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Abstract
The increase in nanomaterial research has resulted in increased nanomaterial data. The next challenge is to meaningfully integrate

and interpret these data for better and more efficient decisions. Due to the complex nature of nanomaterials, rapid changes in tech-

nology, and disunified testing and data publishing strategies, information regarding material properties is often illusive, uncertain,

and/or of varying quality, which limits the ability of researchers and regulatory agencies to process and use the data. The vision of

nanoinformatics is to address this problem by identifying the information necessary to support specific decisions (a top-down ap-

proach) and collecting and visualizing these relevant data (a bottom-up approach). Current nanoinformatics efforts, however, have

yet to efficiently focus data acquisition efforts on the research most relevant for bridging specific nanomaterial data gaps.

Collecting unnecessary data and visualizing irrelevant information are expensive activities that overwhelm decision makers. We

propose that the decision analytic techniques of multicriteria decision analysis (MCDA), value of information (VOI), weight of evi-

dence (WOE), and portfolio decision analysis (PDA) can bridge the gap from current data collection and visualization efforts to

present information relevant to specific decision needs. Decision analytic and Bayesian models could be a natural extension of

mechanistic and statistical models for nanoinformatics practitioners to master in solving complex nanotechnology challenges.
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Introduction
Extensive nanomaterial research has yielded an increasing

amount of nanomaterial data [1]. The nanomaterial data are

currently so vast that it has become difficult to find data rele-

vant to a specific need. However, a formal knowledge infra-

structure, inclusive of current nanomaterial data, is essential to

future developments in nanomaterial research [2]. Nanoinfor-

matics is defined as (a) “the science and practice of deter-

mining which information is relevant to the nanoscale science

and engineering community”, and (b) “developing and imple-

menting effective mechanisms for collecting, validating,
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storing, sharing, analyzing, modeling, and applying that infor-

mation” [3]. This definition implies the integration of top-down

methods for assessing scientific community needs with bottom-

up methods for data collection and management [4,5]. Such

integration will enhance the reproducibility and distribution of

data and the ability to transform the vast nanomaterial data into

accessible, integrated information.

Two recent workshops sponsored by the National Nanotech-

nology Initiative [5] and the National Nanomanufacturing

Network [6] were focused on assessing the state of nanomate-

rial risk management, nanoinformatics, determining gaps in the

information and risk management technologies, and evaluating

opportunities for improvement. These nanoinformatics work-

shops highlighted a number of resources that were already using

nanoinformatics to aggregate and organize nanomaterial data

[6]. The Nanoparticle Information Library (NIL) is a database

from the National Institute for Occupational Safety and Health

(NIOSH) that aggregates the physical characteristics of nano-

materials for industrial users, researchers, and health profes-

sionals to access and share [7]. The NanoHub offers a collabo-

rative workspace for users to share research, identify possible

opportunities to work with others, and to learn more about

nanotechnology [8]. This includes the GoodNanoGuide, a

resource that serves as a best practice exchange for nanomate-

rials in the workplace [9]. The Nanomaterial Registry archives

nanomaterial data according to their properties and environ-

mental and health implications, including their compliance

scores [1]. These efforts all focus on developing resources that

satisfy the bottom-up part of the nanoinformatics definition

presented above. The top-down part, in which the appropriate-

ness of information to a specific need is determined, is not

addressed to the same extent in any of the aforementioned

efforts. A few existing efforts implement parts of the envi-

sioned top-down strategy but none have bridged the gap to link

top-down analytics to the bottom-up data. Some of the closest

existing efforts include the various hazard and control banding

tools [10], as well as the SUN [11] and LICARA [12] projects

of the European Union Seventh Framework Programme. The

need for comprehensive top-down approaches was called for

after the NNI workshop and decision analytic tools were specif-

ically mentioned as a way of supplementing data intensive visu-

alization methods for the goals of risk management [5,13,14].

For a successful nanoinformatics enterprise, top-down decision

analytic tools and bottom-up data management methods need to

be integrated. Decision analytic tools are able to bridge the gap

between the data needed and the data available to make

informed decisions about a new technology. Decision analysis

typically formulates models for important decisions in order to

identify which alternatives are most desirable given the avail-

able information and the preferences of the decision makers,

thus incorporating the top-down (decision) perspective. In addi-

tion, once decision modeling structures are in place, it is

possible to shift attention from selection of alternatives to

understanding the data’s support for those alternatives. In other

words, decision modeling structures can be used to first synthe-

size information toward a decision focus and second to identify

gaps and delve further in areas of need in order to establish

which particular data would be most relevant to the decisions at

hand. The ability of decision modeling to identify the relevance

of existing data and to distill which areas of research would be

most helpful are especially useful when large amounts of data

are available and when the data are uncertain and ambiguous.

