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We analyze how complicated a linear optical component has to be if it is to perform one of a range of functions.
Specifically, we devise an approach to evaluating the number of real parameters that must be specified in the
device design or fabrication, based on the singular value decomposition of the linear operator that describes
the device. This approach can be used for essentially any linear device, including space-, frequency-, or time-
dependent systems, in optics, or in other linear wave problems. We analyze examples including spatial mode
converters and various classes of wavelength demultiplexers. We consider limits on the functions that can be
performed by simple optical devices, such as thin lenses, mirrors, gratings, modulators, and fixed optical filters,
and discuss the potential for greater functionalities using modern nanophotonics. © 2013 Optical Society of
America
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1. INTRODUCTION
With the recent rapid growth in our ability to fabricate novel
and complicated nanophotonic structures, we have seen
many new approaches to optical devices, including photonic
crystals [1], metamaterials [2–4], nanometallics and plasmo-
nics [5], the merging of ideas, such as antennas [6,7] and
waveguides [7–11] from radio-frequency devices into optics,
and devices designed with fully arbitrary approaches to per-
form specific functions on multiple beams or wavelengths
[12–15]. We are also seeing new demands for compact and
novel optical functions such as mode converters for free-
space communications [16,17] or for coupling to multispatial
mode optical fibers [18–21]; very compact wavelength split-
ters for optical interconnects [12,13,22], wavelength networks
[23,24], or spectroscopy; novel kinds of optical isolators [25];
and devices generally operating at deeply subwavelength
scales [6–11,26,27].

How we exploit these new technological opportunities to
address these many applications is a challenging design pro-
blem, especially for devices that must controllably map multi-
ple inputs to multiple outputs. Here, to help address such
design challenges, we consider one key question: how compli-
cated does the optical component have to be? We need the
answer for two reasons: (i) we want optical devices to only
be as complicated to fabricate as necessary and (ii) we want
to make the device as easy to design and simulate as possible.
In previous work on how much material a given device re-
quires [28,29], we considered some specific cases of complex-
ity of the number of modes that needed to be controlled. In
this paper, we examine generally the complexity required
for linear optical components. Note we are here only consid-
ering the complexity that a design needs to have; the issue of
how arbitrary linear components could be designed or
configured will be considered elsewhere [30,31].

First, in Section 2, we discuss complexity of an object in
general. In Section 3, we discuss the mathematics of linear
optical components generally. Here, we build on a formalism
in which any linear optical device can be written as a mode

converter [32]. In Section 4, we proceed to categorize optical
devices by the complexity that they need and that different
kinds of approaches can support, and give examples of com-
plexity in various categories, including mode converters and
various frequency demultiplexers. In Section 5, we draw
conclusions.

2. DESIGN COMPLEXITY
When asking how complicated a device must be to perform
some function, we encounter a very basic question: can we
measure or count how complicated something is? We could
ask this in two different flavors: how complicated was it to
make the object, and how complicated was it to design the
object?

In both cases, there is arguably no definite answer because
we do not know how far back to go in counting complexity. In
fabrication, do we just count the activities required to make
the object given the starting materials, or do we count also the
steps required to make the materials themselves, and so on in
a possibly endless regress including purifying starting chemi-
cals, extracting raw materials from the ground, and so on? In
design, we have a similar problem. One extreme strategy
might be to design the object atom by atom. This strategy
could take a very long time. Another extreme strategy is just
to keep looking until we find something that does the function
we need. We could search through our optics for a 3.9 cm fo-
cal length lens. We might find one with the first object we
check, or we might keep looking in vain. There is in general
no way of quantifying in advance how many steps it takes to
find something. Of course, we might regard merely finding
something as being a weak form of design, but trying various
things we find about us, possibly in combinations, is a
time-honored design approach.

What we can quantify, however, is, given some starting set
or repertoire of objects, how complicated it is to design any
one out of a category of final objects? For example, given a
repertoire of toy bricks, how complicated is it to design
any member of a finite category of final toy houses, such
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as houses made with only so many bricks, or houses made
according to some architectural design rules that constrain
designs in some definite way? Such a question is generally
answerable.

The example with toy bricks is one where we could
possibly count a number of binary or discrete decisions that
have to be made. In optics, we may instead be choosing analog
values—real numbers, such as positions, lengths, or refractive
indices—and we want to quantify how many of these we
need to choose if we are to design any one of a category of
devices. Below, therefore, we establish what we call device
“complexity numbers” ND—the number of real numbers we
need to specify to allow us to design any device within a given
category.

In what follows, we attempt both to define some useful
categories of optical devices and quantify the associated com-
plexity number ND, and we examine the usable complexity of
various classes of devices. Before leaving this general discus-
sion, we introduce two other concepts.

A. Inherent Functionality
Inherent functionality is functionality or capability that is
possessed by the object or class of objects that we do not ex-
plicitly design into it or them. When we choose initial compo-
nents from some set, we have not designed the inherent
capabilities of those starting components—we are merely
exploiting them. In optics, we may choose to start with
“blocks” such as simple lenses, gratings, and mirrors. These
objects may have substantial useful inherent functionality.
These specific ones have the general property that, once
we choose in design what the component does for one beam
(for example, by choosing its focal length, we design a lens so
that it focuses an on-axis beam onto a particular back focal
plane), then that designed component also happens to do si-
milarly useful things for other input beams (for example, now
focusing input beams at different angles onto different parts of
the output plane). What the lens does for those other beams is
an inherent property or functionality of the lens. Note that,
given that we chose to use a lens to address our problem
of interest for one beam, we do not get to choose with any
substantial degree of independence what is to happen to the
other beams. Similarly, once we choose the angle at which
one beam bounces off a plane mirror (by choosing the mirror
angle), we have defined what happens to input beams of other
angles.

In many cases, the inherent functionality is not what we
want; for example, a broad range of starting devices consid-
ered for slow light, including atomic vapors, optical resona-
tors or sets of identical resonators, and photonic crystals,
have the desirable functionality of delaying a pulse through
group delay, but have the undesirable inherent functionality
of distorting pulses [33]. A similar problem occurs in the clo-
sely related [34] superprism devices (see, e.g., [12,13,34–37]),
which rely on group delay to shift a beam. Those made from
periodic structures (e.g., [35–37]) generally have the undesir-
able inherent functionality of distorting the beam shape. Such
problems can be alleviated by going to custom-designed non-
periodic structures that avoid relying on the (here, undesir-
able) inherent functionality of periodic or simply resonant
device structures and that exploit a larger number of designed
degrees of freedom [12,13,34].

Once we have finished designing the device, the resulting
complete device will still have some response for conditions
other than those for which it was designed, and that response
is the inherent functionality of the final device. That inherent
functionality, too, may be useful (e.g., similar response for
wavelengths other than the design wavelength) or undesirable
(e.g., chromatic aberration).

As we discussed above, we cannot generally quantify inher-
ent functionality. And, we should acknowledge that much of
the art of design is in choosing good starting objects with use-
ful inherent functionalities or that lead to finished devices
with other useful inherent functionalities, a process whose
complexity again cannot be uniquely quantified.

B. Externalizing Functionality
Sometimes when we design a system such as an optical one,
we will decide that some of the functionality is best pushed
out of the optical system into some other system. For exam-
ple, we might be making some wavelength separator to route
different wavelength channels to different outputs. The opti-
cal system might be a simple grating that puts short wave-
lengths into channels on the left, over to long wavelengths
on channels to the right. First, if the outputs are to be evenly
spaced with wavelength, we have to arrange a matching spa-
cing of detector or waveguide positions, which is pushing
functionality into choices we have to make in the mechanical
design. More substantially, we might have wanted the chan-
nels ordered in a different way, with one specific channel
going to the fiber for Chicago and another going to the
New York fiber, which might not be the order from the optical
device. Then we need to follow the wavelength separating
grating with some fiber patch panel or some additional set
of optical or electrical switches to accomplish the routing we
actually want. In that case, we could say that we have
externalized part of the functionality of the system, pushing
it outside the specific system (say, the grating) that we are
designing.

