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How deep is deep enough for RNA-Seq profiling
of bacterial transcriptomes?
Brian J Haas1, Melissa Chin1, Chad Nusbaum1, Bruce W Birren1 and Jonathan Livny1,2*

Abstract

Background: High-throughput sequencing of cDNA libraries (RNA-Seq) has proven to be a highly effective

approach for studying bacterial transcriptomes. A central challenge in designing RNA-Seq-based experiments is

estimating a priori the number of reads per sample needed to detect and quantify thousands of individual

transcripts with a large dynamic range of abundance.

Results: We have conducted a systematic examination of how changes in the number of RNA-Seq reads per

sample influences both profiling of a single bacterial transcriptome and the comparison of gene expression among

samples. Our findings suggest that the number of reads typically produced in a single lane of the Illumina HiSeq

sequencer far exceeds the number needed to saturate the annotated transcriptomes of diverse bacteria growing in

monoculture. Moreover, as sequencing depth increases, so too does the detection of cDNAs that likely correspond

to spurious transcripts or genomic DNA contamination. Finally, even when dozens of barcoded individual cDNA

libraries are sequenced in a single lane, the vast majority of transcripts in each sample can be detected and

numerous genes differentially expressed between samples can be identified.

Conclusions: Our analysis provides a guide for the many researchers seeking to determine the appropriate

sequencing depth for RNA-Seq-based studies of diverse bacterial species.

Background

In recent years, high throughput sequencing of cDNA

libraries (RNA-Seq) has emerged as a powerful technology

for profiling gene expression, discovering previously unan-

notated genes, and mapping transcriptome architecture in

a wide variety of bacterial species [1-11]. RNA-Seq offers

several advantages over hybridization-based approaches

such as microarrays, including a markedly higher sensitiv-

ity for low abundance transcripts, single nucleotide reso-

lution of transcript boundaries, and the means to profile

gene expression in strains for which genome sequences

and/or gene annotations are not available [12,13]. The

steadily decreasing cost of sequencing, the growing num-

ber of and accessibility to high-throughput sequencing

facilities, and the recent development of publicly available

bioinformatic tools for RNA-Seq data analysis have made

RNA-Seq an increasingly attractive and popular method

for studying bacterial transcriptomes.

The relative abundances of individual transcripts in a

bacterial transcriptome can differ by several orders of

magnitude. In order to generate comprehensive tran-

scriptome profiles using RNA-Seq one must therefore

obtain a sufficiently large number of reads to detect

those biologically relevant transcripts that comprise a

relatively small proportion of the cDNA library. Detec-

tion and quantification of low abundance transcripts by

RNA-Seq can be enhanced in two main ways. First, the

total number of reads per library can be increased. Second,

the proportion of reads representing rare transcripts can be

increased by depleting abundant transcripts from total

RNA and/or depleting cDNAs representing these abundant

transcripts from cDNA libraries. This is often achieved by

targeted removal of ribosomal RNA (rRNA), which com-

prises 80-95% of bacterial transcriptomes, from total RNA

prior to cDNA library construction [14,15].

For many RNA-Seq-based projects, the budget for

sequencing costs, and thus the total number of reads

that can be obtained, is constrained. Thus, researchers
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designing RNA-Seq experiments must often determine

the correct balance between sequencing depth (the num-

ber of reads per sample) and breadth (the number of

samples sequenced). For some applications of RNA-Seq

such as transcriptome mapping and annotation, the abi-

lity to detect rare transcripts is critical, and approaches

such as the ones described above for increasing the total

number of biologically relevant reads obtained per sample

play a central role. For other applications of RNA-Seq

breadth can often be more important than depth. Specifi-

cally, for experiments focused on comparing gene expres-

sion among various strains and/or growth conditions, the

inclusion of more strains, timepoints, biological replicates,

and/or growth conditions may be worth the tradeoff of

lower depth per sample, as it may provide additional bio-

logical insights and/or statistical confidence that is more

valuable than the ability to detect low abundance tran-

scripts in each sample.

