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We provide a semiquantitative tool, derived from first-principles simulations, for answering the
question of whether certain types of defects in solid 4He support mass superflow. Although ideal crystals
of 4He are not supersolid, the gap for vacancy creation closes when applying a moderate stress. While a
homogeneous system becomes unstable at this point, the stressed core of crystalline defects (dislocations
and grain boundaries) can turn superfluid.
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The first microscopic mechanism of supersolidity was
proposed by Andreev and Lifshitz [1] and Chester [2]
arguing that a dilute gas of vacancies could lower the
energy of an ideal helium crystal by quantum mechanically
delocalizing the vacancies. At low temperature the vacan-
cies undergo Bose-Einstein condensation and give rise to a
supersolid—indeed, vacancies are required for supersolid-
ity [3]. Although the detection of frictionless mass flow
was anticipated to be straightforward, all experimental
attempts failed for over 30 years [4] until Kim and Chan
reported the observation of an unexpected drop of the
torsional oscillator period at low temperatures [5]. Since
the period is proportional to the square root of the moment
of inertia, the origin of the period shift was attributed to the
supersolid decoupling of the 4He solid mass from the
rotating walls. The basic effect is now confirmed by several
groups [6–9], but the underlying physics remains unclear,
both theoretically and experimentally [10].

First-principles calculations [11,12] rule out the possi-
bility of supersolidity in ideal equilibrium crystals of 4He.
On the experimental side, no steady flow of mass through
the solid phase was detected in several setups [13,14]. It is
now believed that the superflow detected at the melting
curve in Ref. [15] was due to liquid channels forming on
the cell walls along the lines of contact with grain bounda-
ries [10].

An interesting development is the observation of the
liquid pressure equilibration by flow through a solid in
the ‘‘UMass sandwich’’ experiment reported by Ray and
Hallock [16] away from the melting curve. The depen-
dence of flow on pressure difference was characteristic of
critical superflow and inconsistent with the flow of a vis-
cous liquid. We believe that an alternative interpretation of
the experiment by mass flow through liquid channels is
inconsistent with the absence of flow above T > 0:6 K, nor
can a few liquid channels account for the observed mass
flux value. Ray and Hallock argue that superfluidity along

dislocations or grain boundaries can quantitatively account
for their observations. In this Letter, we present semiquan-
titative arguments, based on first-principle simulations,
which relates superfluidity of defects to large local strain.

In the past, several authors have speculated about the
possibility of the stress-induced supersolidity [17–19],
especially under hydrostatic decompression since quantum
effects and vacancy delocalization are expected to increase
at lower densities. The phenomenological models missed
the attraction between vacancies which destabilizes a di-
lute homogeneous gas of vacancies. Central questions were
left unanswered: What type and strength of stress is needed
to close the insulating gap in 4He and is this stress realistic?
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FIG. 1 (color online). Extrapolation of vacancy (�V ) and in-
terstitial (�I) gaps shows that the density corresponding to
closing the gap lies in the liquid phase. The data points as a
function of density for the ideal hcp solid are taken from
Ref. [21]. By �V (�I) we denote the threshold chemical poten-
tials for doping the system with vacancies (interstitials).
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Our approach to this inherently strongly correlated prob-
lem is numerical. Feynman’s path-integral formulation of
quantum mechanics allows an exact mapping between the
4He system and a system of world lines in four-
dimensional space. The fourth dimension represents evo-
lution in imaginary time and its extent is @=kBT where @ is
Planck’s constant, kB is the Boltzmann constant, and T is
temperature. This system of world lines is simulated effi-
ciently by the worm algorithm [20]. Energy gaps for va-
cancy and interstitial excitations are readily obtained from
the exponential decay in imaginary time of the one-body
Green’s function of the system [21].

