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How Dangerous Are Drinking Drivers?
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We present a methodology for measuring the risks posed by drinking
drivers that relies solely on readily available data on fatal crashes. The
key to our identification strategy is a hidden richness inherent in two-
car crashes. Drivers with alcohol in their blood are seven times more
likely to cause a fatal crash; legally drunk drivers pose a risk 13 times
greater than sober drivers. The externality per mile driven by a drunk
driver is at least 30 cents. At current enforcement rates the punishment
per arrest for drunk driving that internalizes this externality would
be equivalent to a fine of $8,000.

I. Introduction

Motor vehicle crashes claim over 40,000 lives a year in the United States,
approximately the same number of Americans killed over the course of
either the Korean or Vietnam wars. The death toll in motor vehicle
accidents roughly equals the combined number of suicides and homi-
cides, and motor vehicle deaths are 30 times as frequent as accidental
deaths due to firearms. Motor vehicle accidents are the leading cause
of death for Americans aged 6–27.
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Alcohol is often implicated in automobile deaths. According to police
reports, at least one driver has been drinking (although not necessarily
over the legal blood-alcohol limit) in over 30 percent of fatal crashes.
During the time periods in which alcohol usage is greatest, that pro-
portion rises to almost 60 percent.1

Without knowing the fraction of drivers on the road who have been
drinking, however, one cannot possibly draw conclusions about the rel-
ative fatal crash risk of drinking versus sober drivers, the externality
associated with drinking and driving, or the appropriate public policy
response. For instance, if 30 percent of the drivers had been drinking,
over half of all two-vehicle crashes would be expected to involve at least
one drinking driver, even if drinking drivers were no more dangerous
than sober drivers.

Past research has attempted to measure this fraction through the use
of random roadblocks and driver stops (Lehman, Wolfe, and Kay 1975;
Lund and Wolfe 1991; Hurst, Harte, and Frith 1994).2 While these stud-
ies are extremely valuable, they suffer from a number of important
limitations. First, they are costly to undertake and consequently are
performed only rarely. Second, in such experiments, drivers who have
been stopped cannot be compelled to submit to alcohol tests. In prac-
tice, roughly 10 percent of drivers refuse to participate—presumably
those most likely to have been drinking (Lund and Wolfe 1991). The
assumptions adopted for dealing with this sample selection are critical
to the interpretation of the data. Third, even if the estimates obtained
are reliable, they reflect the specific circumstances at a particular time
and place, and the extent to which the conclusions are broadly gener-
alizable is unknown.

In this paper, we adopt a radically different strategy for estimating
the fraction of drinking drivers and the extent to which their likelihood
of a fatal crash is elevated. Specifically, we rely exclusively on data from
fatal crashes. A priori, it would seem that such an exercise, even if
feasible, would require an extremely restrictive set of assumptions and
the imposition of an arbitrary functional form. Separately identifying
the fraction of drinking drivers on the road and their relative risk of a
fatal crash using only the fraction of drinking drivers in fatal crashes is
ostensibly equivalent, for instance, to determining the relative free-throw

1 Because many fatal crashes involve more than one vehicle, the actual fraction of drink-
ing drivers involved in these crashes is lower than the values cited above. Overall, roughly
30 percent of drivers in fatal crashes have been drinking, with that percentage rising to
50 percent during peak times of alcohol usage.

2 There are also survey data asking drivers whether they have driven when they have
“had too much to drink” (Liu et al. 1997). In addition to any question about the accuracy
of the responses given, these surveys have not attempted to ask drivers to report the
percentage of miles driven with and without the influence of alcohol. Without that number,
accurate estimates of the elevated risk of drinking drivers cannot be computed.
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shooting ability of two basketball players on the basis of only the number
of free throws successfully completed by each. Without knowledge of
how many free-throw attempts each player had, such an exercise would
appear futile. In the realm of economics, our task is equivalent to sep-
arately identifying per capita income and population on the basis of
only aggregate income data. Despite the apparent difficulty of this ex-
ercise, the assumptions required for identification of the model are in
actuality quite natural and do not even require the imposition of ar-
bitrary distributional assumptions.

The ability to identify the parameters arises from a hidden richness
in the data due to the fact that crashes often involve multiple drivers.
For two-car crashes, the relative frequency of accidents involving two
drinking drivers, two sober drivers, or one of each provides extremely
useful information. Indeed, given the set of assumptions outlined in
Section II, this information alone is sufficient to separately identify both
the relative likelihood of causing a fatal crash on the part of drinking
and sober drivers and the fraction of drivers on the road who have been
drinking. The intuition underlying the identification of the model is
quite simple. The number of two-car fatal crash opportunities is dictated
by the binomial distribution. Consequently, the number of fatal two-car
crash opportunities involving two drinking (sober) drivers is propor-
tional to the square of the number of drinking (sober) drivers on the
road. The number of fatal crash opportunities involving exactly one
drinking and one sober driver is linearly related to the number of both
drinking and sober drivers. Identification of the model arises from these
intrinsic nonlinearities. These nonlinearities are not artificially imposed
on the problem via arbitrary functional form assumptions, but rather
are the immediate implication of the binomial distribution, which relies
only on the assumptions to be stated in Section II concerning inde-
pendence of crashes and equal mixing of the different types on the
road.

Applying the model to data on fatal accidents in the United States
over the period 1983–93, we obtain a number of interesting results.
Drivers identified by police as having been drinking (but not necessarily
legally drunk) are at least seven times more likely to cause a fatal crash
than drivers with no reported alcohol involvement. Drivers above the
blood-alcohol limit of 0.10 are at least 13 times more likely to be the
cause of fatal crashes. When we apply the model to other observable
traits, males, young drivers, and those with bad previous driving records
are also more likely to cause crashes. Drinking, however, is far more
important than these other characteristics, and much of the apparent
impact of gender and past driving record actually reflects differential
propensities to drink and drive across groups. The exception is young
drivers: sober, young drivers are almost three times as likely to cause a
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fatal crash as other sober drivers. The peak hours for drinking and
driving are between 1:00 a.m. and 3:00 a.m., when as many as 25 percent
of drivers are estimated to have been drinking. The proportion of drink-
ing drivers appears to have fallen by about one-quarter over the course
of our sample. The relative fatal crash risk of drinking drivers, in con-
trast, appears to have been stable.

The great majority of alcohol-related driving fatalities occur to the
drinking drivers themselves and their passengers. Since these individuals
are likely to have willingly accepted the risks associated with their actions,
the role for public policy in preventing these deaths is unclear. Ac-
cording to our estimates, roughly 3,000 other people are killed each
year by drinking drivers. When standard valuations of a life are used,
the externality due to drinking drivers’ killing innocent people is 15
cents per mile driven. For legally drunk drivers, we estimate the exter-
nality at 30 cents per mile driven. At current arrest rates for drunk
driving, the Pigouvian tax that internalizes that externality is $8,000 per
arrest.

We also use our estimates of the fraction of drivers who are drinking
and the risk that they pose to analyze the impact of various public
policies. A separate literature examines the impact of public policies on
fatal car crashes (Cook and Tauchen 1982; Asch and Levy 1987; Saffer
and Grossman 1987; Homel 1990; Chaloupka, Saffer, and Grossman
1993; Grossman et al. 1993; Ruhm 1996). In contrast to previous
reduced-form approaches to measuring the impact of alcohol policies,
we are able to differentiate between very different underlying behavioral
responses. For instance, we find some evidence that higher beer taxes
and stiff punishments for first-time offenders reduce the number of
drinking drivers, but no evidence that such policies affect the level of
care that drinking drivers exhibit on the roads. On the other hand,
harsh penalties for third-time offenders and large numbers of police
on the road have little impact on the number of drinking drivers, but
drinkers who do drive tend to pose a lower risk. This latter result may
occur either because a few chronic drunk drivers are deterred or because
the drunks who do drive are more cautious on the roads.

The remainder of the paper is structured as follows. Section II derives
the basic model and discusses the sensitivity of the results to alternative
modeling assumptions. Section III describes and summarizes the data
used. Section IV presents the empirical estimates of the relative crash
risk and the number of drinking and sober drivers, as well as a number
of extensions to the basic model. Section V computes the externality
associated with drunk driving and analyzes the relationship between
public policies, the number of drinking drivers, and the risks that they
pose. Section VI presents conclusions.
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II. A Model of Fatal Crashes

In this section, we present a simple model of fatal accidents, demon-
strating how identification of the underlying structural parameters (the
fraction of drivers on the road who have been drinking and the relative
likelihood of causing a fatal crash by drinking and sober drivers) nat-
urally emerges from the model. A number of features of the model are
worth noting. First, identification relies only on the distribution of
crashes in a particular geographic area over a given period of time.
Consequently, the model does not necessitate comparisons across times
and places that may differ in systematic yet unobservable ways, leading
to biased estimates. Second, although the model is identified off non-
linearities, the structural equations that will be estimated follow directly
from the restrictions dictated by nature in the form of the binomial
distribution. Third, the approach we outline provides a previously un-
attainable flexibility in measuring drinking and driving. The solution
to the model depends only on tallies of fatal crashes, data that are already
collected and widely available. Thus parameter estimates can be ob-
tained almost without cost for any geographic area or time period of
interest to the researcher, for example, the Chicago metropolitan area,
on weekends between 10:00 p.m. and 2:00 a.m. (although standard errors
increase as the number of fatal crashes on which the estimate is based
shrinks).

Assumptions of the Model

We begin by outlining the five assumptions underlying the model. The
first assumption is as follows.

Assumption 1. There are two driver types, D and S.
The terms D and S correspond to drinking and sober drivers, re-

spectively, although other categories of driver types could also be used.
Restricting the analysis to two types is done primarily to ease exposition
of the model, which readily generalizes to multiple types. In some of
our empirical estimation we allow four types. In theory, any number of
types could be incorporated if enough data existed. As we demonstrate
later, the parameter estimates from a model assuming exactly two types
have a straightforward interpretation when there is heterogeneity in
driver risk within these two categories of drivers.

The second assumption of the model pertains to “equal mixing” of
drinking and sober drivers on the roads. By equal mixing, we mean two
things: (1) the number of interactions that a driver has with other cars
is independent of the driver’s type, and (2) a driver’s type does not
affect the composition of the driver types with which he or she interacts.
The term “interaction” is used here to mean a two-car fatal crash op-
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portunity in which two cars are close enough that a mistake by one of
the drivers could cause a fatal accident.3 A formal statement of this
second assumption requires some notation. Let the total number of
drivers be Ntotal, and let the total number of drivers of type i be Ni. By
assumption 1, there are only two types, Define I to beN � N p N .D S total

an indicator variable equal to one if two cars interact and equal to zero
otherwise. Two drivers are denoted as having types i and j.

