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Abstract. For over a century, geomorphologists have attempted to unravel information about landscape evo-

lution, and processes that drive it, using river profiles. Many studies have combined new topographic datasets

with theoretical models of channel incision to infer erosion rates, identify rock types with different resistance to

erosion, and detect potential regions of tectonic activity. The most common metric used to analyse river profile

geometry is channel steepness, or ks. However, the calculation of channel steepness requires the normalisation

of channel gradient by drainage area. This normalisation requires a power law exponent that is referred to as

the channel concavity index. Despite the concavity index being crucial in determining channel steepness, it is

challenging to constrain. In this contribution, we compare both slope–area methods for calculating the concavity

index and methods based on integrating drainage area along the length of the channel, using so-called “chi” (χ )

analysis. We present a new χ -based method which directly compares χ values of tributary nodes to those on the

main stem; this method allows us to constrain the concavity index in transient landscapes without assuming a

linear relationship between χ and elevation. Patterns of the concavity index have been linked to the ratio of the

area and slope exponents of the stream power incision model (m/n); we therefore construct simple numerical

models obeying detachment-limited stream power and test the different methods against simulations with im-

posed m and n. We find that χ -based methods are better than slope–area methods at reproducing imposed m/n

ratios when our numerical landscapes are subject to either transient uplift or spatially varying uplift and fluvial

erodibility. We also test our methods on several real landscapes, including sites with both lithological and struc-

tural heterogeneity, to provide examples of the methods’ performance and limitations. These methods are made

available in a new software package so that other workers can explore how the concavity index varies across

diverse landscapes, with the aim to improve our understanding of the physics behind bedrock channel incision.

1 Introduction

Geomorphologists have been interested in understanding

controls on the steepness of river channels for centuries. In

his seminal “Report on the Henry Mountains”, Gilbert (1877)

remarked that “We have already seen that erosion is favoured

by declivity. Where the declivity is great the agents of ero-

sion are powerful; where it is small they are weak; where

there is no declivity they are powerless” (p. 114). Following

Gilbert’s pioneering observations of landscape form, many

authors have attempted to quantify how topographic gradi-

ents (or declivities) relate to erosion rates. Landscape erosion

rates are thought to respond to tectonic uplift (Hack, 1960).

Therefore, extracting erosion rate proxies from topographic

data provides novel opportunities for identifying regions of

tectonic activity (e.g. Seeber and Gornitz, 1983; Snyder et al.,

2000; Lague and Davy, 2003; Wobus et al., 2006a; Cyr et al.,

2010), and may even be able to highlight potentially active
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faults (e.g. Kirby and Whipple, 2012). Analysing channel

networks is particularly important for detecting the signature

of external forcings from the shape of the topography, as flu-

vial networks set the boundary conditions for their adjacent

hillslopes, therefore acting as the mechanism by which cli-

matic and tectonic signals are transmitted to the rest of the

landscape (e.g. Burbank et al., 1996; Whipple and Tucker,

1999; Whipple, 2004; Hurst et al., 2013).

Channels do not yield such information easily, however.

Any observer of rivers or mountains will note that headwa-

ter channels tend to be steeper than channels downstream.

Declining gradients along the length of the channel lead to

river longitudinal profiles that tend to be concave up. There-

fore, the gradient of a channel cannot be related to erosion

rates in isolation; some normalising procedure must be per-

formed. Over a century ago, Shaler (1899) postulated that as

channels gain drainage area their slopes would decline, hin-

dering their ability to erode. Authors such as Hack (1957),

Morisawa (1962), and Flint (1974) expanded upon this idea

in the early 20th century by quantifying the relationship be-

tween slope and drainage area, often used as a proxy for dis-

charge. Flint (1974) found that channel gradient appeared to

systematically decline downstream in a trend that could be

described by a power law:

S = ksA
−θ , (1)

where θ is referred to as the concavity index since it describes

how concave a profile is; the higher the value, the more

rapidly a channel’s gradient decreases downstream. Note that

the term “concavity” is sometimes applied to river long pro-

files (e.g. Demoulin, 1998; Conway et al., 2015; Roy and

Sinha, 2018), so most studies refer to θ , derived from slope–

area data, as the “concavity index” (see Kirby and Whipple,

2012). The term ks is called the steepness index, as it sets the

overall gradient of the channel. If we take the logarithm of

both sides of Eq. (1), we find a linear relationship in log[S]–

log[A] space with a slope of θ and an intercept (the value of

log[S], where log[A] = 0) of log[ks]:

log[S] = −θ log[A] + log[ks]. (2)

A number of studies (e.g. Ouimet et al., 2009; DiBiase

et al., 2010; Scherler et al., 2014; Mandal et al., 2015; Harel

et al., 2016) have demonstrated that ks is positively corre-

lated with erosion rate, mirroring the predictions of Gilbert

(1877) over a century earlier. Many authors have used chan-

nel steepness to examine fluvial response to climate, lithol-

ogy, and tectonics (e.g. Flint, 1974; Tarboton et al., 1989;

Snyder et al., 2000; Kirby and Whipple, 2001; Lague and

Davy, 2003; Kobor and Roering, 2004; Wobus et al., 2006a;

Harkins et al., 2007; Cyr et al., 2010; DiBiase et al., 2010;

Kirby and Whipple, 2012; Vanacker et al., 2015).

The noise inherent in S–A analysis prompted Leigh Roy-

den and colleagues to develop a method that compares the el-

evations of channel profiles, rather than slope (Royden et al.,

2000). We can modify the Royden et al. (2000) approach to

integrate Eq. (1), since S = dz/dx where z is elevation and

x is distance along the channel (e.g. Whipple et al., 2017),

resulting in

z(x) = z(xb) +

(

ks

A0
θ

)

x
∫

xb

(

A0

A(x)

)θ

dx, (3)

where A0 is a reference drainage area, introduced to non-

dimensionalise the area term within the integral in Eq. (3).

We can then define a longitudinal coordinate, χ :

χ =

x
∫

xb

(

A0

A(x)

)θ

dx. (4)

χ has dimensions of length and is defined such that at any

point in the channel

z(x) = z(xb) +

(

ks

A0
θ

)

χ. (5)

Equation (5) shows that steepness of the channel (ks) is re-

lated to the slope of the transformed channel in χ–elevation

space. In both Eqs. (2) and (5), the numerical value of ks de-

pends on the value chosen for the concavity index, θ . In order

to compare the steepness of channels in basins of different

sizes, a reference concavity index is typically chosen (θref),

which is then used to extract a normalised channel steepness

from the data (Wobus et al., 2006a):

ksn,i = A
θref

i Si, (6)

where the subscript i is a data point. This data point often

represents channel quantities that are smoothed; see discus-

sion below.