This paper discusses several decision analytic tools that hold

promise for nanoinformatics. We describe the methodology and

application of case studies. In particular, we review the use of

multicriteria decision analysis (MCDA), value of information

(VOI), weight of evidence (WOE), and portfolio decision

analysis (PDA) from the perspective of nanoinformatics. We

propose that this set of decision analytic methods should be

explicitly developed as the next step to advance the nanoinfor-

matics vision of efficiently guiding research and seamlessly

identifying and synthesizing available information for decision

making.

Discussion
Multicriteria decision analysis
Multicriteria decision analysis (MCDA) refers to a set of

methods that are employed to rank decision alternatives from

most to least preferred. To accomplish this, MCDA allows the

user to break down complex problems into more manageable

pieces, assess those pieces with respect to the relevant data for

each alternative, and reassemble them to present an overall

conclusion to decision makers [15]. The process of completing

an MCDA can be divided into four steps: (1) identifying the

problem, the stakeholders, and the criteria relevant to the deci-

sion; (2) extracting weights, thresholds, and other parameters to

be inputs in the mathematical model, and assigning measure-

ments for each alternative; (3) executing the model via soft-

ware; and (4) evaluating the results of the model [16].

MCDA can be applied to nanoinformatics decisions, for

example, to help users evaluate and choose a nanomaterial type,

formulation, fabrication technique, supplier, coating, or risk

management strategy for a new product. From a portfolio of

alternatives, MCDA pinpoints those that are most worthy of

further consideration based on an aggregated score across all

selected evaluation criteria. Most nanomaterial hazard and

control banding tools implicitly implement MCDA by using

physiochemical property data to relate hazard scores to indi-
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vidual criteria. The criteria are weighted by importance, and the

sum of these weighted scores is used to derive an overall hazard

score for a nanomaterial. In this way, MCDA-based tools can

synthesize data in the context of material development deci-

sions to identify materials with the highest overall hazard

scores, typically omitted from use or selected for additional

study. The MCDA structure can be used to loosely guide more

detailed research and development, because the criteria most in

need of further review can be compared in the decision model

to find which has the greatest contribution to the overall hazard

score [17].

In a case study by Tervonen et al. [18], an MCDA framework

was applied for the classification of five nanomaterials: nC60,

multiwalled carbon nanotubes (MWCNTs), CdSe, silver

nanoparticles (Ag NPs), and aluminum nanoparticles (Al NPs).

The SMAA-Tri MCDA model was selected as it is well suited

for the classification of nanomaterials with uncertain or unavail-

able physiochemical properties. Five extrinsic characteristics

(agglomeration, reactivity, critical functional groups, particle

size and contaminant dissociation) and three factors that are

dependent on the characteristics listed above and that may influ-

ence hazards (bioavailability, bioaccumulation and toxic poten-

tial) were used to evaluate the selected nanomaterials [18].

Five alternative risk classifications were proposed for the ma-

terials: extreme risk, high risk, medium risk, low risk, and very

low risk. The nanomaterials were sorted based on the proba-

bility of classification in a particular risk category, given

complete information. CdSe was identified as the nanomaterial

most likely to receive the highest hazard score, with a 98%

chance of being categorized as “high risk.” With these results in

mind, the contribution of each criterion to the total score can be

evaluated to see which of the eight factors might reasonably

benefit from further investigation [18]. This method of deter-

mining relevant information with MCDA is a top-down ap-

proach. Decision analysis starts with the research objective and

ends with decision making. Standard risk assessments, on the

other hand, begin with data and end with risk measurements [4].

By starting with the goal of the research, the top-down ap-

proach is able to clarify the research needed to achieve the

objective and to efficiently make an informed decision.

Beyond this, a series of next steps can be explored to expand

the use of MCDA in nanoinformatics. Hazard and control

banding tools can be tailored for each funding or regulatory

agency’s mission and goals, and additional tools can be devel-

oped to meet the needs of other common types of decisions.