This is a common design phenomenon, of course, but here
we need to recognize at least when we are doing it. One recent
example of externalizing functionality is a tunable detector
whose tunability comes from the way that we electrically
add signals from a multiple element detector in an interfer-
ence pattern; the optics is fixed, but the device is rapidly tun-
able and programmable using electronics [23,24]. Another
recent example is a multiwavelength communications chan-
nel where individual optical filters are tuned over only a small
section of the overall bandwidth of interest because of power
dissipation limitations; the final signals are sorted to their cor-
rect actual destinations using an electronic circuit to perform
bit reshuffling [38]. Coherent communications externalize
functionality to digital signal processing [19], in part because
we do not know how to design or fabricate some linear optical
devices.

3. MATHEMATICAL PRELIMINARIES
To address complexity in optical devices, we start by writing
linear optical devices in a general mathematical form based on
the singular value decomposition (SVD) of the linear operator
that describes the device [32]. Then, by counting the numbers
required to specify the SVD, we quantify how complicated
some categories of optical devices are. Some categories
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cannot solve particular problems because they cannot em-
body enough complexity in design, and other categories
may be much more complicated than we need.

The fields, waves, and devices we consider can vary in
space, time, wavelength, or frequency, and possibly other at-
tributes, such as polarization or spin. The formalism is very
general, and can be applied to any linear wave problem, in-
cluding acoustic, electromagnetic, or even quantum mechan-
ical waves. For definiteness and ease of visualization, we
mostly discuss simple monochromatic spatial examples
and/or spectral filters and demultiplexers.

Previously [32], we showed how any linear optical device
can be described by a linear device operator D that takes an
input function jϕIi and generates a corresponding output
function jϕOi,

jϕOi � DjϕIi: (1)

We can essentially always perform the SVD of D [32] to
yield an expression

D �
X
m

sDmjϕDOmihϕDImj (2)

or, equivalently,

D � VDdiagU†; (3)

where U (V) is a unitary operator that in matrix form has the
vectors jϕDImi (jϕDOmi) as its columns, and Ddiag is a diagonal
matrix with complex elements (the singular values) sDm. (We
use Dirac notation here for the linear algebra. See, e.g., [32]
and [39].) The sets of functions jϕDImi and jϕDOmi correspond-
ing with nonzero singular values sDm each form orthogonal
sets that are complete in the input space HI and output space
HS , respectively [32].

4. DEVICE COMPLEXITY
To evaluate complexity meaningfully, we need to establish the
number of basis functions or modes at the input and at the
output, that is, the dimensionalities MI and MO, respectively,
of the input and output spaces HI and HO. [In what follows,
we use the terms “modes” and “basis functions” interchange-
ably (see, e.g., [39], pp. 516–518)]. We may already know that
there are MI input orthogonal input modes that can couple
into the device and MO orthogonal output modes than can
couple out of it. For example, we might be considering a
monochromatic spatial mode problem with waveguides in
and out of the device; the input and output waveguides might
only supportMI andMO spatial modes, respectively (Fig. 1). If
MI and MO are not initially obviously well defined, we can
calculate them in any given situation, with some assumptions

(see Appendix). Henceforth, we presume we know MI

and MO.
The question here is what is the number of mathematical

parameters (i.e., real numbers) we must choose to specify
any device within some device category? We start by consid-
ering the most general possible device that operates on MI

orthogonal input modes and gives outputs intoMO orthogonal
output modes. Any such linear optical device is obviously
completely describable by the MO�rows� ×MI�columns� ma-
trix D of (complex) numbers that gives the MO-dimensional
output vector jϕOi in response to the MI -dimensional input
vector jϕIi as in Eq. (1). Therefore, MOMI complex numbers,
or the “complexity number”

ND � 2MOMI (4)

of real numbers, are sufficient to specify the device.
Though Eq. (4) is correct for the most general possible

linear device, it is an overestimate for many useful categories
for three reasons. (i) The devices in the category we want to
make may be simpler than the most complicated device de-
scribable by such a matrix, so we could construct the matrix
using fewer independent real parameters. (ii) The way we
make the device may not allow us to usefully specify a suffi-
cient number of parameters to make such an arbitrary device.
Volume holograms [40,41], some spectral filters [12,13,34,42],
and recent design exercises in mode converters [14] are pos-
sible examples of devices that could approach the full com-
plexity offered in Eq. (4), but, as we will see below, many
optical devices, such as lenses, mirrors, gratings, and thin ho-
lograms, are generally not capable of offering the level of com-
plexity suggested by Eq. (4). (iii) The inherent functionality of
the starting components may make the problem much easier
in practice (though often this is because we are also externa-
lizing functionality). We now clarify this discussion and quan-
tify ND by examining the SVD, Eq. (2) or (3), of the device
matrix.

A. Maximally Connected and Maximally Functional
Devices and Mode-Coupling Number
First, we define two new terms—maximally connected
devices and maximally functional devices—and a related
concept, mode-coupling number.

1. Maximally Connected Devices and Mode-Coupling
Number
Performing the SVD of the MO ×MI device matrix D, in
general we get a number Mmin of singular values that is the
smaller of MO or MI ; that is,

Mmin � min�MO;MI�; (5)

because this is the number of diagonal elements in a rectan-
gular MO ×MI matrix.

If all of theseMmin singular values are nonzero, then we call
the device “maximally connected.” That means that the device
does possess finite coupling from the input to the output for
the largest possible number of orthogonal input-to-output con-
nections allowed by the numbers MI and MO. As we will see
explicitly, not all devices are maximally connected.

We can usefully define a “mode-coupling number,” MC ,
which is the number of nonzero singular values of the device

Fig. 1. Sketch of an example device with an input waveguide withMI
modes and an output waveguide with MO modes. Here the input (out-
put) mathematical space corresponds to the functions on the input
(output) surface.
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operatorD, and which counts the number of orthogonal input-
to-output connections. A device is maximally connected if
MC � Mmin. If MC < Mmin, the device is not maximally
connected.

2. Maximally Functional Device
Amaximally functional device is one for which we can choose
enough parameters of the right kind physically and in the right
places in the mathematics to allow any linear mapping be-
tween input and output for the MC orthogonal input and out-
put connections that the device supports. As we will see
explicitly, not all linear optical devices are maximally
functional (in fact, most are not).

As we will show by examples, a device can be maximally
functional even if it is not maximally connected, and vice

versa, so these are independent concepts.

B. Maximally Connected, Maximally Functional Device
For the sake of definiteness in discussion, we presume for the
moment that the number of input modesMI exceeds the num-
ber MO of output modes (we can construct similar arguments
in the opposite case if we wish) and that this device is maxi-
mally connected, which in this case means that MC � MO.
Performing the SVD of D, we could write the resulting
matrices in two ways (Fig. 2).

One way would be to write U as an MI ×MI matrix and
Ddiag as anMO ×MI matrix, with theMO singular values down
the diagonal and zeros everywhere else in this matrix. Neces-
sarily, the rightmost MI −MO columns of this matrix Ddiag are
zero. Hence, in the matrix product DdiagU†, the lowest MI −

MO rows of U† never have any influence on the resulting ma-
trix product. Consequently, it is simpler, and equivalent, to
write Ddiag as an MO ×MO square matrix (or, more generally,
an Mmin ×Mmin matrix), and to write U as an MI ×MO matrix
(making U† an MO ×MI matrix). The MI −MO discarded col-
umns of U correspond to input functions such that no linear
combination of them ever leads to any output from the device.
(Technically, this new form makes U not strictly a unitary ma-
trix; U†U is an identity matrix (of dimensions MO ×MO), but
the MI ×MI matrix UU† is not in general unitary, though this
causes no formal problems here.) Writing the matrices in this
second way makes it easier to evaluate the complexity num-
ber ND; we avoid counting numbers that do not influence the
device behavior.

