil-water Multiplies the volume of the large pore storage of soil 0.8–1.5 1.3 1.5 0.9

FC_Adaptation Soil-water Multiplies the volume of the middle pore storage of soil 0.8–1.5 1.5 1.5 1.5

soilLinRed ET Actual ET parameter, governing the reduction of potential ET

according to the soil moisture

0–10 0.9 0.1 0.1

soilDiffMPSLPS Soil-water MPS/LPS diffusion coefficient 0–10 8.4 0.0 4.0

soilDistMPSLPS Soil-water MPS/LPS distribution coefficient for inflow 0–10 5.7 0.2 0.1

soilMaxInf Summer Soil-water The maximum infiltration capacity of soil in the summer

period

0–200 197.0 199.7 140.1

soilMaxinfWinter Soil-water The maximum infiltration capacity of soil in the winter period 0–200 119.0 198.7 195.9

soilConcRD1 Soil-water Surface runoff delay parameter 0.5–5 1.5 1.3 1.1

soilConcRD2 Soil-water Interflow delay parameter 0.5–5 4.8 5.0 1.6

soilOutLPS Soil-water Outflow parameter of the large pore storage 0–10 6.9 0.2 0.0

soilMaxPerc Soil-water Conductivity adaption parameter for leaching water to the

groundwater storage

0–20 13.6 20.0 19.9

soilLatVert Soil-water Distribution coefficient for LPS outflow to lateral and vertical flow

path

0.1–10 9.8 9.8 9.8

gwRG1RG2dist Groundwater Distribution parameter for the slow and fast groundwater runoff 0–1 0.6 0.7 0.9

gwRG1Fact Groundwater Fast groundwater (slow interflow) delay 0–10 9.0 2.5 10.0

gwRG2Fact Groundwater Base flow delay 0–10 0.0 9.0 0.0

flowrouteTA Flow routing Stream routing parameter (overall dampening of the

hydrograph)

0–20 10.5 7.9 5.4

Efficiencies Calibration E2 0–1 0.81 0.77 0.78

LogE2 0–1 0.87 0.76 0.87

Validation1 E2 0–1 0.77 0.60 n/a

LogE2 0–1 0.70 0.28 n/a

Validation2 E2 0–1 0.63 n/a

LogE2 0–1 0.56 n/a

Bold parameters form part of the temporal model uncertainty analysis (DYNIA).

an average simulated streamflow of 6.0 m3s−1 compared with
an observed of 8.2 m3s−1 for November months. MAM and JJA
streamflow tended to be over simulated by as much as 18% and
in particular for June where daily average simulated streamflow
was 55.7 m3s−1 compared with 44.7 m3s−1 observed.

Simulated Flow Components
While the hydrographs were used to compare the long-term,
dry and wet parameters for the entire modeling duration (1984–
2014), the spatial plots and contribution statistics (Table 4)
compare the dry and wet parameters with long term parameters
under both dry (Figure 6) and wet (Figure 7) periods.

The hydrograph of the long-term parameter model was
dominated by RG2 with 40% of the total flow, followed by RD1,
RG1, and RD2 with 27, 17, and 16%, respectively (Figure 5C).
August generated the largest amount of RG2 with 375 mm/year
followed by 323 mm/year of surface runoff in July. The
hydrograph of the wet parameter model was likewise dominated

by RG2 but with 42% of the total flow, followed by RD2, RD1, and
RG1 with 24, 22, and 12%, respectively. July generated the largest
amount of RG2 with 454 mm/year followed by 414 mm/year for
RG2 in August. The hydrograph of the dry parameter model was
likewise dominated by groundwater, but in the form of RG1 with
43% of the total flow, followed by RD2, RD1, and RG2 with 28,
24, and 5%, respectively. July generated the largest amount of
flow, but in the form of RD1 with 245 mm/year followed by 235
mm/year for the same month from RD2.

