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Abstract

Human cancers represent complex structures, which display substantial inter- and intratumor heterogeneity in their
genetic expression and phenotypic features. However, cancers usually exhibit characteristic structural, physiologic,
and molecular features and display specific biological capabilities named hallmarks. Many of these tumor traits are
imageable through different imaging techniques. Imaging is able to spatially map key cancer features and tumor
heterogeneity improving tumor diagnosis, characterization, and management. This paper aims to summarize the
current and emerging applications of imaging in tumor biology assessment.
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Key points

� Tumors demonstrate substantial inter- and intratumor

heterogeneity in their biological features

� Imaging techniques may improve the assessment of

tumor-specific characteristics in clinical practice.

� Functional and molecular imaging techniques may

depict tumor heterogeneity.

Introduction
Imaging techniques have emerged as exceptionally power-

ful, versatile, and precise tools for assessing relevant tumor

characteristics. Cancers usually display several structural,

physiologic, and molecular changes and common acquired

biological capabilities that can be evaluated with imaging

[1, 2]. Besides, tumors demonstrate substantial inter- and

intratumor heterogeneity in their biological features [3]. A

modern personalized oncologic approach requires a deeper

understanding of these cancer traits for being implemented

in patient care. Functional-molecular imaging (FMI) infor-

mation in addition to morphologic/anatomical changes

can simultaneously assess a multitude of biological cancer-

related processes, improving our diagnostic accuracy and

the assessment of response to therapy [4]. Different

imaging techniques are useful for this role, including

dynamic contrast-enhanced MRI (DCE-MRI), DCE-

ultrasound (US), dynamic susceptibility contrast-

enhanced MRI (DSC-MRI), perfusion CT (PCT),

diffusion-weighted imaging (DWI), and magnetic reso-

nance spectroscopy (MRS) and spectroscopic imaging

(MRSI), arterial spin-labeling (ASL), blood oxygenation

level-dependent MR imaging (BOLD-MRI), elastography,

positron emission tomography (PET), or single-photon

emission computed tomography (SPECT) imaging (Fig. 1)

(Additional file 1: Table S1). These imaging techniques

enable the evaluation of unseen tumor characteristics by

conventional techniques improving tumor diagnosis and

management [4, 5]. In this ssetting, the biological and

physiological correlations of imaging parameters (which

depend on tumor type, imaging technique, and technical

questions) need to be established and the limitations and

possible pitfalls of every imaging technique must be

asessed. This paper aims to summarize the role of imaging

in the assessment of tumor biology.

Imaging for the evaluation of tumor biology
Imaging techniques are increasingly being used to perform

a noninvasive assessment of tumor biology in clinical

practice. Imaging offers an adequate combination of
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anatomic, physiologic, and molecular information for

evaluating cancer phenotype in vivo at different levels [6].

Tumor macrostructural characteristics on imaging
Tumors are heterogeneous in nature and during malig-

nant transformation, their structural features change

substantially at different levels. Morphologic and struc-

tural differences between tumors are sometimes apparent

and classical subjective descriptors of these characteristics

(e.g., spiculated margin) are common. Tumor size and

volume are usually important features in tumor eva-

luation and may have prognostic value. However, diffe-

rent imaging techniques may improve the assessment

of tumor structure.

Tumor morphology

The morphologic phenotype of neoplasms is widely va-

riable; however, the presence of morphological features

typical of benign, borderline, or malignant tumors in-

creased the level of diagnostic confidence of radiologists.

In this setting, different imaging-based classification systems

(reporting and data system or -RADS) have been established

to standardize imaging reporting and data collection in

different organs, such as breast (BI-RADS), liver (LI-RADS),

lung (Lu-RADS), thyroid (TI-RADS), etc. [7–10]. These

-RADS lexicons include different morphological features

(margin, shape, size, internal pattern, etc.) and provide

an estimated risk of malignancy. So, well-defined tumor

margins are considered an indicator of less infiltrative

behavior and, thus, lower aggressiveness. Besides, a

tumor morphologic phenotype may be associated to a

pathologic entity. For instance, cystic change in renal

cell carcinoma (RCC) has been mostly strongly asso-

ciated with the clear cell subtype and most recent data

indicate an overall favorable prognosis for the broad

spectrum of predominantly cystic RCCs [11]. Finally,

imaging features may be also associated to specific mu-

tations. In the case of clear cell RCC, well-defined tumor

margins were significantly more common among clear cell

RCCs with loss of von Hippel Lindau (VHL) gene function

[12]. The improvements in the computing capabilities of

radiologic equipment have allowed the development of

volume-based tumor measurements, which have demon-

strated to be more sensitive to tumor changes, more re-

producible and reliable than uni- or bi- dimensional

measurements [13]. Tumor volume has a prognostic value

in many tumor types and may improve tumor response

evaluation [14]. Finally, tumor growth pattern also seems

to be a prognostic significance in terms of overall survival.

For example, the presence of a fibrous capsule and the

characteristics of the tumor-liver interface are prognostic-

ally relevant in colorectal liver metastases [15].

Fig. 1 Main imaging techniques in the evaluation of tumor biology and microenvinroment
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Biophysical characteristics of tumors: stiffness and

elasticity

Solid tumors are typically stiffer than the surrounding

healthy tissue. This feature is evaluated in clinical prac-

tice by palpation but elastographic imaging techniques

can also assess the elastic properties and stiffness of

tissues noninvasively.

Elastography provides knowledge about internal strains

induced in a soft material undergoing an axial stress.

There are two main imaging techniques for performing

elastography: US and MRI [16, 17].

Technical features

The basic principle of elastography is to image the

propagation of mechanical waves within the tissue.

Stiffness, a biomechanical property of tissue, represents

its ability to resist deformation when subjected to a force.

Elastographic techniques evaluate these properties by a se-

quential process with three basic steps: (a) excitation

(stress) based on the application of mechanical waves for

deforming the tissue; (b) evaluating the tissue response

(strain); and (c) assessment of stiffness and

stiffness-related parameters displayed as quantitative para-

metric maps (elastograms) [16, 17]. Main elastographic

techniques are based on the evaluation of the shear waves,

which cause the oscillation of the particles of the medium

at a right angle to the direction of propagation.

Shear-wave speed is related to tissue stiffness and shows a

great variation depending on the structure and state of tis-

sue. Shear waves travel faster in stiff (tumor, inflamed, or

fibrotic) tissues and slower in soft (normal or fatty) tissues.

Recently, a quantitative estimation of tissue stiffness with-

out using mechanical vibrations (“virtual” elastography)

has been reported. This approach is based on the intra-

voxel incoherent motion (IVIM) contrast, which can be

converted quantitatively into shear modulus [18].

Biological bases of elastography

Cancer alters tissue mechanical properties. Solid tumors

are typically stiffer than the surrounding healthy tissue.

Several tumor characteristics may explain this feature,

including high cellularity, increased tumor stroma, and

increased interstitial pressure [17].

Interpretation guidelines

The results of an elastographic exam are usually dis-

played by an elastogram, including an image represent-

ing the stiffnesses of the tissues superimposing on a

cross-sectional slice of the anatomy. Interpretation of ac-

quired images is based on different method of analysis

[16, 17]: (1) qualitative analysis including lesion com-

parison to a surrounding “normal” tissue as a reference,

(2) semiquantitative methods based on strain ratios

between different tissues included within the selected re-

gion of interest (ROI), and (3) quantitative parameters

with parametric maps.

Clinical value

Sonoelastography enables a more accurate evaluation of

the nature of superficial lesions situated in breast, thy-

roid, testicles, or lymph nodes (LNs). Elastography can

be also performed under endoscopic ultrasound (EUS)

guidance (Fig. 2). Main current clinical indications of

EUS elastography are solid pancreatic lesions, submuco-

sal gastrointestinal masses, and LNs. EUS elastography is

a reliable technique for the differentiation of solid pan-

creatic masses with a sensitivity of 95–97% and a specifi-

city of 67–76%, respectively [19]. In the case of the

accuracy of EUS-guided elastography for the differential

diagnosis of benign and malignant LNs, Xu et al. found

a sensitivity of 88% and a specificity of 85% [20]. Emer-

ging applications of EUs include prostate cancer (PCa)

and rectal tumors. Elastography has been demonstrated

to be superior to transrectal EUS alone in PCa, improv-

ing the specificity of prostate biopsies.

On its part, MRE has been tested in different tumor lo-

cations, including breast, prostate, liver, pancreas, or brain

suggesting that this technique may improve tumor detec-

tion and characterization [17]. Preliminary studies with

different therapies have showed an early decrease in tumor

stiffness and viscoelasticity (with no change in tumor ap-

parent tumor diffusion coefficient [ADC]), following treat-

ment, suggesting that MRE may be more sensitive than

DWI to early tumor response to therapy [17].

Tumor microstructure and composition on
imaging
Clinical imaging may provide information about micro-

structure, organization, composition, and histological

features in tumors [21–26]. Different imaging techniques

may be useful for this, including diffusion and

relaxation-weighted MRI, magnetization transfer (MT)

techniques, and spectral CT.

Diffusion-weighted imaging

Diffusion is a fundamental imaging technique that allows

a noninvasive assessment of tissue microstructure [21,

24, 25, 27–34].

Technical features

The extent of water molecule motion in tissues can be im-

aged by applying balanced gradients placed symmetrically

about a fat-suppressed T2-weighted sequence. The

weighting of the applied diffusion gradients is indicated

by their b value (measured in s/mm2), which depends

on the amplitude and duration of the gradients and the

time between them. In the absence of water molecules
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Fig. 2 (See legend on next page.)
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motion, the phase shifts due to the two gradient pulses

will cancel without a significant change in the mea-

sured signal intensity (SI). By comparison, in the case

of moving water molecules, their signal will not be

completely rephased by the second gradient, thus lead-

ing to a signal loss. Recent technological advances in

diffusion-weighted imaging (DWI) acquisition have facili-

tated the acquisition of multiple b values, including high

b values (> 1000 s/mm2), in clinical practice. Besides,

non-Gaussian analytic models of DWI (IVIM, diffu-

sion kurtosis imaging [DKI], stretched-exponential

model [SEM]) and vascular, extracellular, and re-

stricted diffusion for cytometry in tumors (VERDICT)

were proposed to more closely reflect the distribution

of physiologic and pathologic characteristics of tissues,

including cellularity, microcirculation, and heterogeneity

(Fig. 3). The IVIM model assumes a bi-exponential

decay of signal with increased b values. At low b

values (< 200 s/mm2), there is a deviation from the

mono-exponential decay, which is due to incoherent

motions of water molecules inside the microvascula-

ture (Fig. 4) [35, 36]. On its part, DKI model analyzes

the deviation of tissue diffusion from a Gaussian pat-

tern at ultra-high b values (typically > 1000 s/mm2)

[37]. SEM evaluates the effects of sub-voxel hetero-

geneity in diffusion. Finally, VERDICT couples DWI to

(See figure on previous page.)
Fig. 2 Rectal gastrointestinal stromal tumor (GIST) (white asterisk) in a 68-year-old man. a Optical colonoscopic image showed a rectal tumor
(arrow). b Endorectal ultrasonographic (US) image (right) with strain elastogram (left) showed that tumor (asterisk) appeared harder (more blue)
than the reference tissue on the elastogram. c A cut surface of the surgical specimen revealed a well-defined homogeneous aspect of the
submucosal mass (GIST)

Fig. 3 A 69-year-old man with Gleason 4 + 3 prostate cancer (white arrows). Diffusion signal evaluated using different models of analysis:
mono-exponential (a) intravoxel incoherent exponential model (IVIM) (b), diffusion kurtosis imaging (DKI) (c), and diffusion tensor
imaging (DTI) (d). DWI can offer multiple parameters depending on the model of analysis, including ADC, perfusion fraction (f), or
apparent kurtosis (Kapp) with a different biological meaning. Biological and physiological correlation of parameters obtained from
analysis is not entirely clear and their clinical value may depend on tumor type
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a mathematical model. Prelimminary data suggest that

it may allow the assessment of tumor features such as

cell size, vascular volume fraction, and intra- and

extracellular volume fractions [24, 25].

Biological bases of DWI

Diffusion measures the random (Brownian) motion of

water molecules at microscopic level. However, diffusion

is not free in tissues and is modified by interactions

Fig. 4 Rectal cancer in a 65-year-old woman. a Axial T2-weighted image demonstrated a rectal mass deeply extending to the mesorectal fat
(white arrow). b Perfusion fraction (f), apparent kurtosis diffusion (Kapp), and the curve of signal intensity decay in diffusion pretherapy. Note that
this curve showed a marked attenuation of signal intensity at low b values (red arrow) due to the influence of tumor perfusion on diffusion. c
Following therapy, there are reduction of both f and Kapp and dissapearance of the fast attenuation of the signal intensity at low b values,
related to tumor response with reducer perfusion on IVIM model
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with cellular packing, intracellular organelles, mem-

branes, and macromolecules and by macroscopic

water movements (e.g., within blood vessels and glan-

dular ducts). The use of DWI in tumor evaluation is

based on the assumption that malignant tumors are usu-

ally more cellular and have a more complex

extravascular-extracellular space than benign tumors/nor-

mal tissues, causing a lower attenuation of the signal in

tumors with increased b values [21, 28–31]. As a general

rule, water diffusion decrease with the increased cellularity

and cell size (24b). Negative correlations between the

ADC values and cellularity or proliferation have been

reported in many tumor types; though, there were no clear

correlations in others [32, 33]. It must be also considered

that molecular mobility is anisotropic, not equal for all

directions. Based on this, diffusion tensor imaging (DTI)

may describe the magnitude, degree, and orientation of

diffusion anisotropy and may estimate the tissular micro-

structure. Characterizing the non-Gaussian diffusion MRI

signal behavior may also provide valuable information on

tissue structure and function. IVIM model allows the sep-

aration of pure diffusion characteristics from pseudodiffu-

sion and perfusion features. IVIM-derived parameters

include the pure molecular diffusion coefficient (D), the

perfusion-related diffusion coefficient (D*), the perfusion

fraction (f), and the relative perfusion (fD*) (Fig. 4). The

biological meaning of these parameters is not entirely

clear. However, the f values have been suggested to be

related to the blood volume (BV) and have been signifi-

cantly correlated with the percentage of arterial enhance-

ment in different tumor types [34–36]. On its part, D* and

fD* may hold information on blood speed and on the

quantity of blood flowing through a unit tissue per unit

time, respectively [34]. Most studies have also found a fair

to good correlation between f and histological surrogate

markers of angiogenesis, such as the microvessel density

(MVD), and parameters derived from perfusion imaging

techniques [34–36]. DKI provides an additional model of

diffusion analysis at higher b values (> 1000 s/mm2), in

which the signal contribution of water from the extra-

cellular space is substantially reduced, making the dif-

fusion measurement more sensitive to the motion of

water in the intracellular compartment. However, in

the case of DKI- and SEM-derived metrics (e.g., ap-

parent kurtosis [Kapp] or the stretching parameter

[α]), these parameters do not have a simple biological

interpretation; although presumably may reflect tissular

heterogeneity (Fig. 4) [37].