The columns of U are normalized orthogonal vectors.
Obviously, to specify an arbitrary vector in anMI -dimensional
space requiresMI complex numbers (2MI real numbers). The
normalization of these vectors fixes one real amplitude
coefficient, leaving 2MI − 1 free real numbers. The absolute
phase of any of the columns in U (or V) is also of no
importance. (As usual, the overall phase of the eigenfunctions
is arbitrary in the eigenvalue problems we solve to construct
the SVD.) The relative phase of the output jϕDOmi for a given
input jϕDImi can be set by choosing the phase of the corre-
sponding singular value sDm, which we are free to do mathe-
matically. Hence, without loss of generality, we can set the
overall phase of each of the columns in U (and V); for exam-
ple, we could choose the first nonzero element in each column
to be real.

Hence we are left with 2MI − 2 real coefficients to specify
one column in U. The first column we choose requires this
many real numbers to specify it. The second column we
choose also has to be orthogonal to the first, which requires
that both the real and imaginary parts of the inner product
(e.g., overlap integral) between the first and second columns
are zero, thus reducing the number of (real) free parameters
for the second column function by 2, to 2MI − 4. The third col-
umn similarly has to be orthogonal to both the first and the
second chosen columns in a given matrix, reducing its free
real parameters to 2MI − 6, and so on, with the qth chosen
column having 2MI − 2q free real parameters. Counting for
all the MO columns of U gives a total of

NU �
XMO

q�1

2MI − 2q � 2MOMI −MO�MO � 1� (6)

real numbers.
For the (square) MO ×MO matrix V, we count similarly,

adding 2MO − 2, 2MO − 4, and so one, in this case all the
way to 2MO − 2MO � 0 free real numbers in the final
(MOth) column, for a total of

NV �
XMO

q�1

2MO − 2q � M2
O −MO (7)

real numbers to specify the matrix V. The matrixDdiag requires
2MO real numbers to specify its diagonal complex (singular
value) elements, so the total number of real numbers required
to specify the matrices U, V, and Ddiag is a complexity number

ND � 2MOMI −MO�MO � 1� �M2
O −MO � 2MO � 2MOMI;

(8)

which is exactly what we would expect for the construction of
an arbitrary MO ×MI matrix of complex numbers, as in
Eq. (4). Constructing a similar argument for the case where
the number of output modes MO exceeds the number of input
modes MI leads to the same result of the bottom line in
Eq. (8). In this case, Ddiag and U are both MI ×MI matrices,
and we write V as an MO ×MI matrix.

So far, then, the counting using the SVD form of the matrix
D yields the same results as the obvious counting of the num-
ber of real numbers required to specify an arbitrary MO ×MI

matrix. Since we have enough parameters here in a suitable

Fig. 2. Illustration for the case ofMI � 4 andMO � 2 of two ways of
writing the matrix product D � VDdiagU†. Both methods (a) and
(b) lead to the same results for any multiplication of the matrix D
by a vector. Method (a) has strictly unitary square matrices for both
U and V, but it has more parameters than the reduced version (b).
Note that the bottom two rows of the rightmost matrix in (a) never
enter into any calculation in multiplying a vector by D.
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mathematical form to specify an arbitrary MO ×MI matrix,
and hence we can define an arbitrary linear mapping for all
MC � Mmin orthogonal input-to-output channels, this ap-
proach is describing a maximally functional device category.
Because MC � Mmin, this approach is also describing a
maximally connected device category.

Where the SVD form becomes more obviously useful in the
counting is when we consider device categories that are either
not maximally connected or not maximally functional,
or both.

C. Submaximally Connected Device Example—Single-
Mode Converter
Suppose we want a device that takes one specific (normal-
ized) input beam jϕDI1i in the MI -dimensional input
space and generates as a result one specific output beam
proportional to the (normalized) function jϕDO1i in the
MO-dimensional output space with some amplitude s, i.e.,
an output sjϕDO1i, and that for any other orthogonal input
beam, the device generates no output. This describes an ideal
mode converter, mode coupler, or spatial filter for converting
only one mode to another specific mode.

In this case, the SVD can be written directly. The elements
of the MI × 1 matrix U are the elements of vector jϕDI1i.
Similarly, the elements of the MO × 1 matrix V give the vector
jϕDO1i. The matrix Ddiag is the 1 × 1 matrix containing the sole
singular value sD1 � s. Mathematically, we are constructing an
MO ×MI matrix by taking the (outer) product jϕDO1ihϕDI1j of
these vectors, multiplied by the complex number s. If we have
input and output spaces that are both multimoded—i.e.,MI >
1 and MO > 1—this device is not maximally connected (or,
equivalently, it is submaximally connected) because the num-
ber of nonzero singular values MC�� 1� < Mmin; equivalently,
MC < MI and MC < MO. The device category is, however,
maximally functional in that it has enough parameters speci-
fying it to allow the design of any such device with mode-
coupling numberMC � 1 for arbitrary input and output beams
in these spaces.

As before, because of normalization and fixing the phase of
the (sole) column in each of the matrices U and V, we require
2MI − 2 and 2MO − 2 real numbers respectively to specify
these matrices, and two real numbers to specify the (sole) sin-
gular value that makes up the matrix Ddiag. Hence, altogether,
we need a complexity number

ND � 2�MO �MI − 1� (9)

of real numbers to specify the operatorD for a device that is to
perform any specific function in this category. Note that this
number of parameters is not in general the 2MOMI or
Eq. (4). The fact thatND < 2MOMI (when the input and output
spaces are multimoded) reflects the fact that this device is
submaximally connected. Here there are possible input
functions in the input space that lead to no output. We
illustrate an approximate implementation of such a device
in Section 4.G below.

D. General Maximally Functional Device
From the examples above, it is straightforward to see how to
construct the matrices for a device category that converts
from multiple arbitrarily chosen input modes to multiple cor-
responding arbitrarily chosen output modes. We presume

input and output spaces with MI and MO dimensions, respec-
tively, and we want a device category that makesMC arbitrary
orthogonal connections between the two, where the device is
not necessarily maximally connected (i.e., MC may be less
than both MI and MO). The matrices U and V are MI ×MC

and MO ×MC dimensional, respectively, and Ddiag is an
MC ×MC diagonal matrix. The columns of U (V) are normal-
ized versions of the orthogonal input (output) modes of inter-
est with fixed overall phases according to some rule we
choose, and we have MC chosen complex connection
amplitudes as represented by the (singular value) diagonal
elements in Ddiag.

As we established in Eq. (6) for theMI ×MO matrix U in the
case of a maximally connected, maximally functional device
above, the number of real numbers required to specify the
MI ×MC matrix U here is similarly 2MCMI −MC�MC � 1�.
For the MO ×MC matrix V we require further 2MCMO −

MC�MC � 1� real numbers. Adding the 2MC real numbers
required to specify the singular values in Ddiag gives a total
complexity number of

ND � 2MC�MI �MO −MC� (10)

for this category. This expression covers both the maximally
and submaximally connected cases, giving the same answers
as Eqs. (8) and (9) in those specific cases.

E. Neglecting Output Phase for a Maximally Functional
Device
Many optical components do not care about the relative phase
of different orthogonal outputs. For example, when separating
multiple beams to different detectors to measure power, the
phase of the beams hitting the detectors is irrelevant. Simi-
larly, in a wavelength demultiplexer, we typically do not care
about the phases of the separated wavelengths going into
different output channels. In such cases, we therefore do
not need to also specify the phase of the singular values,
so we can reduce the required number of degrees of freedom
by MC , leading to a complexity number

ND � 2MC

�
MI �MO −MC −

1
2

�
(11)

instead of Eq. (10). For the single-mode converter above, if the
phase of the output is unimportant, then we similarly subtract
1 from Eq. (9), in agreement with Eq. (11).

