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Abstract

Real-world data often comes in compressed form. Analyzing compressed data directly (without
first decompressing it) can save space and time by orders of magnitude. In this work, we focus on
fundamental sequence comparison problems and try to quantify the gain in time complexity when
the underlying data is highly compressible. We consider grammar compression, which unifies many
practically relevant compression schemes such as the Lempel–Ziv family, dictionary methods, and
others. For two strings of total length N and total compressed size n, it is known that the edit
distance and a longest common subsequence (LCS) can be computed exactly in time Õ(nN), as
opposed to O(N2) for the uncompressed setting. Many real-world applications need to align multiple
sequences simultaneously, and the fastest known exact algorithms for median edit distance and LCS
of k strings run in O(Nk) time, whereas the one for center edit distance has a time complexity
of O(N2k). This naturally raises the question if compression can help to reduce the running time
significantly for k ≥ 3, perhaps to O(Nk/2nk/2) or, more optimistically, to O(Nnk−1).1

Unfortunately, we show new lower bounds that rule out any improvement beyond Ω(Nk−1n) time
for any of these problems assuming the Strong Exponential Time Hypothesis (SETH), where again
N and n represent the total length and the total compressed size, respectively. This answers an open
question of Abboud, Backurs, Bringmann, and Künnemann (FOCS’17).

In presence of such negative results, we ask if allowing approximation can help, and we show
that approximation and compression together can be surprisingly effective for both multiple and two
strings.

We develop an Õ(Nk/2nk/2)-time FPTAS for the median edit distance of k sequences, leading
to a saving of nearly half the dimensions for highly-compressible sequences. In comparison, no
O(Nk−Ω(1))-time PTAS is known for the median edit distance problem in the uncompressed setting.
We obtain an improvement from Õ(N2k) to Õ(Nk/2+o(k)nk/2) for the center edit distance problem.
For two strings, we get an Õ(N2/3n4/3)-time FPTAS for both edit distance and LCS; note that this
running time is o(N) whenever n � N1/4. In contrast, for uncompressed strings, there is not even
a subquadratic algorithm for LCS that has less than polynomial gap in the approximation factor.
Building on the insight from our approximation algorithms, we also obtain several new and improved
results for many fundamental distance measures including the edit, Hamming, and shift distances.

1 Introduction

With the information explosion, almost all real-world data comes in a compressed form. While compression
is primarily intended to save storage space and transmission bandwidth, processing compressed data
directly often provides an opportunity to reduce computation time and energy by several orders of
magnitude. In this work, we focus on sequential data such as natural-language texts, biological sequences
(nucleic acid sequences, including DNA, and amino acid sequences, including proteins), and computer
codes. Sequential data often contains highly repetitive pattern. Modern technology (e.g., high-throughput
sequencing) has led to an astonishingly rapid accumulation of such data, so much so that without
proper data compression and algorithms over compressed data, it is not possible to utilize the wealth of
information in them [BPS13, BDY16, PW18, GWH19, HPWO19].
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‡Supported in part by a Simons NTT Research Fellowship.
1In this paper, we assume that k is a constant; thus, the O(·) and Ω(·) notation may hide factors with exponential

dependence on k.
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Grammar compression represents strings as straight-line programs (SLPs), and provides a mathe-
matically elegant way to unify algorithm design principles for processing compressed data [Loh12]. It
is equivalent to many well-known compression schemes up to logarithmic factors and moderate con-
stants [Ryt03, KP18, KK20] such as the celebrated LZ77 [ZL77] and RLBWT [BW94] schemes, and at
least as strong as byte-pair encoding [Gag94], Re-Pair [LM00], Sequitur [NW97], further members of the
Lempel–Ziv family [ZL78, Wel84], and many more popular schemes (the list keeps growing). Therefore,
following the lead of a large body of previous work (including [Tis15, Jeż15, ABBK17, BWK19, CKW20]),
we work with grammar-compressed data.

In this work, we ask whether fundamental sequence similarity measures can be computed faster
for compressed data. This research is motivated in part by the success of computing edit distance
and longest common subsequence (LCS) of two strings [Gaw12, HLLW13, Tis15] much faster than the
“decompress-and-solve” approach: If we let N denote the total length and n denote the total compressed
size of the input strings, then the edit distance and the LCS length can be computed exactly in time
Õ(nN) in contrast to O(N2) time for the uncompressed setting. Therefore, for highly compressible
sequences where, say, n = polylogN , the running time reduces to Õ(N). Abboud, Backurs, Bringmann,
and Künnemann [ABBK17] asked whether it is possible to improve upon Õ(nN), noting that: “For
example, an O(n2N0.1) bound could lead to major real-world improvements.” In general, any sublinear
dependency on N would be preferable; unfortunately, [ABBK17] shows that Õ(Nn) is essentially optimal
under the Strong Exponential Time Hypothesis (SETH).

There are many real-world applications which deal with multiple sequences. A survey by Na-
ture [NMN14] reports multiple sequence alignment as one of the most used modeling methods in biology,
with [THG94] among the top-10 papers cited of all time (citation count 63105). Some of the basic
measures for multiple sequence similarity include the LCS length and the cost of the median and center
strings under edit distance. Abboud, Backurs, and V.-Williams [ABV15] showed that exact computation
of k-LCS requires Ω(Nk−o(1)) time (under SETH), and a similar result has been recently shown for both
median and center k-edit distance [HBGT20]. A simple extension of the basic dynamic programming
for two strings solves the median k-edit distance problems in O(Nk) time whereas the best bound
known for the center k-edit distance is O(N2k) [NR05]. The two-string lower bound in the compressed
setting leaves open the possibility of reducing the running times of the k-LCS and the median k-edit
distance problems for compressed strings: It might be feasible to achieve runtimes of O(Nk/2nk/2) or
even O(Nnk−1), and a substantial reduction of the exponent at N could lead to significant savings. This
raises the following questions:

1. Does compression allow for significantly reducing the running time for multi-sequence similarity
problems?

2. For the case of two highly compressible strings, what relaxations of the LCS and the edit distance
problems could allow circumventing the lower bounds and achieving sublinear dependency on N?

Lower Bounds: Compression does not help with exact bounds much!

Unfortunately, we show that computing the k-LCS, median k-edit distance, and center k-edit distance all
require Ω((Nk−1n)1−o(1)) time under SETH. Therefore, the potential gain from compression becomes
insignificant as k grows. Intuitively, SETH states that CNF-satisfiability requires 2n−o(n) time [IP01].
Even more specifically, we use the k-Orthogonal Vectors problem (k-OV) [Vas18]. At a high level, k-OV
takes as input a list L with n zero-one vectors of dimension d. We must return YES if there exist k
vectors that, when multiplied element-wise, form the all zeros vector. The k-OV conjecture, which is
implied by SETH, states that k-OV cannot be solved in O(nk−Ω(1)) time.

Theorem 1.1. If the k′-OV hypothesis is true for all constants k′, then for any constant ε ∈ (0, 1]

grammar-compressed k-LCS requires
(
Nk−1n

)1−o(1)
time when the alphabet size is |Σ| = Θ(k) and

n = N ε±o(1). Here, N denotes the total length of the k input strings and n is their total compressed size.

We prove similar lower bounds for median and center k-edit distance (Theorem 6.5 and Theorem 6.29).
Sections 6.2, 6.6, and 6.9 contain our lower bound results.

Abboud, Backurs, Bringmann, and Künnemann [ABBK17] left an open question whether their
Ω((Nn)1−o(1)) lower bound for LCS also holds for computing the edit distance of two strings. We answer
this question affirmatively and extend the argument to the k-string setting. Moreover, we note that for a
seemingly simpler problem of computing the shift distance [AIK08, AIKH13, AGMP13, GKK+20], we
show that compression does not help to reduce even a single dimension (Section 8).
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Algorithms: Effectiveness of Approximation & Compression.

In presence of such negative results, relaxing the median and center k-edit distance to circumvent the
Ω((Nk−1n)1−o(1)) lower bound becomes even more important.

Can we use compression and approximation together to achieve much better approximation guarantees
and, simultaneously, circumvent the exact computation lower bounds?

To the best of our knowledge, even for two strings, there is no previous work on approximating the edit
distance of grammar-compressed strings. On the other hand, even after a long line of research in developing
fast algorithms for approximate edit distance for the uncompressed setting (see e.g. [BEK+03, BJKK04,
BES06, AKO10, AO12, CDG+18, GRS20, BR20, KS20, AN20]), the best approximation ratio achievable
in truly subquadratic time is currently 3 + ε [GRS20], and the fastest constant-factor approximation
algorithm runs in O(n1+ε) time [AN20] with an approximation factor that has doubly-exponential
dependence on 1

ε . The situation is even worse for LCS approximation, where we do not know how to
design a subquadratic algorithm with sub-polynomial approximation gap [HSSS19, RSSS19]. We are also
unaware of any previous research on approximating LCS of two compressed strings.

In the case of multiple strings, there is a classic O(N2)-time (2− 2/k)-approximation for median edit
distance and an O(N2)-time 2-approximation for center edit distance [Gus97]. Combined with the results
of [AN20], this yields an O(N1+ε)-time constant-factor approximation for both versions. Nevertheless, a
PTAS, that is, a (1 + ε)-approximation algorithm for every constant ε > 0, would be much more desirable
for practical applications.

Surprisingly, we show that already when an (1 + ε)-approximation is allowed for an arbitrary con-
stant ε > 0, the median k-edit distance computation time reduces to Õ(Nk/2nk/2) compared to the
Ω((Nk−1n)1−o(1)) lower bound for exact algorithms. In other words, we can save k/2 dimensions by
allowing approximation and compression. For ε = o(1), the running time of our algorithm increases by
an ε−O(k) factor, so we even obtain an FPTAS whereas no prior work in the uncompressed setting gives
a (1 + ε)-approximation in O(Nk−Ω(1)) time. The reduction in time for center k-edit distance is even
more dramatic (and technically more complex) from exact O(N2k) to Õ(Nk/2+o(k)nk/2) for a (1 + ε)
approximation.

For edit distance between two strings, we develop a more efficient FPTAS whose running time
is Õ(N2/3n4/3ε−1/3), which is sublinear in N as long as n � N1/4. A slightly more sophisticated
Õ(N2/3n4/3ε−1/3)-time algorithm also provides a (1 + ε)-approximation of the LCS length. In contrast, a
comparable result for the uncompressed setting is an O(N1.95)-time algorithm of [RSSS19], which returns
a common subsequence of length Ω(N/λ4), providing an O(λ3)-factor approximation. Even when the
alphabet size is 2, so far, there does not exist any (1 + ε) approximation in subquadratic time [RS20].

Improved Exact Algorithms in Compressed Setting.

Interestingly, the insights behind our approximation algorithms also lead to new exact algorithms.
In particular, we show that the edit distance can be computed in time Õ(n

√
ND), where D is an

upper bound on the edit distance. This improves upon the state-of-the-art bound of Õ(min(nN, n +
D2)) [Tis15, LV88, MSU97] whenever D � N1/3n2/3.

For this problem, the first improvements compared to the uncompressed settings were given in [Tis09,
HLLW09]. Then, Tiskin [Tis15] obtained an O(nN logN)-time algorithm and subsequent works [HLLW13,
Gaw12] reduced the O(logN) factor. However, when the distance D is small, the edit distance can be
computed in O(N +D2) time [LV88] in the uncompressed setting. The O(N) term in the running time of
the Landau–Vishkin algorithm [LV88] is solely needed to construct a data structure efficiently answering
the Longest Common Extension (LCE) queries. However, already the results of Mehlhorn, Sundar, and
Uhrig [MSU97] yield Õ(1)-time LCE queries after Õ(n)-time preprocessing of the grammars representing
X and Y . This gives rise to an Õ(n+D2)-time algorithm computing the edit distance. With a more
modern implementation of LCE queries in compressed strings by I [I17], the factor hidden within the
Õ(·) notation can be reduced to O(logN).

While the Õ(n + D2)-time algorithm is very fast if D is small, its efficiency quickly degrades
with increasing D and the Õ(nN)-time algorithm becomes more suitable already for D �

√
nN .

With a time complexity of Õ(n
√
ND), our algorithm improves upon the previous algorithms whenever

3
√
n2N � δE(X,Y ) � N . Nevertheless, the current lower bounds allow for a hypothetical holy-grail

algorithm achieving the running time of Õ(min (nD, n+D2)) which we leave as an interesting open
question.
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We also get improved results for the Hamming distance, which is a more basic measure trivially
computable in O(N) time. Here, we present an O(n

√
N)-time algorithm which improves upon the

O(n1.41N0.593) bound of [ABBK17]. Additionally, we note that natural generalizations to multiple strings
(including the median Hamming distance) can be computed in O(nN1−1/k) time.

2 Preliminaries

For two integers i ≤ j, we write [i . . j] to denote the set {i, . . . , j} and [i . . j) to denote {i, . . . , j − 1}.
The notions (i . . j] and (i . . j) are defined analogously.

A string is a sequence of characters from a fixed alphabet Σ. We write Σ∗ to denote the set of all
strings over Σ, and we define Σ+ = Σ∗ \ {γ}, where γ denotes the empty string. The length of a string X
is denoted by |X| and, for a position i ∈ [1 . . |X|] in X, the character of X at position i is denoted by
X[i]. For an integer N ≥ 0, the set of length-N strings over Σ is denoted by ΣN .

For two positions i ≤ j in X, we write X[i . . j] to denote the fragment of X starting at positions i and
ending at position j; this fragment is an occurrence of X[i] · · ·X[j] as a substring of X. The fragments
X[i . . j), X(i . . j], and X(i . . j) are defined similarly.

A morphism is a function f : Σ∗1 → Σ∗2 such that f(X) = ©|X|i=1f(X[i]), where © denotes the
concatenation operator. Note that every function mapping Σ1 to Σ∗2 can be uniquely extended to a
morphism.

2.1 Straight-Line Programs

A straight-line program is a tuple G = (S,Σ, rhs, S), where S is a finite sequence of symbols, Σ ⊆ S is a
set of terminal symbols, rhs : (S \ Σ)→ S∗ is the production (or right-hand side) function, and S ∈ S is
the start symbol, and the symbols in S are ordered so that B precedes A if B occurs in rhs(A). We also
write A→ B1 · · ·Bk instead of rhs(A) = B1 · · ·Bk.

The set S \ Σ of non-terminals is denoted by N. The size of G is |G| := |S|+
∑
A∈N |rhs(A)|: the

number of symbols plus the total length of productions. The expansion function exp : S→ Σ+ is defined
recursively:

exp(A) =

{
A if A ∈ Σ,

©k
i=1 exp(Bi) if A→©k

i=1Bi.

We say that G is a grammar-compressed representation of exp(S). The exp function naturally extends to
a morphism exp : S∗ → Σ∗ with exp(©m

i=1Ai) =©m
i=1 exp(Ai).

For a symbol A ∈ S, we denote |A| = | exp(A)|. In this work, we assume a word RAM machine
with machine words of Ω(log |S|) bits. In this setting, one can compute |A| for all A ∈ S in O(|G|)
time. Consequently, we assume that |A| is stored along with A in the straight-line programs given to our
algorithms.

A straight-line program G is in Chomsky normal form if |rhs(A)| = 2 for all A ∈ N. Given an
arbitrary straight-line program G, an equivalent straight-line program G′ in Chomsky normal form can
be constructed in O(|G|) time; moreover, |G| = O(|G′|). Thus, without loss of generality, we assume
that all straight-line programs given to our algorithms are already in the Chomsky normal form.

3 FPTAS for Compressed Edit Distance of Two Strings

The edit distance δE(X,Y ) of two strings X,Y ∈ Σ∗ is defined as the minimum number of character
insertions, deletions, and substitutions needed to transform X into Y .

In this section, we prove the following result.

Theorem 3.1. Given a straight-line program GX of size n generating a string X of length N > 0, a
straight-line program GY of size m generating a string Y of length M > 0, and a parameter ε ∈ (0, 1], an
integer between δE(X,Y ) and (1 + ε)δE(X,Y ) can be computed in Õ

(
(nm(N +M))2/3ε−1/3

)
time.

Let $ /∈ Σ and let ·$ : Σ∗ → (Σ ∪ {$})∗ be a morphism defined with a$ = a$ for a ∈ Σ. Then,
δE(X,Y ) = 1

2δD(X$, Y $) [Tis15]. Moreover, if X is represented by a straight line program G, then X$

can be represented using a straight-line program of size 2|G|+ 1. This reduction allows computing δD
instead of δE .
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Definition 3.2 (Alignment graph). For two strings X and Y , the alignment graph GX,Y is a weighted
undirected graph with vertex set {vx,y : x ∈ [0 . . |X|], y ∈ [0 . . |Y |]} and edges:

• vx,y−1 ↔ vx,y of length 1, for x ∈ [0 . . |X|] and y ∈ [1 . . |Y |];
• vx−1,y ↔ vx,y of length 1, for x ∈ [1 . . |X|] and y ∈ [0 . . |Y |];
• vx−1,y−1 ↔ vx,y of length 0, for x ∈ [1 . . |X|] and y ∈ [1 . . |Y |] such that X[x] = Y [y].

Observation 3.3. Let d be the metric induced by GX,Y . All x, x′ ∈ [0 . . |X|] and y, y′ ∈ [0 . . |Y |], satisfy

d(vx,y, vx′,y′) =


δD(X(x . . x′], Y (y . . y′]) if x ≤ x′ and y ≤ y′,
δD(X(x′ . . x], Y (y′ . . y]) if x′ ≤ x and y′ ≤ y,
|x− x′|+ |y − y′| otherwise.

For two ranges [x . . x′] ⊆ [0 . . |X|] and [y . . y′] ⊆ [0 . . |Y |], the subgraph of GX,Y induced by {vx̄,ȳ :

x̄ ∈ [x . . x′], ȳ ∈ [y . . y′]} is denoted G
[x. .x′],[y. .y′]
X,Y and called a block in GX,Y . For a block B, we

distinguish the input vertices inB = (vx′,y, vx′−1,y, . . . , vx,y, vx,y+1, . . . , vx,y′) and the output vertices
outB = (vx′,y, vx′,y+1, . . . , vx′,y′ , vx′−1,y′ , . . . , vx,y′); both sequences consist of |B| := (x′−x) + (y′− y) + 1
vertices. The DISTB table is a |B|×|B| matrix with entries DISTB [i, j] = d(inBi , outBj ) for i, j ∈ [1 . . |B|].
The DISTB table satisfies the Monge property [Tis15]: DISTB[i, j] + DISTB[i′, j′] ≤ DISTB[i, j′] +
DISTB [i, j′] holds for all i, i′, j, j′ ∈ [1 . . |B|] such that i ≤ i′ and j ≤ j′. For two strings X,Y ∈ Σ∗, we

also define DISTX,Y to be DISTB for B = G
[0. .|X|],[0. .|Y |]
X,Y . By Observation 3.3, if B = G

[x. .x′],[y. .y′]
X,Y ,

then DISTB = DISTX(x. .x′],Y (y. .y′].

Box decomposition For two strings X,Y ∈ Σ∗, the box decomposition B of the graph GX,Y is defined
based on decompositions X = X1 ◦ · · · ◦XpX and Y = Y1 ◦ · · · ◦ YpY into non-empty fragments, called
phrases.

Let us define sets {bX0 , . . . , bXpX} and {bY0 , . . . , bYpY } of phrase boundaries in X and Y , respectively, so

that the phrases are Xi = X(bXi−1 . . b
X
i ] for i ∈ [1 . . pX ] and Yj = Y (bYj−1 . . b

Y
j ] for j ∈ [1 . . pY ]. A vertex

vx,y is a boundary vertex if x is a phrase boundary in X or y is a phrase boundary in Y , and a grid vertex
if both x is a phrase boundary in X and y is a phrase boundary in Y . The box decomposition B is an

indexed family (Bi,j)i∈[1. .pX ],j∈[1. .pY ] of boxes Bi,j := G
[bXi−1. .b

X
i ],[bYj−1. .b

Y
j ]

X,Y .

3.1 Portal-Respecting Walks

Hermelin et al. [HLLW13] applied a box decomposition obtained via an analogue of Corollary 3.9 to
determine δD(X,Y ) using a dynamic-programming procedure computing δD(X[1 . . x], Y [1 . . y]) for all
boundary vertices vx,y. We reduce the number of DP states by considering only a selection P of boundary
vertices, called portals. This allows improving the running time from Õ(NMτ ) to Õ(|P|), but reduces
the search space from the family of all walks v0,0 ; vx,y to walks that cross box boundaries only at
portals. Below, we formally define such portal-respecting walks and provide a construction suitable for
approximating δD(X,Y ).

Definition 3.4. Let B be a box decomposition of GX,Y and let P be a set portals (selected boundary
vertices). We say that a walk W is a portal-respecting (i, j)-walk if W is a concatenation of walks W ′ and
W ′′ such that:

• W ′′ starts at an input portal of Bi,j and is entirely contained within Bi,j , and
• W ′ is the empty walk at v0,0, a portal-respecting (i−1, j)-walk, or a portal-respecting (i, j−1)-walk.

Let us fix a box decomposition B of GX,Y , and a set of portals P. For a box Bi,j ∈ B, let
Pi,j = P ∩ outBi,j denote the output portals of Bi,j . Moreover, for a vertex vx,y ∈ Bi,j , we denote
dx,y = d(v0,0, vx,y) = δD(X[1 . . x], Y [1 . . y]) and let Di,j

x,y be the minimum length of a portal-preserving
(i, j)-walk ending at vx,y.

Lemma 3.5. Given a set of portals P for a box decomposition B of GX,Y , the the length of the shortest
portal-respecting (pX , pY )-walk ending at v|X|,|Y | can be computed in Õ(|P|) time provided Õ(1)-time
random access to the DIST matrices of all the boxes of B.

Proof. For each box Bi,j ∈ B, our algorithm computes Di,j
x,y for all vertices vx,y ∈ Pi,j . For this, the

boxes Bi,j containing any output portal are processed in the order of non-decreasing values i+ j.
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If (i, j) = (1, 1), then Definition 3.4 and Observation 3.3 yield D1,1
x,y = d(v0,0, vx,y), and this value can

be retrieved from the DISTB1,1
matrix in Õ(1) time. Thus, we henceforth assume (i, j) 6= (1, 1).

Consider a portal-respecting (i, j)-walk W to a vertex vx,y ∈ outBi,j . By Definition 3.4, W is a
concatenation of two walks W ′ and W ′′ such that W ′′ starts at a vertex vx′,y′ ∈ P∩ inBi,j and is entirely
contained within Bi,j , whereas W ′ is a portal-respecting (i, j − 1)-walk to vx′,y′ or a portal respecting
(i− 1, j)-walk to vx′,y′ . Observe that, for a fixed portal vx′,y′ ∈ P∩ inBi,j , the lengths of W ′ and W ′′ can
be optimized independently. Consequently, by Observation 3.3,

Di,j
x,y = max

(
max

vx′,y′∈Pi−1,j∩inBi,j

{
Di−1,j
x′,y′ + d(vx′,y′ , vx,y)

}
, max
vx′,y′∈Pi,j−1∩inBi,j

{
Di,j−1
x′,y′ + d(vx′,y′ , vx,y)

})
.

A matrix (indexed by vx,y ∈ Pi,j and all vertices Pi−1,j ∩ inBi,j ) containing the values Di−1,j
x′,y′ +

d(vx′,y′ , vx,y) can be obtained from a submatrix of the DISTBi,j matrix by adding Di−1,j
x′,y′ to all entries

in the column of vx′,y′ . These modifications preserve the Monge property, so the resulting matrix is a
Monge matrix with Õ(1)-time random access. Consequently, the SMAWK algorithm [AKM+87] allows
computing row-minima, i.e., the values maxvx′,y′∈Pi−1,j∩inBi,j

{
Di−1,j
x′,y′ + d(vx′,y′ , vx,y)

}
. A symmetric

procedure allows computing the values maxvx′,y′∈Pi,j−1∩inBi,j

{
Di,j−1
x′,y′ + d(vx′,y′ , vx,y)

}
, which lets us

derive the costs Di,j
x,y for all the vertices vx,y ∈ Pi,j . The SMAWK algorithm takes nearly linear time

with respect to the sum of matrix dimensions, so the overall time complexity is Õ(|P ∩Bi,j |).
Each vertex belongs to at most four boxes, so the overall running time is Õ(|P|).

Lemma 3.6. Let B be a box decomposition of the graph GX,Y for X,Y ∈ Σ+ and let α > 0 be a real
number. Suppose that P consists of all the grid vertices and all the boundary vertices vx,y of B satisfying
|x− y| = b(1 + α)rc for some integer r. Then, every vertex vx,y ∈ Bi,j satisfies Di,j

x,y ≤ (1 + 2α)i+jdx,y.

Proof. We proceed by induction on i + j. The base case is trivially satisfied due to D1,1
x,y = dx,y for

vx,y ∈ B1,1. We henceforth fix vx,y ∈ Bi,j with (i, j) 6= (1, 1). By Observation 3.3, there is a shortest
path from v0,0 to vx,y contained within GX[1. .x],Y [1. .y]. Let vx′,y′ be the first vertex of Bi,j on this path.

Observe that vx′,y′ ∈ inBi,j and dx,y = dx′,y′ + d(vx′,y′ , vx,y). By symmetry, we may assume without loss
of generality that vx′,y′ ∈ outBi−1,j .

Let us choose vx′,y′′ ∈ Pi−1,j ∩ outBi−1,j as close as possible to vx′,y′ . Since grid vertices are portals,
such vx′,y′′ exists. Moreover, by the choice of the remaining portals, d(vx′,y′ , vx′,y′′) ≤ α|x′− y′| ≤ αdx′,y′ .
Let us construct a portal-respecting (i, j)-walk to vx,y by concatenating a shortest portal-respecting
(i− 1, j)-walk to vx′,y′′ and a shortest path from vx′,y′′ to vx,y (by Observation 3.3, we may assume that
this path is contained in Bi,j). This proves Di,j

x,y ≤ Di−1,j
x,y + d(vx′,y′′ , vx,y). The inductive assumption

further yields Di−1,j
x,y ≤ (1 + 2α)i+j−3dx′,y′′ , and thus Di,j

x,y ≤ (1 + 2α)i+j−3dx′,y′′ + d(vx′,y′′ , vx,y) ≤
(1 + 2α)i+j−3(dx′,y′ + d(vx′,y′ , vx′,y′′)) + d(vx′,y′ , vx′,y′′) + dx,y − dx′,y′ ≤ (1 + 2α)i+j−3(dx′,y′ + αdx′,y′) +
αdx′,y′ + dx,y − dx′,y′ ≤ (1 + 2α)i+j−2dx,y.