1.1 Choosing a concavity index to extract

channel steepness

The choice of the reference concavity index is important in

determining the relative ksn values amongst different sections

in the channel network, which we illustrate in Fig. 1. This

figure depicts hypothetical slope–area data, which appear to

lie along a linear trend in slope–area space. Choosing a ref-

erence concavity index based on a regression through these

data will result in the entire channel network having similar

values of ksn. Based on the data in Fig. 1, there is no evidence

that the correct concavity index is anything other than the one

represented by the linear fit through the data. However, these

hypothetical data are in fact based on numerical simulations,

presented in Sect. 3, in which we simulated a higher uplift

rate in the core of the mountain range. The correct concavity

index is therefore lower than that indicated by the log[S]–

log[A] data, and instead the data show a strong spatial trend

in channel steepness (interpretation 2 in Fig. 1). The simplest
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Figure 1. Sketch illustrating the effect of choosing different refer-

ence concavities. The data can be well fitted with a single regres-

sion, suggesting that all parts of the channel network have similar

values of ksn (interpretation 1). However, if a lower θref is chosen,

the ksn values will be systematically higher for channels at lower

drainage area (interpretation 2). This sketch is based on data from

a numerical simulation where the latter situation has been imposed

via higher uplift rates in the core of the mountain range, showing the

potential for incorrect concavities to be extracted from slope–area

data alone.

interpretation based on log[S]–log[A] data alone would have

been entirely incorrect. This situation is analogous to the one

described by Kirby and Whipple (2001), where downstream

reductions in uplift rates in the Siwalik Hills of India and

Nepal resulted in elevated apparent concavities. Conversely,

if a single reference concavity index is chosen in an area with

changing concavity indices, then spurious patterns in ksn may

arise (e.g. Gasparini and Whipple, 2014). These examples

highlight that selecting the correct concavity index is crucial

if we are to correctly interpret channel steepness data.

Extracting a reliable reference concavity indices from

slope–area data on real landscapes is challenging: topo-

graphic data can be noisy, leading to a wide range of channel

gradients for small changes in drainage area. The branching

nature of river networks also results in large discontinuities

in drainage areas where tributaries meet, resulting in signif-

icant data gaps in S–A space (Fig. 2). Wobus et al. (2006a)

made recommendations for preprocessing of slope–area data

that are still used in many studies. First, the digital elevation

model (DEM) is smoothed (although with improved DEMs

this is now rare), then topographic gradient is measured over

either a fixed reach length or a fixed drop in elevation (Wobus

et al., 2006a, recommends the latter), and then the data are

averaged in logarithmically spaced bins. More recently, au-

thors have proposed alternative channel smoothing strategies

(e.g. Aiken and Brierley, 2013; Schwanghart and Scherler,

2017); all these methods use some form of smoothing and

averaging.

In order to circumvent these problems with S–A analysis,

many authors have since used the integral approach (Eq. 5)

Figure 2. A typical slope–area plot. This example is from a basin

near Xi’an, China, with an outlet at approximately 34◦26′23.9′′ N,

109◦23′13.4′′ E. The data are taken from only the trunk channel.

The slope–area data typically contain gaps due to tributary junc-

tions, as well as wide ranges in slope for the reaches between junc-

tions due to topographic noise inherent in deriving slope values. The

result is a high degree of scatter in the data. These data are produced

by averaging slope values over a fixed vertical interval of 20 m.

to analyse channel concavity indices. This method also aims

to normalise river profiles for their drainage area, but rather

than comparing slope to area, it integrates area along chan-

nel length (Royden et al., 2000; Perron and Royden, 2013).

Perron and Royden (2013) showed that the concavity index

could be extracted from a channel by selecting the value

of θref that results in the most linear channel profile in χ–

elevation space. However, if there are sections of the channel

with different ksn values, this will hinder our ability to ex-

tract the θref value, as it is not appropriate to fit a single line

throughout the entire profile (e.g. Mudd et al., 2014). Mudd

et al. (2014) introduced a method to statistically determine

the most likely concavity index by computing the best-fit se-

ries of linear segments using an algorithm that balanced fit of

the data against overparameterisation using the Akaike infor-

mation criterion (Akaike, 1974). This method, however, re-

quires a number of input parameters and also performs com-

putationally expensive segmentation on the χ–elevation data

prior to calculating the concavity index (Mudd et al., 2014).

Perron and Royden (2013) suggested a second indepen-

dent means to calculate the concavity index, which does not

assume linearity of the profiles in χ–elevation space and may

therefore be used in transient landscapes. This method is in-

stead based on searching for collinearity of tributaries with

the main stem channel (e.g. Perron and Royden, 2013; Mudd

et al., 2014), and has since been used as a basis for other tech-

niques that aim to minimise some quantitative description of

scatter between tributaries and the trunk channel (e.g. Goren

et al., 2014; Hergarten et al., 2016).

Although the collinearity test does not assume any linear-

ity of profiles in χ–elevation space, it does rely on the as-

sumption that points in the channel network with the same

value of χ will have the same elevation. Perron and Royden
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(2013) noted that this will hold true if transient erosion sig-

nals propagate vertically through the network at a constant

rate, which has been predicted by some theoretical models of

fluvial incision (e.g. Wobus et al., 2006b). Royden and Per-

ron (2013) went on to demonstrate that changes in erosion

rates in channel networks would lead to distinct segments

that migrate upstream, which they termed “slope patches”,

where the local ks reflects local erosion rate. However, here,

we wish to avoid basing our formulation on any theoretical

models of fluvial incision, as this introduces assumptions re-

garding bedrock erosion processes. Y. Wang et al. (2017)

highlighted that slope–area analysis could be used to com-

plement integral analysis where concavity indices might vary

spatially, since slope–area is agnostic with regard to these in-

cision processes, but also found that integral-based analyses

have lower uncertainties than slope–area analysis. Therefore,

here, we use simple geometric relationships of knickpoint

propagation to relate the collinearity test to channel concav-

ity indices without relying on theoretical models of fluvial

incision, as set out in Sect. 1.2.