F. Multiple Spatial Mode Converter Example
As an example, suppose we wanted the device to be able to
take two different complicated modes, such as two arbitrarily
chosen Gauss–Laguerre beams (orbital angular momentum
beams) from some set, and explicitly turn each one into a dif-
ferent spot on an output plane. The device input space would
have to be large enough to be able to distinguish each of these
beams from other beams in the set. If we needed to distinguish
each beam from, say, 19 other orthogonal beams, then the in-
put space would have to have at least a dimensionality MI of
20. On the device output, we can have a dimensionality MO �
2 because we only want two different orthogonal couplings,
and we can ideally choose mode-coupling number
MC � MO � 2. To make the device maximally functional,
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so we can choose any two orthogonal functions in the
20-dimensional input space (including orthogonal linear com-
binations of the modes from the input space) and put them
where we want in the output space, we use Eq. (10) to calcu-
late the complexity number ND � 2MC�MI �MO −MC� �
2MIMO � 80 if we care about the phase of the outputs relative
to the inputs. If we only care about getting the power to go into
the required output modes, then we can use Eq. (11), which
gives ND � 78. These are then the numbers of parameters we
need to specify in the device if we are going to be able to make
arbitrary choices of two orthogonal input functions in the
20-dimensional input space and create two arbitrarily chosen
orthogonal outputs.

There are relatively few clear examples of actual attempts
at spatial mode converters that convert from multiple arbi-
trary input modes to multiple arbitrary output modes, and
where one can count the number of degrees of freedom used
in design. One such example is the design of a device to con-
vert, in a two-dimensional photonic-crystal-like device, from
the three different modes of a three-moded input guide to
three different single-mode output guides [14]. In our termi-
nology, this device is certainly maximally connected (connect-
ing all three input modes to the output space). Though this
work did not check that the output guides could be arbitrarily
positioned and that arbitrary assignment of input modes to
output positions would be possible, we might reasonably con-
jecture these capabilities in this structure because there is no
obvious inherent functionality that constrains the device
otherwise. With that conjecture, from the specific structure
of this device [14], we could reasonably expect that there
are 15 total positions to put single-moded output guides on
the right-hand side of this structure. Hence we conjecture this
device design approach could represent one that is maximally
functional and maximally connected, with MC � MI � 3 and
MO � 15. Using Eq. (11), we calculate we need to specify
2MIMO −MC � 87 real numbers in design to allow us full de-
sign freedom if the relative phases between inputs and outputs
are unimportant.

This particular device was designed using 105 binary
variables, each representing the presence or absence of a
particular pillar on a 7 × 15 grid of positions. Though it is
not obvious how to compare binary and continuous real
degrees of freedom, 105 is at least in the same overall
magnitude as 87, being somewhat larger as we would expect
in using binary rather than real numbers. We note, though,
that it is merely conjecture that this particular design ap-
proach is fully functional for mapping into 15 different output
modes.

G. Maximally Connected Devices with Submaximal
Functionality—“Mask-Based” Devices
So far, we have discussed only maximally functional device
categories, where we connect a given number of orthogonal
input functions to orthogonal output functions with arbitrary
choice of the functions in the input and output spaces in each
case. Now we look at a particularly important example cate-
gory of submaximally functional devices.

A broad and important class of the optical devices that we
use, such as (thin) lenses, gratings, transparencies (i.e., ob-
jects we are projecting), and thin holograms, can be thought
of, at least approximately, as devices where we multiply the

input field (e.g., ϕI�x; y�) at a given position �x; y� on the de-
vice input surface by a position-dependent complex factor
(e.g., D�x; y�) to get the output field (e.g., ϕO�x; y�) at the cor-
responding point on the device output surface. For example, a
two-dimensional device with scalar waves might obey the
relation

ϕO�x; y� � D�x; y�ϕI�x; y�: (12)

We could call such devices collectively “mask-based” de-
vices because their behavior is defined by a single “mask”
function, e.g., D�x; y�.

In the time domain, if a modulator in a single-mode fiber
had a specified transmission “mask” function D�t� of time t,
then we could similarly have a relation between the input
ϕI�t� and the output ϕO�t� of the form

ϕO�t� � D�t�ϕI�t�: (13)

(This example corresponds to a device made with nondisper-
sive materials so there is no temporal memory in the D
function.)

Note that, though relations such as Eqs. (12) and (13) are
linear, they are by far not the most general linear relation we
could have between input and output functions. For scalar
functions of one continuous variable, most generally we
would instead have

ϕO�t� �
Z

G�t; t1�ϕI�t1�dt1: (14)

[We could construct a similar general relation for the two-
variable case of Eq. (12).]

Writing Eq. (14) in matrix-vector terms would give

jϕOi � GjϕIi: (15)

If we think of the vectors jϕIi and jϕOi as each being
columns of numbers giving the values of these functions at
successive (closely spaced) values of the variable t (or the
variables x and y), then the matrix G is fully populated with
elements that in general are nonzero. In that case, an input
field at one specific point can in general lead to finite output
fields at all output points. Mask-based devices do not behave
this way, however, because the response within the device is
local—an input at a given position or time gives an output only
at the same position or time.

1. Counting Parameters for Mask-Based Devices
We can view mask-based devices in such a “position” basis;
that is, we work with basis functions that are essentially delta
functions or strongly localized functions of position �x; y� for
devices described by Eq. (12) or time t for devices described
by Eq. (13). Then, in the matrix form of relations such as
Eqs. (12) and (13) [i.e., Eq. (1)], the matrix D is diagonal;
the off-diagonal elements are all zero, reflecting the fact that
such a local “mask” operation does not generate output fields
at other points on the mask. We should therefore expect that
such mask-based devices have a restricted functionality—not
all conceivable linear relations between input and output are
possible for such devices and so they have submaximal func-
tionality. Because the operator D is diagonal in such localized
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basis sets, we have already effectively performed the SVD
of D.

For actual optical situations, the input and/or output spaces
might not support very strongly localized functions. For exam-
ple, if we had a multimode waveguide for the input that sup-
ported, say, four modes, we typically would not be able to use
linear combinations of those to make a function that was
localized to anything smaller than ∼1∕4 of the waveguide
cross-section area. Nonetheless, we can still conjecture that,
at least for input and output spaces that have relatively large
numbers of basis functions, we can use those basis functions
to form functions (“spots”) that are small enough that we can
use our approach here, at least approximately and concep-
tually, to count the number of degrees of freedom available
to us in mask-based devices.

Presuming we have equal numbers of input and output
functions, i.e., MI � MO � M , we conjecture that we can
use these basis functions to form M different functions
jϕDImi (“spots”) in the input space and similarly M different
functions jϕDOmi (“spots”) in the output space that (i) are
strongly localized near specific points, rm, in space (the
same point rm for both functions jϕDImi and jϕDOmi for a
given m), and (ii) are approximately orthogonal to one
another in a given space (at least because that do not overlap
strongly, being localized around sufficiently different points
in space).

Now we conjecture also that we can form the singular
values sDm associated with these “spots” jϕDImi and jϕDOmi
near points rm by some effective averaging of the function
D�x; y� over these spots around each point rm. This argument
is somewhat approximate and conjectural; the only conclu-
sion we want to draw here, however, is that, no matter
how complicated the function D�x; y� is, it only defines ∼M
different (complex) values, here represented by the ∼M
singular values sDm that go into controlling the final behavior
of the device. Note in particular that our argument gives an
answer

ND ≃ 2M (16)

for the complexity number of real parameters to specify the
device, not the 2M2 of the maximally functional device as
in Eq. (8).