Fig. 5 A 68-year-old man with lung adenocarcinoma. a The whole-body diffusion weighted MR image (b = 900 s/mm2) depicted a metastatic
deposit in the sacrum (white arrow). b Coronal reformatted T1W images obtained using the Dixon technique water only (WATER) (left), fat only
(FAT) (middle), and fat-fraction in colored scale (right) evidenced not fat content and increased water in the metastatic lesion (white arrow)
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Interpretation guidelines

– Qualitative evaluation

The diffusion signal alterations serve as an excellent

qualitative tool, providing an additional contrast me-

chanism to supplement routine conventional sequences.

Areas retaining high SI on high b values images suggest

highly cellular tissues, such as tumors [28–31] (Fig. 5).

This feature may be a useful clinical tool. A recent

meta-analysis reported that visual assessment of tumor

diffusion might be more accurate than ROI measure-

ments of ADC for PCa detection [38]. However, high

signal intensities on DWI are not always reliable indica-

tors of increased cellularity, and high b values images,

ADC maps, and co-registered anatomical images should

always be evaluated together (Table 1).

– Quantitative evaluation

The ADC has served as a quantitative biomarker for the

evaluation of diffusion in clinical practice. Calculation of

an ADC value is typically performed utilizing a mono-

exponential fit of the diffusion signal at different b values.

There is a linear decay of the natural logarithmic diffusion

SI as the b value is increased. The slope of this line is the

ADC value (units 10−3 mm2/s). Malignant lesions usually

have lower ADC values compared to surrounding normal

tissue, edema, and benign tumors [28–31]. Unfortunately,

there is considerable disparity in the published ADC

values across different anatomies, vendors, or technical

parameters of the acquisition causing that there are no

unique cut-off ADC values that distinguish cancer from

normal tissues. Besides, both well-differentiated tumors

and necrotic poorly differentiated tumors may show high

ADC values and some normal tissues (including endome-

trium, bowel mucosa, testes, and normal LNs and nerves)

may show increased SI on high b value [28–31]. Finally,

non-Gaussian models yield several quantitative parame-

ters that may improve diffusion assessment. Malignant

lesions usually present high values of f and Kapp and lower

values of α [27, 34, 37].

Clinical value

DWI has shown clinical value for tumor detection, diag-

nosis and grading, staging, prognosis, therapy monitor-

ing, detection of tumor relapsing, and assessment of

patient’s outcome [27, 31, 34, 39–44]. Malignant tumors

are generally more cellular than benign tissues and show

lower ADC values. However, false positive results may

occur with abscesses and infective processes and false

negatives may happen with cystic, necrotic lesions and

in well-differentiated neoplasms (particularly adenocar-

cinomas) [27–30]. DWI has also demonstrated to be an

effective tool for evaluating tumor response to therapies

[40–44]. Successful treatment is usually reflected by in-

creases in ADC values. However, it depends on the

mechanism of action of therapy given. Transient de-

creases in ADC can also be observed in patients treated

with anti-VEGF therapies in brain tumors [43, 44]. This

finding appears to be related to cellular swelling and re-

ductions in tumor BF, extracellular space, and vasogenic

edema. Accurate imaging response evaluations of onco-

logic patients are sometimes notoriously difficult with

conventional imaging techniques, especially in the case of

bone lesions. In this setting, whole-body (WB)-DWI MRI

has shown clinical value for the assessment of therapeutic

response in patients with metastatic bone disease, multiple

myeloma, and lymphoma [41, 43–54] (Figs. 6 and 7).

Finally, regarding the prognostic/predictive value of ADC

in tumor assessment, lower ADC values are usually asso-

ciated to patients with poor outcome; although are corre-

lated to a favorable response to most treatment options.

IVIM represents an alternative to perfusion contrast-

enhanced techniques without the use of contrast agents

in oncologic imaging. IVIM-metrics (mainly f ) have

demonstrated to be useful for tumor diagnosis and

characterization in liver, pancreatic, breast, H&N, brain,

renal, cervical, and rectal tumors [35, 55]. IVIM has also

shown promising results for monitoring therapy response

Table 1 Interpretation of tumor diffusion-weighted images

Signal intensity
on high b-value
images (b800–
b1000)

Relative value on
apparent diffusion
coefficient (ADC)
maps

Signal
intensity on
T2-weighted
images

Interpretation

High Low Intermediate Generally, high
cellularity tumor
Coagulative
necrosis
Abscess
Rarely high
protein content

High High High T2-shine through
(often
proteinaceous
fluid)

Low Low Low Fibrous tissue
with low water
content +/-
viable tumor

Low High High Fluid
Liquefactive
necrosis
Lower cellularity/
grade tumor
Glandular tissue

Low High High Vasogenic edema
(T2-wash out)

Low Low Variable Hemorrhagic
content (T2-black
out)
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(especially antiangiogenic drugs or vascular targeting

agents) in clinical practice [21, 35, 55].

Clinical applications of kurtosis have been mainly fo-

cused on prostate, breast, H&N, lung, renal, and brain

tumors. Published data suggests that DKI may provide

additional information and may improve tumor diagno-

sis and characterization compared with conventional dif-

fusion parameters in these tumor types [37]. Up to now,

SEM has been used in a limited way in the evaluation of

tumors. Preliminary data of the use of this technique

have been published in prostate, breast, cervical, rectal,

ovarian, and H&N cancers and gliomas [37].

Tissular composition and imaging

Imaging (specially MRI) may allow the depiction of

tumor composition. Several tumor types show character-

istic imaging findings. For instance, melanin (a paramag-

netic substance) shortens the T1 relaxation time, making

Fig. 6 A 52-year-old woman with metastatic breast cancer treated with chemotherapy (a). Whole body diffusion-weighted inverted gray-scale
maximun intensity projection (MIP) of b = 900 s/mm2 images superimposing the ADC values associated with each voxel in color scale before (left)
and after one cycle of therapy (right). Red colored voxels represent untreated disease or those with no-detectable response. Thus, yellow voxels
represent regions “likely” to be responding. Green colored voxels have ADC values ≥ 1500 μm2/s representing voxels that are “highly likely” to be
responding with tumor cell kill. Tumor evaluation showed a great change in ADC values (predominantly green voxels with ADC values ≥ 1500 μm2/s)
indicating tumor necrosis. b A detailed ADC analysis of histogram metrics evidenced a reduced tumor volume as well as improvement in several
histogram metrics (mean ADC, kurtosis, etc.) that have changed significantly during treatment due to extensive necrosis (compare to Fig. 7)
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melanoma appear hyperintense on T1-weighted images.

MRI is a useful tool for the assessment of fat content,

T1, T2, or T2* mapping, or MT. MRI fat quantification al-

lows monitoring bone marrow (BM) composition in onco-

logic patients and BM changes that result from therapy.

BM has variable composition and vascularization (Fig. 5).

Yellow BM is primarily composed of fat (> 80%), while red

normal red BM or bone tumor infiltration usually show

and increased percentage of water (30–40% water in nor-

mal red BM). These features may be useful in the evalu-

ation of patients with metastatic bone disease for diagnosis

or therapy response assessment [43, 50, 53, 56–58].

Besides, each biological tissue has a T1 and T2, or T2*

relaxation times based on its cellular and interstitial

Fig. 7 A 63-year-old woman with metastatic breast cancer treated with an anti-HER2 agent and hormonotherapy. a Whole body diffusion-
weighted inverted gray-scale maximun intensity projection (MIP) of b = 900 s/mm2 images superimposing the ADC values associated with each
voxel in color scale before (left) and after one cycle of therapy (right). Red colored voxels represent untreated disease or those with no-detectable
response. The yellow voxels lie between the 95th centile value of the pre-treatment histogram and 1500 μm2/s. Thus, yellow voxels represent
regions “likely” to be responding. Green colored voxels have ADC values ≥ 1500 μm2/s representing voxels that are “highly likely” to be
responding with tumor cell kill. In this case, response assessment demonstrated a discrete change in ADC values (predominantly yellow voxels). b
The detailed ADC analysis of histogram metrics evidenced an increased tumor volume with moderate changes in several histogram metrics
(mean ADC, kurtosis, etc.) suggesting an apoptotic effect of targeted therapies (compare to Fig. 6)
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Fig. 8 (See legend on next page.)
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components. T1 mapping can detect important tissular

characteristics such as excess of water (e.g., edema), pro-

tein deposition, and the presence of other T1-altering sub-

stances, such as lipid or iron (hemorrhage, siderosis).

Quantitative T1 mapping requires a series of images using

different inversion times to derive a T1 recovery curve

resulting in a map that describes the relaxation value on a

pixel-by-pixel basis, expressed in milliseconds. In oncol-

ogy, studies about the use of T1 values in tumors

evidenced that this parameter was greater than in normal

tissues due to an increased extracellular space. On the

contrary, low tumor T1 values have been correlated to in-

creased necrosis, low water content, and high levels of

proteins [59]. Native T1 mapping could also represent an

in vivo biomarker for the differentiation of tumor grade

[60]. Significant changes in T1 were shown in several

pre-clinical models in response to therapy [59, 61]. The

use of T2 mapping in oncology has been mainly focused

on PCa. Sabouri et al. have demonstrated the feasibility of

T2-derived parameters (e.g., luminal water fraction) in the

detection and grading of cancer [62]. T2 values were sig-

nificantly lower in Gleason ≥ 7 than in Gleason ≤ 6 cancers

in peripheral zone, but this parameter will not be sufficient

by itself to adequately characterize focal abnormalities. An

explanation of this feature may be the effect of normal

prostate tissue interdigitated with malignant glands, which

may reduce contrast between tumor and normal prostatic

tissue [63]. Finally, quantitative T2* mapping seems also to

be a method that may be potentially useful for characteriz-

ing malignant tumors. In this setting, T2* mapping showed

greater diagnostic accuracy than ADC mapping in the

characterization of intermediate- and high-grade PCa, al-

though it also demonstrated a limited value in the

characterization of low-grade PCa [64]. In the case of

breast cancer, the T2* value is significantly longer in inva-

sive cancers compared with ductal carcinoma in situ and

in high-grade tumors [65]. Unfortunately, a reliable diag-

nosis of malignancy cannot be made on the basis of a

quantitative evaluation of T1, T2, or proton density

indexes.

MT imaging and chemical exchange saturation transfer

(CEST) can evaluate the presence of molecules other than

water. MT may be useful for evaluating tissues with sig-

nificant water-macromolecule interactions. This technique

has showed promising results as a possible tool for tumor

assessment in prostate, testicle, rectal, breast, and brain

tumors (Fig. 8) [66]. On its part, CEST is just one type of

MT. CEST can detect low concentrations of molecules

through the presence of 1H protons that are exchange-

able with those of water causing a decrease of signal

intensity. Amide proton transfer (APT) imaging is the

most widely used CEST technique. APT imaging for

cancer assessment has been mainly focused on the brain,

but higher APT values have been found in malignant

tumors compared with those in normal tissues and benign

lesions in brain, breast, prostate, chest, and H&N. APT

values also varied between malignant groups and tumor

grades [67, 68].

Spectral CT also enables material identification (cal-

cium, fat, etc.) and quantification, providing increased

tumor detection and characterization [69]. In this setting,

for example, Kosmala et al. reported that material-specific

image processing may facilitate the identification of BM

tumor infiltration [70].

Tumor microenvironment
The biology of tumors can no longer be understood sim-

ply by evaluating tumor cells but instead must include

the contributions of the tumor microenvironment

(TME) to tumorigenesis. TME is a complex, heteroge-

neous, and dominant component of solid tumors. TME

includes the acellular component (named the extracellu-

lar matrix, ECM) and different co-opted cell types, in-

cluding cancer-associated fibroblasts, mesenchymal cells,

and immune infiltrate. The non-malignant cells of the

TME can comprise > 50% of the mass of tumor burden.

TME plays critical roles in both promoting the malig-

nant progression of solid tumors and modifying the re-

sponse of solid tumor cells to therapy. Pathological TME

usually shows insufficient oxygenation (hypoxia) and acid-

osis. Multiple imaging modalities have been employed to

evaluate the TME, but most of them are still at the

pre-clinical phase of testing [71–73].

Imaging of tumor stroma

Apart of the study of tumor vascularization, imaging

evaluation of tumor stroma has been scarce. The stroma

can make up a significant proportion of a tumor volume,

and differs from normal stroma, showing a high number

of fibroblasts, deposition of type I collagen and fibrin,

and a marked infiltration of inflammatory cells. Stroma

may deeply influence imaging findings of tumors (Fig. 9).

(See figure on previous page.)
Fig. 8 An 8-year-old patient with high-grade tectal plate glioma (white arrow). a Post-contrast T1-weighted (+C) and magnetization transfer (MT)
images were obtained before (top row) and after (bottom row) chemoradiotherapy; and (b) the corresponding MT ratio histograms of lesion are
as shown. The magnetization transfer acquisition comprised a set of four geometry-matched 3D-GRE scans: two flip angles (4 and 24°), with/
without MT pulse (1.5 kHz offset) on a 1.5 T MR system. Note the reduction in the MT ratio (histogram in b) associated with response to
treatment, accompanied by slight increase in size and enhancement of the tumor (a). [Images courtesy of Dr. Neil P. Jerome, Norwegian
University of Science and Technology]
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For instance, in the case of pancreatic cancer, neo-

plastic cells may only represent as little as 10% of

tumor volume in pancreatic adenocarcinoma, associ-

ated to the presence of abundant desmoplastic

stroma. Although these tumors usually show

increased angiogenesis on histological analysis,

tumor imaging findings are deeply modified by stro-

mal fibrosis, a feature which explains that pancreatic

adenocarcinomas usually show a diminished en-

hancement in the early phase of dynamic

Fig. 9 Desmoplastic reaction in a 51-year-old patient with pancreatic adenocarcinoma. a Imaging evaluation including an axial fat-suppresed
contrast-enhanced T1-weighted dynamic MR image (DCE-MRI, top, left), a time/signal intensity curve analysis (botton, left), a parametric map
corresponding to the initial area under the curve (iAUC), and a fusion of axial T2-weighted image fused with a superimposed color-coded map
derived from high b value DWI (FUSION) clearly showed a hypoperfunded mass with a pattern of progressive enhancement (curve type 1, red
arrows) and no restricted diffusion in the tumor in the fusion image. These findings were secondary to the predominance of fibrosis within the
lesion. b Histological analysis (H&E, × 20) confirmed an abundant tumor desmoplastic reaction (asterisks) with clusters of tumor cells (arrow)
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Fig. 10 BOLD sequence and tumor oxygenation. a Axial T2-weighted image in a 63-year-old man evidenced a poor defined hypointense mass in
the anterior part of the transitional gland corresponding to prostate cancer (white arrow). b BOLD exam acquired in the axial plane at baseline
and after evidenced that in baseline conditions the tumor (white arrow) showed low signal in the T2* map (high R2* values), which is related to
a lower oxygenation compared to the rest of the prostate. BOLD images after 95% oxygen breathing at 5, 10, and 15 m evidenced that the
signal increased witihin the tumor (red arrow in the acquisition at 15 min) with an inverted ∆R2* time-intensity curve (red arrowhead). These
features evidence the presence of radiosensitive areas within the tumor with increasing pass of oxygen from blood to the tissue. The
concentration of deoxyHb increases with rising oxygen consumption, leading to a decreasing T2* relaxation time of the surrounding tissue
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contrast-enhanced imaging techniques and gradual

enhancement in the late phase (Fig. 9).