1.2 Connecting the concavity index to collinearity

Playfair (1802) noted that tributary valleys tended to join the

principal valley at a common elevation, suggesting that, at

their outlets, the tributary streams must lower at the same

rate as the principal streams into which they drain. There-

fore, any change in incision rate on the main stem channel

will be transmitted to the upstream tributaries. Using simple

geometric relationships, Niemann et al. (2001) showed that a

knickpoint should migrate upstream with a horizontal celer-

ity (Ceh, in length per time) of

Ceh =
1

S2 − S1
1E, (7)

where S1 is the channel slope prior to disturbance, S2 is the

channel slope after disturbance (e.g. due to a change in in-

cision rate E), and 1E is the difference between the inci-

sion rate before and after disturbance (which can be equated

to uplift rates U1 and U2 in units of length per time, 1E =

U2 − U1). Wobus et al. (2006b) simply inserted Eq. (1) into

Eq. (7) so that the horizontal celerity is simply a function of

drainage area, assuming that the concavity index is indepen-

dent of rock uplift rate:

Ceh =
U2 − U1

ks2 − ks1
Aθ . (8)

Noting that vertical celerity is simply the horizontal celer-

ity multiplied by the local slope after disturbance S2, Wobus

et al. (2006b) showed that the vertical celerity (Cev) was not

a function of drainage area:

Cev =
U2 − U1

ks2 − ks1
ks2. (9)

Thus, if we assume spatially homogeneous uplift and

constant erodibility (i.e. channels with the same slope and

drainage area erode at the same rate), then the vertical celer-

ity propagating up the principal stream and all tributaries will

be a constant. Equation (9) is derived from purely geomet-

ric relationships, suggesting that collinearity can be used to

estimate the concavity index without assuming any theoreti-

cal models of fluvial incision under the assumption that the

incision process will result in local slope–area relationships

reflecting Eq. (1).

2 Calculation of concavity indices using collinearity

In this study, we revisit commonly used methods for esti-

mating the concavity index using both slope–area analysis

and collinearity methods based on integral analysis. Our ob-

jective is to determine the strengths and weaknesses of es-

tablished methods alongside several new methods developed

for this study, as well as to quantify the uncertainties in the

concavity index. We present these methods in an open-source

software package that can be used to constrain concavity in-

dices across multiple landscapes. This information may give

insight into the physical processes responsible for channel

incision into bedrock, which are as yet poorly understood.

2.1 Slope–area analysis

For slope–area analysis, in this paper, we forgo initial

smoothing of the DEM and use a fixed elevation drop along

a D8 drainage pathway implemented using the network ex-

traction algorithm of Braun and Willett (2013). We calcu-

late the best-fit concavity indices using two different meth-

ods: (i) concavity indices extracted from all slope–area (S–

A) data (i.e. no logarithmic bins, every tributary) and (ii) con-

cavity indices of contiguous channel profile segments with

consistent S–A scaling within the log-binned S–A data of

the trunk stream, calculated using the statistical segmenta-

tion algorithm described in Mudd et al. (2014). We report the

different extracted concavity indices and their uncertainties

in the results below.

2.2 Methods for calculating collinearity using

integral analysis

Here, we present two new methods of identifying collinear

tributaries in χ–elevation space in order to constrain the best-

fit concavity indices from fluvial profiles. Rather than fitting

segments to the profiles, which is computationally expensive,

we directly compare all the elevation data of the tributaries

in each drainage basin to the main stem. This is not com-

pletely straightforward, however: because the χ coordinate

integrates area and channel distance, it is very unlikely that

a pixel on a tributary channel shares a χ coordinate with any

pixel on the main stem. Instead, for every tributary pixel, we

compare the tributary elevation with an elevation on the main
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Figure 3. Sketch illustrating the methodology of the χ method using all profile data. In panel (a), the χ profiles of both the trunk channel

and a tributary are shown. We take the χ coordinate of the nodes on the tributary channel and then project them onto a linear fit of the trunk

channel to determine the residuals between tributary and trunk channel. We do this for all nodes and for all concavity indices. For each

concavity index, the residuals are then used to calculate a maximum likelihood estimator (MLE), which varies as a function of the concavity

index (panel b). The highest value of MLE is used to select the likely θ .

stem at the same χ computed with a linear fit between the

two pixels with the nearest χ coordinates (Fig. 3). We then

calculate a maximum likelihood estimator (MLE) for each

tributary. The MLE is calculated with

MLE =

N
∏

i=1

exp

[

−
r2
i

2σ 2

]

, (10)

where N is the number of nodes in the tributary, ri is the

calculated residual between the elevation of tributary node i

and the linear regression of elevation on the main stem, and

σ is a scaling factor. If ri is 0 for all nodes, then MLE = 1

(i.e. MLE varies between 0 and 1, with 1 being the maximum

possible likelihood).

For a given drainage basin, we can multiply the MLE for

each tributary to get the total MLE for the basin, and we can

do this for a range of concavity indices to calculate the most

likely value of θ . Because Eq. (10) is a product of negative

exponentials, the value of the MLE will decrease as N in-

creases, and in large datasets this results in MLE values be-

low the smallest number that can be computed, meaning that

in large datasets MLE values can often be reported as zero.

To counter this effect, we increase σ until all tributaries have

non-zero MLE values. As σ is simply a scaling factor, this

does not affect which concavity index is calculated as the

most likely value once all tributaries have non-zero MLEs

(see the Supplement).

There are two disadvantages to using Eq. (10) on all points

in the channel network. Firstly, because the MLE is calcu-

lated as a product of exponential functions, each data point

will reduce the MLE, and so tributaries will influence MLE in

proportion to their length. Secondly, because we use all data,

we cannot estimate uncertainty when computing the most

likely concavity index. Therefore, we apply a second method

to the χ–elevation data that mitigates these two shortcomings

by bootstrap sampling the data. This method evaluates a fixed

number of discrete points on each tributary, but the points

are selected randomly and this random selection is done it-

eratively, building up a population of MLE values for each

concavity index.

For each iteration of the bootstrap method, we create a

template of points in χ space, measured from the confluence

of each tributary from the trunk channel (Fig. 4). We start

by selecting a maximum value of χ upstream of the tributary

junction, and then separate this space into NBS nodes. We

create evenly spaced bins between the maximum value of χ

in the template, and then in each iteration randomly select

one point in each bin. Using this template on each tributary,

we calculate the residuals between the tributary and the trunk

channel using Eq. (10). If, for a given tributary, a point in the

template is located beyond the end of the tributary, then the

point is excluded from the calculation of MLE. Figure 4 pro-

vides a schematic visualisation of this method.

We repeat these calculations over many iterations, and for

each concavity index we compute the median MLE, the min-

imum and maximum MLEs, and the first and third quartile

MLEs. We approximate the uncertainty range by first taking

the most likely concavity index (having highest median MLE

value amongst all concavity indices tested). We then find the

span of concavity indices whose third quartile MLE values

exceed the first quartile MLE value of the most likely con-

cavity indices (Fig. 4).

One complication of using collinearity to calculate the

most likely concavity index is that occasionally one may find

a hanging tributary (e.g. Wobus et al., 2006b; Crosby et al.,

2007), which could occur for a variety of reasons, such as

the presence of geologic structures or lithologic variability.