3.2 A Grammar-Based Box Decomposition

Hermelin et al. [HLLW13] presented an algorithm that, given two grammar-compressed strings X,Y ∈ Σ+

and an integer parameter τ , constructs a box decomposition B of GX,Y with pX = O(d 1
τ |X|e) and

pY = O(d 1
τ |Y |e), along with an oracle providing random access to the DISTBi,j matrices of all the boxes

Bi,j . However, their construction costs Ω(|X|+ |Y |) time, which is prohibitive in most of our applications.
In this section, we achieve the same goal avoiding the linear dependency on the lengths of X and Y . The
bottleneck of [HLLW13] is constructing appropriate decompositions of X and Y into phrases. In the
following lemma, we implement an analogous step more efficiently by building a grammar-compressed
representation of the sequence of phrases, with each phrase represented by a symbol in an auxiliary
grammar.

Lemma 3.7. Given a straight-line program G generating a string X and an integer τ ≥ 1, in O(|G|)
time one can construct straight-line programs G+ and GP of size O(|G|) such that:

• the terminal symbols of GP are the symbols A of G+ satisfying |A| ≤ τ ,
• GP generates a string P such that expG+(P ) = X and |P | ≤

⌈
3
τ |X|

⌉
.

Proof. If τ ≥ |X|, then we simply set G+ = G and set GP to be a grammar with no non-terminals whose
starting symbol is the starting symbol of G; this construction clearly satisfies the required conditions.
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We henceforth assume that τ < |X|. The grammar G+ is constructed by adding new non-terminals
to G. As for GP , we include as terminals all symbols A of G+ with |A| ≤ τ , and we add further symbols
as non-terminals. For every symbol A of G with |A| > τ , we introduce three new non-terminals:

• L(A) and R(A) to G+, satisfying |L(A)| ≤ τ and |R(A)| ≤ τ ,
• M(A) to GP .

The productions for L(A), R(A), and M(A) are determined based on the production A→ BLBR:

1. If |BL| ≤ τ and |BR| ≤ τ , then M(A)→ γ, L(A)→ BL, and R(A)→ BR.
2. If |BL| > τ and |BR| > τ , then M(A) → M(BL)R(BL)L(BR)M(BR), L(A) → L(BL), and
R(A)→ R(BR).

3. If |BL| > τ and |BR| ≤ τ , then L(A)→ L(BL) and:

(a) R(A)→ R(BL)BR and M(A)→M(BL) if |R(BL)|+ |BR| ≤ τ ,
(b) R(A)→ BR and M(A)→M(BL)R(BL) otherwise.

4. If |BL| ≤ τ and |BR| > τ , then R(A)→ R(BR) and:

(a) L(A)→ BLL(BR) and M(A)→M(BR) if |BL|+ |L(BR)| ≤ τ ,
(b) L(A)→ BL and M(A)→ L(BR)M(BR) otherwise.

Additionally, for the starting symbol S of G, we add a starting symbol SP → L(S)M(S)R(S) to GP .
A simple inductive argument shows that every symbol A of G with |A| > τ satisfies

expG(A) = expG+(L(A) ◦ expGP (M(A)) ◦R(A)).

In particular, P = expGP (SP ) satisfies expG+(P ) = expG(S) = X.
It remains to prove that |P | < 3

τ |X|. For this, we inductively show that every symbol A of G with
|A| > τ satisfies |L(A)|+ |R(A)|+ τ(|M(A)|+ 2) < 3|A|. To prove this claim, we analyze the cases based
on the production A→ BLBR.

1. If |BL| ≤ τ and |BR| ≤ τ , then

|L(A)|+ |R(A)|+ τ(|M(A)|+ 2) = |A|+ 2τ < 3|A|.

2. If |BL| > τ and |BR| > τ , then

|L(A)|+ |R(A)|+ τ(|M(A)|+ 2) = |L(BL)|+ |R(BR)|+ τ(|M(BL)|+ 2 + |M(BR)|+ 2) <

|L(BL)|+|R(BL)|+τ(|M(BL)|+2)+|L(BR)|+|R(BR)|+τ(|M(BR)|+2) < 3|BL|+3|BR| = 3|A|.

3. If |BL| > τ , |BR| ≤ τ , then

• If |R(BL)|+ |BR| ≤ τ , then

|L(A)|+ |R(A)|+ τ(|M(A)|+ 2) = |L(BL)|+ |R(BL)|+ |BR|+ τ(|M(BL)|+ 2) <

3|BL|+ |BR| < 3|A|.

• Otherwise,

|L(A)|+ |R(A)|+ τ(|M(A)|+ 2) = |L(BL)|+ |BR|+ τ(|M(BL)|+ 3) <

|L(BL)|+ |BR|+ τ(|M(BL)|+ 2) + |R(BL)|+ |BR| < 3|BL|+ 2|BR| < 3|A|.

4. The case involving |BL| ≤ τ and |BR| > τ is symmetric to the previous one.

In particular, this claim holds for A = S, so |SP | = |M(S)|+ 2 < 1
τ (3|S| − |L(S)| − |R(S)|) < 3

τ |S| =
3
τ |X|.

As for constructing the DIST matrices, we use the original implementation from [HLLW13].

Lemma 3.8 ([HLLW13, Section 5]). Given straight-line programs GX and GY and an integer τ ≥ 1,
in Õ(|GX ||GY |τ) time one can construct a data structure that provides Õ(1)-time random access to
the DISTexp(AX),exp(AY ) matrices for all symbols AX of GX and AY of GY satisfying |AX | ≤ τ and
|AY | ≤ τ .

Combining Lemmas 3.7 and 3.8, we complete our construction.
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Corollary 3.9. Given a straight-line program GX of size n generating a string X of length N > 0, a
straight-line program GY of size m generating a string Y of length M > 0, and an integer τ ∈ [1 . . N+M ],
one can in Õ(N+M

τ + nmτ) time construct a box decomposition B = (Bi,j)i∈[1. .pX ],j∈[1. .pY ] of GX,Y
with pX = O(dNτ e) and pY = O(dMτ e), along with an oracle providing Õ(1)-time random access to the
DISTBi,j matrices.

Proof. First, we use Lemma 3.7 to obtain grammars G+
X and GP

X . The string PX represented by GP
X

satisfies X = expG+
X

(PX), so it can be interpreted as a decomposition of X into pX := |PX | phrases, with

the ith phrase Xi being an occurrence of expG+
X

(PX [i]). The decomposition of Y is obtained in the same

way based on grammars G+
Y and GP

Y constructed for Y .
The box decomposition B is based on these decompositions of X and Y . Note that each box Bi,j

satisfies
DISTBi,j = DISTexp

G
+
X

(PX [i]),exp
G

+
Y

(PY [j]).

Due to |PX [i]| ≤ τ and |PY [j]| ≤ τ , Lemma 3.8 applied to G+
X and G+

Y provides Õ(1)-time oracle access
to all these matrices. Storing PX and PY , we can point to DISTBi,j in O(1) time given i, j.

3.3 Algorithm

Proposition 3.10. Given a straight-line program GX of size n generating a string X of length N > 0,
a straight-line program GY of size m generating a string Y of length M > 0, and a parameter ε ∈ (0, 1],
a (1 + ε)-approximation of δD(X,Y ) can be computed in Õ

(
(nm(N +M))2/3ε−1/3

)
time.

Proof. The algorithm uses Corollary 3.9 and Lemma 3.5 with the set of portals P defined as in Lemma 3.6,
where α = Ω( ε

pX+pY −2 ) = Ω( ετ
N+M ) is chosen so that (1 + 2α)pX+pY −2 = 1 + ε. Lemma 3.6 guar-

antees that the resulting value is a (1 + ε)-approximation of δD(X,Y ). The number of portals is

O
(
NM
τ2 + N

τ log1+αM + M
τ log1+αN

)
= Õ

( (N+M)2

ετ2

)
, so the overall running time is Õ

(
nmτ + (N+M)2

ετ2

)
.

Optimizing τ ∈ [1 . . N + M ], we get Õ(nm + ε−1 + (nm(N + M))2/3ε−1/3) time. If the first term
dominates, then nm ≥ (nm(N + M))2/3ε−1/3 ≥ (N + M)2ε−1. However, O(NM) = O((N + M)2ε−1)
time is enough to compute δD(X,Y ) exactly without compression. If the second term dominates, then
ε−1 ≥ (nm(N + M))2/3ε−1/3 ≥ nm(N + M). However, Õ(

√
nm(N + M)) = Õ(nm(N + M)) time is

enough to compute δD(X,Y ) exactly using Proposition 3.13 with D = N +M .

Theorem 3.1 follows through the reduction from δE to δD.

3.4 Exact Output-Sensitive Algorithm

In this section we prove Theorem 3.11:

Theorem 3.11. Given a straight-line program GX of size n generating a string X of length N > 0 and
a straight-line program GY of size m generating a string Y of length M > 0, the edit distance δE(X,Y )

can be computed in Õ
(√

(1 + δE(X,Y ))nm(N +M)
)

time.

The algorithm behind Theorem 3.11 reduces the problem to a decision version (asking whether
δE(X,Y ) ≤ D for a threshold D) and then uses the same scheme with all boundary vertices (x, y)
satisfying |x− y| ≤ D selected as portals.

Lemma 3.12. Let B be a box decomposition of the graph GX,Y for X,Y ∈ Σ+ and let D ≥ 0 be an
integer. Suppose that P consists of all the boundary vertices vx,y of B satisfying |x− y| ≤ D. Then, every
vertex vx,y ∈ Bi,j with dx,y ≤ D satisfies Di,j

x,y = dx,y.

Proof. We proceed by induction on i + j. The base case is trivially satisfied due to D1,1
x,y = dx,y for

vx,y ∈ B1,1. We henceforth fix vx,y ∈ Bi,j with (i, j) 6= (1, 1) and dx,y ≤ D. By Observation 3.3, there is
a shortest path from v0,0 to vx,y contained within GX[1. .x],Y [1. .y]. Let vx′,y′ be the first vertex on this

path that belongs to Bi,j . Observe that vx′,y′ ∈ inBi,j and dx,y = dx′,y′ + d(vx′,y′ , vx,y). Consequently,
|x′ − y′| ≤ dx′,y′ ≤ dx,y ≤ D, so vx′,y′ ∈ Pi−1,j ∪Pi,j−1. By symmetry, we may assume without loss of
generality that vx′,y′ ∈ Pi−1,j .

Let us construct a portal-respecting (i, j)-walk to vx,y by concatenating a shortest portal-respecting
(i−1, j)-walk to vx′,y′ and a shortest path from vx′,y′ to vx,y (by Observation 3.3 applied toGX(x′. .x],Y (y′. .y],
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we may assume that this path is contained in Bi,j). This proves Di,j
x,y ≤ D

i−1,j
x′,y′ + d(vx′,y′ , vx,y) = Di,j

x,y ≤
Di−1,j
x′,y′ + dx,y − dx′,y′ . The inductive assumption yields Di−1,j

x′,y′ = dx′,y′ , and thus Di,j
x,y ≤ dx,y holds as

claimed.

Proposition 3.13. Given a straight-line program GX of size n generating a string X of length N > 0, a
straight-line program GY of size m generating a string Y of length M > 0, and an integer D ∈ [1 . . N+M ],

one can in Õ
(√

nmD(N +M)
)

time compute δD(X,Y ) or certify that δD(X,Y ) > D.

Proof. The algorithm uses Corollary 3.9 and Lemma 3.5 with the set of portals P defined as in Lemma 3.12.
The latter lemma guarantees that the resulting value is δD(X,Y ) provided that δD(X,Y ) ≤ D. Otherwise,
the resulting value exceeds D, certifying that δD(X,Y ) > D.

The number of portals is O(D·N+M
τ ), so the overall running time is Õ(nmτ+D·N+M

τ ). Optimizing τ ∈
[1 . . N+M ], we get Õ(nm+D+

√
nmD(N +M)) time. Since D ≤ N+M , the second term is dominated

by the third one. If the first term dominates, then nm > D(N + M), and thus
√
nmD(N +M) ≥

D(N +M). However, Õ(N +M +D2) = Õ(D(N +M)) time suffices solve the problem for uncompressed
strings [LV88].

Theorem 3.11 follows through exponential search and the reduction from δE to δD.

3.5 LCS Approximation

In this section we prove Theorem 3.14:

Theorem 3.14. Given a straight-line program GX of size n generating a string X of length N > 0, a
straight-line program GY of size m generating a string Y of length M > 0, and a parameter ε ∈ (0, 1], a
(1 + ε)-approximation of LCS(X,Y ) can be computed in Õ

(
(nm(N +M))2/3ε−1/3

)
time.

The algorithm behind Theorem 3.14 is essentially the same as that of Theorem 3.1, and this is why
the running times coincide. The main difference is that the output portals of the box Bi,j are chosen
adaptively while the dynamic-programming algorithm processes Bi,j .

As for LCS approximation, our choice of portals is adaptive. For a box Bi,j ∈ B, let Pi,j = P∩outBi,j .
Observe that the value Di,j

x,y for vx,y ∈ Bi,j depends only on Pi′,j′ with i′ + j′ < i + j. Hence, except

for the grid vertices (all included in P), we may select the portals Pi,j based on the values Di,j
x,y for

vx,y ∈ outBi,j .
For vx,y ∈ Bi.j , let `x,y = 1

2 (|X|+ |Y |−dx,y) = LCS(X[1 . . x], Y [1 . . y]) and Li,jx,y = 1
2 (|X|+ |Y |−Di,j

x,y).

Lemma 3.15. Let B be a box decomposition of the graph GX,Y for X,Y ∈ Σ+ and let α > 0 be a
real number. Suppose that P consists of all the grid vertices and, for each box Bi,j ∈ B, all vertices
vx,y ∈ outBi,j such that:

• vx−1,y ∈ outBi,j and blog1+α L
i,j
x,yc > blog1+α L

i,j
x−1,yc, or

• vx,y−1 ∈ outBi,j and blog1+α L
i,j
x,yc > blog1+α L

i,j
x,y−1c.

Then, for each vertex vx,y ∈ Bi,j, we have Li,jx,y ≥ (1 + α)2−i−j`x,y.

Proof. We proceed by induction on i + j. The base case is trivially satisfied due to L1,1
x,y = `x,y for

vx,y ∈ B1,1. Thus, we henceforth fix a vertex vx,y ∈ Bi,j with (i, j) 6= (1, 1). By Observation 3.3, there is
a shortest path from v0,0 to vx,y contained within GX[1. .x],Y [1. .y]. Let vx′,y′ be the first vertex on this

path that belong to Bi,j . Observe that vx′,y′ ∈ inBi,j and `x,y = `x′,y′ + LCS(X(x′ . . x], Y (y′ . . y]). By
symmetry, we may assume without loss of generality that vx′,y′ ∈ outBi−1,j .

Consider the largest value y′′ ∈ [1 . . y′] such that vx′,y′′ ∈ Pi−1,j . Since grid vertices are portals, such

vx′,y′′ exits. Moreover, by the choice of the remaining portals, Li−1,j
x′,y′ ≤ (1 + α)Li−1,j

x′,y′′ . Let us construct
a portal-respecting (i, j) walk to vx,y by concatenating a shortest portal-respecting (i − 1, j)-walk to
vx′,y′′ and a shortest path from vx′,y′′ to vx,y (by Observation 3.3, we may assume that this path is

contained Bi,j). This proves that Di,j
x,y ≤ D

i−1,j
x′,y′′ + d(vx′,y′′ , vx,y) ≤ Di−1,j

x′,y′′ + y′ − y′′ + d(vx′,y′ , vx,y), i.e.,

Li,jx,y ≥ Li−1,j
x′,y′′ + LCS(X(x′ . . x], Y (y′ . . y]) ≥ (1 + α)−1Li−1,j

x′,y′ + `x,y − `x′,y′ . The inductive assumption

further yields Li−1,j
x′,y′ ≥ (1+α)3−i−j`x′,y′ , and thus Li,jx,y ≥ (1+α)2−i−j`x′,y′+`x,y−`x′,y′ ≥ (1+α)2−i−j`x,y

holds as claimed.
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Lemma 3.16. Given Õ(1)-time random access to the DISTBi,j matrix, the values Di−1,j
x′,y′ for all vertices

vx′,y′ ∈ Pi−1,j (if i > 1), and the values Di,j−1
x′,y′ for all vertices vx′,y′ ∈ Pi,j−1 (if j > 1), the values Di,j

x,y

for any q query vertices vx,y ∈ outBi,j can be computed in Õ(q + |P ∩ inBi,j |) time.

Proof. If (i, j) = (1, 1), then Definition 3.4 and Observation 3.3 yield D1,1
x,y = d(v0,0, vx,y), and this value

can be retrieved from the DISTB1,1
matrix in Õ(1) time. Thus, we henceforth assume (i, j) 6= (1, 1).

Consider a portal-respecting (i, j)-walk W to a vertex vx,y ∈ outBi,j . By Definition 3.4, W is a
concatenation of two walks W ′ and W ′′ such that W ′′ starts at a vertex vx′,y′ ∈ P∩ inBi,j and is entirely
contained within Bi,j , whereas W ′ is a portal-respecting (i, j − 1)-walk to vx′,y′ or a portal respecting
(i− 1, j)-walk to vx′,y′ . Observe that, for a fixed portal vx′,y′ ∈ P∩ inBi,j , the lengths of W ′ and W ′′ can
be optimized independently. Consequently, by Observation 3.3,

Di,j
x,y = max

(
max

vx′,y′∈Pi−1,j∩inBi,j

{
Di−1,j
x′,y′ + d(vx′,y′ , vx,y)

}
, max
vx′,y′∈Pi,j−1∩inBi,j

{
Di,j−1
x′,y′ + d(vx′,y′ , vx,y)

})
.

A matrix (indexed by the query vertices vx,y ∈ outBi,j and all vertices Pi−1,j ∩ inBi,j ) containing the

values Di−1,j
x′,y′ +d(vx′,y′ , vx,y) can be obtained from a submatrix of the DISTBi,j matrix by adding Di−1,j

x′,y′ to
all entries in the column of vx′,y′ . These modifications preserve the Monge property, so the resulting matrix
is a Monge matrix with Õ(1)-time random access. Consequently, the SMAWK algorithm [AKM+87] allows
computing row-minima, i.e., the values maxvx′,y′∈Pi−1,j∩inBi,j

{
Di−1,j
x′,y′ + d(vx′,y′ , vx,y)

}
. A symmetric

procedure allows computing the values maxvx′,y′∈Pi,j−1∩inBi,j

{
Di,j−1
x′,y′ + d(vx′,y′ , vx,y)

}
, which lets us

derive the costs Di,j
x,y for all the query vertices vx,y ∈ outBi,j . The SMAWK algorithm takes nearly linear

time with respect to the sum of matrix dimensions, so the overall time complexity is Õ(q+ |P∩ inBi,j |).

Lemma 3.17. Given a box decomposition B of GX,Y , a parameter ε ∈ (0, 1], and Õ(1)-time random
access to the DIST matrices of all the boxes of B, a (1 + ε)-approximation of LCS(X,Y ) can be computed
in Õ(ε−1(pX + pY )2) time.

Proof. Let us choose α = Ω( ε
pX+pY −2 ) so that (1 + α)pX+pY −2 = 1 + ε. We process boxes Bi,j ∈ B in

the order of non-decreasing values i+ j, constructing the output portals Pi,j according to Lemma 3.15
and computing the values Li,jx,y for all vx,y ∈ Pi,j . By Lemma 3.15, the value LpX ,pY|X|,|Y | is guaranteed to be

a (1 + ε)-approximation of LCS(X,Y ).
The ordering of boxes lets us compute the values Li,jx,y for any q vertices v ∈ outBi,j in Õ(q+ |P∩ inBi,j |)

time. By symmetry, we may focus without loss of generality on the right boundary of Bi,j , i.e., vertices
vx,y with x = bXi and y ∈ [bYj−1 . . b

Y
j ]. Note that the corresponding values Li,jx,y are non-decreasing:

Di,j
x,y ≤ D

i,j
x,y−1 + 1 implies Li,jx,y ≥ L

i,j
x,y−1. First, we apply Lemma 3.16 to derive Li,jx,y for the two extreme

values y ∈ {bYj−1, b
Y
j }. Next, for each value r ∈ [blog1+α L

i,j

x,bYj−1

c . . blog1+α L
i,j

x,bYj
c], we binary search for

the smallest y ∈ [bYj−1 . . b
Y
j ] such that log1+α L

i,j
x,y ≥ r, and include vx,y in Pi,j . The binary searches

are executed in parallel, with Lemma 3.16 applied to determine Li,jx,y for all the current pivots. This

way, the algorithm is implemented in Õ(1 + log1+α L
i,j

x,bYj
− log1+α L

i,j

y,bYj−1,y
+ |P ∩ inBi,j |) time. Due to

Li,j
y,bYj−1

≥ Li,j−1

y,bYj−1

, the first term sums up to Õ(log1+α |Y |) = Õ(ε−1(pX + pY )) across j ∈ [1 . . pY ], and to

Õ(ε−1(pX + pY )2) across Bi,j ∈ B. This also bounds the number of portals created, so the second term,
which sums up to |P| across all boxes, is also Õ(ε−1(pX + pY )2).

Proof of Theorem 3.14. The algorithm uses Corollary 3.9 and Lemma 3.17. Due to pX + pY = N+M
τ ,

the overall running time is Õ
(
nmτ + (N+M)2

ετ2

)
. Optimizing τ , we get the running time of Õ(nm+ ε−1 +

(nm(N +M))2/3ε−1/3).
If the first term dominates, then nm ≥ (nm(N +M))2/3ε−1/3 ≥ (N +M)2ε−1. However, O(NM) =

O((N + M)2ε−1) time is enough to compute LCS(X,Y ) exactly without compression. If the second
term dominates, then ε−1 ≥ (nm(N + M))2/3ε−1/3 ≥ nm(N + M). However, Õ(

√
nm(N + M)) =

Õ(nm(N+M)) time is enough to compute LCS(X,Y ) exactly using Proposition 3.13 with D = N+M .

4 FPTAS For Compressed Median k-Edit Distance

The median k-edit distance is defined as below.
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Definition 4.1. The (median) edit distance δE(X1, . . . , Xk) of k strings X1, . . . , Xk is the minimum
total number of edits (insertions, deletions, and substitutions) needed to make all strings Xi equal some

string X∗. That is, δE(X1, . . . , Xk) = minX∗
∑k
i=1 δE(Xi, X

∗).

For the (median) edit distance between k strings, we show that allowing (1 + ε)-approximation gives
an algorithm circumventing the bound in Theorem 6.5:

Theorem 4.2. Given k = O(1) straight-line programs GXi of total size n generating strings Xi of total
length N > 0 and a parameter ε ∈ (0, 1], an integer between δE(X1, . . . , Xk) and (1 + ε)δE(X1, . . . , Xk)
can be computed in Õ

(
ε−O(k)nk/2Nk/2

)
time.

To prove the above theorem, we use a different set of techniques than in the two-string case. Most
approaches for speeding up the textbook DP algorithm for two (compressible) strings, including the
aforementioned results in this paper, rely on the ability to perform computations involving DIST matrices
efficiently. These computations crucially depend on the fact that DIST matrices satisfy the Monge
property. However, for the natural high-dimensional generalization of DIST matrices, we do not know of
any analog of the Monge property they satisfy that allows us to perform similar computations even for
three-string similarity problems. Indeed, most natural generalizations of the Monge property seem to
not hold even in the three-string setting (see Section 9 for more details). Thus, it appears unlikely that,
for example, an algorithm that partitions the DP table into boxes and computes the DP values on the
boundary of each box using computations involving DIST matrices would be substantially more efficient
than the textbook edit-distance algorithm, even in the three-string setting.

This motivates us to instead use the window-respecting alignment scheme that has appeared in
approximation algorithms for edit distance (e.g., [CDG+18, GRS20]).

4.1 Window-Respecting Alignments

We will assume that δE(X1, . . . , Xk) lies between D and 2D for some known D at the loss of a logN
factor in the runtime. We partition X1 into d|X1|/τe disjoint windows W1,1 to W1,N/τ each of length τ
(without loss of generality; we could always e.g. pad each string with an equal amount of a new dummy
character to ensure |X1| is a multiple of τ , without asymptotically affecting their size or compression
size). That is, W1,j = X1[(j − 1)τ + 1, jτ ].

We define for X2, . . . , Xk possibly overlapping windows indexed by (i) ∆, a guess for the (signed)
difference between the length of W and the corresponding window in X1 and (ii) the starting position
p of the window. More formally, the windows are indexed by Wi,∆,p. Throughout the section, let
σ := max{bεDτ/|X1|c, 1} and Rd(x) denote x rounded down to the nearest multiple of σ. Then
Wi,∆,p = Xi[pσ+ 1 . . Rd(pσ+ τ + ∆)] (or is the empty string “starting” at position pσ+ 1 if Rd(min{pσ+
τ + ∆, |Xi|}) < pσ + 1). If Rd(pσ + τ + ∆) > |X1|, Wi,∆,p is not included in our set of windows. We will
define this window for:

• All ∆ in {0, 1,−1, b(1+ε)c,−b(1+ε)c, b(1+ε)2c, . . . b(1+ε)dlog1+ε 2τ/ε2ec}∪{−τ} for which τ+∆ ≥ 0,
• All p from 0 to b|Xi|/σc.
It suffices to consider windows of size at most 2τ/ε2 by the following lemma:

Lemma 4.3. Given X1, X2, . . . , Xk and a parameter τ , for J = |X1|/τ , let X∗ be the string such that
δE(X1, X2, . . . Xn) =

∑
i δE(Xi, X

∗). There exists a partition of each X1 into substrings {X1,j}j∈[J],
disjoint substrings of the other Xi, {Xi,j}j∈[J], and a partition of X∗ into substrings {X∗j }j∈[J] such that:

• |X1,j | = τ for all j.
• For any j and j < j′, Xi,j appears before Xi,j′ in Xi.
• maxi,j |Xi,j | ≤ 2τ/ε2.
• ∑

j∈[J]

δE(Xij , X
∗
j ) + |Xi| −

∑
j∈[J]

|Xi,j | ≤ (1 + 3ε)δE(Xi, X
∗),

Which implies:∑
j∈[J]

δE(X1,j , X2,j , . . . , Xk,j) +
∑
i>1

(|Xi| −
∑
j∈[J]

|Xi,j |) ≤ (1 + 3ε)δE(X1, X2, . . . Xk).

That is, the cost of the alignment that aligns X1,j with each Xi,j, and then deletes all characters in
X2 to Xk that are unaligned with some X1,j is at most (1 + 3ε)δE(X1, X2, . . . Xk).
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Effectively, Lemma 4.3 says that there is a near-optimal alignment that aligns the windows of X1 to
substrings of the other strings that are not more than 1/ε2 times larger.