One might ask why we are not also counting the number of
real numbers to define the columns of the matrices U and V in
the present counting. The answer is that the locality of the
response of mask-based devices already enforces the form
of those columns (and equivalently the form of the jϕDImi
and the jϕDOmi); by our conjectures, those columns already
necessarily represent the maximally localized orthogonal
functions that can be generated from the basis sets of the in-
put and output spaces, and there is essentially only one way of
forming those sets. [One technical exception to this rule is if
we have multiple different positions with the same singular
value (i.e., the same transmission or reflection); then we
are free to choose linear combinations of these positions in
making up the basis functions. However, such a case is rela-
tively restrictive since it corresponds only to uniform trans-
mission over such a set of positions. We could also
permute the columns of the matrices U and V (by the same
permutation) and similarly permute the order of the singular

values in Ddiag, but such a permutation merely corresponds to
a different labeling of the same physical spots, not to any
change in the device, so such permutations are arbitrary
and need not be considered.]

2. Limitations of Mask-Based Devices
We do not attempt to answer the general question of what
functions mask-based devices can implement, but we can
make some observations. Suppose first we consider a general
mask-based device with M-dimensional input and output
spaces, and suppose we want to run it at what would be
its “diffraction” or “aperture filling” limit for a spatial
device—that is, we illuminate it with a fully M-dimensional
input function, one that in general has nonzero amplitudes
for all the M (localized) input SVD functions jϕDImi. Then,
to specify the desired output for this one beam requires that
we specify all the ∼2M real numbers of Eq. (16). So, in defin-
ing what this device is to do for one “diffraction-limited” or
aperture-filling input, we have completely specified the de-
vice; there are no degrees of freedom left to define what
the device does for any other inputs. To emphasize, we
now have no ability to choose what happens to any other input
function.

This result might seem surprising and even counterintui-
tive. For a device such as a lens, for example, we obviously
can use it productively for a large range of different inputs,
each of which may fill the lens aperture. Suppose, though,
we think of a lens as a device that we design so that, when
illuminated by a plane wave propagating along the optical axis
(i.e., in a direction perpendicular to the lens plane), it gener-
ates a single diffraction-limited spot in the center (i.e., along
the optical axis) of a plane at a distance f behind the lens (the
focal plane). Of course, we know how to do this; the lens is
designed to impose a phase delay that varies quadratically
with distance from the center of the lens, with focal length f .
But note that we have automatically set what the lens does
with a plane wave at any other incident angle. At least in a
paraxial approximation, we simply form other similar spots
in the focal plane, displaced angularly by (minus) the angle
of the input beam to the optical axis; our design of what hap-
pens for one aperture-filling beam on a simple lens has defined
what happens for all other beams. (Note any particular input
beam could be made up out of a linear combination of plane
waves at different angles, so by this one design for one plane
wave, we have defined the optical device for all conceivable
inputs.)

What happens for other beams is a consequence of the in-
herent functionality of a lens device. Though we may have
been wise enough to choose a lens as the component to
use in the system, we cannot quantify its inherent functional-
ity, as discussed above, nor (at least for a single thin lens) can
we control its effects on other beams once we have designed
what happens for one beam.

We mentioned above similar inherent functionality for an-
other “mask-based” device—namely, a plane mirror. A simple
plane mirror takes an input beam at one specific angle and
converts it to a beam at another specific angle (as given by
specular reflection). Once we have chosen this angular
change for any one input beam (by choosing the physical an-
gle of the mirror), we have defined the angle we get for any
other angle of input beam. A (reflective) grating shows similar
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behavior to a mirror except that the angle (or angles) of
the output beam(s) for a given frequency of input is (are)
not necessarily the specular reflection angle. Once we
have chosen the behavior for one input beam, we have
essentially also defined what happens for other angles of
the input beam of the same frequency. We have also generally
determined the output angles for beams of different
wavelengths.

A general mask-based device, such as we might implement
with a thin hologram or diffractive optical element, can show a
variety of different behaviors, but has the same limitation. For
example, it is straightforward to show that, at least in a stan-
dard Fourier-transform optical system that we might use with
such an element [43], if we want outputs for different input
beams to merely be shifted replicas of one another (e.g.,
we want identical spots at different positions when the
element is presented with different input beams), then the in-
put beams must simply be tilted versions of one another. This
is an illustration that, if we define output beams we want for a
mask-based device, once we have chosen what the input is
that gives a specific one of those outputs, then the other inputs
are all fixed. Equivalently, running the same mathematics
backward, if the inputs are a series of shifted versions of
the same function (for example, identical spots at different
positions), then the outputs are just the same beam at similar
angular shifts.

We could argue that we could increase the size of the mask-
based device so that we could get more degrees of freedom
and hence so that we could define more and different map-
pings from the input space to the output space. For example,
we could make a large mask-based device and divide it intoM
subapertures, each with M usable elements for a total of M ×
M elements. We could illuminate each of those subapertures
with a (necessarily) different beam, and we could separately
control what the output would be for each of these subaper-
tures. This approach is equivalent to making M separate
M -element mask-based devices. But as we make the overall
device bigger, the SVD always retains the same form: it is di-
agonal with the local mask transmission factors as its singular
values and with input and output matrices U and V whose col-
umns are localized functions. We never get any real choice as
to what the matrices U and V are. All of the free parameters in
the design are taken up in specifying the singular values. Thus
with a mask-based device alone we are never capable of de-
signing a general opticalM-mode element that corresponds to
an arbitrary M ×M matrix.

We can, of course, add further complexity by adding other
optics to a system with mask-based devices to increase the
functionality. For example, we can beam split the input beam
onto the M subapertures, perform M separate M-dimensional
single-mode to single-mode conversions (as in the matched
filter implementation below), and then combine the results
into overlapping output beams using another beam splitter.
This particular scheme, however, incurs two 1∕M power
loss factors in this emulation of a true maximally functional
M -dimensional device with an M ×M -dimensional locally
responding one.

Of course, the genius of the concepts of common mask-
based devices, such as lenses, gratings, and mirrors, and of
new concepts such as devices that unwrap orbital angular mo-
mentum beams [16] is that, despite this limitation of only being

able to specify completely what happens to one input, these
devices inherently perform useful functions for all M input
modes. But, we do not have separate direct control over what
happens to any beam other than the first (aperture-filling) one
for which we choose to design.

3. Matched Filter Implementation of Single-Mode
Converter
As an illustration of a mask-based implementation of a device
we have explicitly discussed, we can approximately
implement the single-mode converter of Section 4.C above
using a pair of masks (Fig. 3), working in the spirit of matched
filters in Fourier optics (see [43], p. 248 et seq.).

We want to map a specific input mode ϕI�x; y� to a specific
output mode. We construct input and output masks with
(complex) transmission functions ϕMI�x; y� and ϕMO�x0; y0�,
respectively. If we choose ϕMI�x; y� ∝ ϕ�

I �x; y�, then the field
to the right of the input mask is of the form ϕI�x; y�ϕ�

I �x; y�,
which we know is positive for all x and y. To the extent that a
lens of focal length f performs an approximate Fourier trans-
form into its back focal plane, then this positivity ensures we
have a dc component in spatial-frequency space, and hence a
spot in the center of the aperture plane. Other input functions
ϕNI�x; y� orthogonal to the desired input ϕI�x; y� lead to an
output field ϕNI�x; y�ϕ�

I �x; y� from the mask that has no dc
component because

ZZ
x;y

ϕNI�x; y�ϕ�
I �x; y�dxdy � 0 (17)

for any such input ϕNI�x; y�, and hence no spot in the center of
the aperture plane. Hence, with a sufficiently small aperture,
we can discriminate against all other orthogonal modes, leav-
ing only one channel that is allowed to propagate through the
aperture. The output field from the aperture has some form
ϕA�x0; y0� after it passes through the output lens, a form that
results from the spot shape in the aperture and the diffraction
effects from the aperture. Provided that form ϕA�x0; y0� has no
zeros in it over the output mask plane, which we can always
arrange by making the aperture sufficiently small, then using
an output mask of the form

ϕMO�x0; y0� ∝ ϕO�x0; y0�∕ϕA�x0; y0� (18)

generates the desired output field ∝ ϕO�x0; y0�.
Note that we have used ∼2MI real numbers to specify the

input mask sufficiently and ∼2MO real numbers to specify
the output mask sufficiently. We only need to specify absolute
phase and amplitude on one or the other mask, saving us

Fig. 3. Architecture for a single-mode converter based on Fourier
optics. (The x axis is into the plane of the drawing.)