Assumption 2. (i) (ii)Pr (iFI p 1) p N /(N � N ). Pr (i, jFI p 1) pi D S

Pr (iFI p 1) Pr ( jFI p 1).
Assumption 2 is essentially a homogeneity requirement. Over a small

enough geographic range and time period, assumption 2 is certainly
reasonable. For example, on a particular stretch of highway over a 15-
minute period, there may be little reason to think that drinking and
sober drivers are not equally mixed. As the unit of observation expands
with respect to either space or time, this homogeneity condition clearly
becomes suspect. We devote a great deal of attention to possible vio-
lations of assumption 2 and their impact on the results in the empirical
section of the paper.

The third assumption of the model is as follows.
Assumption 3. A fatal car crash results from a single driver’s error.
Assumption 3 rules out the possibility that each of the drivers shares

some of the blame for a crash. As discussed later in this section, while
assumption 3 is critical to the identification of the model, it is possible
to sign the direction of bias introduced by assumption 3 if, in fact, both
drivers contribute to fatal crashes.

The fourth modeling assumption is as follows.
Assumption 4. The composition of driver types in one fatal crash is

independent of the composition of driver types in other fatal crashes.
This assumption allows us to move from individual crash probabilities

to probabilities involving multiple crashes. Given the level of aggregation
used in the empirical analysis (e.g., weekend nights between the hours
of midnight and 1:00 a.m. in a given state and year), there is little reason
that this assumption should fail, although for very localized observations
(a short stretch of road over a 15-minute time period), it may be less
applicable.

The final assumption required to solve the model is that drinking
(weakly) increases the likelihood that a driver makes an error resulting
in a fatal two-car crash. Denote the probability that a driver of type i
makes a mistake that causes a fatal two-car crash as vi.

3 Of course, there are different degrees of interactions between vehicles. Two vehicles
can meet at an intersection, pass each other on a two-lane highway, or pass one another
on a residential street. We abstract from this complexity in our model, but one could
imagine treating the degree of interaction between vehicles as a continuous rather than
a discrete variable.
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Assumption 5. v ≥ v .D S

The existing evidence concerning the relative crash risk of drinking
and sober drivers overwhelmingly supports this assumption (e.g., Lin-
noila and Mattila 1973; Borkenstein et al. 1974; Dunbar, Penttila, and
Pikkarainen 1987; Zador 1991).

Fatal Crash Data and the Parameters of Interest

Having laid out the assumptions of the model, we derive the link be-
tween fatal crash data and the parameters of interest in three steps.
First, we derive the formulas corresponding to the likelihood that two
cars will interact with one another. Second, we determine the likelihood
of a crash conditional on both the drivers’ types and an interaction that
takes place between two cars. We then back out the probability that a
given pair of driver types will be involved conditional on the occurrence
of a fatal crash. Third, we derive the likelihood function and discuss
the identification issues involved in its estimation.

Assumption 2 gives the joint distribution for a pair of driver types,
conditional on an interaction between two drivers:

N Ni j
Pr (i, jFI p 1) p , (1)2(N � N )D S

where i and j are drivers of a particular type, that is, either drinking or
sober. So, for example, given that an interaction occurs between two
cars, the probability that both are sober drivers is In-2 2(N )/(N � N ) .S D S

teractions between drivers in this model, as reflected in equation (1),
are logically equivalent to randomly drawing balls labeled either S or D
out of an urn.

Define A to be an indicator variable equal to one if there is a fatal
accident and equal to zero otherwise. Assumption 3 implies that the
conditional probability of a fatal two-car crash given that two drivers of
types i and j pass on the road is

Pr (A p 1FI p 1, i, j) p v � v � v v ≈ v � v . (2)i j i j i j

The likelihood of a fatal crash is the sum of the probabilities that either
driver makes a fatal error minus the probability that both drivers make
a mistake. Given that the chance that either driver makes a fatal mistake
is extremely small, the chance that both drivers make an error is vanish-
ingly small and can be ignored.4 So, for example, given that two sober

4 There are roughly 13,000 fatal two-car crashes in the United States annually. The total
number of vehicle miles driven is approximately 2 trillion. If every car interacted with an
average of five other cars per mile, then the implied vi is on the order of 10 �9 and the
interaction term is on the order of 10 �18.
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drivers interact, the probability of a fatal accident is 2vS. More generally,
we could allow for heterogeneity in driver risk within each driver type,
as discussed in the extensions to the basic model. In that case, vi and
vj in equation (2) represent the mean driver risks for the population of
drivers of types i and j on the road.

When equations (1) and (2) are multiplied, the joint probability of
driver types and a fatal crash conditional on an interaction between two
drivers is

N N (v � v)i j i j
Pr (i, j, A p 1FI p 1) p . (3)2(N � N )D S

In words, given that two random drivers interact, the probability that a
fatal crash occurs and that the drivers involved are of the specified types
is simply equal to the likelihood that two drivers passing on the road
are of the specified types multiplied by the probability that a fatal crash
occurs when these drivers interact.

The key relationship that we seek is the probability of driver types
conditional on the occurrence of a fatal accident rather than on an
interaction. That value can be obtained from equation (3):

Pr (i, j, A p 1FI p 1)
Pr (i, jFA p 1) p

Pr (A p 1FI p 1)

N N (v � v)i j i j
p . (4)2 22[v (N ) � (v � v )N N � v (N ) ]D D D S D S S S

Although the expression in equation (4) looks somewhat complicated,
it is in fact quite straightforward. For each combination of driver types,
the numerator is proportional to the number of fatal crashes involving
those two types. The denominator is a scaling factor assuring that the
probabilities sum to one.

Let Pij represent the probability that the drivers are of types i and j
given that a fatal crash occurs. We can explicitly state the values of Pij

by simply substituting for i and j in equation (4):

P p Pr (i p D, j p DFA p 1)DD

2v (N )D D
p , (5)2 2v (N ) � (v � v )N N � v (N )D D D S D S S S

P p Pr (i p D, j p SFA p 1) � Pr (i p S, j p DFA p 1)DS

(v � v )N ND S D S
p , (6)2 2v (N ) � (v � v )N N � v (N )D D D S D S S S
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and

P p Pr (i p S, j p SFA p 1)SS

2v (N )S S
p . (7)2 2v (N ) � (v � v )N N � v (N )D D D S D S S S

Note that the ordering of the driver types does not matter. Consequently,
in equation (6), the probability of a mixed drinking-sober crash is the
sum of the probability that i is sober and j is drinking plus the probability
that j is sober and i is drinking.

Examination of equations (5)–(7) reveals that there are only three
equations but four unknown parameters (vD, vS, ND, and NS). Conse-
quently, all four parameters cannot be separately identified. Closer ex-
amination of equations (5)–(7) reveals that only the ratios of the pa-
rameters could possibly be identified. Therefore, let andv p v /vD S

The term v is the relative likelihood that a drinking driverN p N /N .D S

will cause a fatal two-car crash compared to a sober driver, and N is the
ratio of sober to drinking drivers on the road at a particular place and
time.5 Expressing equations (5)–(7) in terms of v and N yields

2vN
P (v, NFA) p , (8)DD 2vN � (v � 1)N � 1

(v � 1)N
P (v, NFA) p , (9)DS 2vN � (v � 1)N � 1

and

1
P (v, NFA) p . (10)SS 2vN � (v � 1)N � 1

The final step is deriving the likelihood function. The values in equa-
tions (8)–(10) provide the likelihoods of observing the various com-
binations of driver types conditional on the occurrence of a crash. From
assumption 4, which provides independence across fatal crashes, and
given the total number of fatal crashes, the joint distribution of driver
types involved in fatal accidents is given by the multinomial distribution.
Define Aij as the number of fatal crashes involving one driver of type i
and one driver of type j and Atotal as the total number of fatal crashes.
Then

5 Since we have three observable pieces of data (the number of drinking-drinking,
drinking-sober, and sober-sober crashes), one might expect that we might be able to do
better than to identify only two parameters, the ratios v and N. In fact, although there
are three equations, the three equations are linearly dependent (i.e., the equations sum
to one), so in practice only two parameters can be identified.
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Pr (A , A , A FA ) pDD DS SS total

(A � A � A )!DD DS SS A A ADD DS SS(P ) (P ) (P ) . (11)DD DS SSA !A !A !DD DS SS

Substituting the solutions to PDD, PDS, and PSS into equation (11) yields
the likelihood function for the model. In the empirical work that follows,
we perform maximum likelihood estimation of equations (8)–(11), di-
rectly linking our empirical estimation strategy to the model. Note that
maximization of equation (11) with respect to PDD, PDS, and PSS yields
the following intuitive result:

A A ADD DS SSˆ ˆ ˆP p , P p , P p . (12)DD DS SSA A Atotal total total

In other words, the maximum likelihood estimate of the fraction of
crashes involving two drinking drivers is simply the observed fraction
of such crashes in the data.

In order to solve the model for v, we take the following ratio, in which
N, the ratio of drinking to sober drivers, cancels out:

2 2 2 2ˆ(A ) (P ) (v � 1) N 1DS DS
p p p 2 � v � . (13)2ˆ ˆA A P P vN vDD SS DD SS

It is worth pausing here to note the significance of equation (13), which
says that it is possible to determine the relative crash risk of drinking
and sober drivers (v) solely on the basis of the observed distribution of
fatal crashes. The key to this result is the cancellation of the N term.
The N disappears from equation (13) because, by the binomial distri-
bution, the squared number of interactions between drinking and sober
drivers is in fixed proportion to the product of drinking-drinking and
sober-sober interactions. Therefore, information on the relative number
of drinking and sober drivers on the road is not needed to identify the
model.

Defining the value in the left-hand side of equation (13) as R,

2(A )DS
R { , (14)

A ADD SS

then rearranging equation (13) and multiplying through both sides by
v yields an equation that is quadratic in v:

2v � (2 � R)v � 1 p 0, (15)

the solutions to which are
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2�(R � 2) � R � 4R

v p . (16)
2

Ignore for the time being values of which do not yield a real-R ! 4,
valued solution for v. When the only solution is a limitingR p 4, v p 1,
case in which drinking drivers pose no greater risk of causing two-car
crashes than sober drivers. Note that for the distribution of fatalR p 4,
crashes precisely matches the distribution of crash opportunities as given
by the binomial distribution. This occurs only when the crash likelihoods
are equal. For all there are two real solutions: one with andR 1 4, v 1 1
the other with By assumption 5, which requires drinking driversv ! 1.
to be at least as dangerous as sober drivers, we select the first of those
two solutions. When a solution for v is obtained, it is straightforward to
back out the relative number of drinking and sober drivers. Standard
errors for both v and N are readily attainable from the Hessian of the
likelihood function.6

Now consider the case in which A non-real-valued solution toR ! 4.
equation (16) emerges. Values of are not consistent with the bi-R ! 4
nomial distribution; that is, there is no combination of v and N that
can generate this outcome. From equation (14), low values of R result
when there are too few drinking-sober crashes. Such values of R may
arise in practice either because of small numbers of observed crashes
or because of a violation of the equal mixing assumption, as will be
discussed below. It is important to note, however, that observed values
of do not invalidate the maximum likelihood estimation. WhenR ! 4

the maximum likelihood estimate of v is one and the maximumR ! 4,
likelihood estimate of N is the observed ratio of sober and drinking
drivers involved in two-car crashes. Note that regardless of the value of
R, standard errors for both v and N can be computed.