Imaging of tumor-infiltrating immune cells

Interactions between tumor cells and immune cells are in-

volved on the initiation, progression, therapy-resistance,

and prognosis of cancer. Besides, immunotherapy has

successfully been introduced in the clinic for many cancer

types (especially in cancer types with high mutation rates).

To date, there is a limited experience with the evaluation

of tumor-infiltrating immune cells and responses to

immunotherapy in clinical practice and there is a lack of

imaging tools to measure the behavior of immune cell

populations, which is hampering the optimization and

individualization of immunotherapy [74].

Imaging of oxygenation and hypoxia in cancer

Tumor hypoxia leads to treatment resistance, enhanced

tumor progression, and has a negative impact on patient

prognosis and survival in cancer. Hypoxia changes the

pattern of gene expression resulting in a more aggressive

tumor phenotype [75]. Oxygen-enhanced MRI, including

blood oxygenation level dependent (BOLD) and tissue

oxygen level dependent (TOLD) techniques, and PET

imaging based on mitroimidazole analogues and com-

plexes of copper with diacetyl-bis(N4-methylthiosemi-

carbazone) (ATSM) provide a noninvasive assessing of

tumor oxygenation [75–77].

Biological bases of tumor hypoxia

Uncontrolled cell proliferation and the inability to form

normal blood vessels results in impaired blood supply

and low oxygen tension within tumors. Hypoxia acti-

vates adaptive cellular responses and genomic instability

that contribute to tumor progression and is associated

with poor prognosis and resistance to different therapies,

potentially contributing to poor patient survival. Two

main types of tumor hypoxia are recognized [76, 77]: (1)

acute (perfusion-related) hypoxia resulting from inad-

equate BF in tumors due to structural and functional ab-

normalities of tumor vasculature and (2) chronic

hypoxia, which is the most relevant type in oncology.

Two fundamental mechanisms of chronic hypoxia can

be differentiated: diffusion-limited hypoxia (caused by

increased oxygen diffusion distances due to tumor

growth) and hypoxia due to a compromised perfusion

due to inefficient and leaky microvessels.

Technical features

– Oxygen-enhanced MRI

BOLD-MRI contrast derives from variations in the

magnetic susceptibility of blood due to changes in the

concentration of deoxyhemoglobin. Deoxyhemoglobin

increases the transverse relaxation rate (R2*) of water in

blood and surrounding tissues. This change in magnetic

susceptibility produces local magnetic fields around

blood vessels, changing signal intensity on MR images

(Fig. 10). BOLD provides an indication of tumor blood

oxygenation, but is also sensitive to vessel density, blood

flow hematocrit, and pH [77]. On its part, TOLD MRI is

based on T1-weighted contrast and the measured R1

(=1/T1) is also sensitive to tissue oxygenation.

– Radiotracers

18F-fluoromisonidazole (18F-FMISO) is the main

mitroimidazole analogue and constitutes the most exten-

sively clinically studied PET hypoxia biomarker. FMISO

enters cells under hypoxic conditions and becomes

trapped at rates that are inversely proportional to the

local pO2.
18F-FAZA is another PET imaging tracer of

tumor hypoxia that offers the advantage of higher

tumor-to-reference tissue ratios in comparison with
18F-FMISO.

Combinations of cooper with ATSM ligands, such as
64Cu-ATSM, also appear to be promising radiotracers

for delineating the extent of hypoxia within tumors with

PET. Under hypoxic conditions, the unstable cooper-

ATSM complex may dissociate, causing its intracellular

trapping [78].

Clinical value

BOLD images do not measure tissue pO2 directly and

are more likely to reflect acute than chronic tissue hyp-

oxia. Moreover, it is necessary to know the distribution

of blood volume (BV) in tissue in order to be able to

correctly interpret R2* images, thereby permitting infer-

ence of oxygenation status. However, a significant link

was found between R2* and pimonidazole histology (a

marker of hypoxia) in patients with PCa [79]. The re-

sults showed that the sensitivity of R2* in depicting

tumor hypoxia was high (88%), but its specificity was

low (36%). Concerning the role of oxygen-enhanced

MRI in clinical practice, several published studies have

shown a value for assessing tumor oxygenation and pre-

dict radiation response [80].

On its part, PET imaging of hypoxia has demon-

strated clinical value in many different tumor types

facilitating the identification of hypoxic tumor areas,

predicting prognosis and response to treatment, im-

proving radiotherapy planning, and allowing the develop-

ment of hypoxia therapeutics by measuring response to

hypoxia-modifying treatments.
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Imaging of tumor pH (acidosis)

Glycolytic metabolism and the hypoxic microenviron-

ment lead to extracellular acidosis in solid tumors.

Major approaches for pH imaging include MRS, MT

methods, and pH-dependent relaxation agents, although

with a limited clinical use [81]. Published preclinical data

have evidenced the presence of an acidic extracellular

pH and alkaline intracellular pH in tumors relative to

normal tissues [76, 82, 83].

Imaging the expression of specific molecular

characteristics

Tumor cells may overexpress some specific receptors,

antigens, and proteins. Specific markers such as the

prostate-specific membrane antigen (PSMA) (Fig. 11),

the epidermal growth factor receptors (EGFR), the

human epidermal growth factor receptor-2 (HER-2),

the androgen receptor, the somatostatin receptors

(SSTR), the C-X-C motif chemokine receptor 4

(CXCR4), and bombesin receptors represent excellent

examples of targets for cancer imaging and therapy in

different tumor types [84] (Table 2).

Clinical value

An important characteristic of neuroendocrine tumors

(NETs) is the expression of SSTR on their cell mem-

branes [85]. The SSTR2, SSTR3, and SSTR5 SSTR sub-

types are often overexpressed on NETs in almost 90% of

cases. The determination of the status of somatostatin

receptor expression is needed to select patients for pep-

tide receptor radionuclide therapy. For a long time,
111In-octreotide (Octreoscan) has been considered the

reference for imaging NETs. However, at present,
68Ga-DOTA-somatostatin analogues represent the “new

Fig. 11 Theranostic in oncology with PSMA. 177Lu-PSMA radioligand therapy in a 67-year-old man with metastatic castration-resistant prostate
cancer. a Pretherapy. PET image evidenced a difuse metastatic involvement. PSA value 50 ng/ml. b 4 months following the treatment with
177Lu-PSMA radioligand therapy (8000 MBq), PET showed a complete metabolic response. PSA value 0 ng/ml
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gold standard” for imaging NETs, offering high sensitiv-

ity and specificity and providing important diagnostic,

therapeutic, and prognostic data. On its part, EGFR

overexpression has been shown to correlate with aggres-

siveness of tumors and poor survival of patients in many

tumor types. Imaging evaluation of EGFR expression

(e.g., cetuximab DOTA-labeled PET imaging) may facilitate

patient selection for HER therapy and monitor treatment

response [86]. The PSMA is highly expressed on most PCa,

although 5–10% of primary PCa or PCa metastatic deposits

have negative PSMA results on PET. PSMA expression is

usually increased in advanced stages, including metastatic

castrate-resistant PCa. Unfortunately, high PSMA expres-

sion has also been described in other tumor types (colon,

kidney, breast, and bladder cancer), in benign lesions (e.g.,

schwannomas, thyroid adenomas), and normal tissues,

which may cause potential imaging pitfalls [87].

PSMA-based PET imaging may have considerable in-

fluence on the management of primary (intermediate-

and high-risk) PCa patients as well as early recurrent

disease [88]. Besides, PSMA may also represent a pos-

sible target for therapy in advanced PCa (Fig. 11). Fi-

nally, CXCR4 plays a pivotal role in tumor

development and metastasis and it is overexpressed in

many solid and hematologic cancers. The CXCR4 re-

ceptor also represents a promising target for imaging

and radionuclide therapy [89].

Imaging main tumor hallmarks
The hallmarks of cancer (biological characteristics

acquired during the initiation and progression of tu-

mors) represent key features of tumors. Imaging tech-

niques have unique potential to comprehend most of

these tumor-related characteristics, including metabolic

reprogramming, sustaining proliferative signaling and

evading growth suppressors, resisting cell death and

apoptosis, and inducing angiogenesis [1, 2].

Table 2 Radiotracers in the evaluation of tumor characteristics

Radiotracer Biological Correlation Tumor Type Main indications

FDG Energetic glycolytic metabolism Many tumor types Diagnosis, staging, response,
prognostic value, relapsing tumor

Choline radiotracers Cellular membrane turnover and
phosphatidylcholine metabolism

Prostate
Bladder, Brain

Diagnosis, staging, relapsing tumor

Methionine Amino acid transport and protein
synthesis

Brain and head and neck Diagnosis, grading, response,
prognostic value, relapsing tumor

Acetate Lipid synthesis and energetic
metabolism

Prostate
Hepatocellular carcinoma

Diagnosis, staging, relapsing tumor

DOPA Dopamine uptake and metabolism Neuroendocrine tumors Diagnosis, staging, relapsing tumor

FLT Cellular proliferation and tyrosine
kinases-1 activity

Lung, Lymphoma,
Colorectal. Gastric and
Pancreas

Diagnosis and tumor response

Sigma-2 (σ2) Receptor σ2 receptors are expressed in
proliferating tumor cells

Diagnosis and treatment evaluation

Integrin targeted Imaging agents (RGD)
and VEGFR targeted Imaging agents

Angiogenesis Preclinical use

Annexin V Tumor Apoptosis Preclinical use

Nitroimidazoles (FAZA, FMISO)
Cu-ATSM

Tumor hypoxia Preclinical use

Radiotracers Specific Tumor Types

Radiotracers Targeting Specific Tumor
Markers

EGFR expression
PSMA expression
Chemokine receptor type 4 (CXCR4)
DOTA-peptides (Somatostatin
receptors)
Bombesin receptors

Lung, Colorectal
Prostate
Breast and head and neck
cancer metastasis
Neuroendocrine tumors
Prostate, breast, small cell
lung cancer, GIST

Preclinical use
Relapsing tumor. Staging and
tumor response
Preclinical use
Diagnosis, staging, relapsing tumor,
response assessment

Non-Tumoral metabolic pathways

NaF Bone metabolism (non-specific
tumor tracer)

Bone metastases Diagnosis and staging

64CuATSM diacetyl-bis(N4-methylthiosemi-carbazone) copper(II)), EGFR epidermal growth factor receptor, FAZA fluoroazomycin arabinoside, FDG

fluorodeoxyglucose, FLT fluorothymidine, FMISO fluoromisonidazole, GIST gastrointestinal stromal tumors, NaF sodium fluoride, PSMA prostate-specific membrane

antigen, VEGFR vascular endothelial growth factor receptor
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Tumor metabolic reprogramming

Changes in cell metabolism can contribute to malignant

transformation and tumor progression. Tumor meta-

bolic phenotypes influence tumor prognosis and treat-

ment and can be exploited to image tumors [90].

Metabolic alterations in cancer cells include the

increased generation of energy and biosynthetic interme-

diates needed for cell growth and proliferation. Molecu-

lar imaging techniques, which include MRSI, PET, and

SPECT imaging, can assess the altered metabolic profiles

of tumors [91].

Molecular imaging with radiotracers

Over the last decade, many promising tumor-specific ra-

diotracers have been developed and evaluated for asses-

sing tumor metabolic changes with PET and SPECT [84,

92, 93] (Table 2).

Biological bases of metabolic imaging with radiotracers

– Energetic metabolism (glycolysis)

Reprogramming of the energetic metabolism is a fun-

damental characteristic of cancer. The first discovered

metabolic phenotype was aerobic glycolysis (Warburg

effect), by which energy generation shifts from oxidative

phosphorylation to anaerobic glycolysis, even under nor-

mal oxygen concentrations [92]. 2-[18F]-fluoro-2-deoxy-D--

glucose (FDG) is the radiopharmaceutical most frequently

used for clinical PET imaging. FDG is a glucose analog that

can be transported into cytoplasm by glucose transporters

(Glut). Malignant tumors have a higher metabolic rate

and generally express higher numbers of membrane

Glut than normal cells. This results in increased up-

take of FDG by tumor cells and forms the basis of

FDG-PET imaging. In general, higher-grade and

less-differentiated tumors are associated with higher

uptake of FDG [84, 94–97].

– Biosynthetic metabolism

Malignant transformation is also associated with an

abnormal anabolic metabolism due to the increasing

growing rate. New radiopharmaceuticals have been

developed that are capable of giving more specific

tumor information of the changes in tumor biosyn-

thetic metabolism, including increased cellular mem-

brane turnover (Choline [Cho]-PET), altered amino

acid and protein synthesis (methionine-PET), in-

creased nucleotide (fluorothymidine [FLT]-PET), and

lipid (acetate-PET) synthesis [84, 95] (Fig. 12). Be-

sides, molecular imaging allows the evaluation of

tumor-specific metabolic pathways, such as dopamine

uptake and metabolism in NETs. All this metabolic

information may lead to a better sensitivity and speci-

ficity in tumor assessment.

Technical features

PET imaging is based on the injection of a radiotracer

containing a positron emitter. Positrons annihilate with an

electron within milliseconds of its emission, releasing two

photons moving in opposite directions, which are detected

during PET creating a digital image that represents the

distribution of the radiotracer in the body. In the case of

SPECT, the patient is injected with a radiopharmaceutical

and emits radiation in the form of gamma rays, which are

detected by a gamma camera. The combinations of a dedi-

cated PET scanner and multidetector CT (PET/CT) or

MRI (PET/MRI) have enabled integrated molecular,

functional, and high-resolution morphologic imaging

and currently play a critical role in oncology. PET/CT

or PET/MRI data result in higher sensitivity and speci-

ficity of cancer assessment compared to PET alone.

Combined PET/MRI brings the inherent advantages of

MRI, including lack of ionizing radiation exposure,

increased soft tissue contrast, and the possibility of a

multiparametric imaging based on the combination of

MR-based imaging techniques.