During the dry period, RD1 using both the long-term and dry
parameters was dominated by contributions from the catchment
headwaters (southern tip and east boundary) with only a 3%
contribution difference between the two parameter sets and a
flow of 170–320 mm/yr (Figure 6). While there was a 10%
contribution difference in RD2 between the long-term and dry
parameters, similar spatial contributions were simulated for the
dry period. Using the long-term parameters groundwater flow
was split between RG1 and RG2 as 21 and 39%, respectively for
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FIGURE 5 | (A) The long-term (1984–2018) time series of the simulated (red line) and observed streamflow (blue line) with precipitation (gray bar) and the identified dry

periods (1995, 1998, 2000, 2003–2004, and 2011) (pink bar). (B) The simulated monthly hydrograph for the long term timeseries, dry and wet periods using θlong−term,

θdry and θwet where the dry (dashed line) and wet (black line) parameters form the upper and lower simulation limits (grayed area). (C) The difference between the

simulated hydrological flow components using θlong−term, θdry and θwet where RD1 was surface runoff (blue line), RD2 was interflow (orange line), RG1 was fast

groundwater flow (gray line) and RG2 was slow groundwater flow (yellow line). θlong−term and θwet had a similar flow component breakdown with a dominance of

surface runoff and slow groundwater flow, unlike θdry where the flow components were more equally split between surface runoff and interflow with fast groundwater

the next most dominant.

the dry period. RG2 using the long-term parameters simulated
major contributions from valley areas in the south and east
boundary of the catchment. Unlike the groundwater contribution
using the long-term parameters for the dry period, when using
the dry parameters RG1 contributed 51% compared with only

2% from RG2. Furthermore, the catchment valley contributed
limited RG2 and the bulk from RG1 of 20–100 mm/yr for most
of the valley sub-catchments.

During the wet period, RD1 was simulated as a maximum
of 530 mm/yr in the catchment headwater area (Figure 7) with
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TABLE 4 | A summary of the total flow contribution and the percentage of simulated surface runoff (RD1), interflow (RD2), fast groundwater (RG1) and slow groundwater

(RG2) using the parameters θlong−term, θwet and θdry for wet periods (1983–1997, 1999, 2001–2002, and 2005–2010) and dry periods (1995, 1998, 2000, 2003–2004,

and 2011).

Parameters RD1 (mm/yr) RD2 (mm/yr) RG1 (mm/yr) RG2 (mm/yr) Total (mm/yr)

Wet periods

Long term 21,523 12,255 12,409 34,707 80,894

Contribution (%) 27 15 15 43 N/A

Wet 22,022 21,738 8,702 43,632 96,094

Contribution (%) 23 23 9 45 N/A

Dry periods

Long term 10,686 5,758 8,769 15,996 41,209

Contribution (%) 26 14 21 39 N/A

Dry 9,164 9,319 20,149 757 39,389

Contribution (%) 23 24 51 2 N/A

FIGURE 6 | The long-term (1984–2018) time series of the simulated (red line) and observed streamflow (blue line) with the yearly contribution of surface runoff (RD1),

interflow (RD2), fast groundwater (RG1) and slow groundwater (RG2) for the identified dry periods (1995, 1998, 2000, 2003–2004, and 2011) using the parameters

θlong−term and θdry with the average percentage contribution for each of the flow components. Spatially θlong−term and θdry were similar, with a dominance of flow in the

catchment headwater areas (south), but differed by the total contribution for interflow (10%), slow (30%) and fast groundwater (37%).
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FIGURE 7 | The long-term (1984–2018) time series of the simulated (red line) and observed streamflow (blue line) with the yearly contribution of surface runoff (RD1),

interflow (RD2), fast groundwater (RG1) and slow groundwater (RG2) for the identified wet periods (1983–1997, 1999, 2001–2002, and 2005–2010) using the

parameters θlong−term and θwet with the average percentage contribution for each of the flow components. Spatially θlong−term and θwet are similar, but differ by the

contribution of interflow (8%) and fast groundwater (6%).

a parameter set contribution difference of 4%. The parameter
sets produced similar representations of RG1 and RG2, differing
by 6 and 2%, respectively. Spatially valley areas contributed the
most RG2 with between 35 and 100 mm/yr for both the long-
term and wet parameter sets. RD2 was the major difference in
the simulated flow components between the long-term and wet
parameter sets with an 8% difference and between 2 and 20
mm/yr flow nearest the outlet compared with 0–5 mm/yr flow
for the long-term parameters.