Figure 1 provides a sense of how the estimates of v and N vary with
the distribution of two-car crashes. The y-axis in figure 1 reflects v, the
relative crash likelihood of drinking drivers. The x-axis is the number
of mixed drinking-sober crashes (ADS). The two curves plotted in the

6 In particular, the first-order condition from maximum likelihood estimation of eq.
(11) provides a solution for N in terms of v:

v 1
vN p A � A A � A .ZDS DD DS SS( ) ( )[ ] [ ]1 � v 1 � v

From the definitions of N and v, the left-hand side of this equation is ThisN v /N v .D D S S

ratio is the number of two-car crashes caused by drinking drivers relative to the number
caused by sober drivers. The right-hand side of the equation above expresses that ratio
solely in terms of v and the observed distribution of crashes. Drinking drivers cause

of the crashes between drinking and sober drivers and all crashes involving twov/(1 � v)
drinking drivers; sober drivers cause of the crashes between drinking and sober1/(1 � v)
drivers and all crashes involving two sober drivers.
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Fig. 1.—Estimated relative risk of drinking drivers as a function of observed crash mix.
Solid line: ADDp20, ASSp80; dotted line: ADDp50, ASSp50.

figure correspond to alternative numbers of drinking-drinking and
sober-sober crashes. The top line is the case in which ADD and ASS (the
number of fatal crashes involving two drinking and two sober drivers)
are 20 and 80, respectively. In the bottom line, both ADD and ASS are
held constant at 50. When the number of drinking-drinking and sober-
sober crashes is held constant, the estimated v increases roughly in
proportion to the square of the number of crashes involving one sober
and one drinking driver, although over the relevant range the relation-
ship appears almost linear since the constant of proportionality

is so small. The flat portions of the curves correspond to(1/A A )DD SS

values of described in the preceding paragraph. While the shapesR ! 4
of the curves are similar, note that for a given number of mixed drinking-
sober crashes, the implied v is much higher when the number of drink-
ing-drinking crashes is lower. The intuition for this result is that when
drinking-sober crashes are held constant, a low number of drinking-
drinking crashes implies fewer drinking drivers on the road since the
number of drinking-drinking crashes is a function of the square of the
number of drinking drivers. In order for a small number of drinking
drivers to crash into sober drivers so frequently, the drinking drivers
must have a high risk of causing a crash.
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Incorporating One-Car Crashes

The model above is derived without reference to one-car crashes. In-
tuition might suggest that there would be useful information provided
by such crashes. In fact, that intuition turns out to be correct only to a
limited degree. Since one-car crashes lack the interactive nature of two-
car crashes, which provides identification of the model, there is relatively
little to be gained by adding one-car crashes to the model.

Let lD and lS denote the probabilities that drinking and sober drivers
make an error resulting in a fatal one-car crash, paralleling the vD and
vS terms in the two-car case. Let C be an indicator for the presence of
a one-car crash; that is, if a one-car crash occurs and equals zeroC p 1
otherwise. Let and denote the respective probabilities that aQ QD S

drinking or sober driver is involved in a given one-car crash. Then

l ND D
Q p Pr (i p DFC p 1) p (17)D

l N � l ND D S S

and

l NS S
Q p Pr (i p SFC p 1) p . (18)S

l N � l ND D S S

Defining we can rewrite the ratio of equations (17) andl p l /l ,D S

(18) as

Q D
p lN. (19)

Q S

Thus, in contrast to the two-car case, it is impossible to separately identify
the parameters of the model using only one-car crashes. Algebraically,
adding equation (19) to the two-car crash model provides one additional
equation and one extra unknown. Since N is identified from two-car
crashes, it is possible nonetheless to back out estimates of l. Note,
however, that it is the identification coming from the two-car crashes
that is critical to obtaining that parameter, and adding the one-car
crashes does not affect the solution to the two-car case.7

Relaxing the Assumptions

Before we proceed to the data, it is worth considering the way in which
each of the assumptions made influences the solution to the model,

7 In the empirical estimation, we include one-car crashes for two reasons. First, we are
interested in estimating l, even if identification hinges on two-car crashes. Second, in our
empirical estimates, we shall generally impose equality restrictions across v for different
geographic areas or time periods. Once such restrictions are imposed, one-car crashes
are useful in estimating the parameters of the model.
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possible alternative assumptions, as well as the likely direction of bias
in the estimation induced by violation of the assumptions.

The assumption of exactly two types is relatively innocuous. The in-
troduction of more types allows for greater differentiation of estimates
for particular subgroups of the population (e.g., drinking teenagers or
sober motorists with clean driving records). From a practical perspective,
however, the number of two-car crashes is not great enough to support
more than a small number of categories. In the presence of hetero-
geneity within categories (i.e., there is a distribution of driving abilities
among drinking and sober drivers), the estimates obtained from the
two-type model are nonetheless readily interpretable. The estimates ob-
tained are weighted averages across drivers in the category, with weights
determined by the number of drivers of each ability on the road.8 This
is a surprising and useful result. Given that we observe drivers only in
fatal crashes, intuition might suggest that the weights would be based
on the distribution of abilities among crashers rather than drivers as a
whole. If our coefficients reflected only the abilities of those in crashes,
then the results would be much less useful for public policy since the
distribution of crashers is likely to be very different from the underlying
distribution of drivers.9

The second assumption, equal mixing/homogeneity on the road, is
much more critical to the results. This assumption will likely be violated
through spatial or temporal clumping of similar types of drivers. For
instance, if the unit of observation were all crashes in the United States
in a given year, then it is clear that drinking drivers would not be ran-
domly distributed, but rather concentrated during nighttime hours and
especially weekend nights. Even within a smaller unit of analysis (e.g.,
weekends between midnight and 1:00 a.m. in a particular state and year)
there may be clumping. Roads near bars may contain a higher fraction
of drinking drivers, or the proportion of drinking drivers may rise

8 Suppose that driver types D and S have distributions of driver risk given by andf (v)D

Then the probability of a fatal accident given only the types i and j of two interactingf (v).S

drivers is

Pr (A p 1Fi, j, I p 1) p (v � v � v v )f (v , v )dv dv� i j i j i,j i j i j

p E(v ) � E(v ) � E(v v ) ≈ E(v ) � E(v ).i j i j i j

Thus with heterogeneity we can simply reinterpret v as the mean driver risk for the given
types.

9 In the presence of heterogeneity, our simple model can do no better than to identify
the ratio of the means of the distributions. Identification of higher moments of the
distributions would require imposing arbitrary parametric assumptions.
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sharply immediately following bar closings.10 Such a nonrandom distri-
bution of drivers will result in a greater number of drinking-drinking
and sober-sober interactions than predicted by the binomial distribu-
tion, with correspondingly fewer drinking-sober interactions. From
equation (14), nonrandom mixing will lead to smaller values of R and
consequently a downwardly biased estimate of v, which is an increasing
function of R. Conversely, N, the ratio of drinking to sober drivers, will
be biased upward. Violations of this assumption are likely to be less
extreme as the geographic and temporal units of analysis shrink. In fact,
that is precisely the pattern revealed by the empirical estimates in Sec-
tion IV.

The third assumption requires that one driver be wholly at fault in a
fatal crash, rather than that both drivers share some fraction of the
blame. A simple alternative model would allow both drivers to play a
role in the crash: if one driver makes a fatal error, the second driver
has an opportunity to take an action to avoid the crash. Let m denote
the relative inability of drinking drivers to avoid a fatal crash that another
driver initiates, with It is straightforward to demonstrate that thism ≥ 1.
more general model yields a solution parallelingR p 2 � (v/m) � (m/v),
equation (13), but with replacing v. In our basic model, m is implicitlyv/m
set equal to one because there is no scope for crash avoidance. If in
actuality drinking drivers are less proficient in avoiding crashes initiated
by the other driver, then the parameter identified in our model is ac-
tually Allowing for sober drivers to be more skilled in avertingv/m ! v.
potential fatal crashes yields a larger estimated value of v for any ob-
served distribution of crashes, implying that the estimates for v obtained
in this paper are lower bounds on the true value of how dangerous
drinking drivers are.11

10 It is at least theoretically possible that this assumption could be violated in the opposite
way; i.e., drinking drivers would be less likely to interact with other drinking drivers. For
instance, if all drinking drivers are traveling north on a two-lane highway and all sober
drivers are traveling south, then drinking and sober drivers will disproportionately interact
with the opposite type.

11 An even more general model would also allow the seriousness of mistakes made by
drivers to vary by type. Let capture the additional difficulty of avoiding a mistaked 1 1
made by a drinking driver. The parameters that we identify in two-car and one-car crashes
in this expanded model are, respectively, and The term is the seriousness-vd/m l/m. vd
weighted ratio of drinking to sober driver mistakes—precisely what we are attempting to
capture in the model; thus this further generalization does not pose any problems to our
estimation. It is worth noting that d does not appear in the solution for one-car crashes.
If d were large, one would expect to see big differences in the empirical estimates for
one-car and two-car crashes. In practice, the two sets of estimates are close, perhaps
suggesting that One could also imagine other possible models of fatal crashes. Ford ≈ 1.
instance, the probability of a crash (conditional on the occurrence of an interaction)
might be modeled as In other words, each driver has to make a mistake in order forv v .i j

a crash to occur. In such a model, the solution to eq. (13) is for all observed crashR p 4
distributions (a result strongly rejected by the data), and only the composite parameter
vN is identified.
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The final two assumptions of the model, independence of crashes
and the higher risk that drinking drivers pose, are unlikely to impose
any important biases on the empirical estimates. The existing evidence
overwhelmingly confirms the assumption that drinking drivers have
greater likelihoods of involvement in fatal crashes. Given the unit of
analysis of the paper, the independence assumption appears quite rea-
sonable. Even if this assumption were to fail (i.e., the presence or ab-
sence of one crash influences other potential crashes), there is no reason
to expect that violation of this assumption should systematically bias the
estimates in one direction. For bias to occur, the presence of one crash
has to differentially affect drinking-sober crashes relative to drinking-
drinking or sober-sober crashes.