In recent years, methods for incorporating barcoded

adapters into cDNA libraries have been developed that

allow reads derived from up to several dozen samples to

be sequenced in the same lane [16]. This approach, known

as multiplexing, enables researchers to flexibly vary the

number of samples sequenced per lane and thus obtain

the desired balance between the number of samples

included and the number of reads obtained per sample, in

particular when number of lanes of sequencing is budget

limited. However, the extent to which biologically relevant

information is gained or lost as sequencing depth is varied

has not been systematically examined. To address this we

have generated and analyzed a variety of RNA-Seq data-

sets to determine the number of reads needed to saturate

the transcriptome of E. coli and examined how reducing

sequencing depth affects the ability to detect and quantify

transcripts both within and between samples in diverse

bacterial species.

Results

Ultra-deep sequencing of the E. coli transcriptome

Previous studies have suggested that accurate quantification

of > 95% of transcripts in a mammalian cell line (including

splice junction level quantification) requires ~700 million

reads [17]; however, no estimate of the number of reads

needed to approach saturation of a bacterial transcriptome

has been reported. To address this question, we isolated

total RNA from a log phase culture of Escherichia coli K-12

which was then depleted of rRNA using the RiboZero kit

(Epicentere), converted to a strand-specific Illumina cDNA

library as described [14], and sequenced in one lane of

Illumina HiSeq. This produced a dataset of more than 306

million total reads aligning to the E. coli K-12 genome.

Over 97% of these reads corresponded to properly mapped

paired end reads, i.e. those corresponding to reads derived

from opposite ends of the same cDNA mapping no more

than 450 base pairs apart on the genome (the approximate

maximum size of cDNAs in the library – see Methods).

Properly mapped paired end reads were resolved into a

single fragment by filling in the gap between them (if any).

For pairs of reads that was not properly mapped, one read

was discarded and the remaining reads along with unpaired

reads were each treated as independent fragments. In total

this dataset contained approximately 156 million aligned

fragments with an average length of 159 nucleotides. rRNA

depletion in this sample was nearly complete, with less

than 0.15% of fragments aligning to rRNA-encoding genes

(Additional file 1: Table S1).

The proportion of annotated ORFs represented in

this dataset was very high, with all but 2 of 4149 ORFs

annotated in RefSeq covered by at least 1 fragment

(Additional file 2: Table S2). Coverage of the genome

also approached saturation, with at least 1 fragment map-

ping to over 94% of strand-specific genomic positions.

Importantly, the density of this coverage varied markedly

among different regions of the genome (Figure 1A). For

example, while 96% of bases within annotated ORFs were

detected by 10 or more fragments, only 60% of bases in

regions antisense to annotated ORFs were detected above

this cutoff. Similarly, the density of coverage was relatively

high for genes encoding non-coding RNAs (ncRNAs) and

relatively low in intergenic regions (Figure 1A).

As shown in Figure 1A, a surprisingly high proportion

of antisense and intergenic positions were covered by at

least 1 fragment. We reasoned that this could be due to

limitations in the method used to maintain strand speci-

ficity in our libraries [18,19]. In this method, dUTPs are

incorporated only into the second strand of cDNAs du-

ring cDNA synthesis and these dUTPs are then excised

prior to library amplification, ensuring that only the first

cDNA strand is efficiently amplified. Incomplete incor-

poration and/or excision of dUTPs would presumably

lead to low levels of antisense fragments corresponding

to the second strand of cDNAs. To assess the level of

second strand contamination in our samples, we compared

the average fragment coverage on the sense and antisense

strands of each annotated ORF with the expectation that

this coverage should be somewhat correlated if second

strand removal was incomplete. As shown in Additional

file 3: Figure S1, there was very little positive correlation

(R2 = 0.0004) between the fragment coverage of sense

and antisense strands, even among highly expressed

genes. In contrast, the correlation in the coverage of ORF

sense and antisense strands was much higher (R2=0.83)

when a similar rRNA-depleted E. coli cDNA library was

not subjected to dUTP excision prior to amplification

and sequencing. Thus, incomplete strand specificity in

our libraries does not seem to have contributed sig-

nificantly to the observed high coverage of antisense

positions.
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Another explanation for the high coverage of antisense

and intergenic positions observed is that a much higher

proportion E. coli genome is transcribed than is suggested

by current gene annotations. Indeed, several recent studies

have demonstrated widespread transcription from the anti-

sense strand of protein-encoding genes in diverse bacteria

[20-23]. While in some cases these antisense transcripts

have been shown to play important regulatory functions,

two recent studies in Bacillus subtilis and E. coli K-12

suggest that many antisense RNAs derive from spurious

transcription initiation or incomplete transcription ter-

mination and may not be functionally relevant [24,25].