Furthermore, MCDA capabilities can be integrated into existing

nanoinformatics platforms to let users develop their own top-

down frameworks, which are linked to the bottom-up data, and

to interactively explore evaluations of the best materials for a

given design or product. Finally, MCDA can potentially address

the need for rapid, real-time screening of nanomaterial hazards

and the need for incorporating cost–benefit information along-

side environment, health and safety data in a cost–benefit

screening.

Value of information
Value of information (VOI) is a decision analytic concept char-

acterizing the amount a decision maker would pay to acquire

additional information that would improve the quality of a deci-

sion [19]. As such, it prioritizes research based on its decision

relevance, which is the degree to which it is expected to reduce

uncertainty regarding the best alternative. Decision relevance is

context dependent but vastly more nuanced than approaches

that only consider the magnitude of uncertainties in the

unweighted and uncontextualized underlying data. Specifically,

to calculate the VOI associated with a decision under uncer-

tainty, (i) the best perceived alternative is selected with the

benefit of some contemplated information; these outcomes will

always be, on average, preferable or at least equal to those of

the same decision where (ii) the best perceived alternative is

selected in the absence of that information. The expected value

of information is the maximum cost which would be spent to

get that information while still leaving the decision maker indif-

ferent between (i) and (ii).

The significance of new nanomaterial research and data for a

decision maker is often initially unknown. Ideally, further

studies would be prioritized such that research plans addressing

the greatest amount of uncertainty, or eliminating the uncertain-

ties the decision maker most wants to eliminate, are completed

first. The VOI is able to quantify the benefits of this complex

bundle of information for a particular decision making situation.

In some cases, the VOI also locates a point at which enough

information is known, that is, where the marginal returns to

additional information diminish to less than the marginal cost of

obtaining that information [19].

In a case study from Linkov et al., an MCDA framework evalu-

ates four alternative technologies for single wall carbon

nanotube synthesis and a VOI model prioritizes further research

[20]. The MCDA process identified pertinent criteria: synthesis

cost, material efficiency, energy consumption, life cycle envi-

ronmental impacts, and risks to human health. A probability

distribution of scores for each technology was specified for

each criterion via author judgment and the literature. Monte

Carlo simulations were used to normalize and aggregate indi-

vidual criteria distributions into distributions of overall perfor-

mance using criteria weights associated with preferences of

different key stakeholders [20].



Beilstein J. Nanotechnol. 2015, 6, 1594–1600.

1597

After developing result distributions that reflect current uncer-

tainties, the study evaluated research that might best improve

decision confidence. Monte Carlo simulations of possible

research outcomes (to reduce uncertainty in the input data) and

decision outcomes (resulting reduced uncertainty in the distri-

butions of overall scores) were produced for each nanomaterial,

showing the likelihood that each nanomaterial would rank first

for each stakeholder under different research efforts. This

revealed the VOI in terms of increase in the average score of the

best alternative selected with the benefit of increasing manufac-

turing research, health research, both types of research, or

neither. The VOI analysis showed that the biggest potential gain

in decision confidence in that case would come from health

research, which would substantially increase confidence in deci-

sions for both regulators and environmental groups, but not for

other stakeholders. In contrast, additional manufacturing

research would not substantially improve decision confidence

for any of the stakeholders [20]. Applied broadly, this type of

analysis can provide a strong basis for identifying and

promoting research relevant to future technology development.

A series of next steps can be explored for including VOI in

nanoinformatics efforts. Databases can be expanded to include

uncertainties for criteria other than hazards (e.g., cost or perfor-

mance), providing a foundation in the data for the VOI. This is

important because research activities that quantify or reduce

uncertainty about environmental concerns, material costs, and

other cost–benefit parameters are of great value to funding

agencies and scientists. Like the suggestion for MCDA tech-

nology, VOI algorithms can be imbedded within existing nano-

informatics platforms and tied to the data, putting new capabili-

ties into the hands of the user. Finally, VOI can potentially

enable the continuous and immediate classification of uncer-

tainties based on aggregated nanoinformatics data. In this way,

the focus could be shifted towards those uncertainties that are

relevant to technologies with high potential.