Proof. We partition X1 into substrings of length τ , {X1,j}j∈[J]. X
∗ can be partitioned into substrings

{X̃∗j }j∈[J] such that δE(X1, X
∗) =

∑
j∈[J] δE(X1,j , X̃

∗
j ).

First, we will “realign” X1 and X∗ to ensure no X̃∗j is much larger than X1,j . Call a contiguous

subsequence of [J ], [j . . j′] := {j, j + 1, . . . j′}, “skewed” if
∑
m∈[j. .j′] |X1,m| < ε

2

∑
m∈[j. .j′] |X̃∗m|. Let us

take a “maximal” set S of disjoint skewed contiguous subsequences, i.e. a set S such that (i) all the
subsequences in S are disjoint (ii) for every contiguous subsequence s in S, there is no skewed contiguous
subsequence s′ such that s ⊂ s′ and (iii) there is no skewed contiguous subsequence that is not in S but
also is completely disjoint from every element of S.

For each skewed contiguous subsequence [j . . j′] in S, note that j′ + 1 does not appear in any element
of S (otherwise, [j . . j′] and this element can be combined to form a longer skewed contiguous subsequence,
violating (ii)), and [j . . j′ + 1] is not skewed (again, [j . . j′ + 1] being skewed would violate (ii) since
[j . . j′] ⊂ [j . . j′+ 1]). Take S and replace each [j . . j′] with [j . . j′+ 1] to get S′. For each [j . . j′+ 1] ∈ S′,
we have:

ε

2

∑
m∈[j. .j′+1]

|X̃∗m| ≤
∑

m∈[j. .j′+1]

|X1,m| ≤ 2
∑

m∈[j. .j′]

|X1,m| < ε
∑

m∈[j. .j′+1]

|X̃∗m|. (1)

The right-hand side of (1) implies:

δE(©m∈[j. .j′+1]X1,m,©m∈[j. .j′+1]X̃
∗
m) ≥ (1− ε)| ©m∈[j. .j′+1] X̃

∗
m|.

It also implies that for any partition of ©m∈[j. .j′+1]X̃
∗
m into substrings {X∗m}m∈[j. .j′+1], we have:∑

m∈[j. .j′+1]

δE(X1,m, X
∗
m) ≤ (1 + ε)| ©m∈[j. .j′+1] X̃

∗
m|.

And so if ε is sufficiently small:

∑
m∈∪e∈S′e

δE(X1,m, X
∗
m) ≤ 1 + ε

1− ε
∑

m∈∪e∈S′e
δE(X1,m, X̃

∗
m) ≤ (1 + 3ε)

∑
m∈∪e∈S′e

δE(X1,m, X̃
∗
m)

In particular, because of the left-hand side of (1), we can choose the partition of ©m∈[j. .j′+1]X̃
∗
m that

splits it into substrings {X∗m}m∈[j. .j′+1], each of length at most 2τ/ε.

Now if we set X∗m = X̃∗m for any m not in a subsequence in S′, we trivially have:∑
m/∈∪e∈S′e

δE(X1,m, X
∗
m) ≤

∑
m/∈∪e∈S′e

δE(X1,m, X̃
∗
m)

And also X∗m ≤ 2τ/ε for all such m (otherwise, m should appear in some subsequence in S′ by
condition (iii)). So we’ve found a partition of X∗ into substrings {X∗j }j∈[J] such that |X∗j | ≤ 1

ε |X1,j | for
all j, and: ∑

j∈[J]

δE(X1,j , X
∗
j ) ≤ (1 + 3ε)

∑
j∈[J]

δE(X1,j , X̃
∗
j ).

Now, we will use this partition to determine {Xi,j}i>1,j∈[J]. For each i, Xi can be partitioned into
substrings X ′i,j such that δE(Xi, X

∗) =
∑
j∈[J] δE(X ′i,j , X

∗
j ). If |X ′i,j | ≤ 2τ/ε2, we set Xi,j = X ′i,j . If any

X ′i,j has length larger than 2τ/ε2 > |X∗j |/ε, then δE(X ′i,j , X
∗
j ) ≥ (1− ε)|X ′i,j |. On the other hand:

δE(γ,X∗j ) + |X ′i,j | ≤ (1 + ε)|X ′i,j | ≤
1 + ε

1− ε
δE(X ′i,j , X

∗
j ) ≤ (1 + 3ε)δE(X ′i,j , X

∗
j )

for the empty string γ. So we can now choose Xi,j to be any empty substring of X ′i,j . These choices of
Xi,j give the properties of the lemma, completing the proof.

Let W1 be the set of all windows we partition X1 into, and Wi be the set of windows we define for Xi.
Let s(W ) denote the index of the first character in W , and e(W ) denote the index of the last character.
For k strings, we define a window-respecting alignment as follows:
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Definition 4.4. A window respecting alignment is a function f :W1 →W1 ×W2 × · · · ×Wk with the
following properties:

• For all W ∈ W1, f(W )1 = W .
• For any j < j′ and any i, e(f(W1,j)i) < s(f(W1,j′)i).

Let ri(f) denote the number of characters in Xi that are not contained in f(W )i for any W ∈ W1.
The cost of a window-respecting alignment is defined as follows:

δE(f) :=
∑
j∈[J]

δE(f(W1,j)) +
∑
i

ri(f).

Let F be the set of all window-respecting alignments. The following lemma shows that window-
respecting alignments approximate normal alignments:

Lemma 4.5.
δE(X1, X2, . . . Xk) ≤ min

f∈F
δE(f) ≤ (1 + 13εk)δE(X1, X2, . . . Xk).

Proof. The first inequality follows because for any f , there is an alignment that for all j exactly aligns
W1,j with the windows in f(Wi,j) at cost at most δE(f(Wi,j)), and uses

∑
i ri(f) deletions to handle the

remaining characters in each string.
Next, we show that there exists f ∈ F such that δE(f) ≤ (1 + εk)δE(X1, X2, . . . Xk). Let us take the

substrings Xi,j given by Lemma 4.3. Note that W1,j = X1,j .
If |Xi,j | ≤ εδE(W1,j , X2,j . . . Xk,j) + 3(σ − 1), let Wi,j be the empty window “starting” at index

e(Wi,j−1) + 1, or if j = 1, at index 1. Then we have |Xi,j | − |Wi,j | ≤ εδE(W1,j , X2,j . . . Xk,j) + 3(σ − 1).
Otherwise, let Wi,j be the longest window Wi,∆,p that is a substring of Xi,j . Note that |Xi,j | and |W1,j |

differ by at most δE(W1,j , X2,j . . . Xk,j) and |Wi,j | ≤ 2τ/ε2 for all i, j. If ε is a sufficiently small constant,
this implies there is a choice of Wi,j such that |Xi,j | − |Wi,j | ≤ εδE(W1,j , X2,j . . . Xk,j) + 3(σ − 1).
We can identify Wi,j as follows: Take Xi,j and delete at most σ − 1 characters from the beginning

until it starts at pσ + 1 for some integer p to get X̃i,j . We have |Xi,j | − |X̃i,j | ≤ σ − 1, and so

|X̃i,j | and |W1,j | differ by at most δE(W1,j , X2,j . . . Xk,j) + (σ − 1) characters. Choose ∆ such that
1

1+ε (δE(W1,j , X2,j . . . Xk,j) + (σ − 1)) ≤ ∆ ≤ δE(W1,j , X2,j . . . Xk,j) + (σ − 1). Wi,∆,p is a prefix of X̃i,j

containing all but at most the last ε(δE(W1,j , X2,j . . . Xk,j) + (σ − 1)) + (σ − 1) characters of X̃i,j . In
turn, if ε is sufficiently small we have |Xi,j | − |Wi,j | ≤ εδE(W1,j , X2,j . . . Xk,j) + 3(σ − 1).

In turn, by triangle inequality and since σ − 1 ≤ εkDτ/|X1|:

δE(W1,j ,W2,j . . .Wk,j) ≤ (1 + εk)δE(W1,j , X2,j . . . Xk,j) + 3εkDτ/|X1|.

We now choose f(W1,j) = (W1,j ,W2,j . . .Wk,j). We also have that the number of characters f does
not align within X2,j , X3,j . . . Xk,j is at most εkδE(W1,j , X2,j . . . Xk,j) + 3εkDτ/|X1|.

Putting it all together and using Lemma 4.3 we get:

δE(f) :=
∑
j∈[J]

δE(f(W1,j)) +
∑
i

ri(f)

≤(1 + εk)
∑
j

δE(W1,j , X2,j . . . Xk,j) +
|X1|
τ
· 3εkDτ

|X1|

+ εk
∑
j

δE(W1,j , X2,j . . . Xk,j) +
|X1|
τ
· 3εkDτ

|X1|
+
∑
i

(|Xi| −
∑
j∈[J]

|Xi,j |)

≤(1 + 2εk)
∑
j

δE(X1,j , X2,j , . . . Xk,j) + 6εkδE(X1, X2, . . . , Xk) +
∑
i

(|Xi| −
∑
j∈[J]

|Xi,j |)

≤(1 + 13εk)δE(X1, X2, . . . Xk).

4.2 An Efficient Algorithm for Window-Respecting Alignments

Our algorithm, denoted k-ED-Alg, is as follows:
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1. Let D := {1, 2, 4, . . . , 2kτ/ε2}. For X1 and each d in D, identify a set W̃1,d of “representative”

strings such that (i) |W̃1,d| = O(nτ/εd) and (ii) for every window W1,i, there is some string

shiftd(W1,i) ∈ W̃1,d in such that δE(Wi,∆,p, shiftd(Wi,∆,p)) ≤ εd.
2. For each other string Xi,each value of d in D, and each value of ∆, identify a set of “representative”

length τ + ∆ strings W̃i,d,∆ such that (i) |W̃i,d,∆| = O(n(τ + ∆)/εd), and (ii) for every window

Wi,∆,p, there is some string shiftd(Wi,∆,p) ∈ W̃i,d,∆ such that δE(Wi,∆,p, shiftd(Wi,∆,p)) ≤ εd.

3. Let W̃i,d = ∪∆W̃i,d,∆. For each d ∈ D and every k-tuple of strings W̃1,d, W̃2,d . . . W̃k,d in

W̃1,d × W̃2,d × · · · × W̃k,d, compute the median distance of this k-tuple if it is less than d. Store

this as δ̃E(W̃1,d, W̃2,d . . . W̃k,d) + εkd. If the true median distance of these windows is greater than

d, store δ̃E(W̃1,d, W̃2,d . . . W̃k,d) =∞ instead.
4. Our algorithm solves the following dynamic program:

c(x1, x2, . . . xk) = min


mini 6=1 c(x1, x2, . . . , xi − σ, . . . , xk) + σ

minW1,...Wk∈W1×···×Wk:∀ie(Wi)=xi,W1=···=Wk
[c(s(W1)− 1, . . . , s(Wk)− 1)]

minW1,...Wk∈W1×···×Wk:∀ie(Wi)=xi [c(s(W1)− 1, . . . , s(Wk)− 1)

+ mind∈D δ̃E(shiftd(W1), . . . , shiftd(Wk))]

For every k-tuple such that x1 is a multiple of τ , x2, . . . , xk are all multiples of σ, and such that
|xi − x1| ≤ 4D for all i.
The base case is c(0, 0, . . . , 0) = 0, and our final output is c(|X1|, Ru(N2), . . . Ru(Nk)), where
Ru(x) denotes x rounded up to the nearest multiple of σ.

At a high-level, in steps 1 and 2 of k-ED-Alg we exploit the compression of the input strings to
identify a small set of “representative” strings for each Xi, such that for each window in Xi there is a
representative string within small edit distance of that window. In step 3, we then compute the median
distance between k-tuples of representative strings (instead of between all k-tuples of windows). Since all
windows are within a small distance of some representative string, this also gives for all k-tuples of windows
a reasonable approximation of their median distance. Step 4 of k-ED-Alg uses these approximations
to solve a natural DP for finding an optimal window-respecting alignment. This DP is the same as the
standard DP for edit distance, but instead of matching characters we are only allowed to match windows,
at cost equal to (the approximation of) their median distance.

We first bound the runtime of k-ED-Alg. The following lemmas show that Steps 1 and 2 of
k-ED-Alg can be performed efficiently (as well as their correctness):

Lemma 4.6. Given a straight-line program G of size n that generates a string X of size n, a length
parameter τ , and a parameter δmax ≤ τ , there exists an algorithm that in time O(|X|) finds (an implicit
representation of) a set S of O(nτ/δmax) substrings of length at most τ such that for every length τ
substring of X, x, there is a string shift(x) in S such that δE(x, shift(x)) ≤ δmax. We can also
construct a data structure that identifies shift(x) given the starting location of x in X using O(|X|)
preprocessing time and O(1) query time.

Proof. If δmax ≥ τ , we can trivially choose S that only contains the empty substring, and the data
structure just returns the empty substring for any query. So assume δmax < τ .

Given that G has size n, the optimal LZ77 factorization of X has size at most n [Ryt03]. We will first
show the existence of S for any X that has an LZ77 factorization of size at most n. For brevity, we will
not go into the details of LZ77 factorization here. The key property we need is that a string X that has a
LZ77 factorization of size n can be written as X1 ◦X2 ◦X3, where X1 is a string with LZ77 factorization
of size n− 1, X2 is a substring of X1, and X3 is a single character. Moreover, the factorization gives the
location of X2 in X1.

Inductively, suppose we have constructed S, a set of at most 3(n− 1)τ/δmax substrings that has the
desired properties for X1. For all “good” indices i < |X2| − τ , the length τ substring starting at the ith
character in X2 is fully contained in X2, and thus is a substring in X1. This leaves at most τ + 1 “bad”
indices where the length τ substring starting at these indices may not have a nearby string in S: those
starting at indices |X1| − τ + 1 to |X1| of X1, and the substring starting at index |X2| − τ + 2 of X2.
Consider the length τ substring starting at every (δmax/2)-th position in indices |X1| = τ + 1 to |X1| of
X1, as well as the length τ substring starting at index |X2| − τ + 2 of X2. This set of strings has size at
most 2τ/δmax + 1 ≤ 3τ/δmax, and every length τ substring starting at a bad index is within edit distance
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δmax of some string in this set. So adding these strings to S gives that S now has size at most 3nτ/δmax

and has the desired properties.
For an efficient implementation of this procedure, we can compute the optimal LZ77 factorization in

O(|X|) time [RPE81]. Given the LZ77 factorization, we decompose X into X1 ◦X2 ◦X3 as before, and
recursively compute an array A for indices in [1 . . |X1| − τ + 1] and set B with the following property:
the length τ substrings starting at indices i and A[i] are within edit distance δmax, and A has at most
3(n− 1)τ/δmax distinct values, which are exactly the values in B.

Since the LZ77 factorization gives us the position of X2 in X1, we can fill in A for the “good” indices
in X2 in time linear in the number of good indices. We can also fill in the values of A for the bad indices,
in time linear in the number of bad indices, and add these values to B. Overall, the algorithm takes
linear time to compute A,B. A now serves as the desired efficient data structure, and B as our implicit
representation of S.

There are O(logN) values of d and Õ(logN/ε) values of ∆, so we can do Steps 1 and 2 in time Õ(N/ε)
time. We also show that Step 3 can be performed efficiently:

Lemma 4.7. Given strings X1, X2, . . . Xk, there exists a data structure that can be computed in O(
∑
i |Xi|)

time that can answer queries of the following form in O(dk) time: Given indices s1, s2, . . . , sk and
e1, e2, . . . , ek, if δE(X1[s1 . . e1], X2[s2 . . e2], . . . , Xk[sk . . ek]) ≤ d, output δE(X1[s1 . . e1], X2[s2 . . e2], . . . ,
Xk[sk . . ek]), otherwise output ∞.

Proof. Given X1, X2, . . . Xk, let Slided2,d3,...dk(j) = max{q : X1[j . . q] = X2[j + d2 . . q + d2] = X3[j +
d3 . . q + d3] = · · · = Xk[j + dk . . q + dk]}. We can rewrite Slided2,d3,...dk(j) as mini∈{2,3,...,k}max{q :
X1[j . . j + q] = Xi[j + di . . q + di]}. Section 2.3 of [LMS98] shows that we can compute max{q :
X1[j . . j + q] = Xi[j + di; q + di]} for any i, j, di in O(1) time after O(|X1|+ |Xi|) preprocessing time. So
we can compute Slided2,d3,...dk(i) in O(1) time after O(

∑
i |Xi|) preprocessing time (recall that k = O(1)).

Let Lh(d2, d3, . . . dk) be the largest value of j such that δE(X1[1 . . j], X2[1 . . j + d2], X3[1 . . j +
d3], . . . , Xk[1 . . j + dk]) ≤ h. We have the following recurrence relation:

Lh(d2, d3 . . . , dk) = Slide

max


Lh−1(d2 + 1, d3 + 1 . . . , dk + 1)

maxi L
h−1(d2, d3, . . . , di − 1, . . . , dk)

maxe∈{0,1}k L
h−w(d2 − e2 + e1, d3 − e2 + e1, . . . , dk − ek + e1)

for w = mini:ei=1 |{j 6= i : Xi[xi] 6= Xj [xj ] ∨ ej = 0}|




The first case considers deleting from X1, the second case considers deleting a character from any
of X2, X3, . . . Xk, and the third case considers inserting characters into some subset of the strings (for
which ei = 0), and then matching the inserted characters with a character in the remaining strings (for
which ei = 1), such that we use at most w insertions or substitutions.

Each Lh(·) only depends on O(1) other values, and so we can compute each value in O(1) time. In turn,
we can compute the values Lh(d2, d3, . . . dk) for all 0 ≤ h ≤ d, 0 ≤ d2 +d3 +· · ·+dk ≤ d in O(dk) time. Our
output for the edit distance is the smallest h such that Lh(|X2|−|X1|, |X3|−|X1|, . . . , |Xk|−|X1|) ≥ |X1|,
or ∞ if Ld(|X2| − |X1|, |X3| − |X1|, . . . , |Xk| − |X1|) < |X1|.

The total number of strings in any W̃i,d is
∑

∆∈D O(n(τ + ∆)/εd) = O(nτ/ε3d). In turn, combined

with Lemma 4.7, the total time needed to compute δ̃E for all k-tuples in W̃1,d × W̃2,d × · · · × W̃k,d is

O(nkτk/ε3k). There are O(logN) choices of d, so in total this step takes time Õ(nkτk/ε3k).
For Step 4, it takes O(1) time to process the first case in the recurrence relation. For the second and

third case, there are O(logN) values of d, O(logN/ε) values of ∆, and for each i, xi,∆ there is 1 window
Wi,∆,p such that ẽ(Wi) = xi. Lemma 4.7 gives an O(1)-time method to determine if W1 = W2 = · · · = Wk

in the second case, and we have precomputed all the necessary values in the third case. So, the time to
compute each c(x1, x2, . . . xk) is O((log2N/ε)k).

The number of tuples x1, x2, . . . xk such that
∑
i 6=1 |xi − x1| ≤ D is O(NDk−1). Of these, fraction

O( 1
dεDτ/Nek−1τ

) satisfy that x1 is a multiple of τ and x2 . . . xk are multiples of dεDτ/Ne. So the number of

entries we need to compute is O(Nk/εkτk), and the total time to compute all these entries is Õ(Nk/ε2kτk).
Putting it all together, Steps 3 and 4 dominate the runtime with total runtime Õ(Nk/ε2kτk+nkτk/ε3k).

Setting τ = (N/nε)1/2, we get an overall runtime of Õ(Nk/2nk/2ε−5k/2).
We complete our analysis by showing that the final value computed by k-ED-Alg is close to

δE(X1, X2, . . . Xk).
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Lemma 4.8. k-ED-Alg outputs D̃ such that

δE(X1, X2, . . . Xk) ≤ D̃ ≤ (1 + 19εk)δE(X1, X2, . . . Xk).

Proof. Consider any window-respecting alignment for which f(W1,j) = (W1,j ,W2,j , . . . ,Wk,j). If
δE(W1,j ,W2,j , . . . ,Wk,j) > 0, let dj be the smallest value in D such that dj ≥ δE(W1,j ,W2,j , . . . ,Wk,j) +
εkdj . By Lemma 4.6, for every j and if ε is sufficiently small, by triangle inequality we have:

δE(W1,j ,W2,j , . . . ,Wk,j) ≤ [δ̃E(shiftdj (W1,j), shiftdj (W2,j), . . . , shiftdj (Wk,j))] + εkdj

≤ δE(W1,j ,W2,j , . . . ,Wk,j) + 2εkdj

≤ (1 + 5εk)δE(W1,j ,W2,j , . . . ,Wk,j).

The first inequality implies that any path through the DP table for c has total cost at least that of
some window-respecting alignment, which by Lemma 4.5 gives the first inequality in the lemma statement.
The second inequality implies that for the best window-respecting alignment, there is a path through the
DP table such that the cost of the path through the DP table is no more than (1 + 5ε) times the cost of
the window-respecting alignment. Furthermore, this path only goes through points in the DP table such
that |xi − x1| ≤ 4D for all i, i.e., is considered by k-ED-Alg. Combined with Lemma 4.5 this gives the
second inequality in the lemma statement if ε is sufficiently small.

We can now compute a (1 + ε)-approximation of the edit distance by rescaling ε appropriately and
running k-ED-Alg for all D that are powers of 2, giving Theorem 4.2. One could also extract the
alignment achieving this edit distance by using standard techniques to retrieve a path through the DP
table, and applying these same techniques to the DP tables used in invocations of Lemma 4.7 as a
subroutine; we omit the details here.

5 FPTAS For Center Distance

The center distance problem is defined as follows:

Definition 5.1. The center (edit) distance δCE(X1, . . . , Xk) of k strings X1, . . . , Xk is defined as
δCE(X1, . . . , Xk) = minX∗ maxi δE(Xi, X

∗). That is, it is the smallest value D such that by making at
most D edits to each Xi, we can transform them all into the same string X∗.

In this section we prove Theorem 5.2:

Theorem 5.2. Given k = O(1) straight-line programs GXi of total size n generating strings Xi of total
length N > 0 and a parameter ε ∈ (0, 1], an integer between δCE(X1, . . . , Xk) and (1 + ε)δCE(X1, . . . , Xk)
can be computed in O

(
ε−O(k)nk/2Nk/2+o(1)

)
time.

Prior to our work, the best known algorithm result for the center distance problem was the exact
O(N2k)-time algorithm of [NR05]. Our framework for the algorithm is similar to the framework from the
previous section which uses window-respecting alignments.

Our algorithm will actually solve a more general problem of computing an approximation of a set of
values which we call the edit tuples. We again assume δCE(X1, . . . , Xk) lies between D and 2D for some
known (power of 2) D.

Definition 5.3. Given strings X1, X2, . . . , Xk, an edit tuple of these strings is a vector v ∈ Zk≥0 such that

there exists X∗ for which δE(Xi, X
∗) ≤ vi for all i. We denote the set of all edit tuples in {0, 1, . . . , D}k

of X1, X2, . . . Xn by tupD(X1, X2, . . . Xk).
We say that S is a ∆-approximation of tupD(X1, X2, . . . Xk) if for each v ∈ S, there is a vector

v′ ∈ tupD(X1, X2, . . . Xk) such that v′ ≤ v, and for each v ∈ tupD(X1, X2, . . . Xk), there is a vector
v′ ∈ S such that v′ ≤ v + ∆ · 1. Here a ≤ b denotes ai ≤ bi for all i and 1 denotes the all ones vector.

We will use again use the window-respecting alignment framework. However, our algorithm is now
recursive, and thus we need to be careful about choosing the windows to operate with in each level
of recursion. Let ` = O(log logN) be a parameter and τ0 = N > τ1 > · · · > τ` = N1/ log logN be a
sequence such that for all i < `, τm/τm−1 = Θ(N1/ log logN ) and is integer (that is, these ratios are not
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necessarily the same but are all within a constant factor of N1/ log logN ). We will also eventually choose a
sequence of error parameters for each level ε0, ε1, . . . , ε`. Let D = {1, 2, 4, . . . , N}, and for each d ∈ D let

σm(d) := max{ εm+1dτm+1

τm
+ εm+1Dτm+1

|X1| , 1} rounded down to the nearest power of 2. For each i > 0, for τm,

each d ∈ D, the corresponding εm, σm(d), and Rd defined as the function rounding down to the nearest
multiple of σm(d), we define windows in each string just as in Section 4. In particular, for X1 we have
windows W1,m,p that are again just a partition of X1 into substrings of length τm, and for X2, . . . , Xk

we have windows Wi,m,d,∆,p = Xi[pσm(d) + 1 . . Rd(pσm(d) + τm + ∆)], where the set of possible ∆ is
defined by εm and τm. We will refer to these as the windows at level m. Note that we are using the same
guess D to define windows at all levels of recursion, even though at lower levels of recursion the center
distance between the substrings we consider is likely to be much smaller even if our guess is accurate at
the first level.

We note some properties of our recursion that motivate this choice of windows: In the ith level of
recursion, if our subproblems’ input is X ′1, . . . , X

′
k, then we will have the guarantee that X ′1 is a window

in X1 of length τm and X ′2, . . . , X
′
k are one of the windows in X2, . . . , Xk corresponding to τm. When

we are solving a subproblem involving a length τm substring of X1, we will use the windows defined by
τ = τm+1. In addition, when we are solving this subproblem, by our requirement that all σm(d) be a
power of 2, we have the following property: the windows defined on the full strings X1, . . . Xk for τm+1

that are contained within X ′1, . . . , X
′
k, are equivalent to the windows we would define within X ′1, . . . , X

′
k

if we used the same choice of parameters τm+1, σm+1. We will refer to this set of windows as the windows
at level m+ 1 restricted to X ′1, . . . , X

′
k.

To give some intuition behind the choice of σm(d), which is crucial for our analysis: The term with
d is a “local” term. It contributes to the approximation error locally, only adding error proportional
to our center distance estimate for the current tuple of windows, and also helps us keep the number of
entries in the DP table within one call small. The term with D is a “global” term. It contributes to
the approximation error globally; across all recursive calls, the final approximation error accumulated at
the top level due to this term will be something like εD. It also keeps the number of windows across all
recursive calls small.