Simulated Water Balances and Time of
Concentration
Overall, simulated streamflow as a percentage of the total
water balance (including storage changes) was simulated as
15, 13, and 16%, respectively for the long-term, dry and wet
parameter sets for the periods 1984–2014 (Figure 8). Simulated

storage, which was determined as the difference between
precipitation, evapotranspiration and streamflow, was between
−177 (loss) and 79 (gain) mm/yr for the wet parameter set,
compared with −43 to 23 mm/yr and −37 to 20 mm/yr for
the long-term and dry parameter set, respectively. For the
dry years 1995 and 1998, both long-term and dry parameter
sets simulated a storage gain, with an average of 13 and
11 mm/yr respectfully. The dry years 2000, 2003–2004, and
2011 were simulated as a storage loss, with an average of
−4 and −2 mm/yr using the long-term and dry parameter
sets. Wet years, such as 1996, 2001, and 2002 were simulated
with an storage loss of 117 mm/yr using the wet parameters
compared with 2 mm/yr for the long-term parameters. The
resultant effect of the dry, wet and long-term parameters
was a streamflow time of concentration (TC) of 4, 2, and 5
days, respectively.
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FIGURE 8 | The simulated water balance (mm/yr) for the periods 1984–2014 (including 1 year of initialization 1983 to show storage stabilization), which includes

yearly precipitation (P: blue bar), evapotranspiration (ET: red bar), streamflow (Q: light blue bar) and storage (1S: gray bar) using the (A) θlong−term, (B) θdry , and (C) θwet

parameter sets. (B) θlong−term and θwet differ with simulated storage (55 mm/yr), but was similar in terms of ET (12 mm/yr). θlong−term and θdry were similar in terms of

simulated storage (1 mm/yr) but differ in terms of simulated ET (27 mm/yr).

Temporal Model Uncertainty
The deviation between the upper and lower bounds for the
simulation period (1984–2014) and changes in the “best”
parameter value (dark gray pixels) illustrate parameters which
impact the temporal uncertainty of the model (Figure 9). The
impact of the baseflow delay parameter (gwRG2Fact) and the
maximum infiltration capacity of the soil (soilMaxInfSummer)
was limited, as the “best” value for gwRG2Fact was constant
at <0.02 and 155 for the soilMaxInfSummer parameter (but
had limited sensitivity). During the periods 1995–2005, the
surface runoff delay parameter (soilConcRD2) was stable and
“best” around the maximum value of 4.8. For the same period,
scaling of air capacity (AC_Adaptation) had likewise limited
temporal uncertainty with a “best” value of 1.45, but uncertainty
increased during the transition between wet and dry periods
(Figure 10). The fast groundwater delay parameter (gwRG1Fact)
during the periods 1995–2005 was temporally uncertain during
the transition between dry and wet periods, but mostly tended
toward a “best” value of 3. The streamflow routing parameter
which dampens the overall hydrograph (flowrouteTA) for the
periods 1995–2005 tended around the “best” value of 7.8, but
was more optimal at 5.5 during the wet periods between 2001
and 2003 (Figure 9). For the periods 1984–1994 and 2005–
2010, which were mainly wet, AC_Adaptation, gwRG1Fact and
SoilConcRD2 the optimal values varied between the upper
and lower bounds. The drought of 2011 resulted in temporal
uncertainty in AC_Adaptation, gwRG1Fact, SoilConcRD2 and
wet periods of 2012–2014 resulted in the “best” value of
flowrouteTA tending to 5.5 compared with prior values of 7.8.