Hydrostatic decompression.—After initial attempts to
detect the supersolid state in 4He failed, it was suggested
that a metastable supersolid can form in crystals decom-
pressed below their melting density of nm � 0:0287 �A�3

(the freezing density is nf � 0:0261 �A�3). The idea turned
out to be impossible to realize experimentally, and now we
understand why it was implausible in the first place: in
Fig. 1 we show the density dependence of the vacancy and
interstitial gaps. Data are extrapolated to lower densities
n < nm using the near perfect linear density dependence.
The metastable hcp crystals remain insulating all the way
to liquid densities and even beyond. It is unlikely that the
solid structure will survive for long at liquid densities, and
neither will the possible supersolid phase at density nc �
0:025 �A�3. The hydrostatic strain required to reach this
density is about �nm=nc � 1�1=3 � 13:5%. Assuming solid
compressibility at melting [22] the required underpressure
is close to �25 bar.

The (meta)stability of the supersolid phase depends on
the sign of the effective interactions between vacancies. An

attractive vacancy gas will collapse to the lower density
liquid phase. To determine the sign and strength of the
vacancy-vacancy interaction one has to know their mass
m� and their pair correlation function ��r�. In the ideal gas
��r� is enhanced at short distances by a factor of 2 relative
to the large distance limit. Correspondingly, for repulsive
(attractive) interactions ��r� is suppressed (enhanced) rela-
tive to the ideal gas behavior. If attractive interactions are
so strong that vacancies actually form a bound state, then
��r� is enhanced exponentially, and the spatial decay of the
correlation function can be used to determine the binding
energy from ��r� / exp��2

������������
m�Eb

p
r�.

In Fig. 2 we present the vacancy dispersion relation
which is analyzed within the tight-binding approximation
of Ref. [23], obtaining tunneling amplitudes tz �
0:45�5� K and t? � 0:50�5� K and effective masses m�z �
0:45�5� and m�? � 0:42�5� in units of the bare 4He mass.
We find that the effective mass is about half that of 4He
atoms, and nearly isotropic [24]. There is a small differ-
ence with the variational calculation of Ref. [23] which
reported m�? � 0:31 in the basal plane and m�z � 0:38
along the �A direction.

In Fig. 3 we show the vacancy-vacancy correlation
function, decreasing exponentially with distance. This
proves that interactions between vacancies are attractive
and strong enough to form a bound state. From the ex-
ponential fit we estimate the binding energy to be Eb �
1:4�5� K. We conclude that the hcp structure at nc is kineti-
cally unstable against collapse into the liquid state, and a
supersolid in a decompressed crystal is not possible in the
homogeneous setup.
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FIG. 2 (color online). Vacancy dispersion relation of the low-
est band along the reciprocal lattice directions pz and px for a
system of 12� 12� 12 particles calculated at a density n �
0:0292 �A�3 and temperature T � 0:2 K. For the hcp lattice with
two atoms in the unit cell there are two hopping amplitudes, one
in the basal plane (t?), and one (tz), along the �A direction. At
low temperatures the Monte Carlo method will project out the
lowest branch of the dispersion relation.
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FIG. 3 (color online). The probability of finding two vacancies
at a distance r. The initial decay is fitted with the exponential
function ��r� / exp��2

������������
m�Eb

p
r� with Eb � 1:4�5� K. The

simulation was performed for the hcp solid with 6� 6� 6
lattice points and 214 atoms at a density n � 0:0292 �A�3 and
temperature T � 0:5 K. At large distances the probability
reaches a plateau due to finite temperature effects.
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Anisotropic diagonal traceless strain.—We now turn to
the study of crystals with nonzero diagonal components of
the strain tensor uxx; uyy, and uzz � �uxx � uyy. The phe-
nomenology of the strain-induced supersolidity in the hcp
structure [18] is based on the minimal energy density
allowed by symmetry: � � �azuzz 	 a?�uxx 	 uyy�
j j2,
where  is the superfluid order parameter and az; a? are
some constants. In the simulations we find (see Fig. 4) that
a strain uzz � �2uxx � �2uyy of about 10–12% is neces-
sary to close the gap for vacancy formation, and at higher
strain the hcp structure collapses. Such a strain corresponds
to a stress �zz � C33uzz 	 C13�uxx 	 uyy� � �C33 �

C13�uzz of approximately 50 bar, hardly achievable under
realistic experimental conditions. Our data show that,
within error bars, there is initially no dependence of the
gap on anisotropic compression. Thus, the linear coupling
to the anisotropic strain is close to zero, az � a?, and one
has to go beyond linear theory to account for the observed
effects, including the closing of the gap.