Thus many of the fragments aligning to intergenic regions

of the genome may correspond to non-specific trans-

cription initiation or leaky transcription termination of up-

stream genes. Other sequences from intergenic regions

may be derived from previously unannotated ncRNAs.

Recent studies suggest the prevalence of ncRNA genes has

likely been underestimated, even in well-studied bacteria

such as E. coli K-12 [7,26].

Finally, the nearly complete RNA-Seq read coverage of

the genome could also reflect contamination of our cDNA

libraries with a low amount of E. coli genomic DNA

(gDNA). While total RNA was subjected to 2 rounds of

DNase treatment and no gDNA was detected following 40

rounds of PCR prior to cDNA synthesis, it is possible that

removal of gDNA from our total RNA was not complete.

Similarly, reagents used after DNase treatment in library

construction may also have introduced low amounts of

E. coli gDNA contamination.

Taken together our findings suggest that a sequencing

depth of 156 million fragments is sufficient to saturate

the E. coli K-12 transcriptome but also yields numerous

fragments aligning to very rare and potentially non-

functional transcripts and/or to low-level contaminants

introduced during library construction.

Genome coverage of RNA-Seq data after background

subtraction

While read coverage of annotated E. coli genes was

nearly complete in the 156M read dataset, the possibility

of gDNA contamination raised concern that some of

these genes were not actually transcribed. To better esti-

mate the proportion of E. coli genes transcribed under

the conditions tested, we devised an algorithm to sub-

tract potential gDNA background from our RNA-Seq

dataset based on the assumption that, unlike reads

corresponding to cDNAs, the alignment of reads cor-

responding to gDNA would be uniformly distributed

across the E. coli genome. As shown in Figure 1B and

1C, background subtraction assuming 0.5% or 1% gDNA

contamination led to relatively modest decreases in ORF

and ncRNA coverage but to significant drops in coverage

of IGR and AS positions. Indeed, after applying a 1%

background subtraction, only 33% and 62% of AS and

IGR positions were covered at saturation, respectively,

compared to 90% and 92% of ORF and ncRNA position,

respectively. While the actual extent of gDNA contami-

nation is difficult to ascertain, the results of our PCR

screen prior to cDNA synthesis suggest it is unlikely to

be as high as 1%. Yet even with this high level of sub-

traction, at least 1 and 10 reads aligned to 98% and 95%

of annotated ORFs, respectively, suggesting that a very

high proportion of annotated E. coli genes are expressed

Figure 1 Coverage of the E. coli K-12 genome by ultra-deep RNA-Seq data. Annotation of genomic positions as antisense ORF, non-coding

RNA (ncRNAs) intergenic (IGR), and antisense to ORFs or ncRNAs (AS) was based on gene annotations in the RefSeq and Rfam databases.

Positions on the opposite strand of genes were annotated as antisense only if no other genes were annotated at those positions. A) without

gDNA subtraction. B) with 0.5% gDNA subtraction. C) with 1% gDNA subtraction.
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at least at low levels during exponential growth in rich

media.

Of the 100 ORFs to which no reads aligned following

1% subtraction, several are near the minimum size cutoff

of cDNAs efficiently maintained during library construc-

tion. These include 4 of the 5 ibs toxic membrane pro-

teins that may indeed not be expressed under normal

growth conditions [27] (Additional file 2: Table S2).

Importantly, ORFs annotated as “predicted proteins” or

encoded within annotated prophages were enriched

more than 2- and 4-fold, respectively, among the un-

detected ORFs. Moreover, many undetected ORFs were

clustered in known operons, including 5 of 7 ORFs in

the rut operon involved in pyrimidine degradation [28],

5 of 6 ORFs in the cit operon encoding components of

an inactive citrate lyase [29], and 8 of 15 ORFs in the

phn operon required for use of phosphonate and phos-

phite as phosphorous sources [30] (Additional file 2:

Table S2). Some of the 100 ORFs not represented in our

RNA-Seq data have been shown to be expressed in other

studies conducted under different growth conditions,

suggesting the transcription of these genes is highly

repressed and/or the half-lives of these transcripts is very

short during exponential growth of E. coli K-12 in LB

medium.