III. Data on Fatal Crashes

The primary source of data on fatal motor vehicle accidents in the
United States is the Fatality Analysis Reporting System (FARS) admin-
istered by the National Highway Transportation Safety Administration.
Local police departments are required by federal law to submit detailed
information on each automobile crash involving a fatality. Compliance
with this law was uneven until 1983; thus we restrict the analysis of the
paper to the years 1983–93. Because our primary interest is the impact
of alcohol on driver risk, we limit our sample to those hours (8:00 p.m.–
5:00 a.m.) in which drinking and driving is most common.12 Our sample
includes over 100,000 one-car crashes and over 40,000 two-car crashes.
During these hours, almost 60 percent of drivers involved in fatal crashes
have been drinking, compared to less than 20 percent of drivers at all
other times of the day. Crashes involving three or more drivers, which
represent less than 6 percent of fatal crashes, are dropped from the
sample. All crashes from a handful of state-year pairs with obvious data
problems are also eliminated.

Among the variables collected in each fatal crash are information on
the time and location of the accident and whether the drivers involved
were under the influence of alcohol. In extensions to the basic model,
we also utilize information on the age, sex, and past driving record of
those involved in fatal crashes. Therefore, we exclude from the sample
any crash in which one or more of the drivers are missing information
about the time or location of the accident, police-reported drinking
status, age, sex, or past driving record. Combined, these missing data
lead to the exclusion of roughly 8 percent of all crashes.

12 Also the lack of drinking-drinking crashes during the daytime period makes estimation
difficult. During daytime hours, there are typically only a total of about 30 two-car crashes
a year in the entire United States in which both drivers have been drinking.
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Two measures of alcohol involvement are included in FARS. The first
of these is the police officer’s evaluation of whether or not a driver had
been drinking. The officer’s assessment may be based on formal breath,
blood, or urine test results or other available evidence such as a driver’s
behavior (for those drivers not killed in the crash) or alcohol on the
driver’s breath. The primary advantage of this measure is that it is avail-
able for virtually every driver involved in a fatal crash. There are at least
two drawbacks of this variable. First, it does not differentiate between
varying levels of alcohol involvement. In particular, no distinction is
made between those drivers who are legally drunk and those who have
been drinking but are below the legal limit. Second, the measure is
often subjective and relies on the discretion of the police at the scene
of the accident.

In spite of these shortcomings, the police officer’s assessment of
whether or not a driver has been drinking serves as our primary measure
of alcohol involvement. As a consequence, the coefficients we obtain
with respect to the elevated risk associated with drinking and driving
are based on the entire population of drinking drivers, not just the
subgroup of legally drunk drivers. As a check on the results obtained,
we also examine a second measure of alcohol involvement, which is
measured blood-alcohol content (BAC). The major problem with this
variable is the frequent failure to conduct such tests, despite federal law
mandating that all drivers involved in fatal crashes be tested. Evidence
suggests that the likelihood of BAC testing is an increasing function of
actual blood-alcohol levels, suggesting that this measure will be most
flawed for low-BAC motorists. Thus, for the purpose of analysis, we
compare two groups of drivers: (1) those with measured BAC greater
than 0.10 percent (the legal limit in most states for most of the sample
period) and (2) those who test free of alcohol or who are not tested
but whom police describe as not having been drinking. We eliminate
those who test positive for alcohol but are below the 0.10 threshold.
Furthermore, because sample selection in the pool of drivers who are
tested for BAC is a major concern when this measure is used, we exclude
all crashes occurring in states that do not test at least 95 percent of
those judged to have been drinking by the police in our sample in that
year (regardless of whether the motorist in question was tested). This
requirement excludes more than 80 percent of the fatal crashes in the
sample.

The presence of classification error in each of our measures of drink-
ing, like the violations of the model’s assumptions in the previous sec-
tion, will almost certainly lead to an underestimate of the relative fatal
crash risk of drinking drivers, making our estimates conservative. This
point is discussed in detail in the next section.

The time series of fatalities in all motor vehicle crashes rises from an
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TABLE 1
Summary Statistics for Fatal Crashes in the Sample:
One- and Two-Car Crashes between 8:00 p.m. and 5:00

a.m., 1983–93

Variable Mean

Total number of fatal one-car crashes 103,077
Total number of fatal two-car crashes 39,470
Percentage of all drivers in fatal crashes:

Reported to be drinking by police 53.4
Male 82.2
Under age 25 44.0
Bad previous driving record 37.2
Reported to be drinking and male 45.2
Reported to be drinking and under age

25 24.6
Reported to be drinking and bad previ-

ous driving record 23.5
Percentage of fatal one-car crashes with:

One drinking driver 63.0
One sober driver 37.0

Percentage of fatal two-car crashes with:
Two drinking drivers 14.2
One drinking, one sober driver 53.2
Two sober drivers 32.6

Percentage of fatal one-car crashes in re-
stricted sample with high BAC re-
porting with:

One legally drunk driver 55.9
One sober driver 44.1

Percentage of fatal two-car crashes in re-
stricted sample with high BAC re-
porting with:

Two legally drunk drivers 6.2
One legally drunk, one sober driver 47.8
Two sober drivers 46.0

Note—Means are based on one- and two-car fatal crashes in FARS data for the
years 1983–93 between the hours of 8:00 p.m. and 5:00 a.m. Drinking status is
based on the police classification of drivers as drinking and includes drivers who
were not legally drunk, except in the bottom portion of the table, where the
sample is restricted to crashes in state-year pairs in which at least 95 percent of
the drivers whom police report to have been drinking were given blood-alcohol
tests. A bad driving record is defined as two or more minor blemishes (a moving
violation or previous accident) or one or more major blemishes (previous DUI
conviction, license suspension, or license revocation) in the last five years. Values
in the table are based on the same data that are used in estimation.

initial value of 42,589 in 1983 to a peak of just over 47,000 in 1988 and
then declines to roughly 40,000 by 1993. The percentage of deaths
occurring in crashes with at least one drinking driver steadily falls over
the sample from 55.5 percent in the beginning to 43.5 percent in the
end.

Table 1 presents means for the data in our sample.13 Slightly more

13 Because the degree of aggregation in our analysis varies from hour#year to
hour#year#state#weekend, standard deviations, minimums, and maximums are not
particularly meaningful.
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than half of all drivers involved in fatal crashes are reported to be
drinking by police. Drivers in fatal crashes are mostly male (82.2 per-
cent), somewhat less than half are under the age of 25, and about one-
third qualify as having bad previous driving records under our defini-
tion: two or more minor blemishes in the last three years (any
combination of moving violations and reported accidents) or at least
one major blemish (conviction for driving while intoxicated or license
suspension/revocation). The fraction of drivers who are both male and
drinking (45.2 percent) is higher than would be expected on the basis
of the marginal distributions if gender and drinking were uncorrelated
(i.e., ). This implies that males involved in fatal.534 # .822 p .439
crashes are more likely to have been drinking than females. Young
drivers and those with bad previous driving records are also more likely
to have been drinking.

In one-car crashes, 63 percent of drivers are classified as drinking by
the police. Of two-car crashes, 14.2 percent involve two drinking drivers,
53.2 percent have exactly one drinking driver, and in the remaining
32.6 percent of cases, neither driver was drinking. When we restrict our
sample to states with good BAC reporting practices, 55.9 percent of
drivers in one-car fatal crashes have a BAC over 0.10. In two-car crashes,
there are two drivers with BACs over the legal limit 6.2 percent of the
time and exactly one driver over the limit in 47.8 percent of the crashes.

IV. Estimation of the Model

Table 2 presents maximum likelihood estimates of equation (11), fo-
cusing on how the relative fatal crash risks for drinking drivers in two-
car crashes (v) and one-car crashes (l) are affected as we increasingly
disaggregate the data. Each column represents a different specification,
with the distinction between columns being the unit of observation over
which “equal mixing” of drivers is assumed. Column 1 is the most re-
strictive, imposing equal mixing of all drivers in all years, locations, and
hours of the day. Equal mixing is unlikely to hold at such a high level
of aggregation. This restriction is continually relaxed as one moves from
left to right in the table. In column 3, for instance, equal mixing is
imposed for crashes in each hour-year pair in the sample (e.g., it is
assumed that between 2:00 a.m. and 3:00 a.m. in 1991, drinking and
sober drivers are equally mixed across all locations in the United States).
By column 8, equal mixing is assumed only within a given hour and
weekend status (equal to one on Friday or Saturday night and zero
otherwise) for a particular state and year.14 Theory predicts that all the

14 Stated more formally, in maximum likelihood estimation of eq. (11) in col. 8, we
restrict v and l to each be the same for all observations but allow N to vary by state#
year#hour#weekend.



TABLE 2
Relative Likelihood of Causing a Fatal Crash: Drinking vs. Sober Drivers (Allowing for Differing Restrictions on the Unit of

Observation over Which “Equal Mixing” Is Imposed)

Variable (1) (2) (3) (4) (5) (6) (7) (8)

Relative two-car fatal crash risk for
drinking drivers (v)

3.79
(.14)

4.87
(.16)

4.92
(.16)

5.14
(.16)

5.35
(.17)

5.74
(.18)

6.48
(.20)

7.51
(.22)

Relative one-car fatal crash risk for
drinking drivers (l)

5.04
(.11)

5.46
(.12)

5.50
(.12)

5.67
(.12)

5.83
(.12)

6.13
(.13)

6.72
(.14)

7.45
(.15)

Unit of observation over which
“equal mixing” of drivers is
imposed

all data hour hour#year hour#year
#weekend

hour#region
#year

hour#region
#year

#weekend

hour#state
#year

hour#state
#year

#weekend
Degrees of freedom used in

estimation 3 11 101 200 884 1,764 3,427 6,668
Log likelihood �106,961 �103,795 �103,658 �103,068 �102,537 �101,534 �99,690 �97,307

Note.—Estimates in the table are the estimated relative one- and two-car crash risks for drinking vs. sober drivers. The reported values are maximum likelihood estimates of eq. (11). Drinking
status is based on police assessments of the presence of alcohol; those who have been drinking but are not legally drunk are included in the drinking category. The unit of observation is
state#year#day#hour. Data pertain to the years 1983–93 between the hours of 8:00 p.m. and 5:00 a.m., with some state-year observations omitted because of data problems. For a number
of reasons presented in the paper, these estimates are likely to be lower bounds on the increased risk of drinking drivers. As one moves from left to right in the table, the unit of observation
over which the assumption of “equal mixing” of drinking and sober drivers is imposed is relaxed. As this restriction is relaxed, theory predicts that the estimated coefficients should increase
but are still likely to reflect a lower bound on the true values. Standard errors are in parentheses.