Shear stress.—By symmetry there is no linear coupling
between j j2 and shear strain characterized by the off-
diagonal components uzx; uyx; uzy. The anticipated strain

dependence of the gap is quadratic, �V � ��0�V �1� �u
2
zx 	

u2
zy�=u

2
c
. Our results in Fig. 5 allow us to estimate the

critical value of shear strain as uc � 0:15. Using measured
values of the elastic modulus C44 � 120–130 bar [25] the
corresponding critical shear stress, 2C44uc, for closing the
gap in the hcp 4He is about 35 bar.

Superfluidity along crystalline defects.—Even though
the homogeneous strain-induced supersolid phase is un-
stable, it can form locally if nonuniform strain close to
structural defects exceeds the critical value and destabil-
izes parts of the crystal. Candidates for such highly
strained superfluid defects include dislocations [17–19],

with edge dislocations attracting most attention in the
past because they produce strain linearly coupled to the
superfluid order parameter. Contrary to expectations, the
first numerical evidence for superfluidity in the dislocation
core was reported for screw dislocations oriented along the
ẑ direction [26]. These are characterized by nonzero values
of uzx which can be estimated by dividing the modulus of
the Burgers vector bz �

��������
8=3

p
a by twice the circumference

of the circle going through the atoms closest to the core,

4�a=
���
3
p

. The estimated strain [27]
��������������������
u2
xz 	 u2

yz

q
�

1=�
���
2
p
�� � 0:22 exceeds the threshold value of uc �

0:15 found above for shear stress, explaining why the
superfluid density of the screw dislocation involves nearly
all atoms closest to the nucleus.

Dislocations in solid 4He (with two atoms per unit cell)
may optimize energy by splitting the core and thus halving
the Burgers vector and the strain. We observe such splitting
in ongoing simulations [28] for the edge dislocation with
core along the ŷ direction and Burgers vector along ẑ. Here
the half-Burgers vector is

��������
2=3

p
a. The estimated strain [27]

is udef � 0:13, marginally larger than the critical strain of
uc � 0:12 in Fig. 4. We expect this type of dislocation to be
(weakly) superfluid, as is confirmed by simulations [28].
For the split-core edge dislocation along ŷ with Burgers
vector along x̂, the strain is udef � 0:08 and below the
threshold value. Direct simulations show that this type of
defect is insulating [28]. The grain boundary with low
tilting angle can be represented by the edge dislocation
sheet, and its superfluidity (or absence thereof) is consis-
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FIG. 4 (color online). Gaps for vacancy formation under an-
isotropic diagonal traceless strain. An ideal hcp solid of size 6�
8� 8 at density n � 0:0292 �A�3 is subjected to anisotropic
compression along the z direction. The volume is kept constant
by dilatation in the basal plane. The temperature is T � 0:25 K.
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FIG. 5 (color online). Gaps for vacancy formation under shear
stress. An ideal hcp solid of size Lx � 12� 12 at density n �
0:0292 �A�3 is subjected to shear stress along the z direction by
uniformly deforming the sample so that the atoms at boundary
x � aLx (with a � 3:645 �A) are shifted exactly by one lattice
period c �

��������
8=3

p
a along the c axis in order to match the periodic

boundary conditions. The strain introduced is defined by uzx ���������
2=3

p
=Lx and, for the chosen sizes Lx � 12–5, the strain ranges

from 0:07 down to 0:15. The temperature is T � 0:2 K.
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tent with our earlier observations [29]. The mechanism of
splitting the core is not effective for screw dislocations.

Summarizing, there is growing experimental evidence
for unexpected properties of solid 4He at low temperature,
including mass superflow through the solid. The observed
dependence on sample history, growth conditions, anneal-
ing, and cooling procedures indicate that crystalline de-
fects are important for our understanding of the most
quantum solid in nature. The actual structure of defects is
essentially unexplored territory, not less interesting than
the solid matrix they reside in. We determined the critical
values of the strain which are required to destabilize the
hcp structure of 4He by closing its insulating gap, and find
that these thresholds are small enough to be exceeded at the
dislocation cores and grain boundaries.
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