DISCUSSION

The application of conceptual rainfall-runoff models calibrated
under relatively common normal, i.e., well understood,
climatic conditions can significantly affect the interpretation
of hydrological responses both observed under climate
extreme conditions, and their projection using future climate
scenarios. Such application risks the advancement of mal-
adaptive responses to climate change, and inappropriate

allocation of scarce resources. Given the risk that climate
change poses to the Western Cape and much of semi-
arid Southern Africa, the aim of this paper was to assess
model related performance and uncertainty under extreme
climate conditions, referred to as “wet” and “dry” periods
and the applicability of conceptual rainfall-runoff models for
future climate change-based assessments in Africa. Natural
vegetation cover changes in the Berg River were estimated
to have increased by more than 14% from 1986/7 to 2007
(Stuckenberg et al., 2012), which impacts streamflow and
temporal model uncertainty, but were not considered.
Furthermore, irrigation which was estimated as 5% of the
total catchment area (van Niekerk et al., 2018) did not form
part of the modeling approach, due to limitations in the
current water use estimates for different vegetation types in
the catchment.

A shift by the agricultural sector and the increase in
domestic groundwater use has been suggested to aggravate the
drought conditions in the Western Cape of South Africa and
the meteorological and agricultural droughts progression to
more severe long-term forms (hydrological and groundwater
drought) (Watson et al., 2022). This was supported by
local aquifer level measurements, satellite-based groundwater
thickness reductions (Gravity Recovery and Climate Experiment:
GRACE) and hydrological change drawn from rainfall-runoff
models. While, the presumed increase in groundwater use
was supported by a multitude of factors, current rainfall-
runoff models assume stable storage conditions and the signal
to noise ratio (Xue et al., 2013) during dry periods affects
model performance and uncertainty. This approach uses the
JAMS/J2000 model as a metric of other conceptual rainfall-
runoff models, but large differences in the representation of
hydrological processes have even been reported between different
conceptual rainfall-runoff models where the signal to noise
ratio is low (Arnaud et al., 2011; Hattermann et al., 2017;
Eeckman et al., 2019). Furthermore, it is likely that more
physically based models, such as SWAT (Arnold et al., 1998)
and TOKAPI (Ciarapica and Todini, 2002) could respond
differently to climatic extremes based on model structures,
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FIGURE 9 | The Dynamic Identifiability Analysis (DYNIA: Wagener et al., 2002) using the Nash–Sutcliffe (NSE; Nash, 1970) efficiency in standard form (E2) for the

selected parameters showing the upper and lower parameter bounds of the Monte Carlo Analysis (MCA: red line). The soil-water parameters include scaling of air

capacity (AC_Adaption), the Surface runoff delay parameter (SoilConcRD1) and the Maximum infiltration rate during summer parameter (soilMaxInfSummer).

Groundwater parameters include Fast groundwater delay (gwRG1Fact), Slow groundwater delay (gwRG2Fact). The routing parameters include the Surface runoff

delay parameter (SoilConcRD1), Fast groundwater delay (gwRG1Fact), Slow groundwater delay (gwRG2Fact) and the stream routing parameter (FlowrouteTA).

Parameters which have temporal uncertainty show a variability in the upper and lower parameter bounds and where the “best” parameter sets (gray blocks) varies

across the simulated time series. These parameters include the AC_Adaption, gwRG1Fact, SoilConcRD1 and FlowrouteTA.

FIGURE 10 | The precipitation to HRU distance in the catchment headwater (black line) and for the gauged portion (gray line), simulated (red line) and observed

streamflow (blue line), the simulated Soil Moisture Deficit Index (black dashed line) (after Watson et al., 2022). The upper and lower bounds of the Dynamic

Identifiability Analysis (DYNIA) using the Nash–Sutcliffe (NSE; Nash, 1970) efficiency in standard form (E2) for the selected parameters showing temporal parameter

uncertainty, considering the station to HRU distance, simulated SMDI and the streamflow for different “dry” and “wet” periods. The alignment of these three datasets

show three periods of similar model uncertainty from 1984–1994, 1995–2005, and 2006–2014.
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but also when considering additional measures of hydrological
processes (soil moisture, evapotranspiration, deep percolation) to
validate process simulations.