Now, for a fixed level m and the corresponding windows, we can define window respecting alignments
of X1, . . . , Xk identically to Definition 4.4. If we are considering a window-respecting alignment of
substrings X ′1, . . . , X

′
k instead of the full strings, we simply restrict to the windows contained within

these substrings, and then define window-respecting alignments of X ′1, . . . , X
′
k as before using these sets

of windows. We define the edit tuples of a window-respecting alignment f , tupD(f), to be:

[~j∈[J]tupmaxi |f(W1,j)i|(f(W1,j)) ~ {r(f)}] ∩ {0, 1, . . . D}k

Where ~ is the convolution of sets of vectors, i.e. ~iSi = {
∑
i vi|vi ∈ Si∀i}, and r(f) is the vector

whose ith entry is ri(f) = |Xi| −
∑
j |f(W1,j)i|, i.e., the number of characters in Xi not in any window.

Similarly to Lemma 4.5, we can show window-respecting alignments approximate the best standard
alignment.

Lemma 5.4. Let d be any value in D. Let X ′1, . . . , X
′
k be windows in X1, . . . , Xk at the same level m. Let

F be the set of window-respecting alignments of X ′1, . . . , X
′
k, using the windows at level m+1 parametrized

by d, restricted to X ′1, . . . , X
′
k. Then we have that ∪f∈Ftup3d(f) is a (13εm+1kd + 6εm+1Dτm/|X1|)-

approximation of tup2d(X
′
1, X

′
2, . . . X

′
k).

Proof. First, we will show that for any f and v ∈ tup3d(f), v is also an edit tuple of X ′1, X
′
2, . . . , X

′
k. Let

J = τm/τm+1. For v ∈ tup3d(f(W1,j)), it can be decomposed as
∑
j∈[J] vj + r(f), where vj is an edit

tuple of f(W1,j). By deleting the ri(f) characters in each Xi that are not in any Wi,j , we get the string
©jWi,j for each i, and

∑
j∈[J] vj is clearly a valid edit tuple for these strings. So v is an edit tuple of

X ′1, X
′
2, . . . , X

′
k.

It now suffices to show that for any edit tuple v of X ′1, . . . X
′
k in {0, 1, . . . , 2d}k, there exists f and v′

in tup3d(f) such that v′ ≤ v + (9εm+1kd+ 6εm+1Dτm/|X1|) · 1. Fix any such v. We partition X ′1 into
substrings of length τm+1, {X1,j}j∈[J]. Let X∗ be the string such that δE(X ′i, X

∗) ≤ v[i] for all i. Using
the same procedure as in Lemma 4.3, we can find a partition of X∗ into substrings {X∗j } such that each
X∗j has length at most 2τm+1/εm+1 and:∑

j∈[J]

δE(X1,j , X
∗
j ) ≤ (1 + 3εm+1)v[1] ≤ v[1] + 6εm+1d.
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Given this partition, again using the same procedure as in Lemma 4.3, we can find disjoint substrings
of Xi, Xi,j , for all i > 1 such that each Xi,j has length at most 2τ/ε2m+1 and∑

j∈[J]

δE(Xi,j , X
∗
j ) + |Xi| −

∑
j∈[J]

|Xi,j | ≤ (1 + 3εm+1)v[i] ≤ v[i] + 6εm+1d.

Now, letW1,j = X1,j for all j. Similarly to Lemma 4.5, for each i, if |Xi,j | ≤ 2εm+1 maxi′ δE(Xi′,j , X
∗
j )+

6εm+1Dτm+1/|X1|, let Wi,j be the empty window “starting” at index e(Wi,j−1) + 1 (or index 1 if
j = 1). Otherwise, let Wi,j be the longest window Wi,m+1,∆,p that is a substring of Xi,j . Note that
|Xi,j | and |Wi,j | differ by at most 2 maxi′ δE(Xi′,j , X

∗
j ). If εm+1 is a sufficiently small constant, sim-

ilarly to the proof of Lemma 4.5, this implies there is a choice of Wi,j such that |Xi,j | − |Wi,j | ≤
εm+1 maxi′ δE(Xi′,j , X

∗
j ) + 3(σm(d)− 1) ≤ εm+1 maxi′ δE(Xi′,j , X

∗
j ) + 6[ εm+1dτm+1

τm
+ εm+1Dτm+1

|X1| ]. Note

that
∑
j∈[J] maxi δE(Xi,j , X

∗
j ) ≤ k ||v||∞ ≤ 2kd. This implies ri(f) − (|Xi| −

∑
j∈[J] |Xi,j |) is at most

5εm+1kd. We also have by triangle inequality that:

δE(Wi,j , X
∗
j ) ≤ δE(Xi,j , X

∗
j ) + εmax

i′
δE(Xi′,j , X

∗
j ) + 6[

εm+1dτm+1

τm
+
εm+1Dτm+1

|X1|
].

Now consider the alignment that chooses f(W1,j) = (W1,j ,W2,j , . . . ,Wk,j). For each j, by the
above inequalities, one edit tuple for f(W1,j) = (W1,j ,W2,j , . . . ,Wk,j) arising from a window-respecting
alignment is element-wise at most:

(δE(X1,j , X
∗
j ),

δE(X2,j , X
∗
j ) + εm+1 max

i
δE(Xi,j , X

∗
j ) + 6[

εm+1dτm+1

τm
+
εm+1Dτm+1

|X1|
],

. . . ,

δE(Xk,j , X
∗
j ) + εm+1 max

i
δE(Xi,j , X

∗
j ) + 6[

εm+1dτm+1

τm
+
εm+1Dτm+1

|X1|
])

So summing up these edit tuples, and adding r(f), we get a vector arising from a window-respecting
alignment that is at element-wise at most v + (εm+1k ||v||∞ + 11εm+1kd + 6εm+1Dτm/|X1|) · 1 ≤
v + (13εm+1kd+ 6εm+1Dτm/|X1|) · 1.

We are now ready to state our algorithm. Our recursive algorithm for computing a sparse approximation
of tupD(X1, X2, . . . Xk), denoted k-CED-Alg, is defined as follows:

k-CED-Alg(X ′1, X
′
2, . . . , X

′
k, d, m):

Let Wi denote the windows at level m+ 1 parametrized by d restricted to X ′1, X
′
2, . . . , X

′
k, and

s, e be the functions that take a window and gives its starting/ending index in the corresponding X ′i.
We solve the following dynamic program:

c(x1, x2, . . . xk) = (∪i>1c(x1, x2, . . . , xi − σm+1, . . . , xk) ~ {(0, 0, . . . , σm+1, . . . , 0)})∪
(∪W1,W2,...Wk∈W1×W2×···×Wk:∀i,e(Wi)=xi [c(s(W1)− 1, s(W2)− 1, . . . , s(Wk)− 1)

~ ∪d′∈D:d′≤2dk-CED-Alg(W1,W2, . . . ,Wk, d
′,m+ 1)])

For every k-tuple such that x1 is a multiple of τm+1, x2, . . . , xk are all multiples of σm+1, and such
that |xi−x1| ≤ 3d+ εmDτm

|X1| . The base case for the dynamic program is c(0, 0, . . . , 0) = {(0, 0, . . . , 0)}.
After computing each entry c(x1, x2, . . . xk), we remove all elements of c(x1, x2, . . . xk) not in

{0, 1, . . . 3d+ b εmDτm|X1| c}
k. After getting a set of edit tuples from a call to k-CED-Alg, we round each

coordinate of each vector up to the nearest multiple of σm(d) before taking the convolution.
Our final output is c(|X ′1|, |X ′2|, . . . , |X ′k|), and then return this set of vectors.

Our base case will be when m = `, and we have that |X ′1| = N1/ log logN and all |X ′i| are at
most 2N1/ log logN/ε2` . To handle the base case, we will enumerate all substrings of length at most
2N1/ log logN/ε2` of each of X1, . . . , Xk, and compute their edit tuples using, e.g., the exact algorithm
of [NR05]. Our top-level recursive call is to k-CED-Alg(X1, . . . , Xk, D, 0).

To keep the algorithm’s description consistent across levels, in addition to assuming X1’s length is a
multiple of τ1, we will assume that X2, . . . , Xk are multiples of σ1(D); we can enforce this assumption
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by padding each of X2, . . . , Xk with at most σ1(D) copies of a new dummy character. This cannot
decrease the center distance and the total increase in center distance due to this padding is at most σ1(D),
which contributes an additive o(ε0D) to our approximation factor, only at the top level of recursion. By
construction, at lower levels of the recursion each X ′i will have length that is a multiple of σm(d) for
i > 1, so by this assumption we no longer need to worry about rounding the indices of the value in DP
table we output at any level.

5.1 Approximation Guarantee

We first prove the approximation guarantee of k-CED-Alg, as it will be necessary for our runtime
analysis to specify what choice of ε0 to ε` is needed for the desired approximation guarantee.

Lemma 5.5. Let the sequence ε0, . . . , ε` satisfy ε0 ≤ 1 and εm+1 = 1
16k εm for all m. Then at level m of

the recursion, each invocation of k-CED-Alg(X ′1, X
′
2, . . . , X

′
k, d, m) returns a set of edit tuples that is a

(εmd+ εmDτm
|X1| )-approximation of tup2d(X

′
1, . . . , X

′
k).

Proof. We proceed by induction. Clearly the guarantee holds for the base case m = `, since we solve the
base cases using exact algorithms.

Inductively, assuming at level m+1, any edit tuple generated returned by k-CED-Alg is element-wise
greater than some edit tuple of the corresponding windows, by an argument similar to the first part of
the proof of Lemma 5.4 the same property holds at level m. So we just need to show that each edit tuple
returned by k-CED-Alg is not too large an overestimate of some edit tuple of its input strings.

Take any edit tuple v for any window-respecting alignment f . Assume the approximation guarantee
holds for calls made at level m + 1. We show that for the corresponding path through the DP table
for c, there is a vector close to v in the edit tuples generated by this path. v can be decomposed as∑
j∈[J] vj + r(f) where vj is an edit tuple of f(W1,j). Let dj be the smallest value in D such that

dj ≥ ||vj ||∞. By our inductive hypothesis, for each j we get a (εm+1dj + εm+1Dτm+1

|X1
)-approximation

of the edit tuples of tupdj (f(W1,j)) from the call to k-CED-Alg(f(W1,j), dj ,m+ 1), which includes a

vector v′j that is element-wise at most vj + (εm+1dj + εm+1Dτm+1

|X1
) · 1 ≤ vj + (2εm+1 ||vj ||∞ + εm+1Dτm+1

|X1
)

if ε is sufficiently small. In addition, the sum of the vectors contributed by the first case in the recurrence
relation for c is r(f). So there is an edit tuple computed by our algorithm for this path that is element-wise
less than:∑

j

[vj + (2εm+1 ||vj ||∞ +
εm+1Dτm+1

|X1|
) · 1] + r(f) ≤ v +

(
4εm+1kd+

εm+1Dτm
|X1|

)
· 1.

After accounting for the approximation error of window-respecting alignments due to Lemma 5.4 and

the rounding step, the additive error is increased to at most
(

16εm+1kd+ 8 εm+1Dτm
|X1|

)
·1 ≤ (εmd+ εmDτm

|X1| )·1
as desired.

Finally, note that since we only remove vectors with values larger than 3d+ εmDτm
|X1| and assume ε0 (and

thus all εm) is at most 1, we do not remove any vector that would be in a (εmd+ εmDτm
|X1| )-approximation

of tup2d(X
′
1, . . . , X

′
k).

If we set ε0 = ε − o(1), then after accounting for the o(ε0D) error introduced by padding X2 to
Xk, the smallest `∞-norm of any vector in the output of k-CED-Alg(X1, . . . , Xk, D, 0) gives a (1 + ε)-
multiplicative approximation of the center distance as desired.

5.2 Runtime Analysis

We now bound the runtime of k-CED-Alg, completing the proof of Theorem 5.2.

Lemma 5.6. For the choice of ε0, . . . , ε` given in Lemma 5.5, we can compute the output of k-CED-
Alg(X1, . . . , Xk, D, 0) in time O(nk/2 ·Nk/2+o(k)/εO(k)).

Proof. Throughout the analysis, we will use the fact that for all m, 1/εm ≤ logO(log k)N/ε.
We first bound the time spent on base cases. Since each X ′j at the bottom level of recursion has size

at most 2N1/ log logN/ε2` = O(No(1)/ε2) by construction, we can compute each base case’s edit tuples and

round them in No(k) time. There are O(log d) choices of d and O(log1+ε`
(2τ`/ε

2
`)) = O(logO(1)(N)/ε2)

possible sizes for each choice of d, so there are O(logO(k)(N)/ε2k) different tuples of possible window sizes
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to consider at this level. The proof of Lemma 4.6 implies that for any string X generated by an SLP of
size n, the number of distinct substrings of length τ is O(nτ) (in particular, in that proof when δ = 1 we
are simply taking every substring into S). Combining these facts, we conclude there are O(nkNo(k)/εO(k))
distinct base cases, and thus by amortizing the work for base cases, the total time spent on base cases is
O(nkNo(k)/εO(k)).

Besides base-cases, the only work our algorithm does is rounding and convolutions. We can perform
the recursion in an amortized fashion. That is, we never make multiple calls to k-CED-Alg on the
same k-tuple of strings with the same choice of d. Similarly, for each d and each level m + 1 call to
k-CED-Alg, we only round that call’s output’s coordinates to the nearest multiple of σm(d) once. The
time spent rounding a set of vectors is proportional to its size, and the final set of vectors that we round
was produced by a convolution that took time at least the size of the set of vectors. For this convolution,
with amortization we only need to round its output at most logN times, once per value of d in D. Thus,
the time spent on rounding is bounded by the time spent on convolutions times O(logN).

We now just need to bound the time spent on convolutions. Fix a level m of the recursion and a
choice of d in the input. We will bound the total work across all calls at level m and with d as input;
there are O(logN) levels and O(log logN) levels, so our final bound on time spent on convolutions will
be within logarithmic factors of the bound for one choice of m and d.

The time spent on convolutions in any call is bounded by a constant factor times the time spent on
convolutions in the second case in the recurrence relation, i.e., convolutions involving recursive calls. We
perform these convolutions on tuples in {0, 1, . . . , 3d} whose coordinates are multiples of σm(d), i.e., have
size at most O((d/σm(d))k) = O((τm/εm+1τm+1)k) = O(No(k)/εk). Using FFT, we can thus perform
these convolutions in O(No(k)/εk) time (e.g., we could divide all entries by σm(d), take the convolution,
and then multiply by σm(d)). In each call to k-CED-Alg, by the same argument as in Section 4, there
are O((τm/τm−1) · (d/σm(d))k−1) = O((τm/εm+1τm+1)k) = O(No(k)/εO(k)) entries to compute, and for
each entry we need to do O((log2N/ε)k) convolutions. So the time spent on convolutions per call to
k-CED-Alg is No(k)/εO(k) as well.

We now just need to bound the number of calls made to k-CED-Alg, and our final runtime will
be within an No(k)/εO(k) factor of this. We will show for each choice of m and d, the number of calls
made is O(nk/2 ·Nk/2+o(k)/εO(k)), which gives the desired runtime bound. We bound the number of calls
at each level in two ways. The first way is again using the fact that for any string X generated by an
SLP of size n, the number of distinct substrings of length τ is O(nτ), and that at each level there are

O(logO(k)(N)/ε2k) tuples of possible lengths for the strings in the input, each at most τm/ε
2
m. Putting

these facts together, there are at most O(nkτkmN
o(k)/εO(k)) distinct calls to k-CED-Alg at level m with

parameter d.
The second way is exactly what we did in Section 4 to bound the number of coordinates in the DP table:

For every k-tuple of windows we call k-CED-Alg on at levelm with parameter d, the windowX ′1 ends at an
index in X1 that is a multiple of τm, and the other windows end at indices in X2, . . . , Xk that are multiples
of σm(d). Furthermore, these entries are distance at most O(D) from the diagonal. So the total number
of possible tuples of ending indices for these windows is O((N/τm) · (D/σm(d))k−1) = O(Nk/τkmε

O(k)).
For each tuple of ending indices, there are No(k)/εO(k) possible tuples of windows that end at those
indices. So we get a bound of O(Nk+o(k)/τkmε

O(k)) different calls for each choice of m and d. The desired
bound of O(nk/2 ·Nk/2+o(k)/εO(k)) calls follows by taking the geometric mean of the first and second
bound, which is at least the smaller of the two.

6 Lower Bounds

We will start with a summary and overview of the techniques.

6.1 Lower Bound Overview

We will start with the definitions of our hypotheses, then we will describe the results of the lower bound
sections.

Hypotheses

We use two hypotheses from fine-grained complexity to generate our lower bounds. We use the strong
exponential time hypothesis (SETH) and the k-OV hypothesis. Note that SETH implies k-OV [Wil07].
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Definition 6.1. The k-CNF Satisfiability (k-SAT) problem takes as input a formula φ with m clauses
and n variables. The formula is in conjunctive normal form (CNF) which requires that the formula be
the and of m clauses. Each clause is the or of at most k variables. Return true if φ has a satisfying
assignment and false otherwise.

Definition 6.2 (The strong exponential time hypothesis (SETH) [IP01]). For all constants ε > 0 there
is some constant k such that k-SAT requires ω(2n(1−ε)) time.

We can re-frame this as k-SAT requiring 2n(1−o(1)) time, as long as k is an arbitrarily large constant.
Next we define the k-OV problem.

Definition 6.3 (k-OV [Wil07]). Take as input a list, L, of n zero one vectors of dimension d = no(1).
Return true if there are k vectors vi ∈ L for i ∈ [1, k] such that for all j v1[j] · v2[j] · · · vk[j] = 0.

The k-OV hypothesis states that for constant k, k-OV requires nk−o(1) time. The k-OV hypothesis is
implied by SETH.

We use the k-OV hypothesis to generate our lower bounds. As the k-OV hypothesis is implied by
SETH, SETH also implies our lower bounds.

k-LCS lower bound

Assuming the well-studied Strong Exponential Time Hypothesis (SETH), in Section 6.2 we show a lower
bound for the k-LCS problem in the compressed setting. Intuitively, SETH states that CNF-satisfiability
requires 2n−o(n) time [IP01]. Even more specifically, we use the k-Orthogonal Vectors problem (k-
OV) [Vas18]. At a high level, k-OV takes as input a list L with n zero-one vectors of dimension d. We
must return YES if there exist k vectors that, when multiplied element-wise, form the all zeros vector.
The k-OV conjecture, which is implied by SETH, states that k-OV cannot be solved in O(nk−Ω(1)) time.

Reminder of Theorem 1.1. If the k′-OV hypothesis is true for all constants k′, then for any constant

ε ∈ (0, 1] grammar-compressed k-LCS requires
(
Mk−1m

)1−o(1)
time when the alphabet size is |Σ| = Θ(k)

and m = M ε±o(1). Here, M denotes the total length of the k input strings and m is their total compressed
size.

Our lower bound relies on two primary tools. First, we use a very compressible representation of
a-OV instances. Specifically, given a list L of n zero-one vectors of dimension d, consider a new list
List(L)a of na zero-one vectors of dimension d, with every vector in List(L)a representing the element
wise multiplication of a vectors from L. Formally, List(L)a is indexed by a-tuples of indices from [1 . . n],
and each vector ~v = List(L)a[j1][j2] · · · [ja] is defined, for every coordinate i ∈ [1 . . d], with:

List(L)a[j1][j2] · · · [ja][i] = ~v[i] = L[j1][i] · L[j2][i] · · ·L[ja][i]

Notably, List(L)a contains an all zeros vector if and only if L is a YES-instance of the a-OV problem.
In the 2-LCS lower bound of [ABBK17], an (a + 2b)-OV instance L is first transformed into A =

List(L)a, B = List(L)b, and C = List(L)b. Then, the following strings are defined for every ~vb ∈ B and
~vc ∈ C:

x ~vb = ~va1 [1]~vb[1] ~va2 [1]~vb[1] · · · ~vana [1]~vb[1]︸ ︷︷ ︸
first bit

· · · ~va1 [d]~vb[d] ~va2 [d]~vb[d] · · · ~vana [d]~vb[d]︸ ︷︷ ︸
dth bit

,

y ~vc = ~vc[1] 000000︸ ︷︷ ︸
na−1

~vc[2] · · · 000000︸ ︷︷ ︸
na−1

~vc[d].

The string x ~vb that interleaves ~vb with bits of na vectors ~vai ∈ A, referred to as “interleaved” representation,
is highly compressible, to an SLP of size O(nd). Moreover, if there exists a vector ~vai ∈ A such that
( ~vai , ~vb, ~vc) is orthogonal, Abboud et al. [ABBK17] show (using the structural alignment gadget of [BK15])
how to perfectly align ( ~vai [l], ~vb[l], ~vc[l]) for all l ∈ [1 . . d]. Finally, the gadgets x ~vb for all ~vb ∈ B are
concatenated with extra padding to generate XB, and the gadgets y ~vc for all ~vc ∈ C are concatenated
with extra padding to generate YC . This leads to the (Mm)1−o(1) lower bound since the uncompressed
and compressed lengths of XB and YC are (roughly) O(na+b) and O(nb), respectively, and we are solving
an (a+ 2b)-OV instance.

We may extend the above construction to the compressed k-LCS setting by transforming an (a+ kb)-
OV instance L into lists A = List(L)a, B = List(L)b, and Ch = List(L)b for h ∈ [1 . . k − 1]. We then
create XB and YCh for h ∈ [1 . . k − 1]. Since the strings YCh are zero-padded, we can easily adapt the
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same structural alignment gadget of 2-LCS from [BK15] to ensure a perfect alignment. However, this
only leads to a lower bound of (mk−1M)1−o(1) since the uncompressed and compressed lengths of the
strings remain (roughly) O(na+b) and O(nb), respectively, and we are solving an (a+ kb)-OV instance:
Mmk−1 = O(na+kb). To get a much stronger lower bound of (mMk−1)1−o(1), we need to solve a much
higher OV instance. In particular, we will solve an (a(k− 1) + kb)-OV instance by taking Ah = List(L)a,
Bh = List(L)b for h ∈ [1 . . k − 1], and C = List(L)b. We then create strings XBh from Ah and Bh for
each h ∈ [1 . . k − 1], and YC . That is, we now have (k − 1) interleaved strings and only one zero-padded
string. This makes generalizing the structural alignment gadget substantially more intricate since we may
have to deal with k − 1 different offsets. In fact, without any zero-padded string, we are not able to show
any perfect alignment gadget. Because we are now solving an (a(k − 1) + kb)-OV instance, we get our
desired lower bound by noting Mk−1m = O(na(k−1)+kb).

Easy k-Median Edit Distance lower bounds via LCS reduction

As a first lower bound for edit distance, we can reduce from LCS to both median k-edit distance and
center k-edit distance. Suppose, we are given a k-LCS instance with strings S1, . . . , Sk all of length M
and let γ denote the empty string. It can be shown that

δE(S1, . . . , Sk, γ, . . . , γ︸ ︷︷ ︸
(k−1)

) = Mk − LCS(S1, . . . , Sk).

This increases k since we add (k − 1) empty strings, but it does not increase the size of the problem, or
the compression size. Using the above relation, we can prove the following theorem.

Reminder of Theorem 6.20. Given an instance of k-median edit distance on strings of lengths M1 ≤
M2 ≤ · · · ≤Mk where these strings can all be compressed into a SLP of size m = |

∑
iMi|δ±o(1) for any

constant δ ∈ (0, 1]. Then, a k-median edit distance algorithm that runs in ((M2 + 1) · · · (Mk + 1) ·m)
1−ε

time for constant ε > 0 violates SETH.
We can get a similar lower bound for center k-edit distance from k-LCS by adding a single empty string.

Theorem 6.4. Given an instance of k-center edit distance on strings of lengths M1 ≤M2 ≤ · · · ≤Mk

where these strings can all be compressed into a SLP of size m = |
∑
iMi|δ±o(1) for any constant δ ∈ (0, 1],

then, an algorithm for k-center edit distance that runs in time ((M2 + 1) · · · (Mk + 1) ·m)
1−ε

time for
constant ε > 0 violates SETH.

These reductions are convenient for propagating results from k-LCS to k-Edit Distance generically.
However, because they add empty strings, they don’t prove hardness for some of the most commonly
studied cases such as where all strings are of the same length and for median k-edit distance with even k.
To get lower bounds for all k and when all strings are of the same length, we use a reduction directly
from SETH, instead of going through k-LCS.

Stronger k-Median Edit Distance Lower Bounds directly from SETH

We get a lower bound for median k-edit distance and center k-edit distance over compressed strings from
SETH. When k = 2 this resolves the second open problem suggested by Abboud et al [ABBK17]. We also
generalize the lower bound for all k ≥ 2. There are many difficulties introduced by trying to get lower
bounds for median k-edit distance when k ≥ 2. We can use some of the ideas from the k-LCS reduction.
Specifically, the notion of the compressed interleaved strings remains. Notably, we need to allow any
choice of ∆1, . . . ,∆k−1 offsets; however, if these offsets are more similar we have many characters that
match on all but one string. For k-LCS we still need to delete these characters, but, in median k-edit
distance we can simply insert a character in one string. This creates an artificial pressure to make all the
∆i values the same. To overcome this, we can use some of the ideas from the recent paper that gives
lower bounds for the uncompressed case for k-edit distance [HBGT20]. There is still an issue, they build
their alignment gadget with the crucial use of empty ‘fake gadgets’. However, we need to guarantee that
∆i ∈ [0, na − 1], and these fake gadgets allow for values of ∆i outside of this range. To overcome this we
incentivize a match up of the real gadgets, which then forces a restriction on valid ∆i values.

Specifically, we need to add a gadget, which we call a selector gadget. This gadget causes characters
lined up inside it to have a low edit distance if they all match, and otherwise have a higher edit distance
that is unchanged by exactly how well they match. The selector gadget looks like this: SCSGi(c) =
%ixcy%(k−i)x. We have gadgets SCSG1(c1), . . . , SCSGk(ck) such that we can either try to match the
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characters ci, or try to line up the % characters. If we line up the % characters, the edit distance is ky. If
we line up the ci characters and they all match (ci = cj ∀i, j ), the edit distance is xk2/4 if k is even and
x(k2 − 1)/4 if k is odd. If the characters don’t match the edit distance is at least xk2/4 + y if k is even
and x(k2 − 1)/4 + y if k is odd. Consider the case of k even, we can choose integer values of x and y such
that xk2/4 < yk ≤ xk2/4 + y. By doing so, if all the characters match, then the median k-edit distance is
xk2/4, otherwise it is yk. In some sense this gadget is causing characters to act like they do in k-LCS,
where only a match across all strings gives us a benefit. Using these selector gadgets and ideas from the
edit distance and LCS lower bounds, we get a lower bounds for both median k-edit distance and center
k-edit distance from SETH.

Theorem 6.5. If the k′-OV hypothesis is true for all constants k′, then for all constant ε ∈ (0, 1]

grammar-compressed k-median edit distance requires
(
Mk−1m

)1−o(1)
time when the alphabet size is

|Σ| = Θ(k) and m = M ε±o(1). Here, M and m denote the total uncompressed and compressed length of
the k input strings respectively.