1218 journal of political economy

estimates presented in the table are likely to be lower bounds on the
true parameters but that the downward bias will be mitigated as one
moves from column 1 to column 8. In fact, that is precisely the pattern
observed in the table. The two-car fatal crash risk of drinking drivers
rises monotonically from four times greater than that of sober drivers
to over seven times greater.15 For one-car crashes, the value goes from
five to more than seven times larger. In all cases, the parameters are
precisely estimated, and the null hypothesis of equality between drinking
and sober drivers (i.e., ) is resoundingly rejected. The re-v p 1, l p 1
strictions implied by the specifications in columns 1–7 relative to column
8 are each rejected with the relevant likelihood ratio test. For this reason,
and because theory predicts that less restrictive specifications should
minimize the downward bias, we take column 8 as our preferred spec-
ification.16 All results presented in the remaining tables correspond to
column 8.

Although the parameters are not directly comparable to past estimates
in the literature, it is nonetheless useful to consider relative magnitudes.
Zylman (1973) finds that the relative crash risk of those with positive
levels of alcohol is only 2.2 times that of sober drivers, much smaller
than our estimates. The reason underlying his estimate of a low impact
is that drinking drivers in his sample are disproportionately made up
of low-BAC drivers. More informative are the estimates of Borkenstein
et al. (1974), who find the relative likelihood of causing a fatal crash
to be two times higher for drivers with BACs between 0.05 and 0.099,
10.1 times higher for BACs between 0.10 and 0.149, and 30–40 times
greater for BACs over 0.15. For reasonable distributions of BACs across
drinking drivers, the results of table 2 are consistent with the Borken-
stein et al. estimates. Zador (1991), using FARS data in conjunction with
the results of the national roadside testing survey of Lund and Wolfe
(1991), estimates that BACs of 0.05–0.09 are associated with nine times
greater risk, BACs of 0.10–0.15 are associated with 50 times greater risk,
and BACs above 0.15 have 300–600 times greater risk. These estimates
are far greater than those that we obtain. Zador’s study is subject to the
critiques of roadside surveys discussed earlier in this paper. His high-
risk estimates, especially at the highest BAC levels, can be explained by

15 To the extent that the drinking drivers, when they are themselves sober, are syste-
matically safer/more dangerous than other sober drivers, this coefficient gives a biased
estimate of the incremental effect of alcohol on driver risk. Previous research (Hurst et
al. 1994) suggests that drinking drivers, when sober, are actually safer than the typical
sober driver. If that is the case, then the coefficients in table 2 understate the true impact
of alcohol on driver risk. Estimates that further disaggregate drivers by type, presented
below, will also shed light on this issue.

16 One could imagine further disaggregating the data. The main stumbling block is lack
of data. By col. 8, we are allowing over 6,000 different cells in which there are approximately
43,000 two-car crashes.
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TABLE 3
Estimates of the Relative Crash Risk of Drinking vs. Sober Drivers (Allowing

for Risk to Vary across Years)

Year

Relative Two-Car
Fatal Crash Risk

for Drinking
Drivers (v)

(1)

Relative One-Car
Fatal Crash Risk

for Drinking
Drivers (l)

(2)

Implied Fraction of
Drivers That Have Been

Drinking (8:00 p.m.
to 5:00 a.m.)

(3)

1983 6.74 6.83 .205
(.80) (.56) (.016)

1984 6.34 6.25 .221
(.62) (.41) (.013)

1985 8.40 7.54 .185
(.78) (.50) (.012)

1986 6.82 7.07 .206
(.63) (.45) (.012)

1987 8.29 7.26 .198
(.71) (.44) (.011)

1988 7.16 7.57 .188
(.66) (.49) (.012)

1989 8.01 7.77 .177
(.74) (.51) (.011)

1990 7.69 7.72 .182
(.73) (.52) (.012)

1991 8.89 8.60 .161
(.88) (.63) (.012)

1992 7.34 8.08 .164
(.80) (.64) (.013)

1993 7.59 7.98 .153
(.85) (.66) (.014)

F-test: equality of
coefficients
across years 6.78 10.93 26.21

Note.—Values are maximum likelihood estimates of eq. (11), allowing the relative crash risks of drinking and sober
drivers to vary by year. The implied fraction of drinking drivers (col. 3) is calculated on the basis of the estimates in
cols. 1 and 2 and the means of the data in our sample (between the hours of 8:00 p.m. and 5:00 a.m., 1983–93). A
driver does not have to be legally drunk to be categorized as drinking. Note that in the estimation, the fraction of
drinking drivers is allowed to vary by state#year#weekend#hour. Thus the estimates in this table are comparable to
col. 8 of table 2. Coefficients for each year are estimated separately. For the reasons stated in the paper, the values in
cols. 1 and 2 are likely to be lower bounds, and the value in col. 3 is likely to be an upper bound. Standard errors are
in parentheses. The reported F-test is asymptotically distributed with 10 degrees of freedom. The .05 critical value2x
for this statistic is 18.3.

noting that the highest BAC range is likely to be most underrepresented
in the voluntary roadside survey used. When this underestimate of the
fraction of high-BAC drivers on the road is compared to the true in-
volvement rate of high-BAC drivers in fatal accidents, the result is sure
to overestimate the relative risk at this BAC level.

Table 3 presents separate estimates of relative crash risk across the
years of our sample. For both one-car and two-car crashes, the parameter
estimates are fairly stable. A test of the null hypothesis of equality across
all of the years, reported in the bottom of the table, cannot be rejected
in either case. Given that each year’s estimates are derived indepen-
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dently, the stability of the parameters suggests that the estimation ap-
proach is robust.

Column 3 of table 3 presents the implied fraction of drivers in the
sample who have been drinking.17 To the extent that estimates of the
relative risks of drinking drivers are downward biased in columns 1 and
2, the fraction of drinking drivers will be biased upward. The estimates
of drinking drivers range from a high of 22.1 percent in 1984 down to
a low of 15.3 percent in 1993. There is a discernible downward trend
in the fraction of drinking drivers over the period. The null hypothesis
of a constant share of drinking drivers across all years is rejected at the
.01 level.18

Table 4 breaks down the estimates by hour of the day. Once again,
the relative risk for two-car fatal crashes is stable, and equality across all
hours cannot be rejected. One-car crash risks vary enough that the test
of equality is rejected. The relative risk of drinking drivers appears to
be somewhat lower between 8:00 p.m. and 10:00 p.m., perhaps as a result
of a less lethal composition of drinking drivers on the roads during
these early hours. The peak hours for drinking and driving are between
1:00 a.m. and 3:00 a.m., as reported in column 3. More than one-quarter
of drivers appear to have some alcohol in their system during these
hours. This is more than twice as high as before 10:00 p.m. and after
4:00 a.m.

Table 5 reports the sensitivity of the basic results on drinking and
driving to the alternative assumptions discussed in Section III as well as
to various forms of measurement error. The first row of the table con-
tains the baseline estimates for comparison purposes. Each of the re-
maining rows reflects a different violation of the assumptions. If crash
avoidance matters in two-car crashes (violating assumption 3) and drink-
ing drivers are 25 percent less successful in getting out of the way
( ), then the estimated impact of alcohol rises above nine inm p 1.25
both two-car and one-car crashes and 11 in one-car crashes.19

17 These estimates are derived in two steps. First, v and l are estimated, allowing the
ratio of sober to drinking drivers to vary by state#year#hour#weekend. Then v and l
are fixed at the maximum likelihood estimates from the first step and the optimal N is
estimated. Then N is transformed into the percentage of drinking drivers, with the ap-
propriate standard errors calculated using the delta method.

18 The estimated fraction of drinking drivers is broadly consistent with numbers obtained
from other approaches. In a national roadside survey, Lund and Wolfe (1991) report that
8.3 percent of those who provide BACs had alcohol levels greater than 0.05. If all of those
who refused to provide BACs had been drinking, then the total fraction of drinkers in
their sample could be as high as 16.3 percent.

19 Since the identified parameters are and mN, the risks of drivers in one- andv/m, l/m,
two-car crashes are simply scaled up by the relative crash avoidance factor m. Although
one-car crashes are not directly affected by violations in this assumption, the estimates of
one-car crashes rely on the fraction of drinking drivers on the road, which is identified
through the two-car crashes. As a result, is identified rather than l, paralleling ’sl/m v/m
identification rather than v.
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TABLE 4
Estimates of the Relative Crash Risk of Drinking vs. Sober Drivers (Allowing

for Risk to Vary by Time of Day)

Time of Day

Relative Two-Car Fatal
Crash Risk

for Drinking
Drivers (v)

(1)

Relative One-Car
Fatal Crash Risk

for Drinking
Drivers (l)

(2)

Implied Fraction of
Drivers That Have

Been Drinking (8:00 p.m.
to 5:00 a.m.)

(3)

8:00 p.m.–9:00
p.m.

6.33
(.55)

5.55
(.36)

.136
(.008)

9:00 p.m.–10:00
p.m.

6.82
(.57)

5.95
(.37)

.145
(.008)

10:00 p.m.–11:00
p.m.

7.16
(.58)

7.00
(.42)

.157
(.009)

11:00 p.m.–
midnight

7.60
(.59)

7.96
(.45)

.180
(.009)

Midnight–1:00
a.m.

8.36
(.66)

8.80
(.48)

.209
(.009)

1:00 a.m.–2:00
a.m.

7.33
(.64)

7.68
(.42)

.275
(.011)

2:00 a.m.–3:00
a.m.

6.48
(.61)

7.28
(.42)

.296
(.012)

3:00 a.m.–4:00
a.m.

7.28
(.90)

8.85
(.72)

.222
(.016)

4:00 a.m.–5:00
a.m.

7.68
(1.17)

9.74
(1.10)

.137
(.019)

F-test: equality of
coefficients
across hours 6.62 42.51 236.63

Note.—Values are maximum likelihood estimates of eq. (11), allowing the relative crash risks of drinking and sober
drivers to vary by hours of the day. The implied fraction of drinking drivers (col. 3) is calculated on the basis of the
estimates in cols. 1 and 2 and the means of the data in our sample (fatal crashes between the hours of 8:00 p.m. and
5:00 a.m., 1983–93). A driver does not have to be legally drunk to be categorized as drinking. Note that in the actual
estimation, the fraction of drinking drivers is allowed to vary by state#year#weekend#hour. Thus the estimates in
this table are comparable to col. 8 of table 2. Coefficients for each hour of the day are estimated separately. For the
reasons stated in the paper, the values in cols. 1 and 2 are likely to be lower bounds, and the value in col. 3 is likely
to be an upper bound. Standard errors are in parentheses. The reported F-test is asymptotically distributed with2x
eight degrees of freedom. The .05 critical value for this statistic is 15.5.

