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Abstract

Entering and incumbent firms can create new products and displace
other firms’ products. Incumbents can also improve their existing prod-
ucts. How much of aggregate growth occurs through each of these chan-
nels? Using U.S. Census data on manufacturing firms from 1963 through
2002, we arrive at three main conclusions: First, most growth has seemed
to come from incumbents’ innovation rather than innovation by entrants.
We infer this from the modest market share of entering firms. Second, most
growth seems to have come from improvements of existing varieties rather
than creation of brand new varieties. We infer this because firm exit rates
fall only gradually as firms expand, suggesting they are not accumulating a
larger set of products. Third, own-product improvements by incumbents
appear to have been more important than creative destruction. We infer
this because the distribution of firm growth rates has had thinner tails than
implied by a model in which growth is entirely due to creative destruction.
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1. Introduction

Innovating firms can improve on existing products made by other firms, thereby

gaining market share and profits at the expense of those competitors. Such

creative destruction plays a central role in many theories of growth. This goes

back to at least Schumpeter (1939), carries through Stokey (1988), Grossman

and Helpman (1991), and Aghion and Howitt (1992), and continues with more

recent models such as Klette and Kortum (2004). Aghion et al. (2014) provide a

recent survey.

Other growth theories emphasize the importance of firms improving their

own products, rather than displacing other firms’ products. See chapter 14 in

Acemoglu (2011) for examples.1 See also Akcigit and Kerr (2013), who provide

evidence that firms are more likely to cite their own patents and hence build on

them. Still other theories, such as Romer (1990), emphasize the contribution of

brand new varieties to growth.

These theories have different implications for innovation policy. Business

stealing is a force pushing up the private return to innovation relative to the

social return. To the extent firms build on each other’s innovations, in contrast,

there are positive knowledge externalities that boost the social return relative to

the private return. When incumbents successively improve their own products,

business stealing effects and knowledge externalities can be mitigated. Models

with expanding varieties, meanwhile, tend to have smaller business-stealing

effects but retain knowledge spillovers. See the survey by Jones (2005).

Ideally, one could directly observe the extent to which new products sub-

stitute for or improve upon existing products. Broda and Weinstein (2010) is

a recent effort along these lines for consumer nondurable goods. Such high

quality scanner data has not been available or analyzed in the same way for

consumer durables, producer intermediates, or producer capital goods – all of

1Another example is Lucas (1988), which emphasizes worker human capital accumulation
but can be re-interpreted in terms of firms.
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which figure prominently in theories of growth.2

We pursue another approach. We try to infer the sources of growth indirectly

from empirical patterns of firm and plant dynamics. The influential papers

by Baily et al. (1992) and Foster et al. (2001) document the contributions of

entry, exit, reallocation, and within-plant productivity growth to overall growth

with minimal model assumptions. We consider a specific growth model with

a small set of parameters. Like us, Lentz and Mortensen (2008) and Acemoglu

et al. (2013) conduct indirect inference on growth models with manufacturing

data (from the U.S. and Denmark, respectively). They fully endogenize growth,

whereas we consider exogenous growth models. The trade-off is that they focus

on creative destruction, whereas we further incorporate new varieties and own-

variety improvements by incumbents.

We use data on plants from U.S. manufacturing censuses as far back as 1963

and as recently as 2002. We calculate aggregate TFP growth, the exit rate of

plants by age, the size (employment) of plants by age, the exit rate of plants by

employment, the distribution of employment growth, and growth in the total

number of plants. That parameter values that best fit these moments lead to

three conclusions. First, most growth – about 90 percent – seems to come from

incumbents rather than entrants. This is because the employment share of en-

trants is modest. Second, most growth – also about 90 percent – appears to arise

through quality improvements rather than brand new varieties. Third, own-

variety improvements by incumbents are about twice as important as creative

destruction (by entrants and incumbents).

The rest of the paper proceeds as follows. Section 2 lays out the parsimo-

nious exogenous growth model we use. Section 3 briefly describes the U.S.

manufacturing census dataset we exploit. Section 4 presents the parameter val-

ues of the model that best fit the moments from the data. Section 5 concludes.

2Gordon (2007) and Greenwood et al. (1997) emphasize the importance of growth embodied
in durable goods based on the declining relative price of durables.
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2. An Exogenous Growth Model

We adapt the Klette and Kortum (2004) model of quality ladder growth through

creative destruction. In this Klette-Kortum model firms produce multiple vari-

eties. Firms grow when they improve upon and capture the varieties produced

by other firms. Entrants try to improve on existing varieties and take them over

in the process. Incumbent firms die when their varieties are improved upon

and captured by other firms (incumbents or entrants). Unlike Klette-Kortum

we treat the arrival rates of creative destruction from entrants and incumbents

as exogenously fixed parameters, rather than being endogenously determined

by underlying preferences, technology, and market structure. This allows us to

keep the model parsimonious while adding exogenous arrival rates of new va-

rieties from entrants, new varieties from incumbents, and own-variety quality

innovations by incumbents.