The lower bound for median k-edit distance immediately implies a lower bound for center k-edit
distance following [HBGT20].

Reminder of Theorem 6.29 . We are given k strings of length M with a SLP of size m. The center

k-edit distance problem on these strings requires
(
Mk−1m

)1−o(1)
time if SETH is true.

Given these lower bounds for the case of compressed k-LCS, median k-edit distance and center k-edit
distance, we want to consider not just compression but also approximation.

6.2 Lower Bound with LCS

In this section we will argue that if we have k strings each of length M and they have a SLP compression
of size m then the problem requires Mk−1−o(1)m1−o(1) if SETH is true. In the next section we use these
hardness results for k-LCS to prove hardness for k′-Edit Distance.

The core of this section is building a generalized “perfect alignment” gadget. This is a gadget that
causes substrings to be aligned with no skips or merges. We use this generalized alignment gadget to
generalize the work of [ABBK17]. The main idea for this perfect alignment gadget is that between every
string we want to align, we add symbols $1$2 . . . $k. Additionally, at the end of each string Si in our
gadget, we add many copies of these characters, excepting $i. That is, we add $1 . . . $i−1$i+1 . . . $k. Via
this construction, any valid perfect alignment will match all available copies of $i for all i. Any alignment
that isn’t perfect (for example it skips matching some sub-string in the middle of Si) will miss out on one
of these $i characters in Si, thus lowering the value of a potential k-LCS.

Recall that LCS(S1, . . . , Sk) is a function that returns the k-LCS of the strings S1, . . . , Sk. Recall
that δD(S1, . . . , Sk) =

∑
i∈[1,k](Si − LCS(S1, . . . , Sk)). That is, the count of all unmatched characters.

6.3 Representations of Many Lists at Once

The key idea is going to be different ways to represent many lists of OV instances at once. This
representation comes from [ABBK17].

Definition 6.6. Let L be the list of vectors to a k-OV instance. Let |L| = n.
The list representation of ` copies of L is made up of n` vectors ~v = List`(L)[j1][j2]...[j`].

List(L)`[j1][j2]...[j`][i] = ~v[i] = L[j1][i] · L[j2][i] · · ·L[j`][i]

As a convenience of notation we will allow indexing with a single index into List(L):

List(L)`

[∑̀
i=1

jin
i−1

]
= List(L)`[j1][j2]...[j`]

When writing down this list of vectors into a string there are two ways to do it. The serial way of
writing out each vector in order, or the interleaving way. The serial way of writing vectors is in many
ways easier to use for gadgets. However, the interleaved version is easier to compress. We will describe
both and use both in our gadgets.
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Definition 6.7. Let L be the list of vectors to a k-OV instance. Let |L| = n.
We define the serial version as:

StringB`(L) =©j1∈[1,n]...,j`∈[1,n]

(
©d
i=1L[j1][i] · L[j2][i] · · ·L[j`][i]

)
.

Note that this is equivalent to

StringB`(L) =©j∈[1,n`]©i∈[1,d] List(L)[j][i].

We define the interleaving version as:

StringI`(L) =©d
i=1

(
©j1∈[1,n]...,j`∈[1,n]L[j1][i] · L[j2][i] · · ·L[j`][i]

)
.

Note that this is equivalent to

StringI`(L) =©i∈[1,d]©j∈[1,n`] List(L)[j][i].

So the difference between these versions is really just what order we represent the vectors. But
crucially if there is a particular vector in List(L) that is of interest, this will appear in different places.
In StringB`(L) a vector ~v = List(L)[i] appears as bits [i · d, (i+ 1) · d− 1]. Where as in StringI`(L) the
vector ~v = List(L)[i] appears as bits i, i+ nk, . . . , i+ (d− 1)nk.

We give one final version that merges a single vector with the interleaved representation.

Definition 6.8. We will expand the previous definition of an interleaved string to allow a merge with a
single other vector. Recall that

StringI`(L) =©i∈[1,d]©j∈[1,n`] List(L)[j][i].

Recall that for a vector u = List(L)[j] it is represented in bits j, j + nk, . . . , j + (d− 1)nk in StringI`(L).
We will define

VecSI`(L, v) =©i∈[1,d]©j∈[1,n`] List(L)[j][i]v[i].

Note that now if we take bits j, j +n`, . . . , j + (d− 1)n` we give a vector w such that w[i] = u[i]v[i] where
u = List[j].

6.4 Intuition for our Reduction

We will describe at a high level the reduction of [ABBK17] and the idea for generalizing it. In this section
we will informally explain how to use the serial and interleaved representations of the vectors to build a
reduction from SETH to compressed k-LCS. We hope to build understanding for what the different levels
of alignment gadgets are doing through small examples and intuition.

6.4.1 Why We Care About Lining up the Strings

Lets say we have a representation StringI`(L) and we have a single vector, v of length d. We create a
new vector v̂ where v̂[i · n`] = v[i] and otherwise v̂ is zero. v̂ will have length n`(d− 1) + 1.

Now we will note the following: the locations of the bits in v̂ have exactly the offsets that single vectors
do in StringI`(L)! So, if we consider sub-string StringI`(L)[i, i+ n`(d− 1)] then v forms an orthogonal
`+ 1 tuple with the vectors represented by List(L)`[i] if v̂ is orthogonal to StringI`(L)[i, i+ n`(d− 1)].
This is why we care about offsets. The next few subsections will simply be building the gadgets necessary
to get this “perfect alignemnt” and the gadgets needed to represent k-OV coordinates in the edit distance
setting.

6.4.2 The Case of LCS With Two Strings

How did all of this work in [ABBK17]? Start with k-OV. Now consider a k1 and k2 that have this
property: k = k1 + 2k2. They then create three sets: A represents k1 vectors at once, B represents k2

vectors at once and C represents k2 vectors at once. We will give a text explanation and then give a
small example.

For C they create its string SC by taking List(L)k2 and making Y [i] = List′k2(L)[i]. That is they
pad the vector with nk1 − 1 zeros after each entry in the original vector.
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The StringIk1(L) representation of A and the zeros are all very compressible with straight line
programs. For B they create its string SB by basically merging each vector b ∈ Listk2(L) with A which
is structured like StringIk1(L).

So, while the length of each string is nk2+k1 the compressions are of size nk+1. We need a gadget that
forces our representation to align the two strings with no gaps in the LCS. If we do so, we can then check
if an OV exists.

Now let us work through a small example. Let k1 = 2 and k2 = 1.

v1 = < 0, 1, 1, 1 > (2)

v2 = < 1, 1, 0, 1 > (3)

v3 = < 1, 0, 1, 1 > (4)

v4 = < 0, 1, 1, 0 > (5)

L ={v1, v2, v3, v4} (6)

For both B and C we form lists that are concatenations of vectors.

B = C = v1, v2, v3, v4

For A we first we want to generate all the vectors vi,j [p] = vi[p] · vj [p].

v1,2 = < 0, 1, 0, 1 > v1,3 = < 0, 0, 1, 1 > v1,4 = < 0, 1, 0, 0 > (7)

v2,3 = < 1, 0, 0, 1 > v2,4 = < 0, 1, 0, 0 > (8)

v3,4 = < 0, 0, 1, 0 > (9)

Then we form A by taking the first bit of each of these vectors then the second bits, etc. For this example,
we put a semicolon in between the first bits and second bits. We do this here for making it easier to read.

A = 0, 0, 0, 1, 0, 0; 1, 0, 1, 0, 1, 0; 0, 1, 0, 0, 0, 1; 1, 1, 0, 1, 0, 0

Note that if we take the bits p, p+ 6, p+ 12, p+ 18 these correspond to a single vector vi,j . We want the
ability to merge A and a single vector vi. For this, if there is vi[p] = 0 then we replace all those bits with
zeros, otherwise we leave the bits of A as is.

(A&v1) =0, 0, 0, 0, 0, 0; 1, 0, 1, 0, 1, 0; 0, 1, 0, 0, 0, 1; 1, 1, 0, 1, 0, 0 (10)

(A&v2) =0, 0, 0, 1, 0, 0; 1, 0, 1, 0, 1, 0; 0, 0, 0, 0, 0, 0; 1, 1, 0, 1, 0, 0 (11)

(A&v3) =0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 1; 1, 1, 0, 1, 0, 0 (12)

(A&v4) =0, 0, 0, 0, 0, 0; 1, 0, 1, 0, 1, 0; 0, 1, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0 (13)

We also want to generate the padded vectors for SC . These padded vectors have ‘real’ vector values
at locations 0, 6, 12, 18. We want this because it means that if we line up one of these padded vectors,
(0&vi), against a vector mixed with A, (A&vj), the ‘real’ values correspond to a vector in A.

(0&v1) =0, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 1 (14)

(0&v2) =1, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0; 1 (15)

(0&v3) =1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 1 (16)

(0&v4) =0, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 0 (17)

Specifically, if we line up (0&vi) and (A&vj) with an offset of ∆ every lined up set of entries has a zero if
there are k1 + 2k2 vectors that are orthogonal. Lets consider this example:

(A&v1) =0, 0, 0, 0, 0, 0; 1, 0, 1, 0, 1, 0; 0, 1, 0, 0, 0, 1; 1, 1, 0, 1, 0, 0 (18)

(0&v2) = 1, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0; 1 (19)

This alignment = 0; 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0 (20)

By picking this alignment, ∆ = 5, we are picking the sixth vector that went into A which is v3,4. So, this
alignment is checking the orthogonality of v1, v2, v3, v4. Lets look at a set of non-orthogonal vectors to
compare. The vectors v1, v2, v1, v4 are not orthogonal. The vector v1,4 corresponds to ∆ = 2.

(A&v1) =0, 0, 0, 0, 0, 0; 1, 0, 1, 0, 1, 0; 0, 1, 0, 0, 0, 1; 1, 1, 0, 1, 0, 0 (21)

(0&v2) = 1, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0; 1 (22)

This alignment = 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (23)
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This is why we want ‘perfect alignments’. We want to build up representations of these strings and
allow for any choice of ∆, but no skipping characters or merging gadgets. Previous work generates a
perfect alignment gadget such that the output gadgeted strings T(A&vi) and T(0&vj) have a low LCS if
there is a ∆ such that (A&vi) and (0&vj) have an all zeros alignment with offset ∆ (like (A&v1) and
(0&v2) with ∆ = 5 in our example). We will now show what the perfect alignment gadget looks like. We
can not use zeros and ones directly to solve OV (see Lemma 6.13). We want gadgets such that 0, 0 and
0, 1 have a low LCS and higher LCS for 1, 1. We add the characters $ and 5. The 5 characters make sure
we don’t skip any symbols from T(0&vi). The $ characters make sure we don’t skip any symbols from
T(A&vj).

T(A&v1) ≈$05$05$05$05$05$05$15$05$15$05$15$05$05$15$05$05$05$15$15$15$05$15$05$0$ (24)

T(0&v2) ≈$ $ $ $ $ $15$05$05$05$05$05$15$05$05$05$05$05$05$05$05$05$05$05$1$6 (25)

The extra dollar signs at the ends of the strings allow all the dollar signs in T(A&v1) can be matched
regardless of the offset ∆. The 5 symbols make skipping zero or one characters also skip at least one 5
character. This set of characters (at a high level) form the perfect alignment gadget of [ABBK17].

To form the string SB we want to basically concatenate T(A&v1), T(A&v2), T(A&v3), T(A&v4). To form
the string SC we will basically concatenate T(0&v1), T(0&v2), T(0&v3), T(0&v4). These strings are not really
concatenated, but instead have an alignment gadget wrapped around them. This alignment gadget
guarantees a low LCS if a pair of strings T(A&vi) and T(0&vj) have a low LCS, and otherwise has a high
LCS. In total, this means the strings SB and SC have low LCS if there exist i, j,∆ (A&vi) and (0&vj)
have an all zeros alignment with offset ∆. Such a zero alignment existing implies a (k1 + 2k2)-OV exists
(a 4-OV in our example).

6.4.3 How to Generalize This (Intuition)

What we want generically for k-LCS is to have k sets of lists that act like B and C, and ` sets of lists
that act like A. If we make an efficient reduction with these parameters, then we get a lower bound of
(M `mk−`)1−o(1).

To get the easy generalization we set ` = 1, and we have one “A type” set of lists. Lets call the
“B” and “C” type lists B1, . . . , Bk. We create strings S1, . . . , Sk and merge B1 and A into S1 using the
method from [ABBK17]. For Si where i > 1 we instead use the padding with zeros method. Now we
have a situation where we want a gadget that forces the zero padded strings to line up exactly and
they are both on some offset of i from the strings in S1. This as it turns out is easy. The strings are of
the same length and just copying the construction used for C in [ABBK17] will get us what we want
here. Specifically, the string S1 will be roughly2 a concatenation of T(A&vi) strings. The Si strings
for i > 1 are instead roughly2 the concatenation of T(0&vi) strings. If we are given a set of k strings
T(A&v1), T(0&v2), . . . , T(0&vk) we want to allow any offset ∆, but that same ∆ should be shared across all
the T(0&vi) strings. As a result, we can just use the same T(0&vi) strings from the two string case for all
the strings i > 1. The T(0&vi) strings are the same in every location except for the d representations of
the bits in the vector vi. The structure of the 5 characters forces all of the T(0&vi) strings to line up
together to match all the 5 characters. The $ characters force any high LCS to not skip any of the zeros
or ones in the T(A&vi) representation of (A&vi). On a high level this reduction is easy because we still
have only one offset ∆ that we need to deal with.

What needs to happen if ` > 1? The primary hurdle is coming up with a setup where two long strings
of the B type from the original construction can be forced to have their optimal setup line them up
exactly with no skips when they have two different offsets from the zero padded strings. To get a sense of
the difficulty consider how many $ characters should be at the start and end of those strings to allow all
$ characters to be matched regardless of offsets. As we grow the number on one string we have to grow
the number on the other. So we need different symbols $1, . . . , $k for each string.

For convenience let 0 and 1 be stand-ins for the strings we use in LCS reductions from OV (there
are longer strings that have the property we want where the LCS of 110, 101, 011, 100, 010, . . . , 000 are
all equal). Now, if we want to compare k strings where X ∈ {0, 1}m and Y1, . . . , Yk−1 ∈ {0, 1}n where
n < m and we want the Y s to line up exactly and we want them to compare to some substring of X then
we can add a special character $. Let Z = $c where c will be a constant in terms of k that is larger than

2Once again, it isn’t really a concatenation. Instead these strings are wrapped in an alignment gadget. However, these
alignment gadgets are basically concatenations of the strings but with characters in-between the strings.
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the full length of string representations of 0 and 1.

SX =ZX[0]ZX[1]Z . . . ZX[m]Z (26)

SYi =Zm−nYi[0]ZYi[1]Z . . . ZYi[m]Zm−n (27)

Now, if there is a sub-string of X that is orthogonal to Y1, . . . , Yk−1 then the optimal LCS will match
all the Zs in X and match each character Yi[j] with some character in X. If we spread out our matches
of Yi and don’t match to a sub-string of X but instead to a subsequence, we will miss out on some Z
characters. So, if there isn’t a match that corresponds to an OV we will lose out. And this works with
many strings at once.

This gadget is forcing not just any alignment of the underlying strings in X1, . . . , Xk−1, Y , but a
perfect alignment. We will use this structure to build a perfect alignment gadget.

6.5 Reduction

We will prove lemmas building up the gadgets for this construction. We will describe the details of our
gadgets and reductions here. The intuition described above of both why we care about perfect alignment
and how to achieve it is used in the next subsection on our alignment gadget.

6.5.1 Alignment Gadget

Now we will prove that the alignment gadget works as desired. First let us define what an alignment and
perfect alignment are.

Definition 6.9. We will generalize the Structured Alignment Cost definition of previous work [ABBK17].
We are given as input k lists of strings X1, . . . , Xk−1, Y . Where |Xi| = n, |Y | = m, and m < n.

An alignment, Λ is a list of t k-tuples:

((i1,1, i1,2, . . . , i1,k), . . . , (it,1, it,2, . . . , it,k))

where ij,p < ij′,p if j < j′. We call an alignment perfect if ij,p + 1 = ij+1,p and t = m.

Now we will create some gadgets to maintain alignment. We will define them here and then below
prove the various properties we care about.

Definition 6.10 (Perfect Alignment Gadget). We are given as input k lists of strings X1, . . . , Xk−1, Y .
Where |Xi| = n, |Y | = m, and m < n.

We will add k new symbols $1, . . . , $k. We will define A = $2`
1 ◦ . . . ◦ $2`

k where ◦ is the concatenation
operator. Let A−i = $2`

1 ◦ . . . ◦ $2`
i−1 ◦ $2`

i+1 ◦ . . . ◦ $2`
k . Note that this is just A with all the $i symbols

removed. We also add a character % which we use to pad out our strings to give them more value. Let
B = %2` (note that the % character is serving the purpose of the 5 character in our earlier example). We
define f = n−m. Then the generalized structured alignment gadget would produce strings:

AGi(Xi) = Af−i ◦A ◦Xi[1] ◦B ◦A ◦Xi[2] ◦B ◦ . . . ◦A ◦Xi[n] ◦B ◦Af−i (28)

AGy(Y ) = Af−k ◦A ◦ Y [1] ◦B ◦A ◦ Y [2] ◦B ◦ . . . ◦A ◦ Ym ◦B ◦Af−k (29)

We also want gadgets to be a selector around the alignment gadget. We add a new character @. We
will leave D unset for now. We define our SAG gadgets:

SAGi(Xi) = @D−1AGi(Xi)

SAGy(Y ) = AGy(Y )@D−1.

We will now prove that these work as perfect alignment gadgets. This setup requires that we are
trying to detect if there is a perfect alignment in which all strings match as much as they can.

Theorem 6.11. We are given as input k lists of strings X1, . . . , Xk−1, Y . Where |Xi| = n, |Y | = m,
and m < n. Furthermore all strings S ∈ Xi and S′ ∈ Y have length |S| = |S′| = `.

Additionally, given any set of k strings Si ∈ Xi and Sy ∈ Y the LCS distance is either z or z + 1 for
some constant z.

Let Λ be a perfect alignment which is a list of m k-tuples: (i1,1, i1,2, . . . , i1,k). Where ij,h + 1 = ij+1,h.
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Then, if there is a perfect alignment Λ in which there are exactly m k-tuples such that

LCS(X1[ij,1], . . . , Xk−1[ij,k−1], Xy[ij,k]) = z + 1,

then
LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D,

if all perfect alignments have less than m k-tuples with a LCS of z + 1 then

LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D − 1.

These strings use an additional alphabet of size O(k). The total length of strings is O(`n). The value of
is D = 2`(2m+ (k − 1)n) + (z + 1)m.

Proof. In the SAG gadgets note that if we match any @ character we have a maximum LCS of D − 1,
and we can always achieve this. If we match any characters from AGi, then we can match no @ symbols.
Thus, what remains to be proven is that if there is a perfect alignment Λ in which there are m k-tuples
such that if we have m matches where

LCS(X1[ij,1], . . . , Xk−1[ij,k−1], Xy[ij,k]) = z + 1,

then
LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), SAGy(Y )) = D,

otherwise
LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), SAGy(Y )) ≤ D − 1.

Recall D = 2`(2m+ (k − 1)n) + (z + 1)m. Now we have three cases to argue.

Case 1 [There are m “good” k-tuples, lower bound]: Consider aligning the strings in the perfect
alignment Λ which has m k-tuples of strings which have a LCS of z + 1. Now, we can match m copies
of B. What about $i symbols? There are 2`n copies of the $i symbol in AGi(Xi), they only appear
in the copies of A (they don’t appear in A−i). If we are matching up with a perfect alignment we can
match all 2`n of these symbols. They either line up with copies of A in other strings, or copies of A−j .
Finally, there are 2`m copies of $y in AGy(Y ). In a perfect alignment these symbols will all get matched
to symbols that appear in copies of A in other strings. So, in total

LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), AGy(Y )) ≥ 2`m+ 2`(m+ (k − 1)n) + (z + 1)m ≥ D.

Case 2 [There are m “good” k-tuples, upper bound]: Across all % and $i symbols the maximum
number of matches is 2`(m+m+ n(k − 1)). What if we don’t match the strings in a perfect alignment
manner? There are two ways to do this. One is to skip matching some strings in Y (e.g. merging Y [j] and
Y [j + 1] and matching that to some single string somewhere else, or simply skipping over a string in Y ).
If this happens we miss out on the characters in at least one B. The advantage gleaned for every skipped
string in Y is at most |Y [j]| = `, but skipping out on B is worse, we lose 2` matches. The next case is
skipping strings in Xi. That is, matching Y [j] with Xi[j

′] but matching Y [j] with Xi[j
′+ 1 + ∆] for some

∆ ≥ 1. This looses at least 2` $i characters. Any k-tuple of strings has, by assumption in the lemma, a
k-LCS of at most z + 1. So, this causes the k-LCS less than D. Finally, any time we match multiple
strings in Xi with a single string in Y , Y [j], can increase the match in Y [j] by at most `. However, we
loose at least 2` symbols $i in Xi. This means the k-LCS of AGi strings is at most D − `.

Case 3 [There are less than m “good” k-tuples]: Now, if there are less than m matches with a
k-LCS of z + 1 then what is the maximum k-LCS? Similarly to case 2, if we skip as string in Y or merge
Y [j] and Y [j + 1] we loose at least one B. Because the B copies are in-between every pair of adjacent
Y strings. If we matching some symbol in each Y [j], then the maximum value if we match one string
from each Xi to each string in Y is D − 2` because we must skip some 2` characters $i, so the maximum
match would be at most D − 2`. Finally, we could merge multiple strings from Xi and match with a
single string from Y , in this setting we could potentially get D − 2`+ `. While we can potentially match
all ` characters in Y , we must miss out on at least 2` $i characters.

So, we have proven the result that if we have m matches where

LCS(X1[ij,1], . . . , Xk−1[ij,k−1], Xy[ij,k]) = z + 1,
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then
LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), SAGy(Y )) = D,

otherwise
LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), AGy(Y )) ≤ D − 1.

Then, because of the @ symbols if there is a perfect alignment Λ in which there are exactly m k-tuples
such that

LCS(X1[ij,1], . . . , Xk−1[ij,k−1], Xy[ij,k]) = z + 1,

then
LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D,

if all perfect alignments have less than m k-tuples then

LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D − 1.

Proving our desired result.

Now, we will also want to use this gadget for regular alignment. In this case we will care about
distinguishing between a single k-tuple with high value versus no strings having high value.

Theorem 6.12. We are given as input k lists of strings X1, . . . , Xk−1, Y . Where |Xi| = n, |Y | = m,
and m < n. Furthermore all strings S ∈ Xi and S′ ∈ Y have length |S| = |S′| = `.

Additionally, given any set of k strings Si ∈ Xi and Sy ∈ Y the LCS distance is either z or z + 1 for
some constant z.

Finally define X̂i as a list that is simply two copies of Xi. That is X̂i[j] = X̂i[n+ j] = Xi[j].
In the first case there is exactly one k-tuple where

LCS(X1[i1,1], . . . , Xk−1[i1,k−1], Xy[i1,k]) = z + 1,

and there exists a perfect alignment that can align this k-tuple. That is n− i1,j ≥ m− i1,k and i1,j ≤ i1,k.
In this first case we want:

LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D.

In the second case there are zero k-tuples that have an LCS of z + 1 then we want:

LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D − 1.

These strings use an additional alphabet of size O(k). The total length of strings is O(`n). The value of
is D = 2`(2m+ (k − 1)n) + zm+ 1.

Additionally, let c be the size of an SLP that gives a single variable for all (k − 1)n+m strings Xi[j]
and Y [j]. Then there is a SLP representation of all the strings AG1(X1), . . . , AGk−1(Xk−1), AGy(Y ) of
size O(c+ lg(`)k + lg(n) + kn+m).

Proof. As in the above theorem: in the SAG gadgets note that if we match any @ character we have a
maximum LCS of D − 1, and we can always achieve this. If we match any characters from AGi, then we
can match no @ symbols. Thus, what remains to be proven is that if there is an alignment with exactly
one k-tuple such that

LCS(X1[ij,1], . . . , Xk−1[ij,k−1], Xy[ij,k]) = z + 1,

then
LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), SAGy(Y )) = D,

if there are no k-tuples with an LCS of z + 1 then:

LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), SAGy(Y )) ≤ D − 1.

Case 1 [There is 1 “good” k-tuple, lower bound]: Consider aligning the strings where the k-tuples
of strings which have a LCS of z+ 1 line up. Now, we can match m copies of B. What about $i symbols?
There are 2`n copies of the $i symbol in AGi(Xi), they only appear in the copies of A (they don’t appear
in A−i). If we are matching up with a perfect alignment we can match all 2`n of these symbols. They
either line up with copies of A in other strings, or copies of A−j . Finally, there are 2`m copies of $y in
AGy(Y ). In a perfect alignment these symbols will all get matched to symbols that appear in copies of A
in other strings. So, in total

LCS(AG1(X1), AG2(X2), . . . , AGk−1(Xk−1), AGy(Y )) ≥ 2`m+ 2`(m+ (k − 1)n) + zm+ 1 = D.
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Case 2 [There is 1 “good” k-tuple, upper bound]: If there is a singular “good” k-tuple we can
not re-arrange the strings to get a larger alignment. If we skip or merge any strings in Y we loose 2`
symbols from B at least, giving a maximum LCS of D − 2`. If we skip or merge strings in Xi then we
loose at least 2` symbols from $i characters. We gain at most ` matches, giving a maximum LCS if we
merge or skip of D − `. Thus, the largest LCS possible is D.

Case 3 [There are zero “good” k-tuples, upper bound]: In this case, if we follow a perfect
alignment we achieve an LCS of 2`m + 2`(m + (k − 1)n) + zm = D − 1. If we skip a string in Y we
miss out on 2` characters. If we match a single string in Y to multiple strings in Xi we loose at least 2`
characters and match an additional ` characters at most for a total LCS of at most D − `. Finally, if we
skip over strings in Xi, we miss out on 2` characters $i, for no benefit. All k-tuples have a value of z
regardless, so the maximum LCS is D − 2`.

From all these cases we can say that if there is exactly one “good” k-tuple, and it is reachable in a
perfect alignment then

LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D.

If there are no “good” k-tuples

LCS(SAG1(X1), SAG2(X2), . . . , SAGk−1(Xk−1), SAGy(Y )) = D − 1.