Effect of ribosomal RNA depletion on RNA-Seq

transcriptome profiles

We next assessed to what extent rRNA depletion

increases detection of low expressed transcripts by

Figure 2 Coverage of annotated E. coli K-12 ORFs by ultra-deep RNA-Seq data. In each plot, the X-axis denotes the minimum threshold of

fragments/ORF A) Coverage of ORFs by data derived from rRNA-depleted and undepleted samples. B) Coverage of ORFs by full and sampled

datasets of the rRNA-depleted sample.
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RNA-Seq. To this end, we constructed another Illumina

library derived from the same total RNA used to pro-

duce the initial rRNA-depleted dataset and sequenced

this library in a single Illumina HiSeq lane. While the

depleted and undepleted libraries yielded a similar num-

ber of total fragments, 82% number of fragments in the

undepleted sample aligned to rRNAs and the number of

fragments aligning to ORFs in this sample was more

than 8-fold lower than in the depleted sample.

As expected, the proportion of annotated ORFs detected

was higher in the depleted than the undepleted samples

(Figure 2A). However, even in the undepleted sample, at

least one fragment mapped to over 99% of annotated ORFs,

and over 96% of annotated ORFs were associated with 20

or more fragments. Moreover, the subset of ORFs detected

with a minimum of 10 fragments per ORF was only 2%

lower in the undepleted sample. Thus, in a dataset contain-

ing enough fragments to saturate the E. coli transcriptome,

the lack of rRNA depletion greatly reduced the number of

mRNA-derived fragments obtained but led to only a rela-

tively modest decrease in the proportion of annotated E.

coli ORFs detected.

Effect of decreased sequencing depth on RNA-Seq

transcriptome coverage in E. coli

To systematically assess how decreasing fragment counts

per sample affects the comprehensiveness of gene expres-

sion profiles, we developed scripts that randomly sampled

our 156 million fragment rRNA-depleted E. coli RNA-Seq

dataset to create datasets with decreasing numbers of

fragments. The ORF and genome coverage provided by

these datasets was then quantified and compared. To

ensure our sampling approach accurately simulated mul-

tiplexing, we re-sequenced the E. coli cDNA library, this

time multiplexed with 11 unrelated libraries in the same

HiSeq lane, producing a dataset with approximately 15

million total fragments. Importantly, both the levels of

genome coverage and the number of fragments per ORF

in this dataset correlated very well (R2 > 0.99) with those

of a dataset of 15 million fragments sampled from the

156 million fragment dataset.

As shown in Figure 2B, reducing the number of frag-

ments led to a decrease in the proportion of annotated

ORFs to which 1 or more fragments aligned. However,

this decrease was often relatively small compared to the

reduction in the number of fragments. For example,

decreasing the number of fragments over 15-fold from

156 to 10 million fragments led to only a 3% and 7% loss

in the number of ORFs detected with more than 5 and

10 fragments, respectively. Indeed, even with only 2 mil-

lion fragments, 96% and 84% of ORFs were covered by

at least 1 fragment and 5 fragments, respectively.

As shown in Figure 3A, positions within annotated

genes were nearly saturated by 50 million fragments,

and only relatively incremental increases in annotated

gene coverage were obtained above 10 million frag-

ments. A similar trend was observed in intergenic posi-

tions. As the number of fragment continues to increase

beyond 50 million, nearly all new positions detected

were within antisense regions of the genome, many of

which, as discussed above, may correspond to non-

functional spurious transcripts or gDNA contamination.

Indeed, in the background subtracted datasets, very few

new positions were detected in any category in datasets

with more than 50 million fragments (Figure 3B and

3C). Taken together, these findings suggest that 50 mil-

lion non-rRNA fragments yield nearly complete cover-

age of biologically relevant E. coli transcripts expressed

during log phase growth in LB. Moreover, they suggest

that vast majority of the E. coli transcriptome can be

detected under this growth condition even with datasets

of only 5-10 million non-rRNA fragments.

Effect of decreased sequencing depth on RNA-Seq

transcriptome coverage in M. tuberculosis and V. cholerae

The regulatory networks governing gene expression can

diverge significantly among different bacteria. Moreover,

patterns of gene expression can vary dramatically among

different growth conditions. To assess whether the rela-

tionship between sequencing depth and transcriptome

coverage described above extends beyond log-phase E.

coli K-12 cultures growing in LB, we repeated the analysis

above with RNA-Seq data derived from log phase LB cul-

tures of Mycobacterium tuberculosis (Figure 4), a species

whose GC content, gene content and organization, and

physiology are significantly diverged from those of E. coli.