Violations of equal mixing (assumption 2) might likely occur through
an increased probability of same type interactions beyond that given by
the binomial distribution. To consider such violations, we augment the
interaction stage of the model. If is the fraction of drinkingN /ND total

drivers on the road, then in the augmented model the probability that
two drivers passing are both drinking drivers is rather2(1 � D)(N /N )D total

than ; that is, drinking drivers are D times more likely to2(N /N )D total

interact with one another than would be suggested by the binomial
distribution. Sober drivers are assumed to be precisely enough more
likely to interact with sober drivers to maintain the assumption that the
overall fraction of interactions by driver type reflects the fraction of
drivers on the road. Given any value of D corresponding to some degree
of unequal mixing, we can estimate this expanded model in order to
assess the sensitivity of our estimates to violations of assumption 2. In-



TABLE 5
Sensitivity of the Estimates to Violations of the Modeling Assumptions and the Presence of Measurement Error

Relative Two-Car Fatal
Crash Risk for Drinking

Drivers (v)
(1)

Relative One-Car Fatal
Crash Risk for Drinking

Drivers (l)
(2)

Implied Fraction of Drivers Who
Have Been Drinking

(8:00 p.m. to 5:00 a.m.)
(3)

Baseline 7.51
(.22)

7.45
(.15)

.186
(.004)

Drinking drivers 25 percent less efficient
at avoiding crashes initiated by other
drivers

9.38
(.28)

9.31
(.19)

.155
(.003)

Drinking drivers 10 percent more likely
to interact with drinking drivers than
with sober drivers

9.60
(.26)

9.00
(.18)

.160
(.003)

5 percent of drivers misclassified because
of random measurement error

11.99
(.19)

11.71
(.05)

.135
(.001)

5 percent of drinking drivers misclassified
as sober

9.73
(.14)

9.31
(.04)

.177
(.001)

In 5 percent of crashes all drivers are re-
ported as sober, regardless of true
drinking status

11.23
(.34)

10.12
(.23)

.166
(.004)

Note.—The baseline specification in the first row corresponds to col. 8 of table 2. The other values reported in the table are estimates of the true parameters implied
by the coefficients in the baseline specification if that baseline specification is contaminated in the named manner. Crash avoidance represents a violation of assumption
3. Non–equal mixing violates assumption 2. The last three rows of the table report three different types of measurement error.
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creased clustering of same-type drivers corresponds to lower predicted
values of R in the model. To offset this effect and explain the observed
R in the data, v must increase (and N decrease). The result in the third
row of table 5 shows that a 10 percent increase in drinking-drinking
interactions would lead to an approximately 25 percent increase in the
estimates of one- and two-car relative risks.

An implicit assumption of the model is that driver types are known.
In fact, as discussed in Section III, we use the police officers’ assessment
of the drinking status of involved drivers, which is a potentially imperfect
measure. The remaining rows of table 5 examine the sensitivity of our
estimates to three alternative forms of driver misclassification. The
fourth row of the table corresponds to a case in which 5 percent of the
observations are randomly misrecorded; that is, a drinking driver is as
likely to be mistakenly reported as sober as vice versa. In this case, the
estimated risk of drinking drivers will be biased toward zero by approx-
imately 40 percent. Our results are sensitive to this type of measurement
error because the few drinking-drinking crashes have the greatest impact
on the estimates. Given the rarity of drinking-drinking crashes relative
to drinking-sober crashes, such measurement error will exaggerate the
number of drinking-drinking crashes; that is, the true number of drink-
ing-drinking crashes is even smaller than that observed in the data.
Previous research suggests, however, that this type of measurement error
is not the most likely scenario. Lund and Wolfe (1991) present evidence
that police officers systematically report drinking drivers to be sober,
but not vice versa. If 5 percent of drinking drivers are misreported in
this manner, then the true v, although still biased, is not as sensitive, as
is the case with classical measurement error. A final misclassification
story assumes that reporting errors are correlated within a particular
crash. Different police officers may have divergent standards for clas-
sifying an individual as drinking because of the methods used to de-
termine drinking status or the officer’s skill in identifying drinking driv-
ers. From equations (13) and (14), it is clear that such systematic
measurement error will impart a large downward bias on v because any
misclassification of this type will shift crashes from the numerator to
the denominator of R. For instance, if 5 percent of police officers filling
out crash reports always report both drivers sober, even if they are drink-
ing, then the true v is almost 35 percent higher than our baseline
estimate.

Examining Other Driver Traits

Although the comparisons presented thus far are limited to drinking
versus sober drivers, the model is equally applicable to other compar-
isons. Table 6 presents results for a range of other dimensions. The first
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TABLE 6
Estimating Relative Fatal Crash Risks on the Basis of Other Driver

Characteristics

Comparison
Groups

Relative Two-Car Fatal
Crash Risk for First

Category Named
(1)

Relative One-Car Fatal
Crash Risk for First

Category Named
(2)

Implied Fraction
of Drivers in the

First Category
Named (8:00 p.m.

to 5:00 a.m.)
(3)

All drinking vs.
sober

7.51
(.22)

7.45
(.15)

.186
(.004)

Legally drunk vs.
sober

13.24
(1.17)

14.39
(1.05)

.080
(.011)

Under age 25 vs.
all others

1.39
(.18)

1.66
(.11)

.353
(.009)

Male vs. female 3.38
(.21)

1.95
(.05)

.719
(.005)

Bad driving rec-
ord vs. clean
driving record

2.41
(.13)

1.85
(.06)

.254
(.006)

Note.—Values in cols. 1 and 2 are maximum likelihood estimates of the fatal crash risk of the first group named
relative to the second group named. All specifications assume equal mixing by hour#state#year and therefore are
comparable to col. 8 of table 2. Estimates are based on the same data sample used in table 2, except in the comparison
of legally drunk to sober drivers, where only those state-year pairs that report blood-alcohol levels for 95 percent of
those drivers identified as drinking by the police are included in the sample. Standard errors are in parentheses.

row of table 6 presents as a baseline the results from drinking and sober
drivers. The second row presents a comparison of drivers with BACs
greater than 0.10 (as opposed to all drinking drivers) relative to sober
drivers. As noted earlier, owing to sample selection concerns, we include
only accidents in state-year pairs in which a high fraction of drivers are
tested. As would be expected, the results for legally drunk drivers are
even stronger than for all drinking drivers. Drivers over the legal BAC
limit of 0.10 have a relative risk for fatal crashes that is 13–14 times
higher than that of sober drivers. This number is almost twice as great
as for all drinkers, including those who are not legally drunk. Approx-
imately 8 percent of the drivers on the road during the hours we ex-
amine appear to be over the 0.10 limit, where this number is again most
appropriately interpreted as an upper bound. The estimates are rela-
tively imprecise because many states have poor records of BAC testing,
leading them to be excluded from the sample.

Rows 3–5 consider other categories into which drivers can be divided.
Drivers under the age of 25 are 40–70 percent more likely to cause fatal
crashes. The estimate of the fraction of young drivers on the road (35
percent) appears reasonable. Grossman et al. (1993) report that those
under the age of 25 accounted for 20 percent of drivers in 1984, but
younger drivers are likely to make up a disproportionate fraction of
nighttime drivers. Males are over three times as dangerous as female
drivers for two-car crashes and are at two times higher risk for one-car
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fatal crashes. As will be demonstrated below, however, a large fraction
of this gap is due to more frequent drinking and driving among males.
Finally, those with bad driving records (either two or more minor blem-
ishes on their driving record in the past three years or one or more
major blemishes) appear to be more than twice as dangerous on the
roads. Although table 6 reports significant increases in risk associated
with other driver characteristics, it should be stressed that alcohol usage
is far and away the best predictor of increased crash risk.20

The results presented thus far fail to take into account possible in-
teractions between the various risk factors such as drinking status, gen-
der, and age. To the extent that risk factors are correlated with one
another, the results of table 6 may be misleading. Table 7 reports esti-
mates that allow for interactions between drinking status and the other
risk factors. In order to do so, we expand our model to allow for four
driver types rather than two. All of the intuition from the two-type model
presented in Section II continues to hold in the n-type case. Panel A of
table 7 allows for differential fatal crash risk for young and old drivers
who have or have not been drinking. Sober drivers over the age of 25
are the lowest-risk drivers and serve as a baseline. Interestingly, young
sober drivers are almost three times as likely to cause fatal crashes as
older sober drivers, but age has little impact on fatal crash risk among
drinking drivers. Most likely, this reflects the fact that young drinking
drivers tend to have low BACs relative to older drinking drivers. In
column 3, we estimate that roughly one in four young drivers has been
drinking in our sample, compared to one in six older drivers.

Panel B of table 7 reports the results of interacting drinking status
with driver gender. Sober female drivers are the safest. Sober male driv-
ers are 36 percent more likely to cause fatal two-car crashes and 10
percent more likely to cause fatal one-car crashes. Males who have been
drinking are almost nine times more dangerous than sober females and
are a 60 percent greater risk than drinking females. The gap between
male and female drivers shrinks substantially when drinking status is
taken into account.