Interpretation guidelines

Visual interpretation of radiotracer uptake is the basis of

the clinical report in PET/SPECT imaging. Absolute

quantification would require complex dynamic protocols

and repeated measurement of activity concentrations in

arterial blood. Thus, normalization approaches have

been included in clinical practice. Normalization is

based on the measured radiotracer concentration with

regard to the injected activity per weight, which re-

sults in a semiquantitative index, called standardized

uptake value (SUV) (Fig. 13). Qualitative scales have

been also used in clinical practice. Lesion uptake is

compared with the uptake of a reference tissue uptake

(e.g., mediastinum or liver), such in the Deauville

five-point scale of lymphomas [96].

Fig. 12 An axial 18F-Choline PET/CT image depicted a mass in the
prostate bed (white arrow) in a 72-year-old man with a biochemical
relapse of a prostate cancer following radical prostatectomy
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Clinical value

SPECT and PET have been used for the evaluation of

molecular processes in cancer patients. SPECT techno-

logy had greater accessibility, lower cost, and availability

of a wider range of approved radiotracers. However, PET

currently has substituted many existing SPECT onco-

logic applications due to its superior resolution, speed,

and quantitative capability [98, 99].

– FDG-PET imaging

FDG is currently the most used radiotracer in clinical

practice. A review of the literature established an average

FDG-PET sensitivity of 84% and specificity of 88% across

all oncology applications [100]. Besides, reported fre-

quencies of change of patients’ management based on

PET findings ranged from 30 to 40% in the literature. PET

was associated commonly with the demonstration of

greater cancer burden or more anatomic sites involved

[101, 102] and the metabolic tumor volume, which com-

bines the dual characteristics of three-dimensional volu-

metric data and the metabolic activity of tumor based on

FDG uptake, has been shown to be a predictor of patient

outcome in human solid tumors [103]. Main clinical indi-

cations of FDG-PET/CT in oncology include (a) biopsy

guidance, (b) evaluating the extent of disease in known

malignancies (staging/restaging), (c) therapy planning, (d)

predicting pre- and intra-treatment cancer treatment out-

comes, (e) establishing tumor prognosis, (f) evaluating

tumor response to therapy (Fig. 13), and (g) follow-up to

detect cancer recurrence (especially in asymptomatic

patients with rising tumor marker levels and those with

negative or equivocal conventional imaging findings)

[100–102]. Although PET/CT is not frequently used in

the setting of tumor diagnosis, differentiating benign

from malignant lesions (e.g., in the case of single pul-

monary nodules) and searching for an unknown pri-

mary are also recognized clinical uses of FDG-PET

imaging.

New technologies such as dedicated PET imaging devices

and PET/MRI technology have been developed to improve

cancer imaging. Dedicated PET has been mainly used in

breast cancer and brain imaging. Mammography with mo-

lecular imaging PET (MAMMI-PET) is a system for

dedicated hanging-breast imaging without compression.

MAMMI-PET offers higher sensitivity for primary breast

cancer lesions comparing to conventional PET/CT [104]

(Fig. 14). On its part, PET/MRI technology is being used in

those clinical scenarios in which sequential PET and MRI

are the standard of care, particularly in brain, liver, bone, or

pelvic imaging, but also in children or in those patients

undergoing repeated imaging for whom cumulative

Fig. 13 Liver metastasis of a gastrointestinal stromal tumor (GIST) in a 68-year-old man. T1-weighted contrast-enhanced MRI (DCE) images and
FDG-PET SUV parametric maps (SUV) acquired pretherapy (a) and following the administration of imatinib (b) and pretherapy (a), imaging
findings evidenced a metabolic active tumor with areas of heterogenic enhancement (white arrows). Post-therapy (b), the tumor presented
almost a total absence of enhancement and a complete metabolic response on PET imaging
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radiation dose must be kept as low as reasonably achiev-

able and in whole-body staging. However, robust stud-

ies demonstrating utility in clinical practice are

needed [105–107].

Finally, it is necessary to consider that the value of

FDG-imaging in oncology depends on several factors,

such as the specific tumor type or the anatomic are of

interested. FDG-PET presents recognized limitations, in-

cluding (a) low sensitivity in well-differentiated/low--

grade cancers, tumors with relatively low glucose

metabolism (e.g., non-FDG-avid lymphomas, RCC, and

bronchoalveolar cell carcinoma), hypocellular cancers

(such as mucinous tumors), and tumors with low

expression of Glut-1 such as PCa; (b) false positive up-

take in benign processes (infection and inflammatory le-

sions); and (c) increased FDG accumulation in some

normal tissues (brown fat) and metabolically active or-

gans (e.g., heart and brain) [91, 99–102].

– Non-FDG PET imaging

Apart of FDG-PET imaging, various other new

tracers are gaining a remarkable place in clinical

practice for cancer imaging [84, 94]. Malignant

transformation is associated with an abnormal Cho

(an essential component of phospholipids and cell

membranes) metabolism based on both the increas-

ing growing rate and on the upregulation of Cho

kinase. The use Cho labeled with 11C or 18F is

mainly focused on the restaging of patients with bio-

chemical failure of PCa. However, the detection rate

of Cho-PET varies depending on the site of recur-

rence, prostate-specific antigen levels, and the

presence of hypoxia (which decrease the uptake of

Cho-labeled radiotracers). On the other side,
11C-methionine may reflect amino acid transport and

protein metabolism. This tracer has a main advantage in

brain tumor imaging compared with FDG, because there is

almost no tracer uptake in normal brain tissue (Fig. 15).
11C-acetate is an indirect biomarker of fatty acid synthesis,

which is also upregulated in several tumors. In clinical prac-

tice, acetate-PET has a major application in imaging tumors

in which FDG-PET is of limited use, such as PCa, renal

cancer, and hepatocellular carcinoma. Finally, NETs have

distinctive biochemical features based on an increased

dopamine metabolism, which allow the possibility to image

and treat these tumors with specific radioligands [85].

MR spectroscopy

MRS and MRSI enable in vivo measurements of a

complete spectrum of metabolites that are present at

millimolar concentration.

Fig. 14 A 48-year-old woman with breast cancer. a Axial contrast-enhanced T1-weighted MR image of breasts performed during last week of
menstrual cycle showed bilateral multiple nodular areas of enhancement in both mammary glands (white and red arrows). b A dedicated FDG-
PET exam only depicted a nodular mass (red arrow) with increased FDG uptake in the right breast, corresponding to a invasive ductal carcinoma
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Molecular and biochemical bases of cancer evaluation with

MRS/MRSI

Cancers usually display altered peaks of different

biological-meaning metabolites, including Cho, creatine

(Cr), lactate (Lac), lipids (Lip), citrate (Ci), etc. The

diagnostic importance of a metabolite is depending on

the type of tumor and on the organ/anatomical area to

be studied [108, 109] (Table 3).

Technical features

Spectroscopy uses the free induction decay (FID) follow-

ing a radiofrequency to obtain metabolite information.

One-dimensional Fourier transforms of the FID gives

spectra with peaks, whose areas are proportional to the

abundance of metabolites. MRS provides information

about the chemical environment of the nuclear spin,

which depends on the neighboring nuclei and overall

chemical structure. This chemical environment changes

the B0 magnetic field to which this nucleus would nor-

mally be exposed in the magnet, and these resonance

frequency differences (chemical shift) allow that metabo-

lites can be distinguished from each other. Every mol-

ecule exhibits its own “fingerprint” on the chemical shift

spectrum. The exact chemical shift of a metabolite

(expressed in parts per million, ppm) is independent of

the applied field strength and characteristic of that

nucleus, aiding accurate peak identification. Clinical MRS

mainly uses endogenous signals from 1H or 31P. 1H-MRS

is the most commonly used technique because it produces

the strongest signals (due to its abundance). On its part,
31P MRS can measure the relative intracellular concentra-

tions of several phosphorus metabolites. However, it is

technically more complex and requires special hardware.

Spectroscopic measurements generally give a static picture

of tumor metabolism. In contrast, hyperpolarized MRSI

offers a dynamic evaluation of tissue metabolism. Hyper-

polarized MRSI increases the signal-to-noise ratio (SNR)

achieved with MR. When exposed to the magnetic field,

the magnetic dipole vectors of MR-active nuclei (such as
13C) are aligned either parallel or antiparallel with the ex-

ternal field, and there is usually only a small excess of par-

allel spins (the polarization percentage). However, higher

polarization values can be reached for short periods of

time via hyperpolarization, producing larger vectors and

facilitating high-SNR data and shorter acquisition times in

MRS imaging acquisitions [110].

Interpretation guidelines

In clinical practice, tumor spectroscopic phenotype

can be evaluated in three ways: (a) qualitative evalu-

ation is performed by merely checking absence,

presence, or change of certain metabolites; (b) semi-

quantitative evaluation is based on two different ap-

proaches: the calculation of metabolite ratios (e.g.,

Cho + Cr/Ci ratio, which correlates significantly with

the probability of malignancy in prostate) or the

evaluation of the area under the metabolite peaks of

interest; and (c) finally, absolute quantification of the

concentration of a metabolite with the use of a ref-

erence standard for calibration.

Clinical value

Spectroscopy of cancer can characterize critical tumor

metabolic pathways (including membrane turnover,

lipids, and energy metabolism) and can depict specific

tissue markers, such as N-acetyl-aspartate (NAA) (a

specific neuronal marker) or Ci. MRS technique in tu-

mors is mainly based on detecting the elevation of cer-

tain metabolites (such as Cho) or the absence or

decrease of normal metabolites (e.g., Ci in the prostate)

[108, 109–112]. However, its technical complexity, long

Fig. 15 Relapsing brain astrocitoma (white arrow) in a 54 year-old-man.
a 18F-FDG and b 11C-methionine coronal-reformatted images. Normal
uptake of FDG in brain impeded an adequate tumor detection and
delineation. However, 11C-methionine PET clearly depicted the tumor
(white arrow)
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measurement times required, and frequent low-quality

spectra have limited its widespread use.

– Hydrogen MRS

Characterization of intracranial tumors is a challenge

for imaging. In this setting, main 1H-MRS studies have

focused on the assessment of intracranial tumors [113].

Spectroscopy offers additional information related to

tumor proliferation and metabolic changes or neur-

onal damage, which can be used to establish noninva-

sively the diagnosis and grading of brain tumors. An

increased Cho peak along with decreased NAA is an

important diagnostic feature in brain tumors. Besides,

increased Lip seems to be secondary to necrosis and

membrane breakdown. Cancer cells also rapidly

metabolize glucose to form Lac and its levels appear

to correlate with grade and type of tumor in the

brain. Finally, a myo-inositol (MI) peak is typically

present in glial tumors at 3.5 ppm chemical shift.
1H-MRS has shown clear advantages for the assess-

ment of central nervous system neoplasms including

differentiating between tumors from other lesions,

characterizing types and grades of tumors, offering

prognostic data, planning therapy with delineation of

tumor involvement and definition of the target vol-

ume for radiation therapy, monitoring tumor re-

sponse, and detecting tumor relapse.

Technical advances allowed the use of MRS in other

organs, mainly prostate and breast [108]. PCa is charac-

terized by combinations of elevated Cho and reduced Ci.
1H-MRSI in prostate can improve tumor detection,

Table 3 Main metabolites studied in 1H-MRS and their biological significances

Metabolite Biological meaning ppm Decreased values Increased values

Cho
(total Cho-containing
compounds)

A metabolic marker cell membrane
synthesis and repair.
Related to cell density and
membrane integrity

3.22 Due to cell proliferation and to
breakdown of cell membranes.
Higher Cho levels are shown in
higher grade tumors compared
with lower-grade tumors

Cr
(from both creatine
and phosphocreatine,
often called referred to
as total creatine peak)

Reflects “cellular energetics” 3.02 Decreased phospocreatine (PCr) is an
inconstant finding in tumors.
Represents a low- energy status of
glycolisis in primary tumors (high grade
gliomas) and in metastatic tumors is
the effect of the lack of PCr in most
tissues.

Lac Glycolysis
Usually lactate is present only in
minimun amounts (i.e., in the brain)
and is not depicted using the
normal spectroscopic techniques.

Doublet
peak at
1.33
ppm

Increased Lac is the effect of the
high rate of glycolisis. Lac is an
end product of glycolysis and
increases rapidly during hypoxia
It accumulates in necrotic or
cystic areas

Lip May indicated tumor necrosis or
voxel contamination by diploic
space fat, scalp and subcutaneous
tissue

0.9 and
1.3ppm

The rise of Lip is detected in
various cellular processes such as
necrosis, growth arrest,
inflammation, malignancy and
apoptosis.

Specific metabolites in brain H-MRS

NAA A marker of neuronal and axonal
density and viability
The exact role of NAA in human
brain metabolism is uncertain. It is
postulated to be involved in
lipogenesis pathways
Largest peak in a “normal” H- MRS
brain spectrum.

2.02 Absence of neurons and axons in most
tumors but also in white matter
diseases (i.e., multiple sclerosis)

mI A glial marker located in astrocytes
Involved in osmoregulation and
volume regulation

3.56 It is a relative marker for low-
grade gliomas. Reduced in high-
grade tumors

Specific metabolites in Prostate H-MRS

Ci Normal human prostate gland
accumulates and secretes
extraordinarily high Ci levels

2.6 In prostate cancer
Ci levels fall due to consumption
of Ci to supply energy to
proliferating cells)

Ala alanine, Cho choline, Ci citrate, Cr creatine, Lac lactate, Lip lipids, mI myo-inositol, NAA N-acetylaspartate, ppm parts per million
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localization, and staging; assessment of tumor aggres-

siveness; and evaluation of tumor response. A meta-

analysis of the literature to assess the accuracy of MRS

in diagnosing PCa evidenced that the pooled weighted

sensitivity and specificity varied depending on the

(Cho + Cr)/Ci ratios used, ranged between 64–82 and

68–86%, respectively. Moreover, a positive correlation

was found between these ratios and the pathologic

Gleason score with a large proportion of non-

significant tumors (Gleason score ≤ 6) that do not

present abnormal metabolite ratios [114]. However, at

present, the clinical use of MRS in prostate has been

reduced due to its technical complexity. Thus, version

2 of the Prostate Imaging-Reporting and Data System

(PI-RADS v2) does not include the use of MRS.

In breast tumors, an increased Cho peak has been de-

scribed in malignant breast lesions (Fig. 16). A meta-

analysis of the diagnostic performance of single-voxel
1H-MRS of the breast reported a pooled sensitivity ranged

between 71 and 74%, and a pooled specificity between

78 and 88%. However, in the case of non-mass lesions

or small masses (between 5 and 10 mm in diameter)

or foci (< 5 mm in diameter), spectroscopy was

scarcely useful [115].

– Phosphorus MRS

Malignant transformation has been found to alter the

profile of the Cho compounds (related to membrane turn-

over) and the signals from energy metabolites such as nu-

cleoside phosphates and phosphocreatine. Although
31P MRS may monitor these metabolic changes, its

clinical use has been limited due to technical comple-

xity and low sensitivity of MR systems [111, 112].