A hanging tributary can skew the overall MLE values in a

basin, so in each basin we test the MLE and RMSE values in

each tributary for outliers and iteratively remove these out-

lying tributaries, testing for the most likely concavity index

on each iteration. However, we find that eliminating outlying

www.earth-surf-dynam.net/6/505/2018/ Earth Surf. Dynam., 6, 505–523, 2018
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Figure 4. Sketch showing how we compute residuals for our χ

bootstrap method of determining the maximum likelihood estimator

(MLE) of θ , and then use the uncertainty in MLE values to compute

the uncertainty in θ .

tributaries has a minimal effect on the calculated concavity

index. The other primary complication is that one must as-

sume a concavity index prior to performing the χ transfor-

mation (Eq. 4), and thus slope–area analysis may be more

suited to detecting changes in concavity within basins (e.g.

Y. Wang et al., 2017). We suggest here an alternative ap-

proach of calculating concavity using χ methods in many

small basins to look for any systematic changes. Before we

can perform such analyses, however, we must constrain our

confidence in estimates of the concavity index.

We also implement a disorder statistic (Goren et al., 2014;

Hergarten et al., 2016; Shelef et al., 2018) that aims to quan-

tify differences in the χ–elevation patterns between tribu-

taries and the trunk channel. Here, we follow the method of

Hergarten et al. (2016). The disorder statistic is calculated by

first taking the χ–elevation pairs of every point in the chan-

nel network, ordered by increasing elevation. We calculate

the sum:

S =

N
∑

i=1

∣

∣χs, i+1 − χs, i

∣

∣, (11)

where the subscript s, i represents the ith χ coordinate that

has been sorted by its elevation. The sum, S, is minimal if

elevation and χ are related monotonically. However, it scales

with the absolute values of χ , which are sensitive to the con-

cavity index (see Eq. 4), so following Hergarten et al. (2016),

we scale the disorder metric, D, by the maximum value of χ

in the tributary network (χmax):

D =
1

χmax

( N
∑

i=1

∣

∣χs, i+1 − χs, i

∣

∣ − χmax

)

. (12)

The disorder metric relies on the use of all the data in a

tributary network, meaning that only one value of D can be

calculated for each basin. Therefore, we cannot estimate the

uncertainty in concavity index using this statistic alone. Fur-

thermore, the random sampling approach we take with the

previous χ methods is not appropriate, as skipping nodes in

the χ–elevation sequence will lead to large values of S and

substantially increase the disorder metric. We therefore em-

ploy a bootstrap approach based on the analysis of entire trib-

utaries within each basin. First, we find every combination of

three tributaries plus the trunk stream in the basin. For each

combination, we then iterate through a range of concavity in-

dices and calculate the disorder metric. This allows us to find

the concavity index that minimises the disorder metric for

each combination, resulting in a population of best-fit con-

cavities, from which we calculate the median and interquar-

tile range.

3 Testing on numerical landscapes

In real landscapes, we can only approximate the concavity

index based on topography. However, we can create simula-

tions where we fix a known concavity index and see if our

methods reproduce this value. To do this, we rely on simple

simulations driven by the general form of the stream power

incision model, first proposed by Howard and Kerby (1983):

E = KAmSn, (13)

where E is the long-term fluvial incision rate, A is the up-

stream drainage area, S is the channel gradient, K is the

erodibility coefficient, which is a measure of the efficiency

of the incision process, and m and n are exponents. A num-

ber of variations of this equation are possible: some authors
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have proposed, for example, modifications that involve ero-

sion thresholds (e.g. Tucker and Bras, 2000) or modulation

by sediment fluxes (e.g. Sklar and Dietrich, 1998). However,

Gasparini and Brandon (2011) showed that many of the mod-

ified versions of Eq. (13) could be captured simply by modi-

fying the exponents m and n.

We have chosen this model because it can be related to the

concavity index and therefore can be used to test the different

methods under idealised conditions. We can relate the stream

power incision model to Eq. (1) by rearranging Eq. (13) to

solve for channel slope and relating it to local erosion rate,

E:

S =

(

E

K

)1/n

A−m/n. (14)

Comparing Eqs. (1) and (14) reveals that the ratio between

area and slope exponents in the stream power incision model,

m/n, is therefore equivalent to θ from Eq. (1). The channel

steepness index, ks, is related to erosion rate by

ks =

(

E

K

)1/n

. (15)

The stream power incision model also makes predictions

about how tectonic uplift can be translated into local erosion

rates (e.g. Whipple and Tucker, 1999), and the predicted rela-

tionship between the channel steepness index and uplift has

been exploited by a number of studies to identify areas of

tectonic activity (e.g. Kirby et al., 2003; Wobus et al., 2006a;

Kirby and Whipple, 2012). Furthermore, many workers have

used the framework of the stream power incision model to

extract uplift histories (Pritchard et al., 2009; Roberts and

White, 2010; Fox et al., 2014; Goren et al., 2014). However,

the ability of these studies to extract information from chan-

nel profiles is dependent on the both the m/n ratio, equiva-

lent to θ , and the slope exponent, n, which are key unknowns

within these theoretical models of fluvial incision. The m/n

ratio is frequently assumed to be equal to 0.5, with n assumed

to be unity, despite recent compilations of data from multiple

landscapes showing that this may not be the case (e.g. Lague,

2014; Harel et al., 2016; Clubb et al., 2016), and numerical

modelling studies showing that m/n = 0.5 leads to unrealis-

tic relief structures (Kwang and Parker, 2017).

To test the relative efficacy of our methods for calculat-

ing concavity indices, we first run each method on a series

of numerically simulated landscapes in which the m/n ratio

is prescribed. We employ a simple numerical model, follow-

ing Mudd (2016), where channel incision occurs based on

Eq. (13). For computational efficiency, we do not include any

other processes (e.g. hillslope diffusion) within our model.

The elevation of the model surface therefore evolves over

time according to

∂z

∂t
= U − KAmSn, (16)

where U is the uplift rate. Fluvial incision is solved using the

algorithm of Braun and Willett (2013), where the drainage

area is computed using the D8 flow direction algorithm to im-

prove speed of computation and the topographic gradient is

calculated in the direction of steepest descent. In our model,

we perform a direct numerical solution of Eq. (16) where n =

1 and use Newton–Raphson iteration where n 6= 1. These

simulations are performed using the MuddPILE numerical

model (Mudd et al., 2017), first used by Mudd (2016). We

set the north and south boundaries of the model domain to

fixed elevations, whereas the east and west boundaries are

periodic. Our model domain is 30 km in the X direction and

15 km in the Y direction, with a grid resolution of 30 m. This

allows us to test the methods of estimating m/n on several

drainage basins in each model domain, and at a resolution

comparable to that of globally available DEMs.