Importantly, similar levels of coverage of annotated ORFs

and ncRNAs were seen in these M. tuberculosis data-

sets containing 5 and 10 million non-rRNA fragments

(Figure 4). We also analyzed RNA-Seq datasets containing

5 and 10 million non-ribosomal fragments derived from

log phase cultures of Vibrio cholerae growing in M9 min-

imal medium [3] and found similar levels of gene cover-

age, though coverage of antisense and intergenic regions

in these data was somewhat lower (Figure 4). These results

suggest that a sequencing depth of 5-10 million non-

rRNA fragments enables profiling of the vast majority of

transcriptional activity in diverse species grown under di-

verse culture conditions.

Using RNA-Seq to identify differentially expressed genes:

how important is depth?

In addition to its utility in profiling the transcriptome of a

single strain of interest, RNA-Seq is also a powerful tool for

comparing gene expression among different strains and/or

growth conditions. A recent study by Tarazona et al. exa-

mined the relationship between sequencing depth and the

reliable identification of changes in gene expression in
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human RNA-Seq data [31] but to date no similar analysis

has been conducted for bacterial RNA-Seq data. To assess

how changes in sequencing depth influence RNA-Seq-

based analysis of differential gene expression in bacteria, we

sequenced rRNA-depleted total RNA isolated from LB

cultures of E. coli O157:H7 strain EDL933 (from hereon

referred to as EDL933) at the late exponential and early

stationary phases. cDNA libraries corresponding to 2 bio-

logical replicates for each time point were subjected to mul-

tiplexed sequencing using Illumina HiSeq to yield 25-30

million fragments per sample. Data between biological

replicates for each time point was were extremely well

correlated (R2 of fragments/ORF = 0.99). To examine the

impact of having fewer fragments on the results of

Figure 3 Coverage of E. coli K-12 genome as sequencing depth increases. Annotations of genomic positions was conducted as described in

the Figure 1 legend. The bar labeled “Total” represents all positions in the E. coli K-12 genome. A) without gDNA subtraction. B) with 0.5% gDNA

subtraction. C) with 1% gDNA subtraction.
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differential expression analysis, we scaled down the counts

of fragments per gene from each dataset while retaining the

original values of relative gene expression.

We first used these sampled datasets to determine how

changes in sequencing depth influenced the detection of

transcripts in two independent biological replicates. As

shown in Figure 5, the total number of transcripts

detected in both replicates rose significantly as depth was

increased, particularly among lowly expressed genes. Im-

portantly, these increases began reaching an asymptote

around 13 million fragments, suggesting that additional

depth beyond this point did relatively little to increase

either the number or percent of all genes detected in both

biological replicates.

We next analyzed the full and sampled datasets with

DESeq, a variance-analysis package that uses a model

based on the negative binomial distribution to infer

statistically significant differences in gene-expression

from RNA-Seq data [32]. Based on the counts of gene-

mapped fragments derived from the full RNA-Seq data

set of ~25 million fragments per sample, DESeq identi-

fied 2486 genes (corresponding to 45% of all annotated

EDL933 genes) as being at least 2-fold up- or down-

regulated (P < 1×10-3). As shown in Figure 6A, reduc-

tions in sequencing depth correlated with a decrease in

the number of genes identified as differentially expressed

below this P-value cutoff. As expected, the effect of

decreased depth was most marked for genes whose

differential abundance between the two growth phases

was relatively small (Figure 6A). For example, a 10-fold

decrease in depth resulted in a loss of 38% of genes

2-5-fold differentially expressed but only 9% of genes

whose differential expression was greater than 10-fold.

However, even when the depth was reduced to 2.5-3

million fragments in each dataset, 1704 genes were iden-

tified as differentially regulated more than 2-fold with

P < 1×10-3. Our findings indicate that when data from

well-correlated biological replicates are included, 2-3

million fragments per sample enable a significant num-

ber of genes differentially expressed by 2-fold or more to

be identified with high statistical significance.

The ability to reliably identify differentially expressed

genes by RNA-Seq is affected by a variety of factors

aside from total sequencing depth that can vary signifi-

cantly from one experiment to another, including the

number of biological replicates included and the vari-

ation between them, the average abundance of differen-

tially expressed genes, and the magnitude of their

differential expression under the conditions tested. We

therefore repeated the analysis above with RNA-Seq data

that were distinct in several ways from the EDL933 data.