D. A. B. Miller Vol. 30, No. 2 / February 2013 / J. Opt. Soc. Am. A 245



formally two degrees of freedom, and hence giving us the an-
swer of Eq. (9) for the complexity number ND as expected.
Note that the aperture has made this device submaximally
connected, approximately allowing only one channel to pass
through the device and blocking other fields.

4. Mask-Based Devices and Phase
In computer-generated holograms to produce an output pat-
tern, we typically want only to use a phase object to avoid
absorbing power. If we only care about output intensity,
however, we can allow the output phase to float, so we still
have theM degrees of freedom in the mask phase to chooseM
intensities in an output pattern. Hence, consistent with the
analysis here, we can make Dammann grating spot array
generators [44], for example, and other useful phase-only
holograms. We can also use such approaches to combine mul-
tiple laser gain media if the device is used within the overall
cavity, because the phase of each individual laser gain
medium output can float so as to give maximum power in
the overall supermode [45].

5. Frequency-Domain Mask-Based Devices—Fixed
Single-Mode Filters
In a spectral filter, we may only be interested in one input
spatial mode, such as a particular input beam or plane wave
or a single mode in a fiber, and one output spatial mode, such
as a transmitted or a reflected version of the input wave. If the
filter is made from fixed materials—i.e., with no attribute of
the filter changing in time—then the filter cannot create any
new frequencies or transfer power from one frequency to
another. As a result, the behavior of the filter can be written
in terms of some fixed transmission or reflection function
D�ω� that depends only on frequency ω. Quite generally,
we can write the input in the input spatial mode as some func-
tion ϕI�ω� of frequency, and similarly for the output ϕO�ω�.
Then the relation between the input and the output can be
written

ϕO�ω� � D�ω�ϕI�ω�; (19)

which is a “mask-based” relation that is local in frequency.
Such a fixed filter therefore has the same counting of degrees
of freedom as other mask-based devices and analogous limita-
tions in the functions it can perform.

Of course, filters often do not have a physical function in
their structure that is the direct analog of the mask functions
D�x; y� and D�t� above; instead, they may be made from multi-
ple dielectric layers, for example, with the function D�ω� aris-
ing as a result of a complicated set of reflections within the
layers. However, any such filter can always be emulated in
principle using a dispersive device such as a grating at the
input, which separates the different wavelengths spatially,
followed by a transmission mask that multiplies each different
spatial point (and hence each different frequency ω) by some
number D�ω�. Finally, we can run a similar dispersive device
backward to combine the different frequency components
back into the one output spatial mode, thereby making the
filter with an explicit physical mask of the form D�ω�. (This
is essentially the architecture commonly used [46] for shaping
of short light pulses.)

As in the spatial case, this locality means that we do not
have the freedom to choose the input and output functions
in the SVD; those sets of orthogonal inputs that map to ortho-
gonal outputs are frozen to be the single frequency functions.
Therefore, using such a fixed filter, we cannot in general make
a device that can take multiple different chosen orthogonal
spectra at the input, all filling the same bandwidth, and
convert them to different chosen orthogonal spectra at the
output. This conclusion would be obvious if the outputs were
to contain different frequencies from the inputs, because we
already know we cannot generate new frequencies with a
fixed linear device. However, even if we never generate
any new frequencies outside the bandwidth of interest, and
even if we restrict the output at any given frequency to be
of lower amplitude than the input at the same frequency
for every spectrum of interest, we would face the same chal-
lenge, with no obvious way to accomplish this other than by
power splitting to and from multiple different mask-based
devices.

H. Wavelength Demultiplexer Examples
Wavelength demultiplexers offer a good example of nontrivial
complexity calculation because of the constraints of the
mask-based nature of optical filters in general (in the absence
of wavelength conversion) and the dimensionality added
through multiple spatial output channels.

Consider a device that runs with MI different wavelengths
that all enter in one spatial mode, as in a single-mode optical
fiber. Formally, the number of input spatial modes is then
MSI � 1. Different wavelengths of beam in one spatial mode
are generally orthogonal functions in time. To be definite, con-
sider a specific window for input times t, from time zero to
time tI , and consider waves of different (free-space) wave-
lengths λ or positive (angular) frequency ω, where as usual
ω � 2πc∕λ for free-space phase velocity c. We represent
waves as complex functions in time, of form exp�iωt�, know-
ing we can add the complex conjugate at the end for real
waves. In this time window, an appropriate orthonormal
Fourier basis set is

jϕIpi �
1����
tI

p exp�iωpt�; (20)

where ωp � 2πp∕tI with p as a positive integer. The
dimensionality of the input space here is thenMSI ×MI � MI .

For definiteness, we presume the number of output spatial
modes MSO (e.g., different detectors or output fibers) is
MSO � MI , as would be appropriate for a simple demultiplex-
er that put different input wavelengths in different output fi-
bers or detectors. In the output space, we have to consider
both wavelength and spatial aspects in the orthogonal basis
functions, so the output space has

MO � MIMSO � M2
I (21)

dimensions.

1. Multicasting Wavelength Channels
With no wavelength conversion, the most general relation, as
in Eq. (1), between input and output functions, with the SVD
as in Eq. (3), can be written in the form
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Here we have written out vectors for the input function jϕIi
in terms of its components jϕIλp i at wavelengths λp, and for the
output function jϕOi in terms of its components jϕObqλpi in out-
put spatial mode (e.g., fiber or detector) bq at wavelength λp.
In Eq. (22), note first that the matrix U† is just an identity ma-
trix. (We could permute the rows of U† with corresponding
permutations of the singular values and of elements of V,
but this would be purely mathematical, leading to an entirely
equivalent description of the same physical problem.) The
reason for having no real choice of these rows is because
of the “mask-based” nature of frequency filters without fre-
quency conversion. In the matrix V, because there is no fre-
quency conversion, a given input frequency only can be
coupled to output modes of the same frequency, hence all
the zeros in the columns of V.

In counting the number of numbers required to specify V in
the most general case here, to specify one column of V we
require 2MI − 2 real numbers (2MI to specify theMI generally
nonzero complex elements, minus 1 because we arbitrarily
fix the phase in each column, setting overall phases with
the singular values, and minus 1 from normalization). These
numbers essentially allow us to distribute arbitrary amounts
of the input at a given wavelength among the various
output spatial modes (e.g., fibers or detectors). So the total
number of real numbers required to specify V is
MI�2MI − 2�. Adding the 2MI real numbers to specify the sin-
gular values gives a total

ND � 2M2
I : (23)

If we do not care about the phases of any of the couplings
from input to output, which would be the case if we were cou-
pling into power detectors only, then we can drop the factor of
2 here (we have MI − 1 phase factors in each of the MI

columns of V and MI phase factors in the singular values—
a total of M2

I phase factors altogether, all of which we would
neglect), leaving

ND � M2
I : (24)

If we only care about the signal power into each output spa-
tial mode (and not the wavelengths), in communications a
component with this functionality implements arbitrary multi-
casting (i.e., the ability to controllably route each input chan-
nel to any combination of output channels). Because there is
no wavelength or frequency conversion, this device is not

maximally functional, but it is maximally connected, mapping
all MI input channels through the system. It may not be ob-
vious how to make this device (at least without power
splitting), but at least we have evaluated the minimum com-
plexity required to make a device that can accomplish any
such arbitrary division of input wavelengths among output
spatial channels.