Panel C of table 7 shows interactions between drinking status and
past driving record. Sober drivers with bad past records are almost twice
as likely to cause two-car fatal crashes as sober drivers with clean records.
Interestingly, however, the impact of driving record shrinks substantially
in percentage terms among those who have been drinking. Those with

20 Consistent with our results, insurance premiums tend to be higher for young drivers,
those with bad previous driving records, and male drivers. Auto insurance is highly reg-
ulated, however, so it is difficult to know if the magnitude of differences in premiums in
an unregulated market would correspond to our estimates. A further complication is that
insurance premiums take into account not only fatal crashes but also nonfatal accidents
and potential property damage.
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TABLE 7
Relative Fatal Crash Risk (Allowing for Interactions between Drinking and Other

Driver Characteristics)

Driver Classification

Two-Car Fatal
Crash Risk Relative

to Baseline
Category

(1)

One-Car Fatal
Crash Risk Relative

to Baseline
Category

(2)

Implied Fraction
of Drivers in the

First Category
Named (8:00 p.m.

to 5:00 a.m.)
(3)

A. Age

Under 25#drinking 10.88
(.57)

10.79
(.40)

.083
(.003)

Over 25#drinking 10.13
(.46)

8.56
(.27)

.115
(.003)

Under 25#not drinking 2.78
(.13)

2.30
(.06)

.231
(.004)

Over 25#not drinking 1.00 1.00 .572
(.004)

B. Gender

Male#drinking 8.57
(.94)

6.93
(.36)

.169
(.005)

Female#drinking 5.18
(.77)

4.37
(.38)

.044
(.004)

Male#sober 1.36
(.17)

1.09
(.05)

.594
(.007)

Female#sober 1.00 1.00 .194
(.006)

C. Past Driving Record

Bad driving
record#drinking

9.47
(.55)

8.11
(.35)

.080
(.003)

Clean driving
record#drinking

7.52
(.38)

6.91
(.24)

.118
(.003)

Bad driving
record#sober

1.92
(.11)

1.37
(.04)

.212
(.004)

Clean driving
record#sober

1.00 1.00 .590
(.004)

Note.—Values in cols. 1 and 2 are maximum likelihood estimates of the fatal crash risk of the named group relative
to the named baseline group (i.e., the group with a relative risk defined to be equal to one). All specifications assume
equal mixing by state#year#day#hour and therefore are comparable to col. 8 of table 2. Estimates are based on the
same data sample used in table 2. Standard errors are in parentheses.

bad driving records who have been drinking are roughly 25 percent
more likely to cause fatal two-car crashes than drinking drivers with
good records.

V. Externalities and Public Policy

In this section we examine the public policy implications of the estimates
obtained above. We focus on two sets of questions: (1) How big is the
externality associated with drinking and driving, and (2) what impact
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do current public policies have on both the number of drinking drivers
and the risk that these drivers pose?

We begin with the question of externalities.21 We make a number of
assumptions in what follows, all of which have the effect of understating
the true negative externality. First, the analysis here is limited strictly to
deaths in fatal crashes. If injuries, property damage, and lost welfare
due to behavioral distortions (e.g., sober drivers being afraid to drive
at night for fear of being hit by a drinking driver) were included, the
estimates would be substantially higher. Second, we assume that if a
drinking driver dies as a result of a crash that he causes, then he bears
the cost of his actions. Presumably, when choosing to drive after drink-
ing, he took the risk into account. Any suffering of friends and family
that the driver does not internalize is left out of the calculation. Third,
and perhaps more questionable, we assume that a parallel logic applies
to passengers in the drinking driver’s vehicle; that is, they are willing
participants and thus have chosen to accept the risk associated with
riding with a drinking driver.22 Thus, in the externality calculations that
follow, we include only the deaths of pedestrians and occupants of ve-
hicles who die in crashes caused by a driver in another vehicle who has
been drinking. We also present estimates under alternative assumptions
for comparison purposes.

In 1994, 40,716 people died in motor vehicle crashes in the United
States. Of these, 27,023 were killed in crashes that involved no drivers
reported by the police to have been drinking.23 Another 8,234 fatalities
occurred in one-vehicle crashes in which the driver was drinking. On

21 There are a substantial number of papers that attempt to measure the costs that
alcohol imposes on society (e.g., Rice, Kelman, and Miller 1991; Harwood, Fountain, and
Livermore 1998), with the typical estimate roughly $150 billion annually in 1998 dollars.
Much of this research fails to distinguish between costs borne by alcohol users and costs
borne by society, and all these papers exclude the utility that individuals obtain from
drinking. Manning et al. (1989) draw the distinction between internalized and externalized
costs, arguing that the optimal Pigouvian tax on alcohol is much higher than the current
tax level.

22 Passengers who bear increased risk of death because they are riding with drinking
drivers are worse off. In that sense, drinking drivers do impose an externality on their
passengers. Given the ability of passengers and drivers to negotiate jointly optimal con-
sumption and travel patterns, however, it is not clear that there is a market failure between
driver and passengers that should be corrected through government intervention. This
is less likely to be true of children of the drinking drivers. Only 7 percent of passengers
dying in vehicles driven by drinking drivers were under the age of 15. To the extent that
drivers or passengers are systematically misinformed about the risks of drinking and driv-
ing, there may be an information dissemination role for public policy. In any specific
instance, passengers are likely to have less precise information about the state of intoxi-
cation of the driver and the associated risk, although there is no reason to believe that
passengers should systematically underestimate this risk.

23 A substantial fraction of pedestrians involved in fatal crashes have been drinking. They
are not included here.
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the basis of the logic of the preceding paragraph, these deaths are also
excluded from our externality estimate.

There are a number of different kinds of deaths that qualify as an
externality. In two-vehicle crashes in which both drivers were drinking,
583 people died. We categorize half of these deaths (292) as externalities
under the assumption that fatalities are evenly split between the vehicle
that caused the crash and the other vehicle. Although the drivers of
both vehicles were drinking, in our model only one of the drivers makes
a fatal error. An additional 2,306 fatalities occurred among passengers
of vehicles driven by sober drivers who died in two-vehicle crashes with
drinking drivers. On the basis of our model, or 76.5(v � 1)/(v � 1)
percent of these deaths would have been avoided if the driver had not
been drinking. This translates into an additional 1,764 lives. Extrapo-
lating our estimates to crashes with more than two vehicles and applying
the same set of rules yields 308 more deaths that are classified as ex-
ternalities. Finally, 631 pedestrians were killed by drinking drivers. Un-
der the assumption that the relative risk of drinking drivers for killing
pedestrians mirrors the estimates for one-vehicle crashes, or(l � 1)/l

86.6 percent of these pedestrian deaths are attributable to alcohol. Com-
bining all these categories, we estimate a total of 2,910 traffic fatalities
in 1994 that without question should be classified as externalities as a
result of drinking drivers. If passengers in vehicles driven by drinking
drivers are also included in this calculation, the number would rise to
about 5,000.

Value of life analyses such as Viscusi (1992) typically assign dollar
amounts between $1 million and $5 million per life lost. With a value
of $3 million, the externality associated with lost lives due to drinking
and driving in 1993 was almost $9 billion. This calculation represents
a lower bound because our estimates of how dangerous drinking drivers
are is likely to be biased downward because injuries and property loss
are excluded, as are deaths of all passengers in the car of the driver at
fault. The Federal Highway Administration (1996) estimates that there
are 2.3 trillion vehicle miles traveled each year. According to Festin
(1996), 370 billion of these miles are driven during the hours covered
by our sample, 8:00 p.m. to 5:00 a.m. Our estimates suggest that 15.3
percent of drivers in this time period were drinking, which translates
into 56.6 billion miles driven by drinking drivers.24 This implies a neg-
ative externality of 16 cents per mile driven by drinking drivers (in-
cluding those who have been drinking but are not legally drunk). If we
replicate the analysis above but instead use our estimates of the risk and

24 The parameter N gives the ratio of interactions by drinking drivers to those by sober
drivers. Under assumption 2, N can be used to compute the fraction of drinking drivers
on the road. To translate this fraction into miles driven, we are assuming that drinking
and sober drivers have approximately the same number of interactions per mile.
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fraction of legally drunk drivers alone (see table 6), the externality
almost doubles to 30 cents per mile driven.25 This calculation implies
that almost all the costs of drinking drivers are concentrated among
those who are legally drunk.

One way to correct this externality is to tax alcohol consumption
directly. If the typical drunk driver consumes eight drinks prior to driv-
ing and makes a 10-mile trip, then the necessary tax per drink to in-
ternalize this externality would be 37.5 cents. An alcohol tax is an ex-
tremely blunt instrument, however, because most alcohol consumption
is not followed by motor vehicle operation. Taxing alcohol consumption
to reduce drinking and driving introduces distortions into consumption
decisions of those who do not drink and drive.

A more direct means of correcting the problem is to enforce drunk
driving laws. In 1994, there were approximately 1.1 million arrests for
driving under the influence (DUI), or roughly one arrest for every
27,000 miles driven by drunk drivers. In terms of internalizing the ex-
ternality, the appropriate punishment for those arrested for driving
drunk would be $8,000 per arrest, or the utility equivalent of this in
license suspensions, increased insurance premiums, lost wages, embar-
rassment, or jail time. For most first-time offenders, the likely punish-
ment is at or below this level: a small fine, perhaps a 30-day license
suspension, and perhaps one night in jail. For many third-time offend-
ers, however, the punishment can be substantial: a three-year license
suspension and 30 days in jail would not be uncommon. Thus it appears
that existing punishments are not radically out of line with what might
be optimal.

The Impact of Public Policies

We now switch attention to the impact of various state policies on the
number of drinking drivers and the risks that they pose. A number of
studies have examined the link between drunk driving laws, alcohol
taxes, and motor vehicle fatalities (e.g., Cook and Tauchen 1982; Asch
and Levy 1987; Saffer and Grossman 1987; Homel 1990; Chaloupka et
al. 1993; Grossman et al. 1993; Ruhm 1996). Previous research is “re-
duced form” in the sense that the estimates obtained capture the total
impact of policy changes on fatalities but do not shed light on the
underlying behavioral parameters. For instance, if the number of
alcohol-involved motor vehicle fatalities is found to fall when the pun-
ishment for repeat DUI offenders increases, existing research would not
shed light on whether there were fewer drunk drivers on the roads or

25 The internalized cost of fatal crash deaths per mile driven is about three times larger
than the magnitude of the externality, or almost $1 per mile for legally drunk drivers.
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whether drunk drivers choose to drive more carefully after the laws
change. Learning about these behavioral parameters is critical to the
development of optimal public policy (Heckman 2000).

Our estimation approach allows us to begin to shed light on these
behavioral parameters. Using the estimates of Section IV as dependent
variables, we are able to separately examine the number of drinking
drivers and their relative risk of causing a fatal crash. We caution, how-
ever, that the results presented below represent only a first step in this
direction.

Our regression specification takes the following form:

′depvar p policy G � X F � h � e , (20)st st st t st

where s indexes states, t reflects years, and depvar is any one of a number
of measures of interest: fraction of drinking drivers on the road, relative
two-car fatal crash risk (v), and relative one-car fatal crash risk (l). These
measures are constructed in a manner identical to those presented in
table 4, except that separate estimates are obtained for each state-year
pair.26 The explanatory variables of primary interest are measures of
state alcohol policies discussed below. Other control variables are the
fraction of the state population between the ages of 15 and 24, between
25 and 54, or over age 55; the percentage of state residents in metro-
politan areas; percentage black; and state unemployment rates. Year
dummies are also included. In some specifications, state random effects
or region fixed effects corresponding to the nine census regions are
also added.27

Our measures of state alcohol policies are admittedly crude. We in-
clude the state beer excise tax per case (measured in 1993 dollars). We
include two variables for sentence severity corresponding to first- and
third-time offender punishments. Drunk driving penalties have two pri-
mary components: license suspension and jail time. States with both
license suspensions of 30 or more days and mandatory jail time are
assigned two points for first-offense severity. If only one of the conditions
applies, one point is given. If neither applies, a zero is assigned. For
third-time offenders, one point each is given for license suspensions of
three or more years and mandatory jail sentences of 30 or more days.28

The final state policy variable is the number of police per capita, which

26 In contrast to estimated right-hand-side variables, which lead to errors-in-variables bias
and also require standard error corrections (Murphy and Topel 1985), estimated left-
hand-side variables do not pose any special econometric problems as long as this estimation
error is uncorrelated with the explanatory variables.