3.1 Transient landscapes

In order to test the methods’ ability to identify the correct

m/n value, we ran a series of numerical experiments with

varying m/n ratios: m/n = 0.5, m/n = 0.35, and m/n =

0.65. For each ratio, we also performed simulations with

varying values of n, as the n exponent has been shown

to impact the celerity of transient knickpoint propagation

through the channel network (Royden and Perron, 2013).

Crucially, Royden and Perron (2013) showed that when n

is not unity, upstream propagating knickpoints will erase in-

formation about past base level changes encoded in the chan-

nel profiles. This may cloud selection of the correct m/n ra-

tio, but Lague (2014) and Harel et al. (2016) have suggested

many, if not most, natural landscapes have evidence for an

n exponent that is not unity. Therefore, we ran simulations

with n = 1, n = 2, n = 1.5, and n = 0.66 for each m/n ra-

tio, varying m accordingly (see the Supplement for details of

each model run).

We initialised the model runs using a low relief surface

that is created using the diamond–square algorithm (Fournier

et al., 1982). We found this approach resulted in drainage

networks that contained more topological complexity than

those initiated from simple sloping or parabolic surfaces. Our

aim was to test the ability of each method to extract the cor-

rect m/n ratio without assuming that the landscapes were in

steady state; therefore, each simulation was forced with vary-

ing uplift through time to ensure that the channel networks

were transient.

Each model was run with a baseline uplift rate of

0.5 mm yr−1, which was increased by a factor of 4 for a

period of 15 000 years, then decreased back to the baseline

for another 15 000 years. For the runs with n = 2, the cy-

cles were set to 10 000 years, which was necessary to pre-

serve evidence of transience, as knickpoints propagate more

rapidly through the channel network as n increases. Relief

is very sensitive to model parameters, and we found in nu-

merical experiments that basin geometry was sensitive to re-
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Figure 5. Shaded relief plots of the model runs with temporally varying uplift, with drainage basins plotted by the best-fit θ predicted from

the χ bootstrap analysis (column a), and slope–area analysis (column b). Each row represents a model run with a different m/n ratio. The

basins are coloured by the predicted θ , where darker colours indicate a higher concavity index. The extracted channel network for each basin

is shown in blue.

lief, mirroring the results of Perron et al. (2008). We wanted

modelled landscapes to have comparable relief and similar

basin geometry across our simulations to ensure similar land-

scape configurations for different values of m, n, and m/n.

We therefore calculated the χ coordinate and solved Eq. (5)

to find the K value for each modelled landscape that pro-

duced a relief of 200 m at the location with the greatest χ

value given an uplift rate of 0.5 mm yr−1.

We analysed these model runs using each of the methods

of estimating the best-fit m/n outlined in Sect. 2.2. We ex-

tracted a channel network from each model domain using a

contributing area threshold of 9 × 105 m2. We performed a

sensitivity analysis of the methods to this contributing area

threshold (see the Supplement) and found that the estimated

best-fit m/n ratios were insensitive to the value of the thresh-

old.

Drainage basins were selected by setting a minimum and

maximum basin area, 9×106 and 4.5×107 m2, respectively;

these values were chosen so extracted basins represented a

good balance between the number of extracted basins and

the number of tributaries in each basin. Nested basins were

removed, as were basins that bordered the edge of the model

domain. We exclude basins on the domain boundaries as the

calculation of the χ coordinate for the integral profile anal-

ysis is dependent on drainage area, which may not be re-

alistic at the edge of the domain. Elimination of basins on

the edge of the DEM is essential for real landscapes, as a

basin beheaded by raster clipping will have incorrect χ val-

ues, and we wanted to ensure both simulations and analyses

on real basins used the same extraction algorithms. For each

basin, we identified the best-fit concavity index predicted in

five ways (as described in the methods section): (i) regres-

sion of all χ–elevation data; (ii) use of χ–elevation data pro-

cessed by our method of sampling points with the bootstrap

method; (iii) minimisation of the disorder metric from χ–

elevation data using a similar technique to Hergarten et al.

(2016); (iv) regression of all slope–area data; and (v) regres-

sions through slope–area data for individual segments of the

main stem. For all but the final method, the analyses use all

tributaries in the basins.

Figure 5 shows the spatial distribution of the predicted

m/n ratio for a series of basins from these cyclic model runs,
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Figure 6. Plots showing the predicted best-fit θ for each basin and each method for m/n = 0.5, where n = 1, n = 2, n = 1.5, and n = 0.66.

The χ methods are shown in shades of red and the slope–area methods are shown in shades of blue.

where m/n = 0.35, 0.5, and 0.65, and n = 1. We also plot

the m/n ratio predicted for each basin from all methods with

varying values of n, an example of which is shown in Fig. 6.

Our modelling results show that for each value of m/n ra-

tio tested, the method using all χ data identifies the correct

ratio for every basin in the model domain. The bootstrap ap-

proach provides an estimate of the error on the best-fit m/n

ratio for each basin: Fig. 6 shows that there is no error on

the predicted m/n ratio, meaning that an identical m/n ra-

tio is predicted with each iteration of the bootstrap approach.

The slope–area methods, in contrast, show more variation in

the predicted m/n ratio for each value of m/n and n tested

(Figs. 5 and 6). Furthermore, the segmented slope–area data

show a higher uncertainty in the predicted m/n ratio com-

pared to the other methods. The results of the model runs for

all values of m/n and n are presented in the Supplement.

3.2 Spatially heterogeneous landscapes

Alongside these temporally transient scenarios, we also

wished to test the ability of each method to identify the cor-

rect m/n ratio in spatially heterogeneous landscapes, simu-

lating the majority of real sites where lithology, climate, or

uplift are generally non-uniform. Therefore, we performed

additional runs where m/n = 0.5, n = 1, but U and K varied

in space. We generated the model domains using the same

diamond–square initial condition as the spatially homoge-

neous runs. For the run with spatially varying K , we calcu-

late the steady-state value of K required to produce a surface

with a relief of 400 m and an uplift rate of 1 mm yr−1 using

the same method as for the previous runs. From this base-

line value of K , we calculated a maximum K value which

is 5 times that of the baseline. We then created 10 “patches”

within the initial model domain where K was assigned ran-

domly between the baseline and the maximum. These are

rectangular in shape with K values that taper to the baseline

K over 10 pixels. We acknowledge this pattern is not very

realistic but emphasise that the aim is not to recreate real

landscapes but rather to confuse the algorithms for quantify-

ing the concavity index. This allows us to test if they can still

detect modelled concavity indices even if we violate some of

the assumptions implicit in our theoretical framework.

For the spatially varying uplift run, we varied uplift in the

N–S direction by modelling it as a half sine wave:

U = UA sin((πy)/L) + Umin, (17)

where y is the northing coordinate and L is the total length

of the model domain in the y direction, UA is an uplift am-

plitude, set to 0.2 mm yr−1, and Umin is a minimum uplift,

expressed at the north and south boundaries, of 0.2 mm yr−1.