For the compression, D < `n. So we add an additional lg(n) + lg(`). So if c is the size of an SLP that
gives a single variable for all (k−1)n+m strings Xi[j] and Y [j]. Then there is a SLP representation of all
the strings AG1(X1), . . . , AGk−1(Xk−1), AGy(Y ) of size O(c+ lg(`)k+ lg(n) + kn+m). Unchanged.

6.5.2 Zero and One Strings

First we will use the gadgets for representing zeros and ones from [ABV15].

Lemma 6.13 (Zero and One Strings [ABV15]). There are strings CGi(0), CGi(1) such that:

k − LCS(CG1(b1), . . . , CGk(bk)) =

{
C if b1 · · · bk = 0

C + 1 if ∀b1 · · · bk = 1

for some positive integer C that is a function of k. Note this corresponds to our desired relationship from
k-OV. If we have one “zero string” then we get a small k-LCS, if there are all “one strings” then we get
a larger k-LCS. These strings use an alphabet of size O(1). If k is a constant the length of these strings
is O(1).

6.5.3 Interleave Gadget

Now we will build the gadget that checks if our interleave representations represent a yes instance of
orthogonal vectors. For this next Lemma recall Definition 6.8, where we define VecSI`(L, vi).

Lemma 6.14. Let L be a list of n {0, 1} vectors each of dimension d = no(1). Let v1, . . . , vk be {0, 1}
vectors each of dimension d. Given the lists, We produce strings: IV G1(L, `, v1), . . . , IV Gk−1(L, `, vk−1),
and EIV G(vk) such that

LCS(IV G1(L, `, v1), . . . , IV Gk−1(L, `, vk−1), EIV G(vk)) = C

if there are (k − 1)` vectors in L such that are orthogonal with v1, . . . , vk. If there do not exist (k − 1)`
vectors in L that are orthogonal with v1, . . . , vk then

LCS(IV G1(L, `, v1), . . . , IV Gk−1(L, `, vk−1), EIV G(vk)) = C − 1.

These strings have length at most O(n`d) and an alphabet of size O(k).
Additionally we can compress x strings IV Gi(L, `, v1), . . . , IV Gi(L, `, vx) or EIV G(v1), . . . , EIV G(vx)

with a total compression size of O(xd+ nd+ ` lg(n)).
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Proof. Consider the k − 1 lists VecSI`(L, vi) for i ∈ [1, k − 1]. Additionally, let

V ecE(vk)[j] =

{
vk[h] if j = h · n`

0 else.

Where the total length is |V ecE(vk)| = n` · (d− 1) + 1.
Now create the lists

Xi[j] = CGi(VecSI`(L, vi)[j])

Y [j] = CGk(V ecE(vk)[j]).

Finally create the strings
IV Gi(L, `, v1) = SAGi(Xi)

EIV G(vk) = SAGy(Y ).

Now, note that by construction the k-LCS of coordinate gadgets CGi(·) is either some value z or
z + 1.

Now, note that V ecE(vk) has zeros in every location except h · n` for h ∈ [1, d]. If we perfectly align
V ecE(vk) with the (k − 1) vectors VecSI`(L, vi), then these locations correspond with a vector in each!
That is, as mentioned in Definition 6.8, the bits in locations j, j + n`, . . . , j + (d− 1)n` correspond to a
vector w where w[h] = u[h]vi[h] and u = List[h]. If there are (k − 1)` vectors in L that are orthogonal
with v1, . . . , vk, then there should be a perfect alignment of these vectors such that in every alignment
location there is at least one zero. That is, an alignment where every aligned k-tuple has a LCS of z + 1
as opposed to z.

Let c = |CGi(·)|. Let z + 1 be the value of δLCS(CG1(b1), . . . , CGk(bk)) if b1 · · · bk = 0.
So δLCS(CG1(b1), . . . , CGk(bk)) = z if b1 · · · bk = 0.

So, by Theorem 6.11, if there are (k − 1)` vectors in L that are orthogonal with v1, . . . , vk then

LCS(IV G1(L, `, v1), . . . , EIV G(vk)) = C = 2c(2((d− 1)n` + 1) + (k − 1)dn`) + (z + 1)((d− 1)n` + 1).

Otherwise,
LCS(IV G1(L, `, v1), . . . , IV Gk−1(L, `, vk−1), EIV G(vk)) = C − 1.

Now we are going to argue that we can compress x strings IV Gi(L, `, v1), . . . , IV Gi(L, `, vx) or

EIV G(v1), . . . , EIV G(vx) with a total compression size of O(xd + nd). First, note that Af−i can be
represented with an SLP of size O(lg(`) + lg(n)). Now the rest of our string is a series of entries that look
like A · CGi(b) ·B. We can create a SLP for both S0 = A · CGi(0) ·B and S1 = A · CGi(1) ·B with size
O(lg(`)). We give the names of S0, S1 to simplify the notation.

Next, if we are compressing x different EIV G(vi) gadgets, first we want to compress Sn
`−1

0 which
appears repeatedly. We can do this with size O(` lg(n)). Finally, we need to add the bits that correspond
with each vector. We can do this with size dx. This gives a total size of O(` lg(n) + dx).

Finally, consider the case of compressing x different IV G(L, `, vj) gadgets. This part of the proof,
where interleaves are very compressible, borrows very heavily from [ABBK17]. For this we note first that
VecSI`(L, vj) has d sections of size n` that correspond to the d dimensions of the vectors. Any section
that corresponds to a h where vj [h] = 0 has n` copies of S0. This can be represented with size O(` lg(n)).
When vj [h] = 1 the section instead corresponds to ©j∈[1,n`]List[j][h]. By using Definition 6.6 we can
re-write this as

SubList[L, k] =©j1∈[1,n]©j2∈[1,n]©j3∈[1,n] . . .©jk∈[1,n] L[j1][i] · L[j2][i] · · ·L[jk][i].

Now note that SubList[L, 1] is simply a string of n bits and thus has a compression of size n. Now note
that SubList[L, g] is simply a string formed by appending either SubList[L, g−1] or ng−1 zeros. We can
represent ng−1 zeros with O(g lg(n)) variables. So, if SubList[L, g] has an SLP f(g) then SubList[L, g+1]
has an SLP f(g+ 1) = n+ f(g) + g lg(n). We have that f(1) = n, so f(k) = kn+ k2 lg(n) = O(n). Thus,
the total size of compressing x different IV G(L, `, vj) gadgets is O(` lg(n) + dx+ dn).
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6.5.4 Putting it all Together

Now that we have an interleave gadget, we want to put many of these gadgets one after each other.
However, we want to line up these gadgets. So, we put our interleave gadgets into the perfect alignment
gadget.

Lemma 6.15. Let a, b, and k be positive constant integers. Let L be a list of n vectors of length d = no(1).
There are k strings GOVi(a, b, k, L) such that:

LCS(GOV1(a, b, k, L), . . . , GOVk(a, b, k, L)) =

{
D if there is a (bk + a(k − 1))-OV in L

D − 1 else

The length of each of these strings is O(na+b+o(1)) with an alphabet of size O(k).

Proof. Unique (bk+a(k−1))-OV is equivalent to the normal detection problem of (bk+a(k−1))-OV, via
a randomized reduction [folklore][Vas18]. So, we can consider the case where a single (bk+ a(k− 1))-tuple
of vectors are orthogonal.

Let Lb = List(L)b as defined in Definition 6.6. Now we will use these to define lists of vectors. For all
i ∈ [1, k − 1] let

Xi[j] = IV Gi(L, a, Lb[j]),

Y [j] = EIV G(Lb[j]).

So all Xi and Y have length nb. The strings inside the gadgets is na+o(1). All k-tuples of these strings
have LCS values of either C or C − 1. We basically want to wrap an alignment gadget around these
strings. However, we want to allow any k-tuple to be compared so we will double all the Xi lists:

X̂i[j] = X̂i[j + nb] = Xi[j].

Now, for any k tuple j1, . . . , jk where ji ∈ [0, nb − 1] there is some offset ∆i ∈ [0, nb − 1] for all X̂i

such that jk = j1 + ∆i mod nb. So, we can align the X̂i strings with Y and get any k-tuple lined up. So,
we can now build our gadgets. For all i ∈ [1, k − 1]:

GOVi(a, b, k, L) = SAGi(X̂i) (30)

GOVk(a, b, k, L) = SAGy(Y ) (31)

Now, if there is a single (bk + a(k − 1))-OV in our unique OV instance then there is a single k−tuple
X1[j1], . . . , Y [jk] of strings that have a LCS of C. Otherwise, they will all have a LCS of C − 1. By
Theorem 6.12 we have that in the first case where an (bk + a(k − 1))-OV exists

LCS(GOV1(a, b, k, L), . . . , GOVk(a, b, k, L)) = D

otherwise
LCS(GOV1(a, b, k, L), . . . , GOVk(a, b, k, L)) = D − 1.

Note that having only two possible LCS values hinges crucially on using a unique (bk + a(k − 1))-OV
instance.

The total size of the alphabet is O(k) for the interleaves and another O(k) for the SAG gadgets, with
a total alphabet size of O(k).

The total length of the IV G gadgets is na+o(1). We have nb copies of these gadgets. Giving a total
length of na+b+o(1).

We will now bound the size of the compressed length of these gadgets.

Lemma 6.16. Let k be a constant integer and let d = no(1). Given the k strings GOVi(a, b, k, L) defined
in Lemma 6.15 the size of the compression is O(nb+o(1) + n1+o(1)).

Proof. We will start by describing the compression size of CGi(0), CGi(1). These strings have length
O(1), thus the total size of the compression is at most O(1). There are 2k of these strings and k is a
constant. So we can have 2k variables, one for each string and still the total size of the compression will
be O(1).

Next, we need to analyze the size of the compression of the knb interleave gadgets IV Gi(L, `, vi).
These include the zero and one bit representations, and then are wrapped in a perfect alignment gadget.
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By Lemma 6.14 we have that the total size of the compression of these strings is O(kd(n+ nb)). Because
we have nb distinct copies of vi we are generating the IV G strings with, so the x of the lemma is na in
our case. Note that kd = no(1). So the total size of these compressions is O(n1+o(1) + nb+o(1))

Next, we need to analyze the size of the compression of the entire string. We use the compression of
the interleave gadgets and the coordinate gadgets. In addition to this we are wrapping our interleave
gadgets in an alignment gadget (from Lemma 6.12). This adds an additional O(lg(n) + nb) variables to
the SLP.

This gives an SLP of total size of O(nb+o(1) + n1+o(1)).

Now we will now combine the previous lemmas to give the hardness of k-LCS with compression.

Reminder of Theorem 1.1. If the k′-OV hypothesis is true for all constants k′, then for any constant

ε ∈ (0, 1] grammar-compressed k-LCS requires
(
Mk−1m

)1−o(1)
time when the alphabet size is |Σ| = Θ(k)

and m = M ε±o(1). Here, M denotes the total length of the k input strings and m is their total compressed
size.

Proof. Use the gadgets from Lemma 6.15. Call the strings S1, . . . , Sk Consider positive integers a and b.
These have an alphabet of size O(k) and length M = O(na+b+o(1)) by Lemma 6.15. These have a

compression of total size m = O(nb+o(1) + n1+o(1)) by Lemma 6.16.
The size of the alphabet of the reduction is O(k), so if the alphabet is allowed to be size Θ(k), then

this lower bound applies.
So Mk−1m = O(n(k−1)a+kb+o(1)). If (bk + a(k − 1))-OV requires nbk+a(k−1)−o(1) time, then this

corresponds to a lower bound of
(
Mk−1m

)1−o(1)
for SLP compressed k−LCS.

Consider a contradiction to our theorem statement. There would be an algorithm running in
(Mk−1m)1−γ time to solve grammar compressed k-LCS when m = M ε±o(1) and ε ∈ (0, 1]. In the easiest
case we can pick an a, b such that b/(a + b) = ε, in this case we are done. For irrational ε we need to
approximate and then pad the strings. Choose an a and b such that ε ≤ b/(a+ b) < ε(1 + γ/2). Such
a, b exist that are in O( 1

εγ ). We add a new character 3. Let S′i = Si3
x, where we will set x ∈ [M,M2]

later. Note that LCS(S′1, . . . , S
′
k) = LCS(S1, . . . , Sk) + x. Note that the compression of these strings is

m′ = m+lg(x) = Θ(m) where as the length is M ′ = M+x = Θ(x). Choose x = m1/ε±o(1) = M b/(a+b)·1/ε.
So now m′ = M ′1/ε±o(1). Note that 1 ≤ b/(a+ b) · 1/ε ≤ (1 + γ/2). Now consider running the claimed
fast algorithm on our new S′1, . . . , S

′
k instance. The running time is

(M ′(k−1)m′)1−γ = O((M (1+γ/2)(k−1)m)1−γ−o(1)).

This running time can be simplified to O(M (k−1)m)(1+γ/2)(1−γ−o(1)). Note that (1 + γ/2)(1− γ − o(1))
is less than 1− o(1). This algorithm violates the lower bound for the original S1, . . . , Sk instance. This is
a contradiction.

So any algorithm running in (Mk−1m)1−γ time to solve grammar compressed k-LCS when m = M ε±o(1)

and ε ∈ (0, 1] violates k′-OV for some k′ that depends on ε, γ. This implies our theorem statement.

6.6 Easy Edit Distance Lower Bounds from LCS

In this section we will prove that k-median edit distance is hard from k′-LCS. We take a k′-LCS instance
and add various numbers of empty strings. This pushes the k-median edit distance problem towards
deletions. So, we increase the number of strings, but we don’t increase the total uncompressed or
compressed length of the input.

Nicolas and Rivals show NP-hardness for k-edit distance through k′-LCS for large k and k′ [NR05].
We take inspiration from their reduction to build our own, removing some of their restrictions, and
making it fine-grained efficient. We then use the hardness results we have for k′-LCS to get lower bounds
for k-edit distance. We will be focusing on a version of edit distance where the strings are allowed to be
of very different sizes. We will give an explicit definition now.

Definition 6.17. Given k strings S1, . . . , Sk of lengths M1,M2, . . . ,Mk the k-edit distance (or k-median
edit distance) of those strings is the minimum sum across all strings of edits needed to make all strings
equal some new string S′. The allowed edits are deleting a character, adding a character and replacing a
character (Levenshtein distance).
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More formally: Recall that δE(Si, S
′) denotes the edit distance of Si and S′. Recall that the k-median

distance is:

δE(S1, S2, . . . , Sk) = min
S′∈All Strings

 ∑
i=[1,k]

δE(Si, S
′)

 .

We can use inspiration from [NR05] to get lower bounds for the center version of this problem as well.
Let us remind the definition of k-center edit distance problem.

Definition 6.18. Given k strings S1, . . . , Sk of lengths M1,M2, . . . ,Mk. We define the k-center edit
distance of those strings is the minimum of the maximum of the distances of those strings to a string S′.
The allowed edits are deleting a character, adding a character and replacing a character (Levenshtein
distance).

More formally: Let δE(Si, S
′) be the edit distance of Si and S′. Now the k-center distance is:

δCE(S1, S2, . . . , Sk) = min
S′∈All Strings

(
max
i=[1,k]

δE(Si, S
′)

)
.

6.7 Median Edit Distance

Theorem 6.19. We are given a k-LCS instance with strings S1, . . . , Sk all of length M . Let the k-LCS
of these strings be denoted by LCS(S1, . . . , Sk). The (2k − 1)-median edit distance on S1 through Sk and
k − 1 copies of the empty string γ is related to the k-LCS of S1 through Sk:

δE(S1, . . . , Sk, γ, . . . , γ) = Mk − LCS(S1, . . . , Sk).

Proof. First, let us prove that δE(S1, . . . , Sk, γ, . . . , γ) ≤ Mk − LCS(S1, . . . , Sk). Let T be the target
string of LCS(S1, . . . , Sk) = |T |. Then, the sum of edit distances to T is k(n−|T |) + (k−1)|T | = kn−|T |.

Second, let us prove that δE(S1, . . . , Sk, γ, . . . , γ) ≥Mk − LCS(S1, . . . , Sk). Let T ′ be a target string.
Now let dj , ij , bj be the number of deletions, insertions and substitutions to go from Sj to T ′. Let
ej = dj + ij + bj be the edit distance of Sj to T ′. Now note that ej ≥M − |T |+ 2ij + bj . Additionally,
note that the distance from γ to T ′ is |T ′|. So the total distance is

kM − k|T ′|+
k∑
j=1

2ij + bj + (k − 1)|T ′| = kM − |T ′|+
k∑
j=1

2ij + bj .

So, δE(S1, . . . , Sk, γ, . . . , γ) can only be less if |T ′| > |T |. Note, that
∑k
j=1 2ij + bj ≥ |T ′| − |T |. The

target T is the longest string to be achieved with only deletions. Any change from this T (notably added
characters) must involve at least one substitution or an insertion. So we can say that the total distance is

kM − |T ′|+
k∑
j=1

2ij + bj ≥ kM − |T ′|+ |T ′| − |T | = kM − |T |.

So, δE(S1, . . . , Sk, γ, . . . , γ) ≥Mk − LCS(S1, . . . , Sk).
Thus, δE(S1, . . . , Sk, γ, . . . , γ) = Mk − LCS(S1, . . . , Sk).

Now that we have a tight relationship between the edit distance and LCS, we can use this to get a
lower bound from SETH through LCS.

Theorem 6.20. Given an instance of k-median edit distance on strings of lengths M1 ≤M2 ≤ · · · ≤Mk

where these strings can all be compressed into a SLP of size m. Then, an algorithm for k-median edit
distance that runs in ((M2 + 1) · · · (M2k−1 + 1) ·m)

1−ε
time for constant ε > 0 violates SETH.

Proof. We will use Theorem 1.1 and Theorem 6.19.
Say we are given an instance of k-LCS with strings S1, . . . , Sk of length M and a SLP compression of

all strings of size m. Then, by Theorem 6.19 we can solve this with an instance of (2k − 1)-median edit
distance on k strings S1, . . . , Sk, γ, . . . , γ. We can compress these k strings with a compression of size
m′ = m+O(k) (we need only compress the empty string in addition).

k-LCS requires (Mk−1m)1−o(1) if SETH is true. Note that for our chosen strings Mk−1 = M2 · · ·Mk.
Now note that our compression is of size m′ = O(m). The reduction takes constant time (simply
append the empty string and make a call to k-median edit distance). So k-median edit distance requires

((M2 + 1) · · · (M2k−1 + 1) ·m)
1−o(1)

time if SETH is true. We can re-state this as an algorithm running

time ((M2 + 1) · · · (M2k−1 + 1) ·m)
1−ε

time for constant ε > 0 violates SETH.
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Next we will use similar ideas to show hardness for center edit distance.

6.8 Center Edit Distance

Nicolas and Rivals present a very simple reduction from a specific version of (k − 1)-LCS to k-Center
Edit Distance. This reduction simply adds the empty string as the last string. The same concept works
here. We can distinguish between the case where a (k − 1)-LCS is greater than or equal to some constant
c. Because, if all the strings in the k-LCS are of length M adding a single empty string distinguishes
between the (k − 1)-LCS less than M/2 or greater than or equal to it. Why? Because, if the k-LCS at
least M/2 then every string is M/2 deletions away from the target string and the new empty string is as
well! Otherwise, if the LCS is less than M/2, we are more than M/2 edits away provably. By adding
characters to our (k − 1)−LCS strings we can artificially increase the match (adding a large number
of matching characters to each string), or artificially decrease it (add a large number of not-matching
characters). By doing this we can go from our (k − 1)-LCS being c to our (k − 1)-LCS being M ′/2, for
our new length of strings.

Lemma 6.21. Assume a k-LCS instance over k strings of length exactly M . If deciding whether the
k-LCS distance is equal to M/2 over an alphabet of size |Σ| can be done in T (M) time, then we can
decide whether the k-LCS distance is equal to C over an alphabet of size |Σ|+ k + 1 for any constant C
in time O(T (M) + kM).

Proof. Let S1, . . . , Sk be an instance of k-LCS where we want to decide if the distance is exactly C. Let
the k-LCS be LCS(S1, . . . , Sk).

For integers a and b let
S′i = @aSi#

b
i .

That is, we append a @ symbols at the start and b #i symbols at the end of each string. The #i strings
can not be matched. The @ symbols can be trivially matched. So we have that |S′i| = M ′ = M + a+ b
and

LCS(S′1, . . . , S
′
k) = LCS(S1, . . . , Sk) + a = C + a.

We simply want to choose values of a and b such that 2(C+a) = n+a+b. This simplifies to a = M+b−2C.
If 2C > M then b = 2C −M and a = 0. If 2C < M then b = 0 and a = M − 2C.

The length of these strings is M ′ = 2C or M ′ = 2M − 2C, both are less than 2M . So, in O(kM) time
we can produce new strings of length M ′ where determining if the k-LCS is exactly M ′/2 determines if
the original instance had distance exactly C.

Now we will show that k-center edit distance solves (k − 1)-LCS.

Theorem 6.22. We are given a k-LCS instance with strings S1, . . . , Sk all of length M where k-LCS of
these strings is denoted by LCS(S1, . . . , Sk). The (k+1)-center edit distance of S1, . . . , Sk and emptystring
γ and k-LCS are related as follows.

δCE(S1, . . . , Sk, γ)

{
= M/2 if LCS(S1, . . . , Sk) ≥M/2,

> M/2 if LCS(S1, . . . , Sk) < M/2.

Proof. Consider first, what’s the length of a target string for δCE(S1, . . . , Sk, γ) = M/2. Call this target
central string T . If |T | > M/2 then the distance from γ to T is greater than M/2. If |T | < M/2 then the
strings Si must have more than M/2 deletions, giving a distance greater than M/2. So, to hit M/2 the
target string must have length M/2 exactly.

Next note that for the empty string to reach length M/2 it must simply have M/2 insertions. For any
of the Si strings to go down to M/2 they must simply have M/2 deletions.

Note that LCS(S1, . . . , Sk) is defined as M minus the number of deletions needed in each string to
reach the minimal target. Thus, with this addition of an empty string

δCE(S1, . . . , Sk, γ)

{
= M/2 if LCS(S1, . . . , Sk) ≥M/2

> M/2 if LCS(S1, . . . , Sk) < M/2
.
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Now we will apply the above Lemma 6.21 and Theorem 6.22 to get a k-center edit distance lower
bound from SETH.

Reminder of Theorem 6.4. Given an instance of k-center edit distance on strings of lengths M1 ≤
M2 ≤ · · · ≤Mk where these strings can all be compressed into a SLP of size m, then, an algorithm for
k-center edit distance that runs in time ((M2 + 1) · · · (Mk + 1) ·m)

1−ε
time for constant ε > 0 violates

SETH.

Proof. We will use Theorem 1.1, Lemma 6.21 and Theorem 6.22.
Say we are given an instance of k-LCS with strings S1, . . . , Sk of length M and an SLP compression

of all strings of size m. Determining if the k−LCS is some integer C requires (Mk−1m)1−o(1) time if
SETH is true by Theorem 1.1.

Then Lemma 6.21 simply appends at most M symbols @ or #i to each string making a new problem
S′1, . . . , S

′
k of length M ′. Note that the size of the compression is now m′ = m + O(k lg(M)). Now

determining if the k−LCS is M ′/2 requires
(
(M ′)k−1m′

)1−o(1)
if SETH is true.

Now we will apply Theorem 6.22. We can produce an instance of (k + 1)-center edit distance that has
strings S′1, . . . , S

′
k, γ that distinguishes between the k-LCS of S′1, . . . , S

′
k being M ′/2 or not. Now note

that Mi = |S′i| and Mk+1 = 0. So (M2 + 1) · · · (Mk+1 + 1) = Θ((M ′)k−1). The compression of this empty
string means that the new compression has size m′′ = m′ +O(1) = m+O(k lg(M)).

We can run this a second time where we add two characters to each string: S′i = Si%i%i. These
characters are unmatchable. Also, if the LCS used to be at least M ′/2 + 1 it will still be at least half the
length of the strings. So, we can distinguish the exact value. Similarly, the compression of these strings is
of size at most m′′ +O(k) = m′′ +O(1).

Hence, an algorithm for (k + 1)-median edit distance that runs in ((M2 + 1) · · · (Mk+1 + 1) ·m)
1−ε

time for constant ε > 0 violates SETH.

6.9 Edit Distance Lower Bounds from SETH

In this section we show a better lower bound for k-edit-distance by reducing from SETH directly. A
recent paper has given Mk−o(1) lower bounds for Edit Distance from SETH where M is the length of the
strings [HBGT20]. In this section we show a Mk−1−o(1)m lower bound for compressed k-edit-distance
where m is the size of the SLP describing the strings. Our reduction uses the ideas from the SETH lower
bound for k-edit-distance to achieve this. We will use the same ideas and list structures that we used in
the k-LCS lower bound. We use many of the same notions of gadgets, however, to distinguish between
them, we add ED to the end of the name of the gadgets (for Edit Distance). Note that the structure of
this proof mirror almost exactly the k-LCS lower bound. However, due to the different distance measures
we need to generate different gadgets.

The main takeaway of this section is that in order to build an interleave gadget for edit distance we
need to generate a selector gadget that has one value if all values match, and another if not all values
match.

The primary difficulty in generalizing this lower bound comes from the variable costs of partial matches.
That is, if we have the edit distance of δE(a, a, a, a, b) = 1, where as δE(a, a, b, b, c) = 3. By contrast, the
LCS of both is LCS(a, a, a, a, b) = LCS(a, a, b, b, c) = 0. So, the overall structure needs to account for this
in some way. We want to re-create a perfect alignment gadget, but for Edit-Distance. This will give us
two results. First we generalize the 2-LCS lower bound into a 2-edit distance lower bound, answering an
explicit open problem given by [ABBK17].

We will use the pre-existing coordinate gadgets and alignment gadgets from [HBGT20]. So, we
have two primary tasks. We need to generate and prove the correctness of perfect alignment gadgets.
Additionally, we need to analyze the size of the compression of both our gadgets and the [HBGT20]
gadgets.

6.10 Selection Gadgets

We want an additional gadget. A selector gadget. These allow us to say either strings A1, . . . , Ak are
compared or strings B1, . . . , Bk are compared but not both. We will use a version that works for single
characters.

Lemma 6.23. There exist single character selection gadgets SCSGi(·) such that the length is polynomial
in k and they add a single character to the alphabet. The k-edit distance of k SCSGi(ci) strings is either
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some constant Q if all characters match or Q+ v (where v is a positive integer) if one character does not
match.

Proof. First let us define the gadget in terms of two free variables we will set later, a and b:

SCSGi(c) = #ibca#(k−1−i)b

Now note that if we match the characters c together we must fail to match many # characters.
Specifically these induce an edit distance of:{

bk2/4 if k is even

b(k2 − 1)/4 if k is odd

Now note that if we instead match the # characters then we have an edit distance of ak, as we have
to delete the characters input to the gadget.