27 Because there is so little within-state variation in alcohol policies over this time period,
models with state fixed effects are too imprecisely estimated to be useful.

28 We have experimented with a variety of other approaches to capturing the severity
of punishments, all of which yield categorically similar results.
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is a (relatively crude) measure of the certainty of punishment for driving
while intoxicated.

Table 8 reports the results of the analysis. Each column of the table
presents results for a different dependent variable. Column 1 is the
overall fraction of drinking drivers in fatal crashes. This measure mirrors
the reduced-form approach of previous studies. Columns 2–4 show re-
sults for our three estimated parameters from the model (v, l, and, N).
Panel A of the table is estimated using weighted least squares, with
weights based on the number of two-car crashes in the state-year. Panels
B and C of the table are identical to panel A except that state-level
random effects or region dummies are added. For simplicity, we present
only the coefficients on the state policy variables. The other controls
appear plausibly estimated; full results are available on request from the
authors.

Column 1 presents the “reduced-form” results. The fraction of drink-
ing drivers in fatal crashes is generally negatively related to the beer
tax, punishment measures, and police per capita across all three spec-
ifications, although in most instances the parameter estimates are not
statistically significant. The magnitudes of the policy coefficients are
generally small. A one-standard-deviation increase in the state beer tax
reduces the fraction of drinking drivers in fatal crashes by 0.2 percentage
points (the mean fraction of drinking drivers in fatal crashes is ap-
proximately 55 percent). A one-standard-deviation increase in punish-
ments for both first- and third-time offenders lowers the proportion of
drinking drivers in fatal crashes by roughly one percentage point in the
first two specifications but has no impact when region fixed effects are
included. A one-standard-deviation increase in police per capita has the
largest impact: approximately a three- to six-percentage-point decline.

The other columns of table 8, however, reveal a much richer behav-
ioral story. Columns 2 and 3 provide estimates of the impact of public
policies on how dangerous drinking drivers are. Interestingly, higher
beer taxes and tougher punishments for first-time offenders are gen-
erally associated with the greater danger posed by drinking drivers on
average (although sometimes with only weak statistical significance).
These estimates are consistent with a scenario in which such policies
have the greatest impact on the least dangerous/most marginal drinking
drivers. If these individuals leave the pool of drinking drivers, the av-
erage riskiness of the remaining drinking drivers increases. Supporting
this interpretation are the coefficients in column 4 corresponding to
the estimated fraction of drinking drivers on the roads. Both the beer
tax and first-offense severity are negatively related to the number of
drinking drivers. As the reduced-form estimates demonstrate, however,
removing these relatively benign drinking drivers from the roads has
only a small impact on overall fatalities.
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TABLE 8
Relationship between State Policies, the Number of Drinking Drivers, and Their Relative Crash Risk

Variable

Weighted Least Squares Regressions

Fraction of Drinking Drivers
in Fatal Crashes

(1)

Relative Fatal Crash Risk
for Drinking Drivers:

Two-Car
Crashes (v)

(2)

Relative Fatal Crash Risk
for Drinking Drivers:

One-Car
Crashes (l)

(3)

Fraction of Drivers Who
Have Been Drinking

(4)

A. Weighted Least Squares

Beer tax �.00008
(.00028)

.101
(.077)

.105
(.079)

�.00049
(.00016)

First-offense punishment �.007
(.015)

3.23
(1.83)

3.43
(1.93)

�.022
(.012)

Third-offense punishment �.007
(.015)

�4.65
(1.93)

�5.28
(2.00)

.023
(.012)

Police per capita �.021
(.015)

�2.68
(1.37)

�1.84
(1.18)

.008
(.010)

B. State Random Effects Included

Beer tax �.00012
(.00023)

.321
(.054)

.329
(.081)

�.00028
(.00028)

First-offense punishment �.002
(.008)

5.71
(2.79)

3.65
(4.13)

�.002
(.013)

Third-offense punishment �.014
(.007)

�8.97
(2.37)

�10.06
(3.48)

.009
(.011)

Police per capita �.018
(.010)

�1.11
(3.01)

�0.57
(4.54)

�.003
(.015)

C. Region Fixed Effects Included

Beer tax �.00008
(.00029)

.091
(.105)

.117
(.105)

�.00039
(.00022)
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First-offense punishment �.008
(.015)

4.67
(1.98)

4.50
(2.22)

�.037
(.019)

Third-offense punishment .007
(.014)

�4.89
(2.17)

�5.59
(2.31)

.034
(.013)

Police per capita �.046
(.015)

�2.08
(1.46)

�1.42
(1.57)

�.002
(.011)

Note.—The dependent variable is listed at the top of each column. The unit of observation is a state-year pair. With the exception of col. 1, the dependent variables are estimates
from the model of Sec. IV. In addition to the four right-hand-side variables listed in the table, all regressions also include the fraction of the state population aged 15–24, 25–54, and
over 55, percentage metropolitan, percentage black, state unemployment rates, and year dummies. In panels A and C, estimation is done with weighted least squares, with weights
corresponding to the number of two-car fatal crashes in the state-year. In panels A and C, reported standard errors are correct for within-state, across-time correlation of the error
term. The number of observations is equal to 381 in all cases. The means (standard deviations) of the policy variables are as follows: beer tax: 46.3 (34.4); first-offense punishment:
.69 (.61); third-offense punishment: 1.05 (.75); police per capita: 3.00 (1.50). The means and standard deviations of the dependent variables are as follows: fraction of drinking drivers
in fatal crashes: .55 (.08); relative fatal crash risk for drinking drivers in two-car crashes: 10.6 (15.9); relative fatal crash risk for drinking drivers in one-car crashes: 10.4 (19.8); and
fraction of drivers who have been drinking: .20 (.10).
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The coefficients on third-offense punishments reveal a very different
pattern. These penalties would apply only to a relatively small fraction
of hard-core drunk drivers.29 As one would expect, the primary impact
of harsh penalties for repeat offenders is to reduce the average risk
posed by drinking drivers. Evaluated at the sample mean, a standard
deviation change in the harshness of third-offense punishments lowers
the predicted riskiness of drinking drivers in a state from eight times
as risky for two-car crashes to approximately five times as risky. A similar
magnitude of decline is observed in one-car crash risks of drinking
drivers. From these estimates alone, it is impossible to know whether
the decrease in drinking driver risk with harsher laws is due to a re-
duction in the frequency of drinking and driving among repeat of-
fenders or whether the laws lead such individuals to drive with greater
care when intoxicated. The fact that the estimated fraction of drivers
that have been drinking does not fall with harsh laws for repeat offenders
provides some circumstantial evidence in favor of the hypothesis that
such laws do not keep hard-core drunk drivers off the roads, but rather
cause them to drive more carefully to avoid detection. The coefficients
on the police per capita variable further substantiate this claim. More
police are associated with drinking drivers’ appearing less risky, but do
not systematically influence the number of drinking drivers.

VI. Conclusions

This paper presents a new methodology for measuring the relative risk
of drinking drivers. Unlike previous approaches, our strategy requires
only data on the observed number of fatal crashes. Although a priori
it would seem impossible to separately identify relative crash risk from
the fraction of drivers on the road who have been drinking using such
limited data, we demonstrate that there is a hidden richness in the
information contained in two-car crashes. As a consequence, with only
the most skeletal assumptions we are able to identify the key parameters
of interest. Drinking drivers (including those not legally drunk) are at
least seven times more likely to cause fatal crashes than sober drivers,
although sensitivity tests suggest that this lower bound could nontrivially
understate the true value. For drivers with BACs greater than 0.10, that
ratio is at least 13 to one. A great majority of the victims of drinking
drivers are the drivers themselves and their passengers. We estimate that
of the 12,000 people killed in alcohol-involved fatal crashes in 1994,
only 3,000 are accurately classified as externalities. The implied Pigou-
vian tax per mile driven by drinking miles is about 16 cents. For legally

29 Harsh punishments for repeat offenders may also indirectly affect the behavior of
forward-looking drivers with clean records.
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drunk drivers the tax should be about 30 cents. Given current rates of
enforcement for drunk driving, the appropriate loss per drunk driving
arrest is approximately $8,000.

The methodology we present provides a simple, flexible, inexpensive
tool for analyzing driver risk. Unlike past survey methods that are ex-
pensive to administer and subject to important nonparticipation biases,
our approach is easily implemented using only data on fatal accidents
that are readily available. Our method can be applied to any driver
characteristic, any localized geographic area, and any time period. The
variety of specifications presented suggests that the method is robust.

The estimates we obtain can be used to inform public policy debates
on road safety. In contrast to reduced-form estimates, which can reveal
only what policies have worked in the past, the more structural approach
we adopt may suggest better policies for the future that take into account
behavioral responses of drinking drivers. For instance, random road-
blocks work solely on the margin of reducing the number of drinking
drivers, ignoring the possibility that the care such drivers take might be
affected. Our results suggest that policies focused on stopping erratic
drivers with greater frequency might be more successful. For instance,
rewards could be provided to motorists who use cellular phones to help
police identify reckless drivers, or dedicated police patrols could be
created whose only responsibility is the identification of drunk drivers.
Employing the latter strategy, a pilot program in Stockton, California,
reduced involvement in drunk driving crashes by 10–15 percent by ded-
icating the equivalent of four full-time-equivalent police officers exclu-
sively to drunk driving patrols (Voas and Hause 1987).

More generally, our approach to addressing the issue of drinking and
driving may provide insight to researchers on topics far afield. By ex-
ploiting the hidden richness of the data arising from interactions be-
tween participants, we are able to identify relationships in the data that
may have seemed beyond reach ex ante. Variations on our approach
may be useful in examining other issues in which agents interact, for
example, search models, the transmission of AIDS, oligopoly pricing,
and the relationship between special-interest groups and politicians. The
parallel between our model and these more complicated economic set-
tings is not exact because the random matching in our traffic model is
less plausible in other cases (e.g., Flinn and Heckman 1982). Nonethe-
less, with the adoption of an appropriate alternative matching model,
extensions of this model may prove relevant.
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