Both scenarios, with spatially varying erodibility and uplift,

were run to approximately steady state; the maximum eleva-

tion change between 15 000-year printing intervals was less

than a millimetre.

Inherent in each collinearity-based method of quantifying

the most likely m/n ratio is the assumption that U and K do

not vary in space (Perron and Royden, 2013); our spatially

heterogeneous experiments therefore violate basic assump-

tions of the integral method. These conditions, however, are

likely true in virtually all natural landscapes. Therefore, our
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Figure 7. Results of the model runs with spatially varying erodibility (K , a, c, e) and uplift (U , b, d, f). The rectangular patches of low

relief are areas of high erodibility in (a), (c), and (e). Panels (a)–(d) show the spatial pattern of predicted θ from the χ bootstrap analysis and

the slope–area analysis, where the basins are coloured by θ (darker colours indicate higher concavity index). Panels (e) and (f) show density

plots of the distribution of θ for each method, where the dashed line marks the correct θ = 0.5.

aim here was to test if we could recover m/n ratios from nu-

merical landscapes that are more similar to real landscapes

than those with spatially homogeneous U and K .

Figure 7 shows the distribution of predicted m/n ratios

for the runs with spatially varying K and U from both the

integral bootstrap approach and the slope–area method. In

comparison to our model runs where K and U were uniform,

each method performs worse at identifying the correct m/n

ratio of 0.5. However, in both model runs, the integral meth-

ods identified the correct ratio in a higher proportion of the

drainage basins than the slope–area methods. Furthermore,

the distribution of m/n predicted by the integral methods

reaches a peak at the correct m/n ratios of 0.5, suggesting

that even in spatially heterogeneous landscapes the methods

can still be applied. Our run with the random distribution

of erodibility patches shows that the correct calculation of

the m/n ratio is highly dependent on the spatial continuity

of K; in basins contained within a single patch (e.g. basins

4, 5, and 6), the integral profile method correctly identified

the m/n ratios. Figure 8 shows example χ–elevation plots at

varying m/n ratios for basin 2, which encompasses several

patches with varying K values. Within this basin, tributaries

that drain a patch with the same K value are still collinear in

χ–elevation space. Based on these results, we suggest that, in

real landscapes, monolithologic catchments should be anal-

ysed wherever possible in order to select an appropriate con-

cavity index.

4 Constraining concavity indices in real landscapes

Our numerical modelling results suggest that the integral pro-

file analysis is most successful in identifying the correct con-

cavity index out of the entire range of m/n and n values

tested. However, these modelling scenarios cannot capture
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Figure 8. Example χ–elevation plots for the model run with spa-

tially varying erodibility, where points are coloured by K . The m/n

increases in each plot from 0.2 to 0.9. Tributaries with the same K

value are collinear in χ–elevation space.

the range of complex tectonic, lithologic, and climatic in-

fluences present in nature. Therefore, we repeat our analy-

ses on a range of different landscapes with varying climates,

relief structures, and lithologies, to provide some examples

of the variation in the concavity index predicted using each

method. For each field site, topographic data were obtained

from OpenTopography, using the seamless DEM generated

from NASA’s Shuttle Radar Topography Mission (SRTM) at

a grid resolution of 30 m. The Supplement contains metadata

for each site so readers can extract the same topographic data

used here.

4.1 An example of a relatively uniform landscape:

Loess Plateau, China

In order to demonstrate the ability of the methods to constrain

concavity indices in a relatively homogeneous landscape,

we first analyse the Loess Plateau in northern China. The

channels of the Loess Plateau are incising into wind-blown

sediments that drape an extensive area of over 400 000 km2

(Zhang, 1980) and can exceed 300 m thickness (Fu et al.,

2017). The plateau is underlain by the Ordos Block, a suc-

cession of non-marine Mesozoic sediments which has under-

gone stable uplift since the Miocene (Yueqiao et al., 2003;

B. Wang et al., 2017). Although there have been both recent

(Wang et al., 2016) and historic (Wang et al., 2006) changes

in sediment discharge from the plateau, the friable substrate

means that channel networks and channel profiles might be

expected to adjust quickly to perturbations in erosion rate.

Indeed, Willett et al. (2014) suggested, based on differences

in the χ coordinate across drainage divides, that the channel

networks in large portions of the plateau are geomorphically

stable. The stable tectonic setting and homogeneous, weak

substrate of the Loess Plateau make an ideal natural labo-

ratory for testing our methods on relatively homogeneous

channel profiles.

We ran each of the methods on an area of the Loess

Plateau approximately 11 000 km2 in size near Yan’an, in

the Chinese Shaanxi province (Fig. 9a). We find relatively

good agreement between both the χ and slope–area meth-

ods of estimating the most likely concavity index. Figure 9b

shows the probability distribution of concavities determined

from the population of the most likely concavities from each

basin (i.e. it does not include underlying uncertainty in each

basin), but the peaks of these curves lie at a θ ≈ 0.45 using

both the disorder method and the bootstrap method, 0.4 us-

ing all slope–area data, and at approximately 0.5 using the

all χ data method. This level of agreement gives the worker

some confidence that channel steepness analyses in this area

of the Loess Plateau using reference concavities between 0.4

and 0.5 should give an accurate representation of the relative

steepness of the channels.

As well as determining the best-fit concavity index for the

landscape as a whole, we can also examine the channel net-

works in individual basins: Fig. 9c shows the χ–elevation

profiles for an example basin. In this basin, the tributaries

are well aligned with the trunk channel at the most likely θ

of 0.45, both using all the χ data and with the bootstrap ap-

proach. In our explorations of different landscapes, the Loess

Plateau is the landscape that most resembles the idealised

landscapes that we find in our model simulations. The Loess

Plateau is notable for the homogeneity of its substrate over a

large area; most locations on Earth are not as homogeneous.
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Figure 9. Exploration of the most likely concavity indices in the Loess Plateau, China, Universal Transverse Mercator (UTM) zone 49 N.

Basins with the most likely concavity index determined by the disorder method are displayed in panel (a); the basin number is followed by

the most likely concavity index in the basin labels. The probability density of best-fit concavity index for all the basins (i.e. not the uncertainty

within individual basins but rather the probability distribution of the best-fit concavity indices of all the basins) is displayed in panel (b). In

basin 1, the most likely concavity index determined by the bootstrap and disorder methods is 0.45 and the χ–elevation plot for this concavity

index is shown in panel (c).