Weight of evidence
A major challenge in nanoinformatics is how to compare and

harmonize the large volume of independently derived, possibly

conflicting, and possibly incompatible data into a coherent

argument. Weight of evidence (WOE) is a method of inte-

grating and aggregating different and diverse types of evidence

to draw a conclusion [21]. The WOE method can be used to

fuse information such that discrepancies in data quality and

gaps in evidence are considered [21]. WOE was first intro-

duced in the form of a Bayesian model [22] that updates prior

beliefs about a hypothesis to form posterior beliefs due to the

introduction of new evidence. In this formulation, the Bayes

factor is defined as the ratio of prior odds to posterior odds, and

the WOE is the natural logarithm of the Bayes factor. More

varied qualitative and quantitative applications of the WOE

methodology have evolved since then [23].

On the basis of experience with WOE approaches, the National

Research Council has recommended a shift towards defensible

qualitative and quantitative methods. Quantitative Bayesian

approaches and MCDA were both recommended as quantita-

tive supplements and replacements for solely qualitative WOE

practices. Thus, the Bayesian approach is able to account for

uncertainty and varied sources and types of evidence, while the

MCDA approach considers the quality of the evidence and its

source as criteria [23]. As in the previous sections, information

is first synthesized using the analytical tools, and from this,

critical information for decisions or further nanomaterial

research is identified.

A case study by Hristozov et al. used a quantitative WOE

framework to evaluate the hazards associated with titanium

dioxide nanoparticles. Three sets of criteria (physiochemical

properties, toxicity, and data quality) were used to evaluate and

calculate the hazard scores by means of MCDA. Uncertainties

derived from expert judgment were considered in Monte Carlo

simulations [24]. As with MCDA, once the WOE hazard score

is determined, each contributor to the hazard score can be

further reviewed to see which had the largest effect on the score

and which might benefit from further research.

A series of next steps can also be explored for including WOE

in nanoinformatics efforts. When data is added to nanoinformat-

ics databases, additional quantitative and qualitative metrics

(e.g., data statistical significance, precision, applicability,

soundness, completeness, uncertainty and variability, degree of

review) can be included to contextualize the weight that each

data source should carry based on its relevance, quality, resolu-

tion, etc. WOE approaches can also be imbedded in nanoinfor-

matics toolsets to help users clarify conflicting and uncertain

evidence for early stage nanomaterial evaluations. WOE

approaches can be implemented alongside or within hazard and

control banding tools to allow differentiation between input

data. In the future, continuous and immediate application of a

standardized WOE approach with nanoinformatics data could

provide a real-time and more accurate initial summary of nano-

material hazards or other conclusions that can be drawn from

the body of knowledge [24].

Portfolio decision analysis
Portfolio decision analysis (PDA) is similar in aim to the tools

discussed earlier, but with one major distinction: instead of

choosing one option from a set of choices, a subset of items (a

portfolio) is selected [25]. The MCDA, VOI, and WOE

methods are all appropriate for use with either single choice
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decision analysis or portfolio decision analysis. Once a series of

possible portfolios has been evaluated, the portfolios with the

highest score at any given budget or level of resource availabil-

ity can be further investigated. The nanomaterials that contrib-

ute most to the portfolio score will be identified, along with the

qualities shared among the high scoring nanomaterials.

Bates et al. applied PDA to sets of nanomaterial hazard research

efforts, in order to prioritize research portfolios at the national

level. This PDA was an extension of a VOI approach evalu-

ating multiple research topics for three emerging nanomaterials:

multiwalled carbon nanotubes, silver nanoparticles, and tita-

nium dioxide nanoparticles [26]. First, a preliminary screening

tool (CB Nanotool 2.0 [17], an MCDA-based approach) was

used to assign distributions of hazard scores for each character-

istic of a chosen nanomaterial. These scores were summed

across properties to assign a distribution of overall hazard

scores for each material. Based on these total scores, the ma-

terials were probabilistically classified as high risk, moderate

risk, and low risk.

From there, the VOI model estimated the improvement in

hazard-identification accuracy for each unique research effort.

Each research effort was assumed to reduce the uncertainty

associated with a single parameter for a single nanomaterial.

Research portfolios for each nanomaterial were defined as sets

of research efforts addressing parameters for that material.