Fig. 16 A 56-year-old woman with an invasive ductal carcinoma of the breast. Pretherapy (a) the sagittal reformatted maximum intensity
projection (MIP) image from DCE-MRI (left) demonstrating a 5-cm enhancing mass (white arrow). MR spectrum (right) depicts a marked
choline peak (red arrow). Images obtained after chemotherapy and anti-HER2 therapy with trastuzumab (b) evidenced a residual lesion.
Sagittal reformatted maximum intensity projection (MIP) image from DCE-MRI demonstrated discrete dots of enhancement (white arrow),
while MR spectrum showed a decreased choline peak (red arrow). Tumorectomy revealed residual fibrosis without tumor cells
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– Hyperpolarized MRSI

Currently, there is a limited clinical use of 13C hyper-

polarization in clinical studies and the majority is focu-

sing on the pyruvate metabolism in PCa (Fig. 17).

Hyperpolarized [1–13C]-pyruvate has demonstrated in-

creased lactate labeling in tumors and decreasing meta-

bolism to bicarbonate [116].

Imaging tumor proliferation

Sustained proliferation is a fundamental part of cancer

development and progression. The imaging of tumor pro-

liferation may provide valuable information for tumor

diagnosis and characterization and early assessment of the

response to therapy.

Biological bases of tumor proliferation

EGFR is commonly upregulated in cancers. EGFR

over-activates downstream pro-oncogenic signaling path-

ways, including the Ras-Raf–mitogen-activated protein

kinase (MAPK) pathway and the PI3 kinase (PI3K)–Akt–

mechanistic target of rapamycin (mTOR) pathway. These

pathways activate cell growth, proliferation, and survival.

Imaging approaches to tumor proliferation

Noninvasive imaging-based assessment of cellular prolif-

eration in cancer is mainly based on radiotracers that

track the thymidine salvage pathway of DNA synthesis.

– PET imaging of tumor proliferation

[18F]-3-fluoro-3-deoxythymidine (FLT) is a nucleoside-

analog imaging agent that presents intracellular accumu-

lation of the tracer during the S-phase of the cell

cycle through the action of the thymidine kinase-1

(TK1). Since this kinase is primarily expressed in

dividing cells, FLT uptake is essentially limited to

proliferating cells. FLT uptake has been shown to

correlate with Ki-67 expression, a classic marker of

tumor proliferation [117]. FLT has been rarely used

for tumor response evaluation due to the limited

knowledge of the factors determining FLT uptake

and therapy-induced changes of its retention. Never-

theless, published data suggest that decreased radio-

tracer uptake generally reflects the effects of

anticancer therapies, although it should be taken

into account that drugs impacting TK1 (such as

antifolates) may induce a flare effect.

Fig. 17 A 71-year-old man with a Gleason 7 prostate cancer (PSA 6.05). A suspicious area with low ADC values was depicted in the left peripheral
area (white arrow). The hyperpolarized 13C spectra and the time course for the dynamic conversion hyperpolarized [1-13C] pyruvate to lactate
following the injection of hyperpolarized pyruvate were revaluated (top, right). Note the change of the MR spectra with the pyruvate quickly
reached a maximum at t: 57.3 s (bottom, middle) before being converted to lactate. Compared with the spectrum at t: 18.6 s (top, middle).
[Images courtesy of Kayvan R Keshari, PhD. Laboratory Head. Memorial Sloan Kettering Cancer Center]
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Other radiotracers (Cho-PET) and different imaging

techniques (MRSI or DWI) may also offer an indirect

assessment of tumor proliferation. Cho metabolism is

involved in the synthesis of Lip required for cell mem-

brane turnover in tumor proliferation. In this setting,

MRSI Cho peak and Cho-PET uptake may indirectly

evaluate the cell proliferation. Thus, a number of studies

have found significant correlations between the SUV of

Cho-PET or Cho peaks on MRSI and Ki-67 proliferation

scores. Changes in Cho metabolism are being used in on-

cology for diagnosis, prognosis, and monitoring response.

However, it is also necessary to consider that Cho is not a

specific cancer tracer (e.g., normal testicles show elevated

Cho peaks and granulomatous LNs may present increased

uptake on Cho-PET).

DWI may also reflect other histopathological features,

such as proliferation potential. However, based on a recent

meta-analysis, the correlation of DWI-derived parameters

and tumor proliferation based on the expression of cell

proliferation markers (e.g., Ki67) showed a great variability

depending on tumor type [118, 119].

Evaluation of tumor vasculature-angiogenesis

Tumor angiogenesis is the process of developing new

blood vessels in order to supply oxygen and nutrients to

support the growth of tumors. Angiogenesis is a key

cancer hallmark required for invasive tumor growth and

metastasis development and constitutes a basic target in

the therapy of cancer. Imaging modalities used to eva-

luate tumor neovasculature mainly include CT, MRI, or

US [120–125]. All of them have strengths and weak-

nesses regarding availability, sensitivity, accuracy, bio-

logical significance of the obtained data, technical

reproducibility, methods for image quantification, pro-

vided parameters, and the anatomical areas that can

be imaged.

Biological bases of angiogenesis

Most solid tumors arise as avascular cellular masses that

exclusively depend upon oxygen delivery by diffusion.

When tumor size exceeds oxygen diffusion distances, re-

gions of hypoxia will develop within the mass. This fea-

ture causes the secretion of angiogenic factors

(particularly the vascular endothelial growth factor,

VEGF), which activate the angiogenic switch. However,

tumor vasculature is highly abnormal. Tumor vessels are

often larger but less numerous and more ineffective than

those of normal tissues. Besides, tumor blood vessels are

heterogeneous and abnormal with regard to organization,

function, and structure. The combination of these vascular

characteristics causes that the overall BF tended to be sig-

nificantly lower in tumors and the subsequent develop-

ment of hypoxia. Unfortunately, imaging techniques used

in clinical practice usually check the effects of angiogenesis

on tumor vasculature, not the angiogenic process itself

[120–126].

Technical features

Imaging plays a central role in the clinical evaluation of

angiogenesis. Anatomical imaging remains the mainstay

for tumor evaluation pinpointing sites of enhancement

and evaluating the degree of enhancement. New tech-

nologies, such as dual-energy CT, may have an added

value over conventional CT imaging for tumor assess-

ment. In this setting, quantitative iodine concentration

maps obtained with spectral CT have shown good corre-

lations with conventional CT perfusion measurements

in different tumor types [127]. Imaging techniques can

also characterize functional abnormalities of vessels and

can assess vascular heterogeneity. Different imaging

techniques with and without the use of exogenous con-

trast media have been used for the functional evaluation

of tumor vasculature. DCE techniques including CTP,

DCE-US, DCE-MRI, or DSC-MRI are the most common

imaging methods for assessing tumor vasculature [120–

126]. These imaging techniques acquire a series of im-

ages through a region of interest before, during, and

after the intravenous injection of a contrast agent. DCE

techniques may provide information related to tumor

vessels function (perfusion or permeability). Data ob-

tained depend on multiple features including imaging

technique, the type of contrast agent, and the method of

analysis. On its part, IVIM and ASL constitute the main

non-contrast-enhanced imaging techniques for the

evaluation of tumor vasculature. CTP evaluates temporal

changes in tissue attenuation following the intravenous

administration of contrast media. In this context, iodine

concentration changes may represent an indirect reflec-

tion of tissue vascularity and vascular physiology [126]

(Fig. 18). On its part, DCE-US with gas-filled microbub-

bles offers potential for the evaluation of tumor perfu-

sion. Microbubbles flood across tumor capillary bed and

the gas they contain contracts and expands under the al-

ternating higher and lower pressure phases of the US

beam, producing harmonics that can be detected for

extracting kinetic characteristics from DCE-US echo in-

tensity (which is directly related to local vascularization

and contrast-agent concentration) versus time data

[128]. DCE-MRI calculates tissue perfusion parameters by

evaluating T1 shortening induced by a gadolinium-based

contrast agent bolus as it distributes in the tumor

vasculature and leaks across permeable vessels. The

resulting signal intensity–time curve reflects a com-

posite of tissue perfusion, vessel permeability, and

extravascular-extracellular space and can be analyzed

to derive a number of potential biomarkers of the vascular

microenvironment. DSC-MRI or T2*-weighted DCE is

based on the local magnetic inhomogeneities that arise on
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the boundaries between structures that differ in their mag-

netic susceptibility, leading to signal reduction on T2 or

T2*-weighted gradient-echo sequences. The transient

signal loss induced by the pass of the contrast agent

across tissue vascular network is proportional to the

local BV and BF. DSC studies are basically limited to

the evaluation of brain tumors. Finally, ASL is based

on the principle of magnetically labeling inflowing ar-

terial blood protons inverting the bulk magnetization

of the blood water protons prior to their entry into

the tissue of interest. A control image, in which the

blood water magnetization is not inverted, is also ac-

quired. The signal difference between labeled and

control images will be proportional to BF. Quantifica-

tion allows for regional and global assessments of

perfusion. ASL is being applied in brain imaging

(Fig. 19) [129].

Interpretation guidelines

Many features need be considered in the acquisition and

analysis of DCE exams, including the organ studied and

the clinical setting. The characteristics of perfusion data

acquisition (temporal resolution, length, etc.) and the

model of analysis of enhancement kinetics directly influ-

ence the calculation of vascular parameters. Analysis

and interpretation of DCE-imaging data can be per-

formed with different approaches [120, 121]:

– Qualitative analysis: Visual assessment of pre- and

postcontrast images, or of the shape of the time-

intensity curves (TIC) represents the most simple

way of analysis. Curve characteristics, including

the speed of the filling phase, the maximum peak

intensity, and the morphology following the peak

of enhancement (persistent increase, plateau, or

washout), are evaluated. This approach has shown

clinical utility for the characterization of breast,

soft-tissue, and prostate tumors, although does not

produce a quantifiable index.

– Semiquantitative analysis: This type of evaluation is

based on performing a direct analysis of changes in

SI using semiquantitative indices. Main descriptors

that characterize the shape and structure of the

curves include time to peak enhancement, initial

area under the curve (IAUC), maximum enhancement,

etc. These parameters have been used in the clinical

evaluation of brain, breast, and prostate tumors.

Unfortunately, they do not present a clear defined

relationship with tumor physiology.

– Quantitative analysis: The combination of DCE

imaging with mathematical modeling of the contrast

Fig. 18 Perfusion CT exam in a 42-year-old man with a metastatic renal carcinoma. Blood flow (BF), blood volume (BV), and permeability (PS)
parametric maps evidenced the heterogeneity of the functional status of the vasculature within the tumor with several combinations of the
obtained parameters (top-left) and clear differences between the time density curves coresponding to the peripheral areas of viable tumor with
increased BV, BF, and PS (a) with a wash-in/wash-out pattern and the central necrotic necrotic areas (a)
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agent kinetics enables quantitative assessment of the

structural and functional changes in tumor

microvasculature. Measured TICs must be

converted into concentration of contrast–time

curves and modeled in a pixel-wise fashion to create

functional maps of vascular parameters. In general,

the complexity of the quantitative analysis and the

lack of consensus have limited its applications to

clinical trials in academic centers.

Clinical value

The angiogenic phenotype shows a great heterogeneity

among different type of tumors and even in the same

tumor type or in different regions of the same tumor.

Imaging-based phenotypes are important features for the

decision-making process in oncology, including tumor

diagnosis, characterization and grading, biopsy guiding,

staging, prognostic biomarker and response prediction,

therapy planning, assessment of treatment response, de-

tection of relapsing tumor, and development of new can-

cer drugs. Tumor vasculature provides an attractive

target for anticancer therapies [120, 121, 126].

DCE-imaging is now frequently used in early clinical

trial assessment of angiogenic inhibitors [43, 126, 130].

In these patients, therapy response is associated to a sig-

nificant decrease in perfusion and permeability-related

parameters. Moreover, an early reduction in vascular pa-

rameters following therapy is usually associated to an

improved patient’s outcome.

Imaging cell death in cancer

Imaging programmed cell death would be useful both in

clinical care and in drug development.

Biological bases of cell death

Cell death has been classified, on the basis of mor-

phologic criteria, as programmed cell death (apop-

tosis) or non-regulated (necrosis) [131]. Necrosis is

characterized by loss of plasma membrane integrity,

which frequently causes marked inflammation, tissue

destruction, and fibrosis. On its part, apoptosis is ac-

companied by a series of complex morphological

changes, including cell shrinkage, chromatin conden-

sation, and formation of apoptotic bodies. Apoptotic

bodies are subsequently ingested by adjacent cells and

Fig. 19 Brain perfusion in a 55-year-old woman with a meningioma.
a An axial fluid attenuation inversion recovery (FLAIR) image of the
brain demonstrated a hyperintense extra-axial insular lesion (white
arrow). Both (b) dynamic susceptibility contrast (DSC)-MRI and (c)
arterial spin labelling (ASL) parametric maps demonstrated and
increased perfusion in the mass. Comparison to normal brain
parenchyma evdenced a higher decrease in MR signal intensity
curves during the first-pass of the contrast bolus (b, blue curve)
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phagocytes without provocation of an inflammatory

response. Apoptosis is also characterized by several

molecular alterations, including the externalization of

phosphatidylserine to the outer leaflet of the plasma

membrane bilayer and the activation of caspases

[132]. Phosphatidylserine exposure by dying cells has

been evaluated with radiolabeled annexin V. However,

it has not become routine in clinical practice.

Technical features

Radiotracers and modalities for the imaging of apoptosis

include phosphatidylserine-binding agents (annexin V)

and MR-based imaging with the assessment of mobile

lipids and Cho with 1H-MRS and DWI [131–134] (Figs. 6

and 7).

Clinical value

There is a limited use of clinical imaging in the

evaluation of cell death, although MRI seems to be a

promising tool. Apoptosis and necrosis exhibited dif-

ferent changes on MR exams including T1- and

T2-weighted sequences, DWI, and MRS [133, 134].

Necrosis secondary to therapy is accompanied by an

early increase in ADC values, while apoptotic treat-

ments do not cause significant ADC changes [133].

In the case of 1H-MRS, this technique demonstrates

apoptosis- and necrosis-specific changes on cell mo-

bile Lip peaks [132].