4.2 An example of lithologic variability:

Waldport, Oregon, USA

Many studies analysing the steepness of channel profiles are

focused in areas where external factors, such as lithology or

tectonics, are not uniform. Here, we select an example of a

landscape with two dominant lithologic types in a location

along the Oregon coast near the town of Waldport, Oregon

(Fig. 10). The Oregon Coast Range is dominated by the Tyee

Formation, made up primarily of turbidites deposited during

the Eocene (Heller et al., 1987). In addition to these sedimen-

tary units, our selected landscape also contains the Yachats

Basalt, which erupted mostly as sub-areal flows between 3

and 9 m in thickness during the late Eocene (Davis et al.,

1995). Erosion rates inferred from 10Be concentrations in

stream sediments are between 0.11 to 0.14 mm yr−1 (Heim-

sath et al., 2001; Bierman et al., 2001), similar to rock up-

lift rates of 0.05–0.35 mm yr−1 inferred from marine terraces

(Kelsey et al., 1994). Short-term erosion rates derived from

stream sediments fall into the range of 0.07 to 0.18 mm yr−1

(Wheatcroft and Sommerfield, 2005), leading a number of

authors to suggest that the Coast Range is in topographic

steady state, where uplift is balanced by erosion (e.g. Reneau

and Dietrich, 1991). Thus, our site contains a clear lithologic

contrast but has been selected to minimise spatial variations

in uplift or erosion rates.

We find that whereas basins developed on basalt have a

relatively uniform concavity index of approximately 0.7, the

most likely concavity indices in the sandstone show consid-

erably more scatter (Fig. 10b), with a lower average θ . We

present these data as an example of spatially varying concav-

ity indices as a function of lithology. This is consistent with

results of VanLaningham et al. (2006), who found high con-

cavities in volcanic rocks around Waldport but lower else-

where, and found high values of the concavity index in sed-

imentary rock but with a higher degree of scatter along the

Oregon Coast Range.

Whipple and Tucker (1999) suggested that the concavity

index is controlled primarily by discharge–drainage area and

channel width–drainage area relationships, which may be in-

fluenced by lithology, but other authors have found system-

atic variations in concavity indices with lithology (e.g. Du-

vall et al., 2004; VanLaningham et al., 2006; Lima and Flo-

res, 2017). Lima and Flores (2017) suggested that the thick-

ness of basalt flows could influence concavity indices, with

different knickpoint propagation mechanisms in massive ver-

sus thinly bedded flows. Duvall et al. (2004) suggested that

having hard rocks in headwaters and weak below might in-
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Figure 10. Exploration of the most likely concavity index near Waldport, Oregon, UTM zone 10 N. Basin numbers and the underlying

lithology is displayed in panel (a). The most likely concavity index determined by the bootstrap method as a function of the percent of each

basin in the different lithologies is shown in panel (b). Panel (c) shows the χ–elevation plot for a basin that has two bedrock types; the

channel pixels are coloured by lithology. The plot uses the typical concavity index for basalt (0.7).

Figure 11. Basins analysed near the Gulf of Evia, Greece, UTM

zone 34 N, that interact with active normal faults previously studied

by Whittaker and Walker (2015).

fluence concavity indices, which may be tested by comparing

concavity indices in both monolithologic basins and basins

with mixed lithology. The χ profiles in basin 17 (Fig. 10c)

are notable because this basin features two bedrock types:

basalt in the lower reaches and sandstone in the headwaters.

If the selected concavity index is too high, tributaries will fall

below the trunk channel in χ–elevation space. In Fig. 10c,

θ is chosen to reflect the typical value of the basalt basins,

and tributary channels in the sandstone fall below the trunk

channel, meaning that changes in the concavity index can be

seen within basins. We therefore suggest that workers must

be cautious when using a reference concavity index in de-

termining channel steepness indices in basins with heteroge-

neous lithology.

4.3 An example of a tectonically active site:

Gulf of Evia, Greece

The steepness of channel profiles and presence of steepened

reaches (knickpoints) in tectonically active areas can reveal

spatial patterns in the distribution of erosion and/or uplift

(e.g. Densmore et al., 2007; DiBiase et al., 2010; Vanacker

et al., 2015) and have the potential to allow identification of

active faults (e.g. Kirby and Whipple, 2012). However, these

systematic spatial patterns in channel steepness may chal-

lenge our ability to constrain the concavity index. Our third

example is in a tectonically active landscape where we have

found spatial variations in the most likely concavity index

between catchments proximal to active normal faults. We ex-

plore a series of basins draining across faults in the Sperchios

Basin, Gulf of Evia, Greece (Fig. 11), predominantly cut

into clastic sediments (Eliet and Gawthorpe, 1995). Previous

work (Whittaker and Walker, 2015) has demonstrated that

catchment morphology reflects interaction with these faults.
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Figure 12. The predicted best-fit θ determined using the χ methods

(red points) and slope–area methods (blue points shown in inset).

Basin numbers correspond to those plotted in Fig. 11.

The rivers are typically characterised by convex longitudinal

profiles that commonly have two knickpoints. The upper set

of knickpoints is attributed to the initiation of faulting and the

resulting growth of topography. The lower set of knickpoints

is interpreted as the result of subsequent increase (3–5 ×) in

throw rate due to fault linkage (Whittaker and Walker, 2015).

The elevations of each group of knickpoints both scale with

footwall relief, suggesting that fault throw rates scale with

fault segment length. The Gulf of Evia therefore represents

a natural experiment where uplift and erosion rates are ex-

pected to vary both temporally and spatially.

Steep, smaller catchments tend to drain across the foot-

walls of these faults, whilst larger catchments drain the land-

scape behind the faults, through the relay zones between

fault segments. We derived the best-fit concavity index for

each catchment following each of the five methods (Fig. 12).

Given the presence of knickpoints along the river profiles,

it is not appropriate to derive the concavity index by linear

regression of all log[S]–log[A] data. We find that the con-

cavity index estimated from segmented slope–area analysis

is highly variable between catchments (Fig. 12, inset), with a

tendency toward abnormally large values, exceeding the up-

per range of values typically predicted by incision models

(Whipple and Tucker, 1999). Values of θ derived using the χ

methods are predicted to be relatively low, typically 0.1–0.6

(Fig. 12), and whilst the χ methods do not agree perfectly,

they do covary, and are for the most part within uncertainty

of each other (with the exception of basins 1 and 20).