Monte Carlo simulations were used to estimate the expected

benefit of each research effort and portfolio, with the assump-

tion that research undertaken on a material property would

reveal a true hazard score prior to the decision, and otherwise,

that score would only become known after material classifica-

tion. For each realization of the simulation, the correct score

and classification of the material are assumed to be the score

and classification identified when all parameter values are

known. The proportion of realizations for which a research port-

folio is expected to lead to the correct classification and the

degree to which it produces hazard scores matching the correct

hazard scores can be tabulated. By comparing this performance

to that of a baseline portfolio in which no research is done, it is

possible to determine the average increase in value for each

research portfolio. These calculations are properly performed at

the portfolio level because the potential for any given effort to

affect a material’s classification and significantly reduce hazard

uncertainty depends on the state of knowledge of other parame-

ters for the material [26].

To better reflect the national decisions that are typical of

funding agencies, the portfolios of research efforts were also

aggregated across materials. Plotting each aggregated

portfolio’s increase in performance against its difficulty or cost

revealed an efficient set of most desirable portfolios (those with

a value higher than any others of similar cost) [26]. It is then

simple to inspect any of these types of portfolios and observe

what research on which nanomaterials and properties might be

most attractive at different levels of overall investment.

A series of next steps can also be explored for including PDA in

nanoinformatics efforts. Funding agencies, research institutions,

corporations, and individual research teams can use nanoinfor-

matics data with PDA techniques to help prioritize future

research efforts. PDA algorithms can be tailored to work more

seamlessly with existing and future MCDA, VOI, and WOE

tools supporting decisions in nanotechnology. Finally, as with

the other tools, PDA algorithms can be added to nanoinformat-

ics tool sets to put greater top-down analytical power in the

hands of the end user.

Conclusion
Recent discussions from the Nanotechnology Knowledge Infra-

structure have heralded the creation of a communication portal

for the various nanotechnology databases and tools. The

tremendous amount of data that would be available via that

portal would necessitate not only the bottom-up accumulation,

sorting, and visualization of data, but the top-down identifica-

tion of decision-relevant information. The four tools described

here can accomplish both facets of that goal, and overall,

provide capability to expand the reach of current nanoinformat-

ics tools.

Part of this expansion should be accomplished through use of

expert elicitations, which are often featured in decision analysis

to supplement and connect hard data to the decision while

leaving a transparent record of the way in which this connec-

tion is made. In the context of nanoinformatics, properly imple-

mented human judgments can help users navigate and incorpor-

ate available information resources. Each of the applications

described herein uses such judgments. The weights on criteria

for a given stakeholder are nearly always subjectively assigned

(although they use techniques that are transparent, maximize

logical consistency, and minimize psychological biases). While

some uncertainties involving the outcome of repetitive

processes can be readily characterized on the basis of statistical

data, it may be impossible or inadequate to do so in situations

involving new or ambiguous factors. It is a philosophical point

emphasized in decision analysis that in making choices, it is

rational for decision makers to act consistently with what is

implied by their beliefs in conjunction with the information they

have.

The use and implementation of these decision analytic tech-

niques are not without challenges [27]. These include involving
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the right experts and stakeholders so that results will be cred-

ible, guarding against motivational and other biases in elicita-

tion and dissemination [28], and communication of results in a

way that they will be known, understood and trusted by the

people who can use them [29]. In addition, the academic deci-

sion analysis community is often focused on the creation of new

tools, and is less interested in their immediate application. Open

advocacy and networking from the community could better

relay the benefits of these approaches and techniques.

Thus expanded from information retrieval to decision support,

nanoinformatics has the potential to improve the characteriza-

tion of nanomaterials, the reproducibility of nanomaterial

research, and the accessibility of data. Currently, nearly all

nanoinformatics efforts are working from a bottom-up perspec-

tive to create databases and archives and to organize all of the

available data instead of employing a top-down decision ap-

proach to identify relevant data. Without the incorporation of

both top-down and bottom-up concepts, the full definition and

scope of the nanoinformatics vision may not be realized. A

range of decision analytic techniques, starting with MCDA,

VOI, WOE, and PDA, as described here, can help to sort

through and organize the vast nanomaterial data to inform both

current choices and the prioritization of future nanomaterial

research. These techniques focus the attention of researchers

and policy makers toward what is most relevant to their deci-

sions and provide consistent and transparent frameworks for

integrating that information. In the future, we expect that both

decision analytic techniques and Bayesian models will be used

as extensions of standard mechanistic and statistical models to

leverage and advance developments in nanoinformatics [21].
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