2. Routing Wavelength Channels
Suppose we simply want to route each incoming wavelength
to a different output spatial mode, as in a wavelength router.
For the V matrix in Eq. (22), there will therefore only be one
element (with amplitude 1) in each column of V [and that
element will be one of the nonzero elements of the columns
in Eq. (22)].

To understand the number of real numbers we need to spe-
cify here, we need a slightly different approach from that used
up until now, where the real numbers we are counting them-
selves have always been coefficients in the matrix elements.
Now, the number we must specify is which row of a matrix
column is nonzero. On the face of it, this row number is an
integer, but an integer is a special case of a real number.
As we will see below, specifying an integer here anyway
means specifying a real number (e.g., the center wavelength
of a resonator) in the physical device. To specify the matrix V,
then, we specify an integer (the row number) for each column.
Given that we are routing each wavelength to a unique output
spatial mode, once we have specified this integer for each of
MI − 1 columns, we know what the integer must be for the
final column (because it must correspond to the remaining
unused output spatial mode). So, specifying V for this router
means specifying MI − 1 real numbers.

Specifying this device in general therefore requires these
MI − 1 real numbers plus 2MI real numbers to specify
amplitude and phase of the singular values, giving

ND � 3MI − 1: (25)

If we do not care about the phase of the outputs, we can
eliminate MI of these, leaving

ND � 2MI − 1: (26)

This still allows us to control output amplitudes. If we do
not require separate control of amplitudes, then
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ND � MI − 1: (27)

Figure 4 shows an example (and relatively standard) archi-
tecture for taking four wavelengths entering in one waveguide
and separating them to different output waveguides. Ring
resonators [47] operate as drop filters to separate the wave-
lengths (wavelengths λ1, λ2, λ3, and λ4 are not necessarily in
any particular order here). The starting point for this category
of devices is that we presume we have resonators to work
with that have high enough finesse and large enough free
spectral range that they can only pass one of the wavelengths
of interest at a time, and with and equal input and output cou-
plings (so they can be 100% transmitting on resonance). Then
the only (real number) physical variable to be set is the ring
radius (which sets the resonator center wavelength). To sepa-
rate four wavelengths according to Eq. (27), we only need to
set three real numbers, which is correct in this architecture.
The first three rings (shown in solid lines in Fig. 4) separate off
the first three wavelengths, leaving the fourth wavelength
alone propagating in the original waveguide. As a practical
matter, we might build a fourth drop filter (shown in dashed
lines in Fig. 4) because we might not want to rely on the
perfection of the first three in completely dropping their
wavelengths, but the formula Eq. (27) correctly predicts the
minimum complexity required here.

3. General Wavelength Demultiplexing Example
A recent wavelength-splitting device [42] designed for three
different wavelengths used the lateral positions of 30 slits
to design the device. This actual device was not designed
to implement arbitrary multicasting—indeed it was only
initially designed to implement a simple demultiplexer (see
below)—but subsequent unpublished calculations [48] did
verify that similar designs using this approach could achieve
the arbitrary routing demultiplexer. Since it was only designed
to split three wavelengths, the 30 slit positions should give
enough variables in design to implement the multicasting
router, which would only require nine variables, according
to Eq. (24).

4. Simple Demultiplexer
A simple demultiplexer takes specific input frequencies and
delivers them to specific progressive (and/or cyclic, as in a
waveguide grating router) output positions. It does not put lin-
ear combinations of input frequencies at specific output posi-
tions, nor does it take one input frequency and distribute it to
several outputs, and, other than possibly for the position of
the first output, it does not allow selection of which other

frequency goes to which other output spatial mode. In the re-
sulting matrix V as in Eq. (22), there is one “1” in each column,
and these move progressively (and/or cyclically) through the
available positions in each successive column. Other than pos-
sibly one variable to choose where the “1” is in the first col-
umn, we now have essentially no further choice. In such a
simple demultiplexer, we may also not care about the phase
of the individual outputs, and we may ask for no control over
the amplitude (simply wanting it to be the largest the device
can deliver). In that case, we have essentially only one real-
number variable to choose, which is the position of the “1” in
the first column of V.

Of course, we know we can achieve this function with a
simple grating. Possibly, we should regard ourselves as choos-
ing where the first wavelength goes, which we could do by
choosing one physical variable, the grating period, just as
we have chosen the resonant frequency of each resonator
in the wavelength router above. This one variable essentially
corresponds to the position of the “1” in the first column of V.

If we take this simple demultiplexer approach when we ac-
tually want to make a router, as above, then we are externa-
lizing the remaining routing functionality to the mechanical
design of the output waveguide layout. With the “near” end
of each of a set of optical fibers connected progressively to
the outputs of the simple demultiplexer, we would need the
equivalent of a “patch panel,” choosing to which patch panel
output port we connect the “far” end of each fiber. This would
require MI − 1 choices of integers to place the fiber output
(the final fiber going into the only remaining output slot on
the patch panel). In this case, it does not matter where the
“first” output from the grating goes because the fiber attach-
ments on the patch panel can handle any such choice. So, we
are back to the same answer as Eq. (27) for our router, with all
the designed functionality externalized to the mechanics.

5. CONCLUSIONS
In this paper, we have laid out a way of establishing the mini-
mum complexity we need in the design of optical components.
One preliminary conclusion we draw is that it is not possible
to establish the complexity required to make or design a de-
vice for any one purpose. We cannot quantify the inherent
complexity or functionality of a device; by “inherent” function-
ality, we mean what the device can do even if we do not design
it to do that. But, we can establish the complexity required to
design any one of a given set or “category” of devices from a
particular starting point.

To quantify that complexity for linear optical devices, we
have used an approach based on the SVD of the mathematical
“device” operator that relates outputs to inputs. We have
argued that, for any given problem, we can reduce the corre-
sponding mathematical spaces to ones with finite dimensions;
that reduction allows us to count complexity, establishing a
“complexity number”—the number of real numbers we must
specify to design any device within a given category. The core
of the method is to use the SVD form to help count the number
of independent numbers required to specify the device. In
many cases, this number is much less than the total number
of numbers in the matrix that represents the device operator.

We have defined concepts—“maximally functional,” “maxi-
mally connected, and a “mode coupling number”—that help in
categorizing results of this analysis. We have discussed

Fig. 4. Wavelength demultiplexing of four wavelengths λ1, λ2, λ3, and
λ4 with ring resonator drop filters each of different radius to resonate
at different ones of the input wavelengths. The fourth, dashed channel
is optional in principle because only the fourth wavelength remains in
the original guide with ideal devices.
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several examples, including a single-mode to single-mode
converter, more general mode-converters, and various wave-
length filters, demultiplexers, and routers. We have examined
a particularly broad and useful class that we call “mask-based”
devices, which includes many common optical components,
such as lenses, mirrors, gratings, and fixed wavelength filters;
these mask-based devices have, on the one hand, very useful
inherent functionalities, thereby allowing lower design com-
plexities than we might expect, and, on the other hand, sub-
stantial constraints on what functions they can ever be
designed to perform no matter how complex we make them.

We have also examined examples of unconventional and
novel devices that may be capable of any linear mapping be-
tween inputs and outputs within broad categories, and hence
capable of functions that until now have been difficult or im-
possible to design. An important conclusion of this work is
that we can establish clear minimum bounds on the complex-
ity required to allow the design of broad classes of optical de-
vices, including such unconventional ones. We hope the
results help especially in clarifying requirements and capabil-
ities in optical devices, especially as we exploit emerging
nanophotonic structures for new optical functionalities. We
note, too, that the approach here is sufficiently general to ap-
ply to linear devices generally, including devices operating on
a broad range of different kinds of waves and functions, and
including spatial-, temporal-, and wavelength-dependent
properties and functionalities.