Impact of Climate Extremes on Model
Uncertainty
In a related study for the Berg River, Watson et al. (2022)
illustrated that the performance of the JAMS/J2000 model
varied for different “dry” and “wet” years and where a “good”
simulation (NSE > 0.6: Waters, 2014), using a single long term
parameter set, was possible for a yearly meteorological shortfall
of 28%, which also corresponded to a 53% reduction in MAM
precipitation. After this threshold was exceeded, model related
performance dropped to an NSE of 0.59 in 2000, and more
significantly to 0.26 (Watson et al., 2022) for the years 2015–
2017 (although groundwater abstractions were not considered
by the model), where the meteorological shortfall was 32–34%
(70% reduction in MAM precipitation). As dry periods lower
the signal to noise ratio and the water balance becomes tighter,
different parameter combinations become better suited and
changes in simulated flow components can often be required.
Furthermore, seasonal shift such as the reduction of precipitation
for MAM, which reduces soil-moisture prior to winter (JJA),
impacts streamflow dynamics and peak flow. Most noticeable
were changes to the time of concentration, where TC reduced
by 1 day between the different dry and long-term parameters.
Furthermore, there were changes to the overall contribution
of fast and slow groundwater, but these flow components are
more conceptual than driven by physical data. The overall
outcome on the simulated hydrology using the long-term, “dry”
and “wet” parameters is not unexpected given that this study
utilizes a single downstream calibration. River flows in the
Berg River catchment are particularly dependant on headwater
contributions, and while these areas were highlighted as the most
affected in Watson et al. (2022), the headwater gauging records
show the largest amount of change and a concern for regional
water security.

The temporal uncertainty analysis DYNIA showed parameter
sensitivity changes during different “dry” and “wet” periods
(Figures 8, 9). In particular, the scaling of air capacity
(AC_adaptation), a highly sensitive parameter which can affect
the simulation of different flow components and TC, showed
uncertainty after 2004 and remains stationary past the drought
of 2011 where SMDI was between −0.5 and 0.5. Some of this
uncertainty, can be attributed to the construction of the Berg
River dam in 2004 which also affected the temporal uncertainty of
the simulated interflow rate (soilConcRD2) and not represented
by SMDI. The use of the reservoir component, which substitutes
simulated streamflow with reservoir outflow, could further affect
model parameter sensitivity after 2006. While there was still a
large amount of noise using DYNIA for the periods 1984–1994,
where SMDI was between 0.3 and −0.5, the shift between “dry”
to “wet” conditions or vice versa, resulted in the largest amount
of parameter uncertainty for the analysis period. From our study
we conclude that links between temporal model uncertainty
and meteorological/agricultural drought indices can improve

the understanding of model capabilities in the light of future
non-stationary climate conditions, although data availability and
its variability influences model applications in Southern Africa.
Furthermore, reliable forecasting systems at seasonal and sub-
seasonal scale require the integration of hydrological modeling
tools with other hydro-climatic indicators and tracers to consider
the associated system change during climatic instabilities.