Imaging of cancer heterogeneity

Tumors are biologically heterogeneous at the morpho-

logic, histological, and genetic levels. Imaging has begun

Fig. 20 A 70-year-old woman with high-grade serous ovarian cancer who underwent FDG-PET/CT (standardized uptake value map of the
fluorodeoxyglucose uptake [FDG SUV] is showed) and MRI, which included T2, diffusion (DWI), and dynamic contrast-enhanced (DCE) sequences
(images on the left) showing a primary ovarian mass as well as multiple peritoneal/serosal implants including in the cul-de-sac. A composite
“habitat” map of the implant in the cul-de-sac was performed (right) containing three clusters derived from PET and MRI data. Tissue sampling
from each cluster represented by a different color on the habitat map demonstrated genomic heterogeneity underpinning the phenotypic
heterogeneity observed on imaging
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Fig. 22 Whole-body DWI evaluation in a 72-year-old man with metastatic prostate cancer treated with (docetaxel + prednisone). A comparison
between images pre (left) and posttherapy (right) demonstrated that tumor volume decreased (1280 cm3

→ 640 cm3) and mean ADC moved
from 0.7 to 1.61 confirmed an increasing % of voxels at higher ADC values after therapy consistent with reductions in cellularity due to tumor
necrosis. However, tumor response was heterogeneous in this patient and there were some anatomical areas that presented a limited tumor
response (black dotted circle on lumbar spine and black arrows)

Fig. 21 Colorectal cancer liver metastasis in a 56-year-old man. FDG-PET (left) and b500 diffusion-weighted (middle) images demonstrated the
presence of a mismatch between the obtained parameters. Note that the size of the FDG abnormality is smaller than the diffusion one (black
arrow) (right). Tumor biology may explain this feature. Higher FDG uptake occurs at the edge of the necrotic cavity (white arrow) which is of
relative low SI on b500 image. The edge of the necrotic cavity usually represents an area of relative tumor hypoxia, which may promote a high
metabolic activity (vascular metabolic-mismatch). On its part, the periphery of the mass generally presents good perfusion and it is the most
cellular area of the tumor, explaining the restricted diffusion at this level
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to map and track the presence of phenotypic heterogen-

eity between (intertumor) and within tumors (intratu-

mor) of a given patient.

Biological bases

Genetic variation is undoubtedly the most established

foundation of both intra- and intertumor heterogeneity.

However, other features such as epigenetics or tumor

microenvironment also play a role on heterogeneity [135].

Intertumoral heterogeneity has resulted in the classifica-

tion of tumor subtypes, which are characterized by dis-

tinct morphology, functional, molecular and genetic

profiles, and expression of specific markers. On its part,

intratumoral heterogeneity manifests as variations within

the tumors (Fig. 20). Distinct tumor genotypes and/or

phenotypes usually associate divergent biological behav-

iors, and this circumstance may have prognostic signifi-

cance and may influence response to therapy. In general,

the degree of intratumor heterogeneity tends to in-

crease as tumors grow and greater heterogeneity tends

to be associated to a relatively poor clinical outcome

and resistance to therapy.

Technical features

Tumor spatial and temporal heterogeneity is a critical

oncologic feature that can be reflected in medical images

and interpreted based on different approaches: (1) evalu-

ating simple qualitative descriptors (e.g., tumor margin

or shape); (2) quantifying parameter distributions with

histogram-based analysis (discarding spatial relationship

between voxels and treating data as a list of continuous

variables); (3) quantifying spatial complexity (e.g., tex-

ture, fractal, or cluster analysis); (4) grouping voxels with

common biological features (parcellation); or (5) analysis

assessing quantitatively the spatial distribution of para-

meters (e.g., parametric maps) (which tend to derive

average parameter values), etc. [3, 135–139].

Clinical value

The advantage of diagnostic imaging techniques in the

assessment of tumor heterogeneity is their noninvasive

nature and the fact that the whole tumor may be eva-

luated, whereas histological techniques are invasive and

limited to a discrete set of tumor samples. There is a

growing evidence that qualitative or quantitative eva-

luation of heterogeneity presents clinical advantages for

screening, diagnosis, grading, staging, and assessment of

response therapy in tumors [138]. Unfortunately, many

parameters, such as kurtosis, have no clear biological

correlate making biological validation difficult. More-

over, in order to improve a global assessment of tumor

heterogeneity, whole-body imaging techniques (e.g., PET

or WB-DWI) offer an ideal solution as they allow a

global assessment of tumor burden.

Future trends of imaging in cancer
There are extraordinary future opportunities for imaging

techniques in tumor biology evaluation, including the

development of imaging biomarkers and radiomics/

radiogenomics, the use of multiparametric analysis and

artificial intelligence, and theranostic. To date, most

research has been focusing on validating biomarkers

extracted from tissue or blood samples, which has im-

proved patient stratification and assisted oncologic drug

development. Imaging techniques can evolve into clini-

cally useful biomarkers for tumor assessment and evalu-

ation of therapy response. The advantages of imaging

are its versatility, its widespread disponibility, its capabi-

lity of evaluating whole tumor burden, and its relatively

noninvasive nature [140–144]. Adequate quantification

of imaging biomarkers is of paramount importance

when extracted data are going to be used in patient

management. In this setting, data must be reproducible

and the technology used to extract them must be stan-

dardized. Biomarkers precise a complex process of vali-

dation and qualification [140, 143]. On the other side, in

recent years, imaging has been boosted by the techno-

logical development generating a large volume of data.

Such information has increased in complexity and may

offer prognostic value and may reveal meaningful infor-

mation for decision-support in cancer diagnosis and

treatment. Radiomics refers to the extraction and quan-

titative analysis of tumor characteristics from medical

images. On its part, radiogenomics investigates the rela-

tionship between imaging features and gene expression.

The -omic approach is based on numerical calculus and

computer science methods, allowing the management and

analysis of a very large number of variables for each sample

and modality. There is a rapid increase in the number of

publications that have highlighted the utility of imaging

-omics in many different tumor types and based on dif-

ferent imaging techniques [145–155]. Radiomics and

radiogenomics approaches may show clinical utility for

assisting in cancer diagnosis, assessment of tumor

aggressiveness, response assessment, and evaluation of

patients’ outcome. Integrating (quantitative) imaging

data with other relevant information (clinical, patho-

logical, etc.) and multi-omics (genomics, proteomics,

and metabolomics) will be essential for unraveling

tumor heterogeneity and making real-time clinical

decisions for patients in personalized medicine. How-

ever, this process still necessitates improvement and

standardization in order to achieve routine clinical

adoption. In this scenario, computers may be useful

tools for the assessment of tumor characteristics and

for the evaluation of therapy response. Computers can

learn (machine learning) to extract meaningful patterns

(including patterns that are beyond human perception)

by processing massive datasets (big data) through

García-Figueiras et al. Insights into Imaging           (2019) 10:28 Page 30 of 35



mathematical models (algorithms). Machines can also cor-

rect algorithm mistakes by training. Machine learning

algorithms are just useful components of computer-aided

diagnosis and decision support system in oncology.

Imaging representation and interpretation of tumor biol-

ogy will require computational models to understand and

predict the complex nonlinear dynamics that result in

combinations of imaging features [156–158]. 3D printing

is also an emerging computer-based technique that may

be useful in oncology for research, surgical planning

(using an exact 3D model of the patient’s organs to prac-

tice a procedure), device designing and manufacturing,

and tissue or organ replacement [159]. The analysis of

multi-dimensional imaging datasets is also increasingly

required for imaging tumor phenotype. The correlation

between imaging features obtained with different tech-

niques must be explored for understanding the underlying

tumor biology (Fig. 21). Significant differences in vascular,

physiological, and metabolic characteristics have been

identified in metastatic and nonmetastatic cancers. In this

setting, high glycolytic activity and poor perfusion (vascu-

lar-metabolic mismatch) result in an aggressive tumor

phenotype [160]. Finally, advances in the understanding of

cancer biology together with developments in diagnostic

technologies, and expansion of therapeutic options have

all contributed to the concept of personalized cancer care

with accurate and specific targeting of cancer cells. Thera-

nostics is the systematic integration of targeted diagnostics

and therapeutics. Imaging may select the therapeutic

choice and may monitor subsequent changes in the bio-

logical characteristics of the tumor [161, 162].

In conclusion, clinical imaging has tremendous poten-

tial in the evaluation of a wide spectrum of biological

tumor characteristics at all stages of a cancer patient’s

management and in drug discovery. Imaging techniques

have also the ability to show the spatial and temporal

heterogeneity of tumors (Fig. 22). In the time of preci-

sion oncology, clinical imaging represents a basic

decision-making tool in cancer patients.
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intensity curve; TK1: Thymidine kinase-1; TME: Tumor microenvironment;
TOLD: Tissue oxygen level dependent; US: Ultrasound; ve: Leakage space
fraction; VEGF: Vascular endothelial growth factor; VERDICT: Vascular,
extracellular, and restricted diffusion for cytometry in tumors; vp: Fractional
plasma volume; WB-DWI MRI: Whole-body diffusion-weighted magnetic
resonance imaging; α: Stretching parameter

Disclosures

Anwar R Padhani
Disclosures: A.R.P. Activities related to the present article: disclosed no
relevant relationships. Activities not related to the present article: software
from Siemens Healthineers, personal fees from Jannsen Pharmaceuticals.
Antonio Luna-Alcalá
Disclosures: A.L.A. Activities related to the present article: disclosed no
relevant relationships. Activities not related to the present article: consultancy
for Bracco and Philips, publication rights of several books for Springer.
Other authors: no disclosures

Authors’ contributions

Study concepts and design: RG, SB, ARP; Literature research and collection:
All authors; Figures saved and prepared by: All authors; Manuscript
preparation: All authors; Manuscript editing: RG, SB, ARP, JAV, ES; All authors
read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Radiology, Hospital Clínico Universitario de Santiago de
Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain. 2Paul
Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood,
Middlesex, England HA6 2RN, UK. 3Department of Radiology, University
Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA.
4MRI Unit, Clínica Las Nieves, Health Time, Jaén, Spain. 5Unidad de Gestión
Clínica de Medicina Nuclear. IMIBIC. Hospital Reina Sofía. Universidad de
Córdoba, Córdoba, Spain. 6Department of Radiology and Cancer Research UK
Cambridge Center, Cambridge CB2 0QQ, UK. 7Department of Radiology,
Clínica Girona and IDI, Lorenzana 36, 17002 Girona, Spain. 8Department of
Radiology, Royal Marsden Hospital & Institute of Cancer Research, Fulham
Road, London SW3 6JJ, UK. 9Nuclear Medicine Department, Hospital Clínico
Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de
Compostela, Galicia, Spain. 10Molecular Imaging Program, IDIS, USC, Santiago
de Compostela, Galicia, Spain. 11Department of Radiology, Memorial
Sloan-Kettering Cancer Center, Radiology, 1275 York Av. Radiology Academic
Offices C-278, New York, NY 10065, USA.

García-Figueiras et al. Insights into Imaging           (2019) 10:28 Page 31 of 35

https://doi.org/10.1186/s13244-019-0703-0


Received: 26 July 2018 Accepted: 8 November 2018

References

1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation.
Cell 144:646–674

2. O'Neill AC, Alessandrino F, Tirumani SH, Ramaiya NH (2018) Hallmarks of
Cancer in the Reading Room: A Guide for Radiologists. AJR Am J
Roentgenol 11:1–15

3. Sala E, Mema E, Himoto Y et al (2017) Unravelling tumor heterogeneity
using next-generation imaging: radiomics, radiogenomics, and habitat
imaging. Clin Radiol 72:3–10

4. Hricak H (2018) 2016 New Horizons Lecture: Beyond Imaging-Radiology of
Tomorrow. Radiology 286:764–775

5. Winfield JM, Payne GS, deSouza NM (2015) Functional MRI and CT
biomarkers in oncology. Eur J Nucl Med Mol Imaging 42:562–578

6. Gillies RJ, Anderson AR, Gatenby RA, Morse DL (2010) The biology
underlying molecular imaging in oncology: from genome to anatome and
back again. Clin Radiol 65:517–521

7. Spak DA, Plaxco JS, Santiago L, Dryden MJ, Dogan BE (2017) BI-RADS® fifth
edition: A summary of changes. Diagn Interv Imaging 98:179–190

8. Kim YY, Choi JY, Sirlin CB, An C, Kim MJ (2018) Pitfalls and problems to be
solved in the diagnostic CT/MRI Liver Imaging Reporting and Data System
(LI-RADS). Eur Radiol. https://doi.org/10.1007/s00330-018-5641-6 [Epub
ahead of print]

9. Manos D, Seely JM, Taylor J, Borgaonkar J, Roberts HC, Mayo JR (2014) The
Lung Reporting and Data System (LU-RADS): a proposal for computed
tomography screening. Can Assoc Radiol J 65:121–134

10. Tessler FN, Middleton WD, Grant EG (2018) Thyroid Imaging Reporting and
Data System (TI-RADS): A User's Guide. Radiology 287:29–36

11. Campbell N, Rosenkrantz AB, Pedrosa I (2014) MRI phenotype in renal
cancer: is it clinically relevant? Top Magn Reson Imaging 23:95–115

12. Karlo CA, Di Paolo PL, Chaim J et al (2014) Radiogenomics of clear cell renal
cell carcinoma: associations between CT imaging features and mutations.
Radiology 270:464–471

13. Zhang Q, Eagleson R, Peters TM (2011) Volume visualization: a technical
overview with a focus on medical applications. J Digit Imaging
24:640–664

14. Winter KS, Hofmann FO, Thierfelder KM et al (2018) Towards volumetric
thresholds in RECIST 1.1: Therapeutic response assessment in hepatic
metastases. Eur Radiol. https://doi.org/10.1007/s00330-018-5424-0 [Epub
ahead of print]

15. Nielsen K, Rolff HC, Eefsen RL, Vainer B (2014) The morphological growth
patterns of colorectal liver metastases are prognostic for overall survival.
Mod Pathol 27:1641–1648

16. Anvari A, Barr RG, Dhyani M, Samir AE (2015) Clinical application of
sonoelastography in thyroid, prostate, kidney, pancreas, and deep venous
thrombosis. Abdom Imaging 40:709–722

17. Pepin KM, Ehman RL, McGee KP (2015) Magnetic resonance elastography
(MRE) in cancer: Technique, analysis, and applications. Prog Nucl Magn
Reson Spectrosc 90-91:32–48

18. Le Bihan D, Ichikawa S, Motosugi U (2017) Diffusion and Intravoxel
Incoherent Motion MR Imaging-based Virtual Elastography: A Hypothesis-
generating Study in the Liver. Radiology 285:609–619

19. Cui XW, Chang JM, Kan QC, Chiorean L, Ignee A, Dietrich CF (2015)
Endoscopic ultrasound elastography: Current status and future perspectives.
World J Gastroenterol 21:13212–13224

20. Xu W, Shi J, Zeng X et al (2011) EUS elastography for the differentiation of
benign and malignant lymph nodes: a meta-analysis. Gastrointest Endosc
74:1001–1009

21. Le Bihan D (2013) Apparent Diffusion Coefficient and Beyond: What
Diffusion MR Imaging Can Tell Us about Tissue Structure. Radiology 268:
318–322

22. Perez-Lopez R, Nava Rodrigues D, Figueiredo I et al (2018) Multiparametric
Magnetic Resonance Imaging of Prostate Cancer Bone Disease: Correlation
With Bone Biopsy Histological and Molecular Features. Invest Radiol 53:
96–102