APPENDIX A: COUNTING THE NUMBER OF
INPUT AND OUTPUT MODES
If it is not immediately obvious what are the dimensionalities
of the input and output spaces HI and HO, we can establish
those through the following procedure. This approach is
based on establishing the so-called “communications modes”
into and out of the device, in particular those with a coupling
strength above some chosen threshold; because of the mathe-
matics of this approach, for any finite threshold, the number
of communications modes is also finite.

1. Transmitting and Receiving Spaces
We consider two more mathematical spaces, the “transmit-
ting” and “receiving” spaces, HT and HR, respectively. HT

is the space from which the input waves come. For example,
it might be a scene of which we are taking a picture. HR is the
space where we ultimately put the output of the device, such
as the film or the detector array in a camera. The device itself
might be the lens in the camera, with an input space HI that is
describing the field on the front surface of the lens and an out-
put spaceHO that is describing the field on the back surface of
the lens (inside the camera).

Figure 5 illustrates an example configuration. We have in-
troduced two new operators, GTI and GOR. GTI couples
sources or waves jϕT i in the transmitting volume (or, more
generally, in HT ) to functions jϕIi at the device input (i.e.,
inHI). Similarly,GOR couples functions jϕOi at the device out-
put (i.e., in HO) to functions jϕRi in the receiving volume (i.e.,
in HR). The operators GTI and GOR depend on the wave equa-
tions and the various spaces, and on how we set up the pro-
blem. Formally, for coupling source functions in one volume
to resulting waves in the other, these operators are essentially
the Green’s functions of those wave equations. For coupling
from waves on one surface to resulting waves on another,
these operators are corresponding diffraction operators.

Whether we use volumes or surfaces in these various
spaces depends on the problem; for example, in a camera
looking at a three-dimensional scene, the transmission is from
the scene volume, and if we are focusing the camera by mov-
ing the “film” plane, the receiving volume includes all possible
positions of the film plane. Mathematically we could also use
the entire device volume for both the input and output vo-
lumes of the device; if the device is some complicated volume
scatterer, such an approach might be more complete mathe-
matically than just considering fields at the “input” and “out-
put” surfaces.

2. Communications Modes
The procedure for establishing the numbers of modes to use at
the input (MI) and output (MO) is based on the SVD of the
coupling operators GTI and GOR. This decomposition estab-
lishes the so-called “communications modes” associated with
these operators, and it is the counting of these that determines
MI and MO.

The idea of communication modes has been presented in
[49] and this concept has seen various uses in optics and wire-
less communications [29,50–56]. The SVD of the coupling op-
erator GTI between the transmitting and device input spaces
establishes sets of orthonormal functions jϕTpi in the trans-
mitting space HT and jϕIpi in the device input space HI with
associated coupling strengths (singular values) sTIp. Formally,
as in Eq. (2),

GTI �
X
p

sTIpjϕIpihϕTpj (A1)

and, in the normal fashion for SVD,

G†
TIGTI jϕTpi � jsTIpj2jϕTpi; (A2)

GTIG
†
TI jϕIpi � jsTIpj2jϕIpi: (A3)

We can construct a similar set of equations for the SVD

GOR �
X
q

sORqjϕRqihϕOqj (A4)

of GOR, leading to orthonormal functions jϕOqi in the device
output space HO and jϕRqi in the receiving space HR with as-
sociated coupling strengths (singular values) sORq.

Just as in the SVD of the device operator D, these SVDs can
essentially always be performed; the key requirement is that
the operators GTI and GOR are mathematically “compact,” as

Fig. 5. Illustration of example transmitting, device, and receiving vo-
lumes. Sources or waves in the transmitting volume lead to waves on
the device input surface through the coupling operatorGTI . Waves on
the device output surface lead to waves in the receiving volume
through the coupling operator GOR.
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typical operators in wave problems are (see [32] for a discus-
sion of compactness). The resulting sets of functions corre-
sponding to nonzero singular values are complete in the
same sense we are using for the “mode-converter” basis sets
jϕDOmi and jϕDImi above.

3. Counting Communications Modes
In wave problems involving free-space propagation, the var-
ious sets here—jϕTpi and jϕIpi for GTI and jϕOqi and jϕRqi
for GOR—are generally infinite, so we have not yet generally
established finite numbers for MI and MO. However, the sin-
gular values obey a sum rule [49], which can resolve this
problem.

Quite generally, we can define sums STI and SOR obeying
the rules

X
p

jsTIpj2 � Tr�G†
TIGTI� � STI (A5)

and similarly

X
q

jsORqj2 � Tr�G†
ORGOR� � SOR: (A6)

The proof of these sum rules follows simply if we note that
(i) the trace Tr (i.e., sum of the diagonal elements) of an op-
erator is independent of the (complete) basis used to repre-
sent it and (ii) one such basis is the eigenbasis (jϕTpi for
G†

TIG or jϕOqi for G†
ORGOR), for which the matrix is diagonal

with diagonal elements jsTIpj2 forG†
TIG or jsORqj2 forG†

ORGOR.
Because the trace is independent of the basis, we can

typically evaluate STI and SOR using continuous (i.e., delta-
function) basis sets [49], which means performing some
volume and/or surface integrals. For example, for a simple
scalar wave equation with Green’s function GTI�rT ; rI�,
GTI ≡ GTI�rT ; rI�, where rT and rI are position vectors in
the transmitting and device input volumes or surfaces, VT

and VI , respectively. Then

STI � Tr�G†
TIGTI� �

Z
VT

Z
VI

jGTI�rT ; rI�j2dVIdVT (A7)

and similarly for SOR � Tr�G†
ORGOR�.

We can reasonably decide that there are some minimum
connection strengths jsTIminj2 and jsORminj2 of interest; con-
nections below these strengths we can consider to be so
low that the coupling is negligible or insufficiently useful to
us in the device. We then know immediately that we cannot
usefully have more than STI∕jsTIminj2 and SOR∕jsORminj2 com-
munication modes at the device input and output, respec-
tively. More stringent limits can be obtained if we solve the
SVDs of Eqs. (A1) and (A4). Then, by progressively adding
up ordered lists of the jsTIpj2 and jsORqj2, for example, from
largest on downward, we can decide when there is insufficient
capacity left in the sum rules for any further couplings that are
strong enough to be worth considering (e.g., when the ordered
sum is within jsTIminj2 or jsORminj2 of the totals STI and SOR,
respectively); at that point in each case we can truncate the
basis sets to obtain practical numbers of basis functions
MI (from the STI comparison) and MO (from the SOR compar-
ison), respectively. (See [49] for examples of such
convergence.)

In a broad range of optical situations, such as paraxial op-
tics between plane-parallel surfaces or plane-parallel volumes
of uniform thickness and of transverse dimensions that are
many wavelengths in size, the behavior of the jsTIpj2 and
jsORqj2 can become particularly simple: up to a specific num-
ber in each case (essentially, the MI and MO we will want to
choose in each case), the coupling strengths jsTIpj2 and jsORqj2
are each approximately constant independent of the index p
or q, respectively, and then they drop off dramatically once we
try to pass the normal diffraction limit. This case is analyzed in
detail in [49].

Note, incidentally, that this approach is not restricted to
purely spatial problems; it can be used in the time or fre-
quency domain as well or in combinations of spatial and
temporal (or frequency) domains or with other degrees of
freedom (such as polarization or spin). It works provided only
that the coupling operators are compact. (In time-dependent
problems, it may be necessary to impose finite frequency
bandwidths; otherwise time derivative operators are generally
not bounded and therefore not compact.)
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