Specifically, these data were derived from V. cholerae

growing in M9 minimal medium or isolated from the

cecal fluid of 2 orally infected infant rabbits [3]. More-

over, the correlation between the 2 rabbit samples was

much lower than for the EDL933 in vitro samples

(R2=0.69). Finally, the total number of non-rRNA frag-

ments for these datasets was between 4 and 6 million,

significantly less than in the EDL933 datasets.

Despite these numerous differences, the impact of

reducing the number of fragments in the V. cholerae

and EDL933 datasets on the ability to detect differen-

tially expressed genes was very similar (Figure 6B). Im-

portantly, as we observed in the analysis of the EDL933

data, numerous genes were identified as differentially

expressed by at least 2-fold (P < 1×10-3) even with a

reduction of fragments to 2-3 million per sample. These

Figure 4 Coverage of various bacterial genomes by RNA-Seq

data with varying sequencing depth. Annotations of genomic

positions was conducted as described in the Figure 1 legend. 5M and

10M denote RNA-Seq databases with 5 and 10 million non-rRNA

fragments, respectively. Ec, Mt, and Vc correspond to E. coli K-12,

Mycobacterium tuberculosis, and Vibrio cholerae, respectively.

Figure 5 Effect of sequencing depth on the detection of

transcripts in two independent biological replicates. The

percent of all annotated ORFs detected by RNA-Seq above the

indicated RPKM thresholds in both replicates of EDL933 exponential

phase cultures.
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included all 16 of the major V. cholerae colonization or

virulence factors identified as induced in the rabbit when

the full datasets were compared [3]. Strikingly, the differ-

ential expression of all but one of these major colonization

and virulence factors was detected (P < 1×10-3) even when

the total number of non-rRNA fragments was reduced

100-fold to 40,000-60,000 total fragments. While it is not

possible to accurately simulate how changes in depth will

affect RNA-Seq comparative gene expression analyses in

all cases, our findings indicate that in diverse species and

growth conditions and even with relatively low correlation

between biological replicates, 2-3 million fragments per

sample enable a significant number of genes differentially

expressed by 2-fold or more to be identified with high

statistical significance.

Discussion

We have conducted a systematic analysis of how

changes in sequencing depth affect analysis of bacterial

RNA-Seq data, both for profiling gene expression in a

single sample and for comparing gene expression among

different strains and/or growth conditions. Our findings

suggest that 5-10 million non-rRNA fragments are

sufficient to detect all but a few of the most low

expressed genes in diverse bacteria growing under a

variety of conditions. Moreover, we found that when the

number of non-rRNA fragments in E. coli exceeds 50

million, detection of biologically relevant transcripts all

but ceases and much of the additional coverage gained

appears to represent very rare transcriptional events

and/or gDNA contamination. We also found that when

RNA-Seq data from biological replicates is available, dif-

ferential expression of numerous genes can be detected

with high statistical significance even when the number

of fragments per sample is reduced to 2-3 million.

The optimal sequencing depth for an RNA-Seq based

study will vary considerably based on the scientific

objective of that study. For applications requiring a com-

prehensive transcriptome profile, coverage exceeding 10

million fragments per sample may be needed, with the

understanding that increasing depth can lead to detection

of sequences that may not represent bona fide transcripts.

Alternatively, the number and diversity of growth condi-

tions included in the analysis can be increased with the

expectation that, while the number of reads per sample

will be decreased, numerous transcripts whose abundance

Figure 6 Effect of decreased sequencing depth on detection of differentially expressed genes by RNA-Seq. Differentially expressed genes

were identified by DESeq with P < 10-3. A) Comparison of EDL933 gene expression in exponential and stationary phase. The total number of

aligned non-rRNA fragments in these datasets ranged from 25-30 million. B) Comparison of V. cholerae gene expression in minimal media and

the rabbit cecum. The total number of aligned non-rRNA fragments in these datasets ranged from 4-6 million.
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is low under one condition will be more highly expressed

and thus easier to detect under another condition. For

applications aimed at discovery of a relatively small num-

ber of previously unannotated genes to be subjected to ex-

perimental validation and/or functional characterization,

lower sequencing depth can provide sufficient sensitivity.