Our set-up is as in Klette-Kortum with the following differences:

• Time is discrete (rather than continuous)

• There are a finite number of varieties (rather than a continuum)

• Innovation is exogenous (rather than endogenous)

• Demand for varieties is CES with elasticity σ > 1 (rather than σ = 1)

• There are brand new varieties (rather than a fixed set of varieties)

• Incumbents can improve the quality of their own varieties (rather than

quality improvements only coming from other incumbents or entrants)

• Creative destruction may be directed toward quality levels similar to each

firm’s existing average quality (rather than being undirected)



HOW DESTRUCTIVE IS INNOVATION? 5

Aggregate output

Total output Y in the economy is given by:

Yt =

[

Mt
∑

j=1

y
1−1/σ
j,t

]

σ

σ−1

where M is the total number of varieties and yj is the output of variety j. The

production function for each variety is linear in labor yj = qjlj , where qj is the

quality or “process efficiency” of variety j and lj is labor producing variety j.

Static problem of the firm

Firms control multiple varieties, but we assume they are still monopolistic com-

petitors for each variety. We assume further that there is an arbitrarily small

overhead cost of production. This assumption allows the highest quality pro-

ducer to charge the standard markup over marginal cost. Without this assump-

tion, firms would engage in limit pricing and markups would be heterogeneous

as in Peters (2013).

Assuming firms face the same wage, revenue generated by variety j is

pjyj =

(

σ − 1

σ

)σ−1

P σYW 1−σqσ−1

j ∝ qσ−1

j

where P is the aggregate price level, Y is aggregate output, and W is the wage.

Labor employed in producing variety j is also proportional to qσ−1

j :

lj =

(

σ − 1

σ

)σ (
P

W

)σ

Y qσ−1

j ∝ qσ−1

j

Thus both the market share and the employment of a firm are proportional to

the sum of power qualities qσ−1

j of the varieties operated by the firm.3 Note that

in the special case of σ = 1 assumed by Klette-Kortum, all varieties have equal

market shares (because price is inverse proportional to quality) and employ-

3There is no misallocation of labor whatsoever in this model.
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ment, and a firm’s size is proportional to the number of varieties it controls. We

will find it important to allow σ > 1, so that firms can be larger because they

have higher quality products rather than just a wider array of products.

Aggregate productivity

Labor productivity in the economy is given by

Yt/Lt = M
1

σ−1

t

[

Mt
∑

j=1

qσ−1

j,t

Mt

]

1

σ−1
.

where L is total labor across all varieties (which is exogenously fixed in supply).

The first term captures the benefit of having more varieties, and the second

term is the power mean of quality across varieties.

Exogenous innovation

There is an exogenous arrival rate for each type of innovation. The notation

for each type is given in Table 1. The probabilities shown are per each of the

current varieties a firm produces. The probability of a firm improving any given

variety it produces is λi, and such improvement is associated with step size sλ ≥

1. If a firm fails to improve on a given variety it produces, then that variety

is vulnerable to creative destruction by other (incumbent or entrant) firms. A

fraction δi of vulnerable varieties is creatively destroyed by another incumbent,

and a fraction δe by an entrant. Creative destruction comes with step size sδ ≥ 1.

Brand new varieties arrive at rate κe from entrants and at rate κi from incum-

bents – again per existing variety produced by an incumbent. These arrivals

are independent of other innovation types. The quality of each new variety

from entrants is drawn at random from the current distribution of qualities

(undirected innovation), but a multiplicative step sκ is added to each quality.

The arrival rate of brand new varieties affects growth in the number of firms
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Table 1: Channels of Innovation

channel probability step size

own-variety improvements by incumbents λi sλ ≥ 1

creative destruction by entrants δe sδ ≥ 1

creative destruction by incumbents δi sδ ≥ 1

new varieties from entrants κe sκ

new varieties from incumbents κi sκ

(tied to κe and κi), while the arrival rate and step size for new varieties (both κe

and sκ) will affect the size of new firms.