23. Nilsson M, Englund E, Szczepankiewicz F, Danielle van Westen D, Sundgren
PC (2018) Imaging brain tumor microstructure. Neuroimage. https://doi.org/
10.1016/j.neuroimage.2018.04.075 [Epub ahead of print]

24. Bailey C, Collins DJ, Tunariu N et al (2018) Microstructure Characterization of
Bone Metastases from Prostate Cancer with Diffusion MRI: Preliminary
Findings. Front Oncol 8:26

25. Panagiotaki E, Walker-Samuel S, Siow B et al (2014) Noninvasive
quantification of solid tumor microstructure using VERDICT MRI. Cancer Res
74:1902–1912

26. Low HM, Choi JY, Tan CH (2018) Pathological variants of hepatocellular
carcinoma on MRI: emphasis on histopathologic correlation. Abdom Radiol
(NY). https://doi.org/10.1007/s00261-018-1749-z [Epub ahead of print]

27. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications
and challenges in oncology. AJR Am J Roentgenol 188:1622–1635

28. Patterson DM, Padhani AR, Collins DJ (2008) Technology insight: water
diffusion MRI-a potential new biomarker of response to cancer therapy. Nat
Clin Pract Oncol 5:220–233

29. Taouli B, Beer AJ, Chenevert T et al (2016) Diffusion-Weighted Imaging
Outside the Brain: Consensus Statement From an ISMRM-Sponsored
Workshop. J Magn Reson Imaging 44:521–540

30. Malayeri AA, El Khouli RH, Zaheer A et al (2011) Principles and applications
of diffusion-weighted imaging in cancer detection, staging, and treatment
follow-up. Radiographics 31:1773–1791

31. Taffel MT, Johnson EJ, Chandarana H (2017) Diffusion Quantification in Body
Imaging. Top Magn Reson Imaging 26:243–249

32. Surov A, Meyer HJ, Wienke A (2017) Correlation between apparent diffusion
coefficient (ADC) and cellularity is different in several tumors: a meta-
analysis. Oncotarget 8:59492–59499

33. Surov A, Meyer HJ, Wienke A (2017) Correlation Between Minimum
Apparent Diffusion Coefficient (ADCmin) and Tumor Cellularity: A Meta-
analysis. Anticancer Res 37:3807–3810

34. Federau C (2017) Intravoxel incoherent motion MRI as a means to measure
in vivo perfusion: A review of the evidence. NMR Biomed 30(11). https://doi.
org/10.1002/nbm.3780 Epub 2017 Sep 8

35. Iima M, Le Bihan D (2016) Clinical Intravoxel Incoherent Motion and
Diffusion MR Imaging: Past, Present, and Future. Radiology 278:13–32

36. Le Bihan D (2017) What can we see with IVIM MRI? Neuroimage. https://doi.
org/10.1016/j.neuroimage.2017.12.062 [Epub ahead of print]

37. Rosenkrantz AB, Padhani AR, Chenevert TL et al (2015) Body diffusion
kurtosis imaging: Basic principles, applications, and considerations for
clinical practice. J Magn Reson Imaging 42:1190–1202

38. Godley KC, Syer TJ, Toms AP et al (2018) Accuracy of high b-value diffusion-
weighted MRI for prostate cancer detection: a meta-analysis. Acta Radiol
59(1):105–113

39. Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic
resonance imaging as a cancer biomarker: consensus and
recommendations. Neoplasia 1:102–125

40. Padhani AR (2011) Diffusion magnetic resonance imaging in cancer patient
management. Semin Radiat Oncol 21:119–140

41. Padhani AR, Koh DM, Collins DJ (2011) Whole-body diffusion-weighted MR
imaging in cancer: current status and research directions. Radiology 261:
700–718

42. Winfield JM, Payne GS, Weller A, deSouza NM (2016) DCE-MRI, DW-MRI, and
MRS in Cancer: Challenges and Advantages of Implementing Qualitative
and Quantitative Multi-parametric Imaging in the Clinic. Top Magn Reson
Imaging 25:245–254

43. García-Figueiras R, Padhani AR, Baleato-González S (2016) Therapy
Monitoring with Functional and Molecular MR Imaging. Magn Reson
Imaging Clin N Am 24:261–288

44. Li SP, Padhani AR (2012) Tumor response assessments with diffusion and
perfusion MRI. J Magn Reson Imaging 35:745–763

45. Li B, Li Q, Nie W, Liu S (2014) Diagnostic value of whole-body diffusion-
weighted magnetic resonance imaging for detection of primary and
metastatic malignancies: a meta-analysis. Eur J Radiol 83:338–344

46. Kosmin M, Makris A, Joshi PV, Ah-See ML, Woolf D, Padhani AR (2017) The
addition of whole-body magnetic resonance imaging to body
computerised tomography changes treatment decisions in patients with
metastatic breast cancer. Eur J Cancer 77:109–116

47. Morone M, Bali MA, Tunariu N et al (2017) Whole-Body MRI: Current
Applications in Oncology. AJR Am J Roentgenol 209:W336–W349

48. Nievelstein RA, Littooij AS (2017) Whole-body MRI in paediatric oncology.
Radiol Med 121:442–453

49. Koh DM, Blackledge M, Padhani AR et al (2012) Whole-body diffusion-
weighted MRI: tips, tricks, and pitfalls. AJR Am J Roentgenol 199:252–262

García-Figueiras et al. Insights into Imaging           (2019) 10:28 Page 32 of 35



50. Padhani AR, Gogbashian A (2011) Bony metastases: assessing response to
therapy with whole-body diffusion MRI. Cancer Imaging 11:S129–S145

51. Barnes A, Alonzi R, Blackledge M et al (2018) UK quantitative WB-DWI
technical workgroup: consensus meeting recommendations on
optimisation, quality control, processing and analysis of quantitative whole-
body diffusion-weighted imaging for cancer. Br J Radiol 91(1081):20170577.
https://doi.org/10.1259/bjr.20170577 Epub 2017 Dec 7

52. deSouza NM, Winfield JM, Waterton JC et al (2018) Implementing diffusion-
weighted MRI for body imaging in prospective multicentre trials: current
considerations and future perspectives. Eur Radiol 28:1118–1131

53. Padhani AR, Makris A, Gall P, Collins DJ, Tunariu N, de Bono JS (2014)
Therapy monitoring of skeletal metastases with whole-body diffusion MRI. J
Magn Reson Imaging 39:1049–1078

54. Padhani AR, Lecouvet FE, Tunariu N et al (2017) METastasis Reporting and
Data System for Prostate Cancer: Practical Guidelines for Acquisition,
Interpretation, and Reporting of Whole-body Magnetic Resonance Imaging-
based Evaluations of Multiorgan Involvement in Advanced Prostate Cancer.
Eur Urol 71:81–92

55. Koh DM, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body
diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 196:
1351–1361

56. Karampinos DC, Ruschke S, Dieckmeyer M et al (2018) Quantitative MRI and
spectroscopy of bone marrow. J Magn Reson Imaging 47:332–353

57. Schraml C, Schmid M, Gatidis S et al (2015) Multiparametric analysis of bone
marrow in cancer patients using simultaneous PET/MR imaging: Correlation
of fat fraction, diffusivity, metabolic activity, and anthropometric data. J
Magn Reson Imaging 42:1048–1056

58. Carmona R, Pritz J, Bydder M et al (2014) Fat composition changes in bone
marrow during chemotherapy and radiation therapy. Int J Radiat Oncol Biol
Phys 90:155–163

59. McSheehy PM, Weidensteiner C, Cannet C et al (2010) Quantified tumor T1
is a generic early-response imaging biomarker for chemotherapy reflecting
cell viability. Clin Cancer Res 16:212–225

60. Adams LC, Ralla B, Jurmeister P et al (2019) Native T1 Mapping as an In Vivo
Biomarker for the Identification of Higher-Grade Renal Cell Carcinoma:
Correlation With Histopathological Findings. Invest Radiol 54:118–128

61. Weidensteiner C, Allegrini PR, Sticker-Jantscheff M, Romanet V, Ferretti S,
McSheehy PM (2014) Tumor T1 changes in vivo are highly predictive of
response to chemotherapy and reflect the number of viable tumor cells--a
preclinical MR study in mice. BMC Cancer 14:88

62. Sabouri S, Chang SD, Savdie R et al (2017) Luminal Water Imaging: A New
MR Imaging T2 Mapping Technique for Prostate Cancer Diagnosis.
Radiology 284:451–459

63. Langer DL, van der Kwast TH, Evans AJ et al (2008) Intermixed normal tissue
within prostate cancer: effect on MR imaging measurements of apparent
diffusion coefficient and T2--sparse versus dense cancers. Radiology 249:
900–908

64. Wu LM, Zhao ZZ, Chen XX et al (2016) Comparison of T2* mapping with
diffusion-weighted imaging in the characterization of low-grade vs
intermediate-grade and high-grade prostate cancer. Br J Radiol 89:20151076

65. Seo M, Ryu JK, Jahng GH et al (2017) Estimation of T2* Relaxation Time of
Breast Cancer: Correlation with Clinical, Imaging and Pathological Features.
Korean J Radiol 18:238–248

66. Martens MH, Lambregts DM, Papanikolaou N et al (2016) Magnetization
transfer imaging to assess tumor response after chemoradiotherapy in
rectal cancer. Eur Radiol 26:390–397

67. Goldenberg JM, Pagel M (2018) Assessments of tumor metabolism with
CEST MRI. NMR Biomed:e3943. https://doi.org/10.1002/nbm.3943 [Epub
ahead of print]

68. Jones KM, Pollard AC, Pagel MD (2018) Clinical applications of chemical
exchange saturation transfer (CEST) MRI. J Magn Reson Imaging 47:11–27

69. Paul J, Vogl TJ, Mbalisike EC (2014) Oncological applications of dual-energy
computed tomography imaging. J Comput Assist Tomogr 38:834–842

70. Kosmala A, Weng AM, Heidemeier A et al (2018) Multiple Myeloma and
Dual-Energy CT: Diagnostic Accuracy of Virtual Noncalcium Technique for
Detection of Bone Marrow Infiltration of the Spine and Pelvis. Radiology
286:205–213

71. LeBleu VS (2015) Imaging the Tumor Microenvironment. Cancer J 21:
174–178

72. Chen F, Zhuang X, Lin L et al (2015) New horizons in tumor
microenvironment biology: challenges and opportunities. BMC Med 13:45

73. Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM (2002) MRI of the tumor
microenvironment. J Magn Reson Imaging 16:430–450

74. Aarntzen EH, Srinivas M, Radu CG et al (2013) In vivo imaging of therapy-
induced anti-cancer immune responses in humans. Cell Mol Life Sci 70:
2237–2257

75. Fleming IN, Manavaki R, Blower PJ et al (2015) Imaging tumor hypoxia with
positron emission tomography. Br J Cancer 112:238–250

76. Hallac RR, Zhou H, Pidikiti R et al (2014) Correlations of noninvasive BOLD
and TOLD MRI with pO2 and relevance to tumor radiation response. Magn
Reson Med 71:1863–1673

77. Padhani AR, Krohn KA, Lewis JS, Alber M (2007) Imaging oxygenation of
human tumors. Eur Radiol 17:861–872

78. Lapi SE, Lewis JS, Dehdashti F (2015) Evaluation of hypoxia with
copper-labeled diacetyl-bis(N-methylthiosemicarbazone). Semin Nucl
Med 45:177–185

79. Hoskin PJ, Carnell DM, Taylor NJ et al (2007) Hypoxia in prostate cancer:
correlation of BOLD-MRI with pimonidazole immunohistochemistry—initial
observations. Int J Radiat Oncol Biol Phys 68:1065–1071

80. White DA, Zhang Z, Li L et al (2016) Developing oxygen-enhanced
magnetic resonance imaging as a prognostic biomarker of radiation
response. Cancer Lett 380:69–77

81. Gillies RJ, Raghunand N, Garcia-Martin ML, Gatenby RA (2004) pH imaging.
A review of pH measurement methods and applications in cancers. IEEE
Eng Med Biol Mag 23:57–64

82. Lin G, Keshari KR, Park JM (2017) Cancer Metabolism and Tumor
Heterogeneity: Imaging Perspectives Using MR Imaging and Spectroscopy.
Contrast Media Mol Imaging 2017:6053879

83. Fuss TL, Cheng LL (2016) Metabolic Imaging in Humans. Top Magn Reson
Imaging 25:223–235

84. Zhu A, Shim H (2011) Current molecular imaging positron emitting
radiotracers in oncology. Nucl Med Mol Imaging 45:1–14

85. Deroose CM, Hindié E, Kebebew E et al (2016) Molecular Imaging of
Gastroenteropancreatic Neuroendocrine Tumors: Current Status and Future
Directions. J Nucl Med 57:1949–1956

86. Pereira PMR, Abma L, Henry KE, Lewis JS (2018) Imaging of human
epidermal growth factor receptors for patient selection and response
monitoring - From PET imaging and beyond. Cancer Lett 419:139–151

87. Rischpler C, Beck TI, Okamoto S et al (2018) 68Ga-PSMA-HBED-CC Uptake in
Cervical, Celiac, and Sacral Ganglia as an Important Pitfall in Prostate Cancer
PET Imaging. J Nucl Med 59:1406–1411

88. Eiber M, Fendler WP, Rowe SP et al (2017) Prostate-Specific Membrane
Antigen Ligands for Imaging and Therapy. J Nucl Med 58:67S–76S

89. Walenkamp AME, Lapa C, Herrmann K, Wester HJ (2017) CXCR4 Ligands:
The Next Big Hit? J Nucl Med 58:77S–82S

90. Vander Heiden MG, DeBerardinis RJ (2017) Understanding the Intersections
between Metabolism and Cancer Biology. Cell 168:657–669

91. Sai KKS, Zachar Z, Bingham PM, Mintz A (2017) Metabolic PET Imaging in
Oncology. AJR Am J Roentgenol 209:270–276

92. Challapalli A, Aboagye EO (2016) Positron Emission Tomography Imaging of
Tumor Cell Metabolism and Application to Therapy Response Monitoring.
Front Oncol 6:44

93. Liberti MV, Locasale JW (2016) The Warburg Effect: How Does it Benefit
Cancer Cells? Trends Biochem Sci 41:211–218

94. Lopci E, Nanni C, Castellucci P et al (2010) Imaging with non-FDG PET
tracers: outlook for current clinical applications. Insights Imaging 1:373–385

95. Rauscher I, Eiber M, Souvatzoglou M, Schwaiger M, Beer AJ (2014) PET/MR in
Oncology: Non-18F-FDG Tracers for Routine Applications. J Nucl Med 55:25S–31S