A number of authors have suggested that in both highly

transient and rapidly eroding landscapes processes other than

fluvial plucking or abrasion become important in shaping the

channel profile, such as debris flows and plunge pool ero-

sion (Stock and Dietrich, 2003; Haviv et al., 2010; DiBi-

ase et al., 2015; Scheingross and Lamb, 2017). Recent work

has suggested that retreat of vertical waterfalls may result in

similar concavities to fluvial incision processes operating in

lower gradient settings (Shelef et al., 2018), whereas debris

flows have been shown to lead to channels with low concav-

ity indices (Stock and Dietrich, 2003). The lowest values of

θ = 0.1 at the Evia site typically occur for the small, steep

catchments draining across the footwalls of the fault seg-

ments (e.g. basin 10; Fig. 13), with higher θ values typical

for catchments that do not cross faults or those that cross re-

lay zones (e.g. basin 7; Fig. 13). Plots of χ–elevation such

as in Fig. 13 demonstrate that there can be considerable vari-

ability in the morphology of tributaries as they respond to

adjustment in the trunk channel.

Our aim here is not to provide a comprehensive exami-

nation of the topography and tectonic evolution of the Sper-

chios Basin (see Whittaker and Walker, 2015) but to demon-

strate the impact of tectonic transience on our ability to quan-

tify the concavity index. Low concavity indices in steep,

small catchments draining across the faults may reflect the

contribution of debris flow processes to valley erosion at

smaller drainage areas, which tends to lead to lower appar-

ent concavity indices in the topography (Stock and Dietrich,

2003). Additionally, these catchments may in effect behave

as fluvial hanging valleys (Wobus et al., 2006b). Concavity

indices derived using the bootstrap points method are in all

cases equal to or lower than values derived using all χ data.

This is noteworthy because of the difference in how tribu-

taries are weighted between the two techniques. Using all χ

data, longer tributaries have more influence on the calcula-

tion of the most likely concavity index, whereas the boot-

strap points method weights each tributary equally (since the

same number of points are sampled on each tributary). Thus,

if the steepness of the channels at low drainage area is influ-

enced by debris flow processes (Stock and Dietrich, 2003),

we would expect this to be more influential on the derived

concavity index when using the bootstrap points method, re-

sulting in lower θ values.

Finally, it is recognised that transient landscapes are likely

settings for drainage network reorganisation (Willett et al.,

2014). In the absence of lithologic variability, climate gra-

dients and tectonic transience, gradients in χ in the channel

network between adjacent drainage basins are predicted to

indicate locations where drainage divides are migrating (to-

ward the catchment with higher χ ) and drainage network re-

organisation is ongoing (Willett et al., 2014). On the other

hand, numerical simulations suggest that spatial variability

in uplift is more important than temporal gradients in up-

lift rates (Whipple et al., 2016). Rivers draining across nor-

mal fault systems are often routed through the relay zones

between fault tips, where uplift rates are lowest, capturing

and rerouting much of the drainage area above the foot-

wall (e.g. Paton, 1992). In the Sperchios Basin, this has re-

sulted in strong gradients in χ across topographic divides

(Fig. 14), particularly between the large catchments draining

the landscape behind the footwall (which have likely been
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Figure 13. Profile χ–elevation plots associated with best-fit θ for basin 7, a large catchment with many tributaries draining across a relay

zone between normal fault segments (column a), and basin 10, a small, steep catchment draining directly across the footwall segment of a

normal fault with few tributaries (column b). Note that MLE values depend on both the number of nodes and the vertical offset from the

trunk channel.

gaining drainage area), and the short, steep catchments drain-

ing across the footwall (which have likely been truncated).

Our analysis of the topography in the Sperchios Basin,

whilst not exhaustive, highlights that river profiles and the re-

sulting concavities (and/or ksn) derived from topography are

not alone sufficient to interpret the history of landscape evo-

lution but must be considered alongside other observational

data and in the context of a process-based understanding of

landscape evolution and tectonics.

5 Conclusions

For over a century, geomorphologists have sought to link the

steepness of bedrock channels to erosion rates, but any at-

tempt to do so requires some form of normalisation. This

normalisation is required because in addition to topographic

gradient, the relative efficacy of incision processes is thought

to correlate with other landscape properties that are a func-

tion of drainage area, such as discharge or sediment flux.

Theory developed over the last four decades suggest that the

concavity index may be used to normalise channel gradient,

and over the last two decades many authors have compared

the steepness of channels normalised to a reference concav-

ity index derived from slope–area data (e.g. Snyder et al.,

2000; Kirby and Whipple, 2001). In recent years, an integral

method of channel analysis has also been developed (e.g.

Perron and Royden, 2013) that can complement slope–area

analysis and via alignment of tributaries provide an indepen-

dent test of the concavity index.

In this contribution, we have developed a suite of meth-

ods to quantify the most likely concavity index using both

slope–area analysis and the integral method. In addition to
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Figure 14. Spatial distribution of the χ coordinate in the chan-

nel network calculated using A0 = 1 m2; θ = 0.45. Gradients in χ

across topographic divides (black) can indicate planform disequilib-

rium such that the drainage network may be reorganising. Divides

will tend to migrate from low values of χ towards high values in the

channel network.

traditional slope–area methods, we also present methods of

analysing χ -transformed channel networks that do not re-

quire the profiles to be linear from source to outlet but con-

strain concavity-based collinearity of each tributary and the

trunk channel. In a second method, we quantify uncertainty

on the predicted value of θ using a subset of points on the

tributary network that are randomly assigned within a boot-

strap sampling framework. We also test a similar disorder

metric that is a minimum when tributaries and trunk chan-

nel are most collinear. We test these methods against ide-

alised, modelled landscapes that obey the stream power inci-

sion model but have been subject to transient uplift, as well

as spatially varying uplift and erodibility, where the concav-

ity index is imposed through the ratio of the exponents m and

n.

We find that χ -based methods are best able to reproduce

the concavity indices imposed on the model runs. We recom-

mend users calculate the most likely concavity indices us-

ing the bootstrap and disorder methods as these provide es-

timates of uncertainty, although the disorder method is the

most tightly constrained of the χ -based methods. The most

likely concavities determined from χ -based methods on tran-

sient landscapes have low uncertainty because the transient

models do not violate any assumptions underlying χ -based

methods. The spatially variable model runs, where assump-

tions of the χ method are violated, still perform better than

slope–area analysis in extracting the correct concavity index.

This gives us some confidence that in real landscapes, where

non-uniform uplift and spatially varying erodibility are likely

pervasive, calculated concavities may still reveal useful in-

formation about the incision processes. Thus, we hope fu-

ture workers can calculate reliable, reproducible concavity

indices for many small basins in regions with spatially vary-

ing uplift, climate, or lithology to test if patterns in the con-

cavity index can be linked to variations in these landscape

properties.

Code and data availability. Code used for analysis is located

at https://doi.org/10.5281/zenodo.1291889 (Mudd et al., 2018)

and https://doi.org/10.5281/zenodo.1291889 (Mudd et al., 2017).

Scripts for visualising the results can be found at https://github.
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We have also provided documentation detailing how to install and

run the software, which can be found at https://lsdtopotools.github.
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