Indeed, a depth of 4 million non-rRNA fragments was

sufficient for identification of several dozen previously

unannotated ncRNAs in V. cholerae [3]. Similarly, even

with only 25,000-30,000 non-rRNA fragments per sample

we were able to identify 184 annotated genes in EDL933

whose abundance differed more than 2-fold between late

exponential and early stationary phases (P < 1×10-5). Thus,

our findings suggest that for many RNA-Seq based studies

in bacteria, the number of fragments needed to profile

gene expression in a single rRNA-depleted sample isolated

from a bacterial monoculture is far less than that pro-

duced in a single Illumina HiSeq lane. Indeed, our findings

suggest that at a certain point increased sequencing depth

may actually be detrimental to the accurate mapping of

biologically relevant transcripts, yielding reads that likely

represent contaminants in the cDNA library or the pro-

ducts of spurious transcriptional events.

A HiSeq lane typically produces about 150 million

paired end reads under current run conditions. Thus,

multiplexing 15-30 samples per lane will yield the 5-10

million reads per sample that are sufficient for most

applications of bacterial RNA-Seq. Indeed, our findings

suggest that for studies of differential gene expression,

even significantly higher levels of multiplexing result in

relatively modest decreases in sensitivity. For these types

of studies, the added biological information provided by

the inclusion of more strains, growth conditions, and/or

biological replicates may outweigh this loss of sensitivity

for detecting transcriptional changes in each pairwise

comparison of samples. Our findings also suggest that

for studies in which only a few samples are to be

sequenced in a single lane, a sufficient number of reads

may be obtained for samples that are not depleted of

rRNA and thus the time and cost associated with rRNA-

depletion may not be justified. Finally, for studies invol-

ving only one or two samples, such as pilot or proof-of-

principle experiments, lower throughput platforms such

as Illumina MiSeq platform may be more appropriate

than the HiSeq platform. MiSeq yields only about 7.5

million paired end reads per lane with a only a slightly

lower reagent cost than a lane of HiSeq but produces

data in a fraction of the time needed for a HiSeq run,

making it a good option for those seeking to quickly

obtain profiles of gene expression in only a few rRNA-

depleted samples.

The analysis we conducted was largely limited to data

derived from single bacterial strains grown in culture.

However, RNA-Seq is increasingly being used to study

the transcriptomes of bacteria growing in animal hosts

and/or as part of complex bacterial communities. Sam-

ples isolated from animal models are often contaminated

with a large amount of host RNA. In RNA derived from

microbial communities, transcripts corresponding to

particular strains of interest will often be greatly out-

numbered by those expressed by the numerous other

members of the community. Thus, in RNA-Seq data

representing mixed samples, the number of reads corre-

sponding to transcripts of interest can be orders of mag-

nitude lower than in data derived from a homogeneous

bacterial culture. Using RNA-Seq to unravel the dyna-

mics of bacterial gene expression in these complex and

biologically relevant samples will therefore require sig-

nificantly greater sequencing depth per sample, a robust

depletion of bacterial rRNA, host rRNA, and host

mRNA, and/or enrichment for transcripts of interest

through methods such as hybrid capture.

Conclusion

We have conducted a systematic analysis of how

changes in sequencing depth influence the profiling and

comparison of transcriptomes by RNA-Seq in diverse

bacterial species and growth conditions. Our findings

provide a guide for determining the appropriate sequen-

cing depth for a wide variety of RNA-Seq-based studies

of bacterial gene expression.

Methods

RNA extraction and processing

RNA was isolated by incubation by TRIzol (Invitrogen)

followed by passage through Direct-zol columns (Zymo

Research). Isolation of M. tuberculosis RNA included bead

beating during incubation with TRIzol [33]. Total RNA was

depleted of ribosomal RNA using the Ribo-Zero rRNA

Removal Gram-negative Kit (for E. coli and EDL933) and

Gram-negative Kit (for M. tuberculosis) (Epicentre) accor-

ding to the manufacturer’s protocol. mRNA-enriched RNA

isolated using Zymo RNA Clean & Concentrator columns

(Zymo Research) and treated with DNase using the

TURBO DNA-free kit (Ambion) according to the manufac-

turer's protocol. The RNA was then fragmented in a reac-

tion with 5X Fragmentation Buffer (Affymetrix) heated at

80°C for 6 minutes and purified using the Zymo RNA

Clean & Concentrator columns (Zymo Research).

cDNA synthesis

Unless otherwise indicated, all reagents in this section were

obtained from Invitrogen. For first strand cDNA synthesis,

RNA was incubated with random hexamers at 70°C for 10

minutes and then chilled on ice. The primer and RNA

template mix was then added to 5X FS Buffer, 0.1 M DTT,

10 mM dNTP mix, Actinomycin D (Sigma-Aldrich),

Superase-in (Ambion), and SuperScript III. This reaction
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was incubated at 25°C for 10 minutes and at 55°C for 1

hour, then chilled for 5 minutes on ice and cleaned up

using Zymo RNA Clean & Concentrator (Zymo Research).