Also note that if we match the characters c and one or more symbols are off the edit distance will be
at least: {

bk2/4 + a if k is even

b(k2 − 1)/4 + a if k is odd

So if we can choose an a and b such that:{
bk2/4 < ak ≤ bk2/4 + a if k is even

b(k2 − 1)/4 < ak ≤ b(k2 − 1)/4 + a if k is odd

then, if all characters match we get an edit distance of bk2/4, otherwise, we get an edit distance of ak.

Next we will note the existence of coordinate gadgets from previous work. Then we will combine the
coordinate gadgets with our selector gadgets to make interleave gadgets.

6.11 Coordinate Gadgets

We will use the coordinate gadgets from the [HBGT20] in our reduction.

Lemma 6.24 (Coordinate Gadget Lemma From [HBGT20]). Let b1, . . . , bk be in {0, 1}. Let C− =
2(k − 1)2 and let C+ = C− + k − 1 = (2k − 1)(k − 1). Then,

δE(CGED1(b1), . . . , CGEDk(bk)) =

{
C− if b1 · · · bk = 0

C+ otherwise

We will use these inside our interleave vector gadgets.

6.12 Interleave Vector Gadget

We are given a (a(k− 1) + bk)-OV with a list of n vectors each of length d. We want to take every vector
vj = List(L)b[j] for j ∈ [0, nb] and combine them with the interleave representation of a lists. Recall
that in Definition 6.8 we define VecSIa(L, vj) as the explicit distribution of the interleave representation
of a lists mixed with a single vector. So, we want to have k − 1 strings that hold representations of
VecSIa(L, vj) for all j ∈ [0, nb]. Finally, we need one string that is full of representations of vectors
vj for all j ∈ [0, nb], padded with many zeros. If we do this and we can force a perfect alignment of
these gadgets. We will use an altered version of the sliding pyramids from previous work [HBGT20] (see
Figure 1).

Lemma 6.25. Treat k, ` as constants. We are given as input a list L of n vectors each of length d.
Where d = no(1). Let v1, . . . , vk be {0, 1} vectors each of dimension d. Then there are gadgets IED′i(L, vi)
and EED′(vk) such that:

δE(IED′1(L, `, v1), . . . , IED′k−1(L, `, vk−1), EED′(vk)) = C

if there are (k − 1)` vectors in L such that are orthogonal with v1, . . . , vk. If there do not exist (k − 1)`
vectors in L that are orthogonal with v1, . . . , vk then

δE(IED′1(L, `, v1), . . . , IED′k−1(L, `, vk−1), EED′(vk)) ≥ C + 1.

Additionally we can compress x strings IED′i(L, `, v1), . . . , IED′i(L, `, vx)
or EED′(v1), . . . , EED′(vx) with a total compression size of O(xd+ nd+ lg(n)).
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Proof. As in the k-LCS Lemma 6.14 consider the k − 1 lists VecSI`(L, vi) for i ∈ [1, k − 1]. Additionally,
let

V ecE(vk)[j] =

{
vk[h] if j = h · n`

0 else.

We will build our gadgets IED’ and EED’ from these lists. Every entry in these lists is either a zero or a
one. We want to force a prefect alignment and check orthogonality of the perfect alignment. That is, we
want to hit one value if there exists a ∆1, . . . ,∆k−1 such that

n`(d−1)+1∑
j=0

V ecE(vk)[j] ·VecSI`(L, v1)[j + ∆1] · · ·VecSI`(L, vk−1)[j + ∆k−1] = 0.

To do this we will use the very convenient coordinate gadgets, but alter them with a selector. We
want the selector gadget to force an alignment of the true correct values. We add a new character 2, this
character is just there to be matched in these gadgets. We add another new character 3, which encourages
lining up coordinate gadgets. We will set x = 100|CGEDi(bi)|. We want to have enough copies of the
SCSG gadgets that lining up real gadgets with each-other is optimal. We set y = 100x|SCSGi(2)|, we
want enough copies of 3 to force coordinate alignments to be optimal. Finally, our updated coordinate
gadgets are below

CGED′i(bi) = 3y ◦ (SCSGi(2))x ◦ CGEDi(bi).

Next we need to generate “fake” coordinate gadgets to fill out space, so that any offset will be valid.
We add the characters %i for i ∈ [1, k]. The character %i will only appear in the ith string. This will
guarantee these characters are unmatched. A fake gadget will have a selector gadget wrapped around one
of these unmatchable characters and a coordinate gadget of a zero:

Fi = 3y ◦ (SCSGi(%i))
x ◦ CGEDi(0).

Let f = |VecSI`(L, vi)| − |V ecE(vk)| = n`− 1. Now, we will define the three parts of the strings. The
section of real gadgets, the section of fake gadgets, and the section of unmatchable characters. We add k
new characters #i, with the intention of making them unmatchable. Let z = |CGED′i(bi)| = |Fi|. See
Figure 1 for a visual depiction.

REALi =©j∈[1,dn`] (CGED′i(VecSI`(L, vi)[j])) when i ∈ [1, k − 1]

REALk =©j∈[1,n`(d−1)+1] (CGED′k(V ecE(vk)[j]))

FAKEi = F
f(k+1−i)
i

UNMAi = #
(k+i+1)zf
i .

Now that we have defined these useful parts we can define the overall gadgets:

IED′i(L, `, vi) = UNMAi ◦ FAKEi ◦REALi ◦ FAKEi ◦ UNMAi

EED′(vk) = UNMAk ◦ FAKEk ◦REALk ◦ FAKEk ◦ UNMAk

Now let us consider what happens if there are (k − 1)` vectors that are orthogonal to v1, . . . , vk then
we want to compute the edit distance. Note that all characters in UNMAi will either be deleted or
substituted which has an edit distance of one per character. This gives a total edit distance cost of
zfk(k + 5)/2. Let pi = δE(F1, . . . , Fi). Now, on any valid alignment we have 2f fake gadgets completely
unmatched, 2f fake gadgets matched with one other fake gadget, 2f fake gadgets matched with two other
fake gadgets, etc. Until we get to (k − 1) fake gadgets matched together at which point we have 3f of
these. When the fake gadgets are matched with each other they are also “matched” with the unmatchable
characters. Those characters will simply substitute/delete to equal the output string. We have enough
unmatchable characters that their length is longer than the overhanging fake characters. So we can be
assured no insertions will need to happen. So the edit distance contribution of these is

fpk−1 +

k−1∑
i=1

2fpi.

Now, we have 2f fake gadgets which line up with a mix of fake and real gadgets. Each of these k tuples
of lined up gadgets have a contribution of x(Q+ v) from their SCSG gadgets, and the CGED gadgets
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contribute C− edit distance (the 3 symbols match perfectly and thus have no contribution to the edit
distance). So these give a contribution of 2f(x(Q+ v) + C−). Finally, we have M = (d− 1)n` + 1 real
gadgets which line up with other real gadgets and these contribute xQ+ C− edit distance each. So our
total edit distance is

C = zfk(k + 5)/2 + fpk−1 +

k−1∑
i=1

2fpi + 2f(x(Q+ v) + C−) +M(xQ+ C−).

What happens if we don’t have a set of (k − 1)` vectors which are orthogonal to v1, . . . , vk? If we
similarly line up gadgets in a valid way, as above, then we have at least one of the real k-tuples of CGED′

gadgets where the internal CGED gadgets contribute C+, increasing the above cost by C+ − C−. What
if we instead don’t do a valid alignment? If we skip aligning a coordinate gadget we skip some 3y symbols,
these then cost an additional y in the edit distance. If we instead align some of the M real gadgets of
string k to fake gadgets we miss out on matches of the SCSG gadgets, costing xv in the edit distance.
So if there is no set of (k − 1)` vectors which are orthogonal to v1, . . . , vk then the edit distance is higher
than C.

First, we can generate the SLP for FAKEi and UNMAi. The size of Fi and %i are both O(1)
(assuming k is a constant). So, we simply need to handle many repetitions. This requires an SLP of size
lg(f(k + 1 − i)) and one of size lg((i + 1)zf) for each i ∈ [1, k]. Luckily for us, in total this SLP will
have size O(` lg(n)). We additionally need to represent the various values for REALi. First note that
CGED′i gadgets can be represented with size O(1) SLPs (when k is constant). For REALk this is easy
from this point on. There are long strings of zero gadgets with only d instances of non zeros. The total
representation is O(d+ ` lg(n)). So we just need REALi for i ∈ [1, k − 1]. Now note that we can use the
same structure we used in the k-LCS SLP for these interleave gadgets. We can build the structures for
different values of `.

For convenience let REAL`i be the real gadget for IED′i(L, `, vi). Now note that REAL1
i has an SLP

of size O(dn) trivially, it only has length O(dn) in the first place. Now consider separating out the parts
that correspond to each of the d dimensions of the vector. Next note that we can form these d parts
of REALj+1

i by concatenating n instances of the parts of either REALji or nj zero coordinate gadgets.

So, given an SLP for REALji we can create an SLP for REALj+1
i with an additional size of n+ j lg(n).

This gives a total size of O(`2 lg(n) + `dn), as ` is a constant we have have that the size is O(dn).
So the total size of the SLP will be O(dn+ dx+ lg(n)).

Notice that we can get away without having the same type of $i interleaved symbols that we used
in k-LCS. This is due to the cost of edits varying even when only some subset of the k strings match
on a symbol. We can guarantee we don’t skip characters because it will cost us in edits, even if those
characters could only be matched up to one other string. However, we aren’t quite done. We want to
wrap this so that the value is either a match or one higher than a match. We don’t want to have the final
interleave gadgets give variable outputs depending on how orthogonal vectors are. We want the same
value no matter what.

Lemma 6.26. We are given as input a list L of n vectors each of length d, where d = no(1). Let ` be a
constant. Let v1, . . . , vk be {0, 1} vectors each of dimension d. Then there are gadgets IEDi(L, vi) and
EED(vk) such that for some constants D and w:

δE(IED1(L, `, v1), . . . , IEDk−1(L, `, vk−1), EED(vk)) = D

if there are (k − 1)` vectors in L such that are orthogonal with v1, . . . , vk. If there do not exist (k − 1)`
vectors in L that are orthogonal with v1, . . . , vk then

δE(IED1(L, `, v1), . . . , IEDk−1(L, `, vk−1), EED(vk)) = D + w.

Additionally we can compress x strings IEDi(L, `, v1), . . . , IEDi(L, `, vx)
or EED(v1), . . . , EED(vx) with a total compression size of O(xd+ nd+ x lg(n)).

The strings IED and EED have length n`+o(1).

Proof. Let u be an all zero vector of length d. Let v′i be the vector vi but with an added last index
v′i[d+ 1] = 1 if i ∈ [1, k]. Let u′ be the all zeros vector except for an added last index u[d+ 1] = 0. Let v∗k
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be the vector vk but an added last index v∗k[d+ 1] = 0. Now we add additional characters 5 and 4. We
add copies where p = 100|IED′i(L, `, v′i)| and q = 10p. Now we generate the following:

IEDi(L, `, vi) = 5q4pIED′i(L, `, v
′
i)4

p5q

EED(vk) = 5qEED′(v∗k)4pEED′(u′)5q.

Here we match up the 5 characters. Finally, we must match the 4q symbols. There will be q unmatched 4
symbols. Finally, we will have |EED′(v∗k)| = |EED′(u′)| unmatched symbols no matter what. Now, how
much comes from matching the IED′ and EED′ gadgets? If there are (k − 1)` vectors are orthogonal to
v1, . . . , vk then the cost is C. If there aren’t then the cost of matching the symbols to EED′(u′) instead
is C + C+ − C−. So, D = C + q + |EED′(v∗k)|, and w = C+ − C−.

For the size of the SLP we are doubling the number of EED′ gadgets, and we are adding in the 5 and
4 symbols. So the total size should be O(2xd+ nd+ ` lg(n) + 7x(lg(p) + lg(q))). Given the size of p and q
this gives: O(xd+ nd+ x lg(n)).

For the length of the strings we have at most O(dn`) coordinate gadgets and the number of unmatached
symbols is O(dn`). Note that the size of coordinate gadgets is constant when k is constant and d = no(1).
So the total length of our generated strings IED and EED is O(n`+o(1)).

Now that we have generated interleave vector gadgets we will put multiple copies of them and align
them. We want to set this up using the same ‘sliding pyramid’ set up as we used for the interleave
gadgets.

6.13 Aligning Interleave Vector Gadgets

For aligning our gadgets we generalize the idea from [HBGT20] for aligning gadgets. First, we create
a fake list of vectors F that is n vectors of dimension d where every entry of the vectors is 1. Then
we create “fake” versions of the alignment and empty vector gadgets, build from F instead of L. We
concatenate the “real” IED′ and EED′ gadgets with many matchable symbols in between. We surround
these real gadgets with our “fake” gadgets. We also build a “pyramid” that allows the strings to have
any valid alignment of the real gadgets while having the same number of matches of the fake gadgets.
Around these we put an additional number of unmatchable characters (characters that are unique to
each set). See Figure 1 for a depiction. These fake gadgets allow for any choice of alignment of the real
gadgets to have the same value of matches outside of the k gadgets we are matching with the alignment.

Figure 1: A visual depiction of the structure of our alignment. This is using the ideas from [HBGT20].
The dark blue section is a depiction are the real gadgets. The light-gray section are the “fake” gadgets.
The white sections are unmatchable characters (a distinct character in each string).

We start by proving we can create strings such that k-edit distance can be used to detect (a(k−1)+bk)-
OV s.

Lemma 6.27. Let a, b, and k be positive constant integers. Let L be a list of n length d vectors, where
d = no(1).

There are k strings EDOVi(a, b, k, L) such that:

δE(EDOV1(a, b, k, L), . . . , EDOVk(a, b, k, L))

{
≥ E if there is a (a(k − 1) + bk)-OV in L

≤ E − 1 else

The length of each of these strings is O(na+b+o(1)) with an alphabet of size O(k).

Proof. We are given as input a (a(k − 1) + bk)−OV instance. Say the list is L. It contains n zero one
vectors of length d.

We define some new symbols. We add a new symbol $, we will use this to encourage matching in
lined up sections. We will also add %i symbols for i ∈ [1, k]. A symbol %i appears only in string i, thus
it can not be matched, it must be deleted or substituted.
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Let us now define the real sections of these strings (the blue section at the center of the strings in
Figure 1). First we will define this for i ∈ [1, k − 1]:

REALi =©j∈[1,nb]IED
′(L,List(L)b[j], a)

and for the last string
REALk =©j∈[1,nb]EED

′(List(L)b[j]).

Next let us define the fake gadget part of these strings. First a single fake gadget is generated by
plugging in L̂F , a list of n all ones vectors all of length d. And the vector ûF , a length d vector of all
ones. For i ∈ [1, k − 1]

Fi = IED′(L̂F , ûF , a)

and then for i = k
Fk = EED′(ûF ).

We can now define our fake gadgets, the gray parts of Figure 1:

FAKEi = F in
b

i

Now we will define the unmatched symbol sections. We will add new symbols &i for i ∈ [1, k]. Note
that &i appears only in string i.

UNMAi = &
|Fi|nb(2k−i)
i

Now let us define our gadgets for i ∈ [1, k − 1]:

EDOVi(a, b, k, L) = UNMAi ◦ FAKEi ◦REALi ◦ FAKEi ◦ UNMAi.

Now note that if there is a (a(k−1)+bk)-OV this corresponds to a k-tuple of IED′1, . . . , IED
′
k−1, EED

′

gadgets in this construction having an edit distance of C (smaller than C + w). Additionally, note that
if there is no (a(k − 1) + bk)-OV then all k-tuple of IED′1, . . . , IED

′
k−1, EED

′ gadgets have an edit
distance of C + w.

Now, if there is a (a(k − 1) + bk)-OV then, we can align the gadgets and give an upper bound on
total cost. First, all unmatched characters will cost 1 so they have total cost of |Fi|nb(2k2 − k(k + 1)/2).
Next, consider the fake gadgets that overhang and interact with fewer than k other gadgets. Let
pi = δE(Fk, . . . , Fi). There are 2n fake gadgets that are aligned with i total gadgets and otherwise aligned
with the unmatchable characters. The cost for these is

∑
i∈[1,k] 2npi. Finally, there are 3n gadgets which

line up with a full k other gadgets. If m of these represent underlying orthogonal vectors then all m
tuples will have a cost of D, the rest will have a cost of D + w by Lemma 6.26. This means if there is at
least one match then the cost is at most:

E = |Fi|nb(2k2 − k(k + 1)/2) +
∑
i∈[1,k]

2npi + 3n(D + w)− w.

What if there are no (a(k− 1) + bk)-OVs? Well, any valid alignment (where we skip no characters and
have the same size of overhangs) will cost at least E + w. If we don’t align gadgets then at some point
we are skipping 5q symbols, this could potentially allow us to improve our edit distance by 2|IED′i|+ p,
however we set q = 50p+ 500|IED′i| in Lemma 6.26. These skipped symbols increase the cost due to the
unmatchable characters. When we foreshorten our string by skipping these 5q symbols we sill need to
pay the cost in the unmatchable characters as deletions (instead of substitutions) but we also need to pay
for the deletion of the 5q characters. So, if there is no valid alignment our cost is at least E +w, in fact it
is exactly E + w.

The length of the generated strings is O(nb|IED′i|) = O(nbnad). Because d = no(1) we can simplify
this to O(nb+a+o(1)).

Next, we show that the strings we produced compress well.

Lemma 6.28. Let k, a, b be constant integers. Let d = no(1). Given the k strings EDOVi(a, b, k, L)
defined in Lemma 6.15 the size of the compression is O(nb+o(1) + n1+o(1)).

Proof. We want to represent O(nb) instances of EED′ and IED′ gadgets. By Lemma 6.26 we have there
is an SLP to represent these of size O(nbd+ nd+ nba lg(n)). This can be simplified to nb+o(1)n1+o(1).

We additionally want to represent the unmatchable characters. These have a total length of nb+a+o(1),
so there is an SLP to represent these of size (b+ a+ o(1)) lg(n) = no(1).

So the total size of the SLP is nb+o(1)n1+o(1).
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6.14 Putting it all Together

Now that we have proven the above lemmas, we can prove our desired result.

Reminder of Theorem 6.5. If the k′-OV hypothesis is true for all constants k′, then for all constant

ε ∈ (0, 1] grammar-compressed k-median edit distance requires
(
Mk−1m

)1−o(1)
time when the alphabet

size is |Σ| = Θ(k) and m = M ε±o(1). Here, M and m denote the total uncompressed and compressed
length of the k input strings respectively.

Proof. We will use Lemma 6.27 and Lemma 6.28. Given an instance of (bk + a(k − 1))-OV we can
produce strings EDOV1(a, b, k, L), . . . , EDOVk(a, b, k, L) such that they have length M = na+b+o(1) and
m = nb+o(1) + n1+o(1) = nb+o(1) when b ≥ 1.

Our alphabet is of size |Σ| = O(k), so this lower bound applies as long as the size of the alphabet is
Θ(k).

Now note that Mk−1m = n(k−1)a+(k−1)b+b = n(k−1)a+kb. So, an algorithm that runs in (Mk−1m)1−ε

time ε > 0 implies an algorithm for (bk+a(k−1))-OV that violates our assumption. Thus, k-edit distance

requires
(
Mk−1m

)1−o(1)
time given the assumption on (bk + a(k − 1))-OV.

Now we consider a contradiction to our theorem statement. There would be an algorithm running in
(Mk−1m)1−γ time to solve grammar compressed k-median edit distance when m = M ε±o(1) and ε ∈ (0, 1].
In the easiest case we can pick an a, b such that b/(a+ b) = ε, in this case we are done. For irrational ε we
need to approximate and then pad the strings. Choose an a and b such that ε ≤ b/(a+ b) < ε(1 + γ/2).
Such a, b exist that are in O( 1

εγ ). We add a new character 3 to our alphabet. Let S′i = Si3
x, where

we will set x ∈ [M,M2] later. Note that δE(S1, . . . , Sk) = δE(S′1, . . . , S
′
k). Note that the compression

of these strings is m′ = m + lg(x) = Θ(m) where as the length is M ′ = M + x = Θ(x). Choose
x = m1/ε±o(1) = M b/(a+b)·1/ε. So now m′ = M ′1/ε±o(1). Note that 1 ≤ b/(a+ b) · 1/ε ≤ (1 + γ/2). Now
consider running the claimed fast algorithm on our new S′1, . . . , S

′
k instance. The running time is

(M ′(k−1)m′)1−γ = O((M (1+γ/2)(k−1)m)1−γ−o(1)).

This running time can be simplified to O(M (k−1)m)(1+γ/2)(1−γ−o(1)). Note that (1 + γ/2)(1− γ − o(1))
is less than 1− o(1). This algorithm violates the lower bound for the original S1, . . . , Sk instance. This is
a contradiction.

So any algorithm running in (Mk−1m)1−γ time to solve grammar compressed k-median edit distance
when m = M ε±o(1) and ε ∈ (0, 1] violates k′-OV for some k′ that depends on ε, γ. This implies our
theorem statement.

Finally we will apply this same lower bound to k-center edit distance using a reduction from [HBGT20].

6.15 k-Center Edit Distance

In Section 3 of [HBGT20] they present a reduction from median k-edit distance to k-center dis-
tance [HBGT20]. We will restate their reduction here.

Say we are given a k-median edit distance instance with k strings X1, . . . , Xk where |Xi| = N . Then,
as [HBGT20] suggest, construct the following strings:

Y1 = X1 $N X2 $N · · · $N Xk−1 $N Xk

Y2 = X2 $N X3 $N · · · $N Xk $N X1

...

Yk = Xk $N X1 $N · · · $N Xk−2 $N Xk−1

Claim of Section 3 in [HBGT20]: δCE(Y1, Y2, . . . , Yk) = δE(X1, X2, . . . , Xk).
As a quick intuition for this claim, we have to match the $N sections. First note that we can achieve

this bound by taking a string T which is one of the median edit distance minimizing strings of the Xi

and creating a center string for the Yi strings C = T $N T $N . . . $N T. Now note that the distance to
this string from all Yi is δE(X1, X2, . . . , Xk). Thus, δCE(Y1, Y2, . . . , Yk) ≤ δE(X1, X2, . . . , Xk). For the
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other side of the inequality note that the center string C should have shape C = T1 $N T2 $N . . . $N Tk
for some strings T1, . . . , Tk. Now note that for all j∑

i∈[1,k]

δE(Tj , Xi) ≥ δE(X1, X2, . . . , Xk).

Because, the k-median edit distance minimizes this sum over all possible strings, and Tj is simply an
instantiation of a string. Now note that∑

j∈[1,k]

∑
i∈[1,k]

δE(Tj , Xi) ≥ kδE(X1, X2, . . . , Xk),

which implies ∑
j∈[1,k]

δE(Yj , C) ≥ kδE(X1, X2, . . . , Xk).

So, the max over all j of δE(Yj , C) ≥ δE(X1, X2, . . . , Xk). This is the definition of the center edit distance,
so we have shown both sides of the inequality.

Theorem 6.29. We are given k strings of length M with a SLP of size m. The k-center-edit-distance

problem on these strings requires
(
Mk−1m

)1−o(1)
time if SETH is true.

Proof. By Theorem 6.5, given k strings, X1, . . . , Xk, of length N which all compress to length n, k-edit

distance requires
(
Nk−1n

)1−o(1)
time if SETH is true.

We use the transformation of [HBGT20] and produce strings Y1, . . . , Yk. These strings have length
M = kN and an SLP of size m = kn+ k + lg(N). As a result Mk−1m = O

(
Nk−1(n+ lg(N))

)
. Thus,

an algorithm that runs in
(
Mk−1m

)1−ε
time for k-center edit distance for some constant ε > 0 implies a

violation of SETH. Thus, k-center edit distance requires
(
Mk−1m

)1−o(1)
time.

7 Hamming Distance and Beyond

Given k equal-length strings X1, . . . , Xk with Xi ∈ ΣN
i , we define a string X =

⊗k
i=1Xi ∈ (×k

i=1
Σi)

N

with X[j] = (X1[j], . . . , Xk[j]) for j ∈ [1 . . N ]. In this section, we show that if each string Xi can be
represented using a straight-line program of size ni, then X can be represented using a straight-line program
of size O((

∏k
i=1 ni)

1/kN1−1/k). Next, we apply this construction for computing Hamming distance of
two grammar-compressed strings and propose several generalizations for k = O(1) grammar-compressed
strings.

Proposition 7.1. Given k = O(1) straight-line programs Gi of sizes ni representing strings Xi of the

same length N > 0, a straight-line program G of size O((
∏k
i=1 ni)

1/kN1−1/k) representing X =
⊗k

i=1Xi

can be constructed in time O((
∏k
i=1 ni)

1/kN1−1/k).

Proof. We proceed based on a threshold τ ∈ [1 . . N ] to be fixed later. For each grammar Gi, we first use
Lemma 3.7 to derive grammars G+

i and GP
i of size O(ni).

Next, we consider relevant tuples F = (F1, . . . , Fk) such that:

• each Fi is a fragment of exp(Ai) for a symbol Ai of G+
i satisfying |Ai| ≤ τ ,

• |F1| = · · · = |Fk|,
• there exists ip ∈ [1 . . k] such that Fip is a prefix of exp(Aip),
• there exists is ∈ [1 . . k] such that Fis is a suffix of exp(Ais).

The number of relevant tuples does not exceed τk−1 · k ·
∏k
i=1 ni, because each F is uniquely determined

by the choices of symbols Ai, the choice of ip, and the starting positions of Fi in exp(Ai) for i 6= ip. (The
common length |F1| = · · · = |Fk| is uniquely determined due to the constraint that at least one Fi is a
suffix of exp(Ai).)

For each relevant tuple F, we add to G a symbol AF aiming at exp(AF) =
⊗k

i=1 Fi. The symbols
AF are ordered consistently with the lexicographic order of tuples (A1, . . . , Ak) based on the order of
symbols Ai within each grammar Gi.

If each Ai is a terminal of Gi, then Fi = exp(Ai) = Ai holds for each i, and we set AF = (A1, . . . , Ak)
to be a terminal of G. Otherwise, we set AF to be a non-terminal, and we need to specify rhs(AF). For
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this, let us fix an arbitrary index j such that Aj is a non-terminal of Gj and Aj → A′jA
′′
j . We then

consider three cases:

1. Fj is contained within the prefix exp(A′j) of exp(Aj). In this case, we set AF → AF′ , where F ′j is
the fragment of exp(A′j) corresponding to Fj and F ′i = Fi for i 6= j. Note that Fj cannot be a suffix
of exp(Aj) and, if Fj is a prefix of exp(Aj), then F ′j is a prefix of exp(A′j). Thus, F′ is a relevant
tuple.