Development of Dynamic Parameter
Rainfall-Runoff Models
The number of parameters with which a model simulates
hydrological behavior is an important consideration during
model development. Too few parameters result in poor seasonal
and sub-seasonal simulations, while too many parameters result
in model overfitting (e.g., Whittaker et al., 2010). The use of a set
of “dry” parameters improved the model’s performance for the
dry analysis period (E2 of 0.59–0.76 and LogE2 of 0.50–0.78), as
well as the 2015–2018 validation period with an improvement of
E2 from 0.26 to 0.60. The availability and variability of climate
data impacted the predictions made after 2014 (Figure 10),
where the precipitation station to HRU distance increase by
5 km (15–20 km). Anthropogenic groundwater extraction may
have affected the residual between simulated and observed low
flows, although logE2 improved from 0.17 to 0.28 for the periods
2015–2018 when switching from the long-term to the dry period
parameters. While the use of “wet” parameters also improved
model performance for the wet periods (E2 0.70–0.74 and LogE2
of 0.78–0.82), these improvements are less significant for semi-
arid WC. The resultant effect is that for future predictions in
Mediterranean WC, a “dry” set of parameters are recommended
for periods where meteorological shortfalls exceed 28% per year
and where MAM precipitation is reduced by more than 50%. As
a result, a dynamic parameter model, which may use drought
indices, such as the Standardized Precipitation Index (SPI) or
Standardized Precipitation Evapotranspiration Index (SPEI), as
triggers has the potential to better account for climate extremes.
While a “wet” parameter set is not recommended in the context
of semi-arid Southern Africa, it might be more applicable for
tropical regions and where a shift in monsoons are expected.
Although this study focuses on the use of different parameter sets
for climatic extremes, it should be noted that additional effort
can still be placed in selecting a single more robust parameter
set. For example, the long-term and “wet” parameters have a
higher groundwater contribution than the “dry” parameters and
additional metrics which validate flow component proportioning
could be used to refine solutions generated by the NSGA-II.
Likewise, multi-site/gauged calibrations have the potential to
reduce the impacts of climatic extremes on model performance.
These added modeling requirements highlight the need for
dynamic and flexible modeling systems, which will be required in
simulating future climatic extremes and this was demonstrated
by these results.

Implications for Water Management
Climate change will impact water availability and in turn likely
cause changes in land use and increases in anthropogenic
water use. These changes have already occurred within the
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2015–2018 drought for the WC and understanding the impacts
to the water cycle components and the feedback loops of
different hydrological processes is important and ongoing. As
groundwater becomes a resource with which municipalities
and water management agencies use to reduce the risk of
climate change, understanding the cause-and-effect relationship
between groundwater recharge and changes in precipitation
seasonality is important for the management of this resource in a
sustainable manner.

Projections of future hydrological conditions, built off
processed based distributed modeling, are needed by a variety
of stakeholders, who oversee the management of water
resources, particularly in the context of catchment water
management agencies and municipalities. As the results from
hydrological modeling systems become increasingly more
important for water management under climate change, there
is a growing need for cross sectoral management including
dam management, agricultural and mining activities as well
as domestic and industry water consumption for water yield
planning. For assessing the impact of increasing climate extremes
as anticipated in Mediterranean South Africa, this requires
modeling approaches which are well-understood and verified
in terms of their performance, uncertainty, limitations and
potential. Additionally, the importance of continuing scientific
monitoring and the development of new approaches/tools are
required to reduce hydrological projection uncertainty under
climatic change. In particular for the WC, understanding the
increased groundwater consumption and the quantification of
these amounts are required if future model predictions are to
be useable.

CONCLUSION

The ability to simulate catchment hydrological behavior is
dependent on data availability and variability, as well as the
model calibration and validation approach. Predictions of hydro-
meteorological extremes, such as droughts, are often not well
simulated when observed infrequently within the calibration
period, but crucial for the assessment of climate and hydrological
risk and their current and future management. As the occurrence
and duration of these extremes are likely to increase in the
future in Mediterranean South Africa, model performance,
uncertainty and representation need to be assessed during
different climatic extremes. In our study, we have shown that a
temporal uncertainty analysis provides the means to assess model
parameters which are impacted by different “wet” and “dry”
periods. For JAMS/J2000 model of the Berg River catchment,

soil-water storage, timing of interflow, and groundwater flow, as
well as the overall dampening of the simulated hydrograph were
the parameters most affected by climatic extremes. Furthermore,
the predicted time of streamflow concentration shifted when
using different “dry” and “wet” period parameters, affecting the
simulated peak flow. Although long-term model simulations are
required for climate change predictions, a switch between “dry”
and long-term simulations are recommended for future model
applications in the region. Furthermore, long-term historical
calibrations are unlikely to have the capabilities to simulate
future hydrological flows and further model developments are
still required for parameters affected by climate variabilities.
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