The second strand cDNA synthesis reaction contained the

product of the first strand synthesis reaction, 5X FS Buffer,

5X SS Buffer, 0.1 M DTT, 10 mM dUTP mix (Affymetrix/

USB), RNase H, DNA Ligase (NEB), and E. coli DNA poly-

merase I (NEB). This reaction was incubated at 16°C for

2 hrs then placed on ice and terminated with 10 ul of 0.5

M EDTA. cDNA was then isolated from this reaction using

the MinElute PCR Purification Kit (Qiagen).

Illumina library construction and sequencing

cDNA fragments were end-repaired and phosphorylated,

followed by adenylation of 30ends and adapter ligation as

described [34] with the exception of replacing standard

paired end adapters with forked adapters containing

unique 8 base index sequences. Samples were gel size-

selected for 150-450bp fragment size (4% agarose, 85V,

3 hours.) Size-selected adaptor ligated cDNA was preincu-

bated with 1 ml Uracil-Nglycosylase (Applied Biosystems)

at 37°C for 15 minutes to remove uracils from the second

cDNA strand. Following incubation at 95°C for 5 minutes,

each sample underwent 18 cycles of PCR in 4 duplicate

reactions. Each set of 4 reactions was then combined and

purified using MinElute columns (Qiagen). Purified lib-

raries were profiled using the Agilent Bioanalyzer and

sequenced using the Illumina Hi-Seq platform to yield

76-101b paired end reads.

RNA-Seq data analysis

Reads were aligned to RefSeq reference genomes

(see Additional file 1: Table S1) using BWA [35] version

5.9. Gene annotations were obtained from RefSeq and

Rfam [36]. The overall fragment coverage of genomic

regions corresponding to features such as ORFs and

rRNAs was conducted as described [3].

In calculating the number of fragments aligning to each

feature, the paired-end strand-specific RNA-Seq reads were

assigned to these features based on their overlapping

genomic coordinates and strand orientation using a custom

PERL script. Counts of RNA-Seq fragments were computed

for each feature based on the paired-read mappings.

Fragments aligning to the DNA strand opposite from the

transcribed orientation of corresponding annotated features

were classified and counted as antisense. In the minority of

cases where only one read of a pair aligned to the genome,

the entire fragment was assigned to the overlapping feature.

Where each paired read of individual fragments aligned to

different features, each feature was assigned a partial frag-

ment count corresponding to 1/(number of mapped fea-

tures). Differentially expressed genes were identified using

the feature-assigned fragment counts for each replicate as

input to the DESeq software [32].

Genome sequence coverage by RNA-Seq alignments

was computed using a custom PERL script, where the

strand-specific nucleotide coverage (C) was incremented

at each nucleotide position spanned by a read or across

the range covered by the boundaries of an RNA-Seq

fragment inferred from a pair of properly mated paired

end reads. Background subtraction assuming a given

percent of genomic DNA contamination (pctBkg) was

performed as follows. The total strand-specific coverage

was computed by summing strand-specific nucleotide-

level coverage (Csum) observed across the genome. The

expected nucleotide-level coverage due to genomic DNA

contamination (Cbkg) was computed as:

Cbkg ¼ Csum � pctBkg=1000ð Þ

The effective nucleotide-level background-subtracted

coverage (Ceff ) values were computed as follows:

Ceff ¼
�

C � Cbkg <¼ 0ð Þ : 0;

C � Cbkg >¼ 1ð Þ : floor C � Cbkgð Þ;

0 < C � Cbkg < 1ð Þ : 1

with probability C � Cbkgð Þ else 0g

Additional files

Additional file 1: Table S1. Refseq accession numbers for strains

included in this study.

Additional file 2: Table S2. Reads per annotated ORF in 156M

fragment data set before and after background subtraction.

Additional file 3: Figure S1. Correlation of coverage of the sense and

antisense strands of annotated ORFs.
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