2. Fj is contained within the suffix exp(A′′j ) of exp(Aj). In this case, we set AF → AF′′ , where F ′′j
is the fragment of exp(A′′j ) corresponding to Fj and F ′′i = Fi for i 6= j. Note that Fj cannot be a
prefix of exp(Aj) and, if Fj is a suffix of exp(Aj), then F ′′j is a suffix of exp(A′′j ). Thus, F′′ is a
relevant tuple.

3. Fj overlaps both the prefix exp(A′j) and the suffix exp(A′′j ) of exp(Aj). In this case, we set
AF → AF′AF′′ , where F ′j is the suffix of exp(A′j) overlapping Fj , F

′′
j is the prefix of exp(A′′j )

overlapping Fj , and for every j 6= i we have Fi = F ′iF
′′
i with |F ′i | = |F ′j | and |F ′′i | = |F ′′j |.

Note that F ′j is a suffix of exp(A′j) and F ′′j is a prefix of exp(A′′j ). Moreover, if Fj is a prefix of
exp(Aj), then F ′j is a prefix of exp(A′j), and if Fj is a suffix of exp(Aj), then F ′′j is a suffix of
exp(A′′j ). Finally, for i 6= j, if Fi is a prefix of exp(Ai), then F ′i is a prefix of exp(Ai), and if Fi is a
suffix of exp(Ai), then F ′′i is a suffix of exp(Ai). Thus, both F′ and F′′ are relevant tuples.

Next, for each i, we interpret the string Pi generated by GP
i as a decomposition of Xi into |Pi| = O(Nτ )

phrases. Each phrase is of the form exp(A) for a symbol A of G+
i satisfying |A| ≤ τ . Let Bi be the set

of phrase boundaries of this decomposition of Xi (i.e., Bi = {| exp(Pi[1 . . j])| : i ∈ [0 . . |Pi|]}), and let

B =
⋃k
i=1Bi.

For each string Xi, let us construct another partition Xi = Xi,1 ◦ · · · ◦Xi,r with phrase boundaries
B (if 0 = b0 < · · · < br = N are the elements of B, then Xi,j = Xi(bj−1 . . bj ]). Since Bi ⊆ B, each
phrase Xi,j can be represented as a fragment of exp(Ai,j) for a symbol Ai,j of G+

i satisfying |Ai,j | ≤ τ .
Moreover, for each j, there exists ip ∈ [1 . . k] such that Xip,j is a prefix of exp(Aip,j) and is ∈ [1 . . k] such
that Xis,j is a suffix of exp(Ais,j). (This is because bj−1 ∈ Bip and bj ∈ Bis holds for some ip and is.)
Hence, for each j ∈ [1 . . r], there exists a relevant tuple Fj = (Xi,j)

k
i=1. Thus, it suffices to add to G a

starting symbol S →©r
j=1AFj .

Due to the assumption that k = O(1), the total running time and the size |G| are both O(Nτ +

τk−1
∏k
i=1 ni). Optimizing for τ ∈ [1 . . N ], this becomes O(

∏k
i=1 ni + (

∏k
i=1 ni)

1/kN1−1/k). If the first

term dominates, then
∏k
i=1 ni > N . However, a trivial O(N)-size straight-line program representing X

can be constructed in O(N) time by decompressing each string Xi. Thus, we can always construct a

straight-line program representing X in time O((
∏k
i=1 ni)

1/kN1−1/k).

Corollary 7.2. Given k = O(1) straight-line programs Gi of size ni representing strings Xi ∈ ΣN
i of

the same length N > 0 and a function δ :×k

i=1
Σi → R that can be evaluated in O(1) time, the value

δ(X1, . . . , Xk) :=
∑N
j=1 δ(X1[j], . . . , Xk[j]) can be computed in O((

∏k
i=1 ni)

1/kN1−1/k) time.

Proof. Let X =
⊗k

i=1Xi and let G be a straight-line program representing X constructed using

Proposition 7.1. For each symbol A of G, we compute a value δ(A) defined as
∑|A|
j=1 δ(exp(A)[j]). Note

that if A = (A1, . . . , Ak) is a non-terminal, then δ(A) = δ(A1, . . . , Ak) can be evaluated in O(1) time.
Otherwise, if A → ©r

`=1B`, then δ(A) =
∑r
`=1 δ(B`), so δ(A) can be computed in O(|rhs(A)|) time.

Consequently, constructing G and computing δ(A) for every symbol A of G costs O((
∏k
i=1 ni)

1/kN1−1/k)
time in total. This allows retrieving δ(X1, . . . , Xk) as the value δ(S) for the starting symbol S of G.

In particular, we can set δ = δH for k = 2 (defined for characters x, y with δH(x, y) = 0 if x = y and
δH(x, y) = 1 if x 6= y). Possible generalizations to an arbitrary number of strings include the following
two definitions of δ(x1, . . . , xk) for characters x1, . . . , xk:

• δ(x1, . . . , xk) = 0 if x1 = · · · = xk and δ(x1, . . . , xk) = 1 otherwise (the straightforward generaliza-
tion).

• δ(x1, . . . , xk) = minki=1

∑k
j=1 δH(xi, xj) (the generalization corresponding to the median string

problem).

In either case, Corollary 7.2 allows computing δ(X1, . . . , Xk) in O((
∏k
i=1 ni)

1/kN1−1/k) time.
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8 Shift Distance: Lower Bound & Upper Bound

In this section we will explore a problem where we can get tight upper and lower bounds, but there is no
efficiency to be gained by having compressible strings in your input. The problem is k-Shift Distance.
When k = 2 this problem is (basically) equivalent to the Hamming distance substring problem mentioned
in [ABBK17]. This problem is a natural extension of pattern matching. This problem asks, given a set
of k strings, how can we best line them up to maximize the number of matched characters? So, the
alignment that minimizes the Hamming Distance between all the strings. This problem was studied in
the average-case for k = 2 by [AIKH13]. They called the problem “shift finding”. We give the natural
generalization of this problem to k strings and present upper bounds and lower bounds. We also present
an approximation algorithm. We present these results in part because they give an example of a k-string
comparison problem where there is no efficiency to be gained from having a compressible input.

The core of this section is showing tight upper and lower bounds for this problem of finding the
ideal alignment of strings that minimizes Hamming distance. We show that in cyclic shift there is no
advantage to be gained from compression. The upper and lower bounds are tight and unchanged even
with compression. We are also able to use FFT to get a fast algorithm for the problem of finding the best
alignment with respect to Hamming distance.

We will now re-state the definition of k-Shift Distance, with more commentary.

Reminder of Definition k-Shift Distance (k-SD). We are given k strings as input: X1, . . . , Xk.
These strings have characters from the alphabet Σ. Each string has length N and compresses via SLP to
a length of n. For convenience of notation let Xj [i] when i /∈ [0, n− 1] refer to Xj [i

′] where i′ ∈ [0, n− 1]
and i′ ≡ i mod n (so we let indices “wrap around”).

We must return the best alignment of the k strings. The alignment where in the maximum num-
ber of locations all strings have the same symbol. We will give a precise definition below. Let ∆̂ =
max(∆1, . . . ,∆k−1). And let J·K be an operator that turns True to a 1 and False to a 0.

k-SD(X1, . . . , Xk) = max
∆1,...,∆k−1∈[0,N−1]

N∑
i=1

s
X1[i+ ∆1] = X2[i+ ∆2] = · · · = Xk−1[i+ ∆k−1] = Xk[i]

{

So, we want the offsets such that the maximum number of characters are all shared between all k strings.
We will also define the term of the offset score. Given strings X1, . . . , Xk and a particular set of

deltas ∆1, . . . ,∆k−1 we will call the value:

N∑
i=1

[X1[i+ ∆1] = X2[i+ ∆2] = · · · = Xk−1[i+ ∆k−1] = Xk[i]]

the offset score of the strings X1, . . . , Xk and the deltas ∆1, . . . ,∆k−1.

8.1 The Algorithm

We will use FFT to get a fast algorithm here. We start by showing how to do this when k = 2.

Lemma 8.1 (From [ABBK17]). There is an O (|Σ|N lg (N |Σ|)) algorithm for 2-SD with an alphabet Σ
(k-SD when k = 2).

We can then generalize to k by making calls to 2-SD.

Theorem 8.2. There is an O(|Σ|Nk−1 lg(|Σ|N)) algorithm for k-Shift Distance.

Proof. Let our k input strings be: X1, . . . , Xk, each of length N .
We are going to reduce k-SD with alphabet Σ and strings of length N to 2-SD with alphabet Σ∪ {@}

and strings of length N . First, we will try all Nk−2 possible offsets ∆2, . . . ,∆k−1. Now, for each of these
we will Create a new string Y which will be a “merge” of the strings X2, . . . , Xk. The string Y will have
length N . The ith bit of Y is:

Y [i] =

{
Xk[i] if [X2[i+ ∆2] = · · · = Xk−1[i+ ∆k−1] = Xk[i]]

@ else
.

If all the strings agree given our choice of offset we set it to the agreed character. Otherwise, we use the
new special character @ which does not appear in X1 (as @ is not in Σ). Note that we can produce Y in
kN time, so over all offsets we take Nk−1 time to produce the inputs X1, Y .
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Now, we will make Nk−2 calls to 2-SD. Each call takes time (|Σ|+ 1)N lg(N(|Σ|+ 1)) time. Thus, we
take time O(|Σ|Nk−1 lg(N |Σ|)).

This gives a total time of O(|Σ|Nk−1 lg(N |Σ|)).

8.2 The Lower Bound

We will now show that we can produce k strings of length N = na that compress to length an such
that an algorithm that runs faster than n(k−1)a−o(1) = Nk−1−o(1) violates SETH and the (k − 1)a−OV
hypothesis. This will give a tight lower bound. Additionally, it says that strings that compress from
length N to length N ε do not have faster algorithms than those that don’t compress.

To do this we will use the interleaving representation defined previously. Recall that we defined the
interleaving version as:

StringI`(L) =©d
i=1

(
©j1∈[1,n]...,j`∈[1,n]L[j1][i] · L[j2][i] · · · · · L[j`][i]

)
.

Recall that this is equivalent to

StringI`(L) =©i∈[1,d]©j∈[1,n`] List(L)[j][i].

Finally, recall that in StringI`(L) the vector ~v = List(L)[i] appears as bits i, i+ nk, . . . , i+ (d− 1)nk.

Theorem 8.3. Let a and k be constants. Let N be the input string length for k-SD.
If the (a(k − 1))−OV hypothesis holds then k-SD requires Nk−1−o(1) time even when the strings

compress down to length m = N1/a+o(1) with an alphabet of size O(1).

Proof. We take as input a (a(k − 1))-OV instance with (a(k − 1)) lists of n vectors each. Each vector
has length d and d = no(1). Recall that the (a(k − 1))-OV hypothesis states that (a(k − 1))-OV requires
na(k−1)−o(1) time.

We will use four characters 0, 1,%,@, ∗1, . . . , ∗2k . The zero and ones will be used to signify the zeros
and ones of the OV instance. The @ and ∗i symbols will be used to force alignment in a way that is easy
to prove. We note that one can almost certainly prove the same result with a smaller alphabet. However,
allowing this larger alphabet makes our proof much easier.

Given a (a(k − 1))-OV instance split the lists of vectors up into k − 1 groups each with a lists of
vectors. Call these groups of a lists L1, . . . , Lk−1. We are going to form strings X1, . . . , Xk−1 by slight
alterations to StringIa(L1), . . . ,StringIa(L1). The final string Xk will remain constant regardless of the
input instance of OV.

Let X̂i = StringIa(Li) then i ∈ [1, k − 1]. Let X̂k be a string of all zeros except in positions
0, na, . . . , (d− 1)na. Like the other strings we give a total length of dna for X̂k. Note that by choosing
an offset for each string from X̂k we are effectively choosing one vector from each list L1, . . . , Lk−1 to
align with the ones in X̂k. We want to design ways to right out the zeros and ones that simultaneously:
(1) force alignment and (2) have the same value if there is at least one zero and a lower match value if
they are all ones. If we can do this, then the best alignment will be picking the “most orthogonal” set of
k − 1 vectors, which will let us find if any vectors are fully orthogonal.

We will now design h1,i and h0,i which will have the property that the offset score of hb1,1, hb2,2, . . . , hbk,k
with all deltas zero is 0 if all bi = 1 and is 1 otherwise. We will consider all strings in {0, 1}k. Let H be
all 2k of those strings in sorted order, with the all ones string last. Let H[j] be the jth string in H note
that H[2k] is the all ones string (we will one index this list). Now

hb,i[j] =


1 if H[j][i] = b and j 6= 2k

0 if i < k and the above does not apply

% else

.

So we get strings of length 2k. Note that hb,i for i ∈ [1, k − 1] uses only 0, 1 symbols, however, hb,k uses
only 0,% symbols. If we are aligning hb1,1, hb2,2, . . . , hbk,k we are simply counting locations where they
are all 1. This only occurs in the location that is associated with the string in H b1b2 · · · bk, if it is not
the all ones string. So, the offset score of hb1,1, hb2,2, . . . , hbk,k with all deltas zero is 0 if bi = 1 for all i
and is 1 otherwise, as desired.

We will now design T1,i and T0,i that will force alignment. Let © represent concatenation:

Tb,i =©2k

j=0 ∗j hb,i[j].
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Note that this wrapper is just adding special characters that force alignment of the bits in hb,i by making
the only way to match the ∗j characters also force an alignment of the hb,i[j] characters. Note that
|Tb,i| = 2 · 2k = `. Note that the offset score of Tb1,1, Tb2,2, . . . , Tbk,k with all deltas zero is 2k if bi = 1 for
all i and is 1 + 2k.

Let S1,i be the representation of a 1 in string Xi. Let S0,i be the representation of a 0 in string Xi.
We will set

S1,i = @`T1,i and S0,i = @`T0,i.

Note that this wrapper adds these @ characters which further enforce alignment. Note that the offset
score of Sb1,1, Sb2,2, . . . , Sbk,k with all deltas zero is 2k + ` if bi = 1 for all i and is 1 + 2k + ` otherwise.

Correctness Now, we want to claim that one of the best alignments of X1, . . . , Xk will have deltas
that are multiples of |Sb,i| = 2`. That is, the best alignment will align these representations of single
bits. Consider if ∆i mod 2` = f . If f 6= 0 mod 2` then the ∗j symbols can’t be aligned with those
in Xk. Additionally, at most `− j of the @ characters will be matched. Giving a maximum match of:
`− j + 2k (even if every 0, 1, and % characters were matched, which is of course unrealistic, we can’t
match 0 characters as none appear in the Xk string). This is worse than the worst alignments when ∆is
are multiples of 2`.

So, the best alignment has all ∆i as multiples of 2`. Thus, the alignment of X1, . . . , Xk is an alignment
of |X̂i| Sb,i gadgets. Each gadget promises to return 2k + ` if bi = 1 for all i and is 1 + 2k + ` otherwise.

Now, note that given our construction of X̂1, . . . , X̂k, if we choose a set of deltas ∆i = 2`δi we are
effectively picking k − 1 vectors and comparing them because of how we structured X̂k. So, if there are
an orthogonal k− 1 vectors which are orthogonal in our list representation (which corresponds to a(k− 1)
vectors in the original OV instance) then we get a score of: |X̂1|(1 + 2k + `). Otherwise, we get a score at
least one less than that. This shows our reduction will give the correct answer.

Time So with k strings of length na and a constant sized alphabet (|Σ| = O(2k)) we can solve
(a(k+ 1))−OV. Notably N = na+o(1). So an algorithm running in faster than Nk−1−o(1) time will violate
the (a(k + 1))−OV hypothesis. This fulfills the statement in the theorem.

Compression Now we will argue that these strings are compress-able with SLP. We will mostly be
using the same structure as [ABBK17]. First we can build variables in our SLP for all of our base
characters with O(2k) variables. Next we can build @` with lg(`) = O(k) variables. Next we can build all
Sb,i for all i and b with at most O(k2k) variables. Next, we want to build our longer strings.

Now we will use the recursive structure of StringIa(L). Let

StringI`(L)[i] =©j1∈[1,n]...,j`∈[1,n]L[j1][i] · L[j2][i] · · · · · L[j`][i].

Note that
StringIa(L) =©d

i=1

(
StringIa(L)[i]

)
.

We are just pulling out the part related to the ith bit of every vector. Now note that

StringIa(L)[i] =©j∈[1,n]

{
StringIa−1(L)[i] if L[j][i] = 1

0(na−1) if L[j][i] = 0
.

Where 0(na−1) is na−1 zeros in a row.
Note that we can make SLP variables for all 0(ni) strings for i ∈ [1, a] with a lg(na) = a2 lg(n) variables.

Next note that given an SLP variable for StringIa−1(L)[i] we can add n variables and form StringIa(L)[i].

It takes n variables to form StringI1(L)[i]. So, with an SLP with an+ a2 lg(n) variables we can represent
StringIa(L)[i]. So, with an SLP with d(an+a2 lg(n)) variables we can represent StringIa(L). To replace
all zeros with S0,i and all ones with S1,i requires an additional O(2k) variables.

So, we can compress all of our strings with O(d(n+ lg(n))) variables. Given our restrictions on d we
can write this as n1+o(1). So our compression has length m = n1+o(1). Our input to our k-SD instance is
N = na+o(1). So N1/a+o(1) = n1+ao(1) = n1+o(1). Fulfilling the statement of the theorem.
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8.3 Approximation Algorithm

Let the k-SD distance be k(N − k-SD(X1, . . . , Xk)). In other words, the k-SD distance is the total
number of unmatched characters.

Theorem 8.4. There is an O
(
|Σ|Nd(k−1)/`e lg(|Σ|N)

)
time algorithm to get an ` approximation of the

k-Shift Distance distance for any integer ` ≥ 2.

Proof. Partitions the k− 1 of the strings into ` groups G′1, . . . , G
′
` which each contain as close to (k− 1)/`

strings as possible, the maximum number of strings in each group is d(k − 1)/elle. Now, take the final
string, Sk and add it to all the sets to make new sets G1, . . . , G`, now the maximum number of strings in
each group is d(k − 1)/ell + 1e.

On each of these partitions run the algorithm for k-Shift Distance. The time for this is
O
(
`|Σ|Nd(k−1)/`+1e−1 lg(|Σ|N)

)
and ` is a constant. Now, using the value of k-Shift Distance we can

compute the k-Shift Distance distance. Let the distances of the sets of strings in G1, . . . , G` be ∆1, . . . ,∆`.
Now, note that these call be framed as distances to the last string Xk. So, the distance of all these strings
together is at most ∆1 + · · ·+ ∆` and is at least max(∆1, . . . ,∆`). Finally, note that

1 ≤ ∆1 + · · ·+ ∆`

max(∆1, . . . ,∆`)
≤ `.

As a result there is an approximation factor of ` and a running time O
(
|Σ|Nd(k−1)/`e lg(|Σ|N)

)
.

9 On High-Dimensional Generalizations of DIST Matrices

Many of the crucial properties of DIST matrices derived in, e.g., [Tis15] used for two-string algorithms rely
on the Monge property. For LCS, the Monge property is that given two strings X,Y and the alignment
graph GX,y then letting d(u, v) be the longest path from u to v, we have d(v0,i, v|X|,j)+d(v0,i−1, v|X|,j+1) ≤
d(v0,i−1, v|X|,j)+d(v0,i, v|X|,j+1). For example, in this paper we used the ability to take min-plus products
of unit Monge matrices efficiently, and our use of the SMAWK algorithm was enabled by the Monge
property.

However, it appears no analogous property holds for even DIST “3-tensors”, the three-string general-
ization of DIST matrices. Intuitively, this is because it is not possible to enforce that any path from v1 to
v2 intersects any path from v3 to v4 for four distinct vertices v1, v2, v3, v4, unlike in the two-dimensional
alignment graph. We will use LCS as the metric for our examples here, but one can find similar examples
for edit distance.

For example, let A[i1, i2, j1, j2] be the longest path length from v0,i1,i2 to vn1,j1,j2 in the three-
dimensional alignment graph of three strings. An analog of the Monge property in three dimensions
might be:

A(i1, i2, j1, j2) +A(i1 − 1, i2, j1 + 1, j2) ≤ A(i1 − 1, i2, j1, j2) +A(i1, i2, j1 + 1, j2)

However, this does not seem true in general. Consider the following example, where there are two sets
of length 1 edges. The first (in blue) has ` such edges, and is contained entirely between “layer” i1 and j1
of the DAG. The second (in red) has `+ 1 edges, however two of these edges are outside the part of the
DAG between (0, i1, i2) and (m, j1, j2).

1

`

`− 1

1

(m, j1 + 1, j2)

(m, j1, j2)

(0, i1 − 1, i2)

(0, i1, i2)
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The two sets of length 1 edges are positioned such that one cannot use a “blue” and “red” edge in the
same path. Now, we have that A(i1−1, i2, j1 +1, j2) = `+1 and all other terms in the above inequality are
`. So the above inequality would say 2`+ 1 ≤ 2`, which is false. This can be generated by, e.g., the strings
X1 = aabbb,X2 = bbbaa,X3 = baabb; the LCS of the first two strings with X3[2 . . 4], X3[1 . . 4], X3[2 . . 5]
is aa, but the LCS of the first two strings with X3[1 . . 5] is bbb.

While one can find other generalizations and even weakened versions of the Monge property which
this example satisfies, for all the ones that we have considered there are three-string counterexamples
that show they do not hold in general.

For example, the unit Monge property also says that given a DIST matrix, if we subtract every row
from the next row and every column from the next column, we get a permutation matrix. In other words,
each row and column only differs in behavior from the previous row/column by 1 entry. However, for
DIST 3-tensors, consider the two-dimensional “slice” A for which A[i, j] gives the path length between
e.g. (0, 0, i) and (|X1|, |X2|, j). By looking at the DIST 3-tensors of even just three random strings of
length roughly 100, we found that, e.g., for some sampled strings, A had a row that could be expressed
as a linear function, but the next row of A was a piecewise linear function with six different pieces.

As another example, consider the following weaker “monotone” property: A is monotone if for any
vector b, letting m(i) = arg minj A[i, j] + b[i] and choosing the lowest value of j to break ties, m(i) is a
monotonic function of i. This admits a divide and conquer algorithm for computing minj A[i, j]+b[i] for all
i in accesses to A near-linear in the number of i (as opposed to the SMAWK algorithm using linear accesses),
a primitive that is useful in dynamic programming algorithms for two-string similarity. Informally, knowing
arg minj A[i, j] lets us rule out a constant fraction of the possibilities for arg minj A[i′, j] for i′ 6= i. The
3-dimensional generalization of this primitive would be to compute arg mini1,i2 A[i1, i2, j1, j2] +B[i1, i2]
given access to entries of the DIST 3-tensor A[i1, i2, j1, j2] = d(v0,i1,i2 , v|X1|,j1,j2), and a matrix B. Put
more simply, the rows of this slice have far less structural similarity to each other than the rows of a
DIST matrix.

A weak generalization of the monotone property that would admit a similar divide and conquer
algorithm for this problem is: knowing i∗ = arg mini1,i2 A[i1, i2, j1, j2] + B[i1, i2] lets us eliminate
possibilities for arg mini1,i2 A[i1, i2, j

′
1, j
′
2] +B[i1, i2] for (j′1, j

′
2) that are in a given “direction” from i∗ if

(j′1, j
′
2) is in a given “direction” from (j1, j2). Here, by in a given direction, we mean e.g. j′1 ≤ j1 and

j′2 ≤ j2, or any of the four possibilities given by reversing neither, one, or both of these inequalities.
Unfortunately, even considering random strings of length 10, we found counterexamples to each of the
variants of this property given by choosing any pair of directions to slot in to the definition.

10 Open Questions

We find many novel lower bounds and upper bounds in this paper. However, some of these are not tight.
We give some open problems below whose resolution we think would be particularly interesting.

• For solving k-edit distance or k-LCS on strings where k ≥ 3, we have a lower bound of Nk−1n where
N is the length of the strings and n is the size of the SLP. However, the best exact algorithms require
O(Nk) time. Can this gap be closed for any k ≥ 3? Can this gap be closed for all constant k?

• There are no tight lower bounds for approximating k-LCS and k-edit distance. Can we give a tight
lower bound?

• The lower bounds for k-center edit distance and the upper bounds do not match. Our lower bounds
for k-center edit distance are the same as those for k-median edit distance. However, k-center edit
distance has slower algorithms. For example in the uncompressed and exact case the k-center edit
distance lower bounds are Ω(Nk) [HBGT20], but the best algorithm requires Õ(N2k) time [NR05].

In general, the space of multiple string comparison seems under-explored. We hope more work will
happen in the space of algorithms and lower bounds for multiple string comparison. Specifically if there
are efficient algorithms for the problem of comparing multiple strings with approximation for example, it
will have significant impacts for multiple sequence alignment in biology.
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[BK15] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Venkatesan Guruswami, editor, 56th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2015, pages 79–97. IEEE Computer
Society, 2015. doi:10.1109/FOCS.2015.15.

[BPS13] Bonnie Berger, Jian Peng, and Mona Singh. Computational solutions for omics data. Nature
Reviews Genetics, 14(5):333–346, 2013. doi:10.1038/nrg3433.

50

https://doi.org/10.1109/FOCS.2017.26
https://doi.org/10.1109/FOCS.2017.26
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1145/2488608.2488726
http://dl.acm.org/citation.cfm?id=1347082.1347120
http://dl.acm.org/citation.cfm?id=1347082.1347120
https://doi.org/10.1137/1.9781611973105.33
https://doi.org/10.1007/BF01840359
https://doi.org/10.1109/FOCS.2010.43
https://doi.org/10.1109/focs46700.2020.00096
https://doi.org/10.1137/090767182
https://doi.org/10.1145/2957324
https://doi.org/10.1145/780542.780590
http://dl.acm.org/citation.cfm?id=1109557.1109644
http://dl.acm.org/citation.cfm?id=1109557.1109644
https://doi.org/10.1109/FOCS.2004.14
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1038/nrg3433


[BR20] Joshua Brakensiek and Aviad Rubinstein. Constant-factor approximation of near-linear edit
distance in near-linear time. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy, editors, 52nd Annual ACM Symposium on Theory of
Computing, STOC 2020, pages 685–698. ACM, 2020. doi:10.1145/3357713.3384282.

[BW94] Michael Burrows and David J. Wheeler. A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994. URL:
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf.

[BWK19] Karl Bringmann, Philip Wellnitz, and Marvin Künnemann. Few matches or almost periodicity:
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