96. Barrington SF, Kluge R (2017) FDG PET for therapy monitoring in
Hodgkin and non-Hodgkin lymphomas. Eur J Nucl Med Mol Imaging
44(Suppl 1):97–110

97. Gámez-Cenzano C, Pino-Sorroche F (2014) Standardization and
quantification in FDG-PET/CT imaging for staging and restaging of
malignant disease. PET Clin 9:117–127

98. Hicks RJ, Hofman MS (2012) Is there still a role for SPECT-CT in oncology in
the PET-CT era? Nat Rev Clin Oncol 9:712–720

99. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME
(2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93S

100. Hillner BE, Siegel BA, Liu D et al (2008) Impact of positron emission
tomography/computed tomography and positron emission tomography
(PET) alone on expected management of patients with cancer: initial results
from the National Oncologic PET Registry. J Clin Oncol 26:2155–2161

García-Figueiras et al. Insights into Imaging           (2019) 10:28 Page 33 of 35



101. Saif MW, Tzannou I, Makrilia N, Syrigos K (2010) Role and cost
effectiveness of PET/CT in management of patients with cancer. Yale J
Biol Med 83:53–65

102. Czernin J, Allen-Auerbach M, Schelbert HR (2006) Improvements in cancer
staging with PET/CT: literature-based evidence as of September 2006. J Nucl
Med 48:78S–88S

103. Sridhar P, Mercier G, Tan J, Truong MT, Daly B, Subramaniam RM (2014) FDG
PET metabolic tumor volume segmentation and pathologic volume of
primary human solid tumors. AJR Am J Roentgenol 202:1114–1119

104. Teixeira SC, Rebolleda JF, Koolen BB et al (2016) Evaluation of a Hanging-
Breast PET System for Primary Tumor Visualization in Patients With Stage I-III
Breast Cancer: Comparison With Standard PET/CT. AJR Am J Roentgenol
206:1307–1314

105. Ehman EC, Johnson GB, Villanueva-Meyer JE et al (2017) PET/MRI: Where
might it replace PET/CT? J Magn Reson Imaging 46:1247–1262

106. Fraum TJ, Fowler KJ, McConathy J (2016) PET/MRI: Emerging Clinical
Applications in Oncology. Acad Radiol 23(2):220–236

107. Bailey DL, Pichler BJ, Gückel B et al (2018) Combined PET/MRI: Global
Warming-Summary Report of the 6th International Workshop on PET/MRI,
March 27-29, 2017, Tübingen, Germany. Mol Imaging Biol 20:4–20

108. García-Figueiras R, Baleato-González S, Padhani AR et al (2016) Proton
magnetic resonance spectroscopy in oncology: the fingerprints of cancer?
Diagn Interv Radiol 22:75–89

109. Martín Noguerol T, Sánchez-González J, Martínez Barbero JP, García-
Figueiras R, Baleato-González S, Luna A (2016) Clinical Imaging of Tumor
Metabolism with ¹H Magnetic Resonance Spectroscopy. Magn Reson
Imaging Clin N Am 24:57–86

110. Zaccagna F, Grist JT, Deen SS et al (2018) Hyperpolarized carbon-13
magnetic resonance spectroscopic imaging: a clinical tool for studying
tumor metabolism. Br J Radiol:20170688. https://doi.org/10.1259/bjr.
20170688 [Epub ahead of print]

111. Glunde K, Bhujwalla ZM (2011) Metabolic tumor imaging using magnetic
resonance spectroscopy. Semin Oncol 38:26–41

112. Glunde K, Jiang L, Moestue SA, Gribbestad IS (2011) MRS and MRSI
guidance in molecular medicine: targeting and monitoring of choline and
glucose metabolism in cancer. NMR Biomed 24:673–690

113. Verma A, Kumar I, Verma N, Aggarwal P, Ojha R (2016) Magnetic resonance
spectroscopy- Revisiting the biochemical and molecular milieu of brain
tumors. BBA Clin 5:170–178

114. Wang P, Guo YM, Liu M et al (2008) A meta-analysis of the accuracy of
prostate cancer studies which use magnetic resonance spectroscopy as a
diagnostic tool. Korean J Radiol 9:432–438

115. Sardanelli F, Carbonaro LA, Montemezzi S, Cavedon C, Trimboli RM (2016)
Clinical Breast MR Using MRS or DWI: Who Is the Winner? Front Oncol 6:217

116. Brindle KM, Bohndiek SE, Gallagher FA, Kettunen MI (2011) Tumor imaging
using hyperpolarized 13C magnetic resonance spectroscopy. Magn Reson
Med 66:505–519

117. Peck M, Pollack HA, Friesen A et al (2015) Applications of PET imaging with
the proliferation marker [18F]-FLT. Q J Nucl Med Mol Imaging 59:95–104

118. Surov A, Meyer HJ, Wienke A (2017) Associations between apparent
diffusion coefficient (ADC) and KI 67 in different tumors: a meta-analysis.
Part 1: ADCmean. Oncotarget 8:75434–75444

119. Surov A, Meyer HJ, Höhn AK et al (2017) Correlations between intravoxel
incoherent motion (IVIM) parameters and histological findings in rectal
cancer: preliminary results. Oncotarget 8:21974–21983

120. García-Figueiras R, Padhani AR, Beer AJ et al (2015) Imaging of Tumor
Angiogenesis for Radiologists--Part 1: Biological and Technical Basis. Curr
Probl Diagn Radiol 44:407–424

121. García-Figueiras R, Padhani AR, Beer AJ et al (2015) Imaging of Tumor
Angiogenesis for Radiologists--Part 2: Clinical Utility. Curr Probl Diagn Radiol
44:425–436

122. Chong WK, Papadopoulou V, Dayton PA (2018) Imaging with ultrasound
contrast agents: current status and future. Abdom Radiol (NY). https://doi.
org/10.1007/s00261-018-1516-1 [Epub ahead of print]

123. Salem A, O'Connor JPB (2016) Assessment of Tumor Angiogenesis: Dynamic
Contrast-enhanced MR Imaging and Beyond. Magn Reson Imaging Clin N
Am 24:45–56

124. Miles KA, Lee TY, Goh V et al (2012) Experimental Cancer Medicine Centre
Imaging Network Group. Current status and guidelines for the assessment
of tumor vascular support with dynamic contrast-enhanced computed
tomography. Eur Radiol 22:1430–1441

125. Cuenod CA, Balvay D (2013) Perfusion and vascular permeability: basic
concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging
94:1187–1204

126. García-Figueiras R, Goh VJ, Padhani AR et al (2013) CT perfusion in
oncologic imaging: a useful tool? AJR Am J Roentgenol 200:8–19

127. Thaiss WM, Haberland U, Kaufmann S et al (2016) Iodine concentration as a
perfusion surrogate marker in oncology: Further elucidation of the
underlying mechanisms using Volume Perfusion CT with 80 kVp. Eur Radiol
26:2929–2936

128. Dietrich CF, Averkiou MA, Correas JM, Lassau N, Leen E, Piscaglia F (2012)
An EFSUMB introduction into dynamic contrast-enhanced ultrasound (DCE-
US) for quantification of tumor perfusion. Ultraschall Med 33:344–351

129. Haller S, Zaharchuk G, Thomas DL, Lovblad KO, Barkhof F, Golay X (2016)
Arterial Spin Labeling Perfusion of the Brain: Emerging Clinical Applications.
Radiology 281:337–356

130. Lassau N, Chami L, Chebil M et al (2011) Dynamic contrast-enhanced
ultrasonography (DCE-US) and anti-angiogenic treatments. Discov Med 11:18–24

131. Rybczynska AA, Boersma HH, de Jong S et al (2018) Avenues to molecular
imaging of dying cells: Focus on cancer. Med Res Rev. https://doi.org/10.
1002/med.21495 [Epub ahead of print]

132. Blankenberg FG, Norfray JF (2011) Multimodality molecular imaging of
apoptosis in oncology. AJR Am J Roentgenol 197:308–317

133. Delikatny EJ, Chawla S, Leung DJ, Poptani H (2011) MR-visible lipids and the
tumor microenvironment. NMR Biomed 24:592–611

134. Papaevangelou E, Almeida GS, Jamin Y, Robinson SP, deSouza NM (2015)
Diffusion-weighted MRI for imaging cell death after cytotoxic or apoptosis-
inducing therapy. Br J Cancer 112:1471–1479

135. De Sousa EMF, Vermeulen L, Fessler E, Medema JP (2013) Cancer
heterogeneity--a multifaceted view. EMBO Rep 14:686–695

136. Gatenby RA, Grove O, Gillies RJ (2013) Quantitative imaging in cancer
evolution and ecology. Radiology 269:8–15

137. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than
pictures, they are data. Radiology 278:563–577

138. O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A (2015)
Imaging intratumor heterogeneity: role in therapy response, resistance, and
clinical outcome. Clin Cancer Res 21:249–245

139. Davnall F, Yip CS, Ljungqvist G et al (2012) Assessment of tumor
heterogeneity: an emerging imaging tool for clinical practice? Insights
Imaging 3:573–589

140. O'Connor JP, Aboagye EO, Adams JE et al (2017) Imaging biomarker
roadmap for cancer studies. Nat Rev Clin Oncol 14:169–186

141. Shukla-Dave A, Obuchowski NA, Chenevert TL et al (2018) Quantitative
imaging biomarkers alliance (QIBA) recommendations for improved
precision of DWI and DCE-MRI derived biomarkers in multicenter oncology
trials. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26518 [Epub
ahead of print]

142. Huang EP, Lin FI, Shankar LK (2017) Beyond Correlations, Sensitivities,
and Specificities: A Roadmap for Demonstrating Utility of Advanced
Imaging in Oncology Treatment and Clinical Trial Design. Acad Radiol
24:1036–1049

143. Dregely I, Prezzi D, Kelly-Morland C, Roccia E, Neji R, Goh V (2018) Imaging
biomarkers in oncology: Basics and application to MRI. J Magn Reson
Imaging 48:13–26

144. Mankoff DA, Farwell MD, Clark AS, Pryma DA (2017) Making Molecular
Imaging a Clinical Tool for Precision Oncology: A Review. JAMA Oncol 3:
695–701

145. Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W (2017)
Quantitative radiomics studies for tissue characterization: a review of
technology and methodological procedures. Br J Radiol 90:20160665

146. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge
between medical imaging and personalized medicine. Nat Rev Clin Oncol
14:749–762

147. Yip SS, Aerts HJ (2016) Applications and limitations of radiomics. Phys Med
Biol 61:R150–R166

148. Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: The promise of
radiomics. Phys Med 38:122–139

149. Pinker K, Shitano F, Sala E et al (2018) Background, current role, and
potential applications of radiogenomics. J Magn Reson Imaging 47:604–620

150. Jansen RW, van Amstel P, Martens RM (2018) Non-invasive tumor
genotyping using radiogenomic biomarkers, a systematic review and
oncology-wide pathway analysis. Oncotarget 9:20134–20155

García-Figueiras et al. Insights into Imaging           (2019) 10:28 Page 34 of 35



151. Limkin EJ, Sun R, Dercle L et al (2017) Promises and challenges for the
implementation of computational medical imaging (radiomics) in oncology.
Ann Oncol 28:1191–1206

152. Kim JY, Gatenby RA (2017) Quantitative Clinical Imaging Methods for
Monitoring Intratumoural Evolution. Methods Mol Biol 1513:61–81

153. Cox VL, Bhosale P, Varadhachary GR et al (2017) Cancer Genomics and
Important Oncologic Mutations: A Contemporary Guide for Body Imagers.
Radiology 283:314–340

154. Shaikh F, Franc B, Allen E et al (2018) Translational Radiomics: Defining the
Strategy Pipeline and Considerations for Application-Part 1: From
Methodology to Clinical Implementation. J Am Coll Radiol 15:538–542

155. Shaikh F, Franc B, Allen E et al (2018) Translational Radiomics: Defining the
Strategy Pipeline and Considerations for Application-Part 2: From Clinical
Implementation to Enterprise. J Am Coll Radiol 15:543–549

156. Chennubhotla C, Clarke LP, Fedorov A et al (2017) An Assessment of
Imaging Informatics for Precision Medicine in Cancer. Yearb Med Inform 26:
110–119

157. Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine Learning for
Medical Imaging. Radiographics 37:505–515

158. Dreyer KJ, Geis JR (2017) When Machines Think: Radiology's Next Frontier.
Radiology 285:713–718

159. Shafiee A, Atala A (2016) Printing Technologies for Medical Applications.
Trends Mol Med 22:254–265

160. Mankoff DA, Dunnwald LK, Partridge SC, Specht JM (2009) Blood flow-
metabolism mismatch: good for the tumor, bad for the patient. Clin Cancer
Res 15:5294–5296

161. Jadvar H, Chen X, Cai W, Mahmood U (2018) Radiotheranostics in Cancer
Diagnosis and Management. Radiology 286:388–400

162. Stasinopoulos I, Penet MF, Chen Z, Kakkad S, Glunde K, Bhujwalla ZM (2011)
Exploiting the tumor microenvironment for theranostic imaging. NMR
Biomed 24:636–647

García-Figueiras et al. Insights into Imaging           (2019) 10:28 Page 35 of 35


	Abstract
	Key points
	Introduction
	Imaging for the evaluation of tumor biology
	Tumor macrostructural characteristics on imaging
	Tumor morphology
	Biophysical characteristics of tumors: stiffness and elasticity
	Technical features
	Biological bases of elastography
	Interpretation guidelines
	Clinical value


	Tumor microstructure and composition on imaging
	Diffusion-weighted imaging
	Technical features
	Biological bases of DWI
	Interpretation guidelines
	Clinical value

	Tissular composition and imaging

	Tumor microenvironment
	Imaging of tumor stroma
	Imaging of tumor-infiltrating immune cells
	Imaging of oxygenation and hypoxia in cancer
	Biological bases of tumor hypoxia
	Technical features
	Clinical value

	Imaging of tumor pH (acidosis)
	Imaging the expression of specific molecular characteristics
	Clinical value


	Imaging main tumor hallmarks
	Tumor metabolic reprogramming
	Molecular imaging with radiotracers
	Technical features
	Interpretation guidelines
	Clinical value

	MR spectroscopy
	Molecular and biochemical bases of cancer evaluation with MRS/MRSI
	Technical features
	Interpretation guidelines
	Clinical value

	Imaging tumor proliferation
	Biological bases of tumor proliferation
	Imaging approaches to tumor proliferation

	Evaluation of tumor vasculature-angiogenesis
	Biological bases of angiogenesis
	Technical features
	Interpretation guidelines
	Clinical value

	Imaging cell death in cancer
	Biological bases of cell death
	Technical features
	Clinical value

	Imaging of cancer heterogeneity
	Biological bases
	Technical features
	Clinical value


	Future trends of imaging in cancer
	Additional file
	Abbreviations
	Disclosures
	Authors’ contributions
	Competing interests
	Publisher’s Note
	Author details
	References