On top of the eight parameters listed in Table 1, we add two more parame-

ters. Klette-Kortum assumed creative destruction was undirected. We find that,

when combined with σ > 1, undirected creative destruction leads to a thick-

tailed distribution of employment growth rates. Firms can capture much better

varieties than their own, growing rapidly in the process. Incumbents on the los-

ing side of creative destruction can lose their best varieties, leaving them with

low quality varieties and steeply negative growth.4 To allow some control over

the distribution of tail growth rates in the model, we allow for the possibility that

creative destruction is directed. We parameterize directedness in the following

way. For incumbent firms, we assume that creative destruction occurs within

quality quantiles. If there are 100 such quantiles, then creative destruction is

random within a quality percentile. If there are 10 quantiles of quality, then

an incumbent creatively destroys an existing variety in its decile. If there is

only a single quantile then creative destruction is undirected.5 ρi denotes the

width of the quantile targeted by incumbents. For entrants, we parameterize

the directedness as the market share of the existing varieties targeted by entrant

4Of course, there are always entrants and exiters, which are at the extremes in the employ-
ment growth distribution.

5As all arrival rates are per existing variety, the quantiles are defined for each individual
variety. We also allow brand new varieties created by incumbents to be directed in this way.
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firms. We denote this market share as ρe.6

Note that, in our model, each innovation is proportional to an existing qual-

ity level. Thus, if innovative effort was endogenous, there would be a positive

knowledge externality to research unless all research was done by firms on their

own products. Such knowledge externalities are routinely assumed in the qual-

ity ladder literature, such as Grossman and Helpman (1991), Kortum (1997),

Klette and Kortum (2004), and Acemoglu et al. (2013).

Output growth

Total output grows at rate

1 + gY = [(1 + κe + κi) (1 + gq)]
1

σ−1

The κ components correspond to the creation of new varieties. The (1 + gq)

component reflects growth in average quality per variety. The growth rate of

the power mean of quality levels across varieties is:

1 + gq =
sσ−1

κ κe + sσ−1

κ κi + 1 +
(

sσ−1

λ − 1
)

λi +
(

sσ−1

δ − 1
)

(1− λi) (ρeδe + δi)

1 + κe + κi

3. U.S. Manufacturing Census Data

We use data from U.S. manufacturing Censuses to quantify dynamics of entry,

exit, and survivor growth. We focus on plants rather than firms, because merg-

ers and acquisitions can wreak havoc with our strategy to infer innovation from

growth dynamics.

We use data as far back as 1963, but often from 1972 onward because there

is no capital stock data before 1972. We use data through at most 2002, because

the NAICS definitions were changed from 2002 to 2007.

6It is convenient to define ρe as the market share to obtain an analytic expression for the
aggregate productivity growth rate.
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We are ultimately interested in decomposing the sources of TFP growth into

contributions from different types of innovation. We therefore start by calcu-

lating manufacturing-wide TFP growth. We take this from the U.S. Bureau of

Labor Statistics Multifactor Productivity Growth. Converting their gross output

measure to value added, TFP growth averages 2.51 percent per year from 1987–

2011 (the timespan of their data, which is not admittedly not ideal for us). The

number of manufacturing plants in the U.S. Census of Manufacturing, mean-

while, rose 0.49 percent per year from 1972 to 2002.

Since the Census does not ask about a plant’s age directly, we infer it from

the first year a plant shows up in Census going back to 1963. We therefore

have more complete data on the age of plants in more recent years. We use

this data to calculate exit by age from 1992 to 1997. We then combine it with

the assumption of 0.5 percent per year growth in the number of entering plants

to calculate the share of plants by age brackets of less than 5 years old, 5 to 9

years old, 10 to 14 years old, and so on until age 30 years and above. See the first

column of Table 2 for the resulting density. About one-third of plants are less

than 5 years old, and about one-eighth of plants are 30 years or older.

Table 2: Plants by Age

Age Fraction Employment Share

< 5 .358 .124

5-9 .189 .115

10-14 .128 .102

15-19 .091 .088

20-24 .068 .081

25-29 .046 .073

≥ 30 .120 .418

Note: Author calculations from U.S. Census of Manufacturing plants in 1992 and 1997.
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We report the share of employment by age in U.S. manufacturing in the

second column of Table 2. Yo ung plants are much smaller on average, as their

employment share (12 percent) is much lower than their fraction of plants (36

percent). Older surviving plants are much larger, comprising only 12 percent of

plants but employing almost 42 percent of all workers in U.S. manufacturing.

According to Hsieh and Klenow (2014), rapid growth of surviving plants is a

robust phenomenon across years in the U.S. Census of Manufacturing.

We plot how a plant’s exit rate varies with its size in Figure 1. The exit rate

is annualized based on successive years of the Census. The dots labeled “1992”

are based on exit from 1992 to 1997, those labeled “1982” are based on exit from

1982 to 1987, and so on back to “1963”. As shown, the annual exit rate is about

10 percent for plants with a single employee, declines to about 6 percent for

plants with several hundred employees, then falls further to about 1 percent for

plants with thousands of workers.

Figure 2, from Davis et al. (1998), plots the distribution of job creation and

destruction rates in U.S. manufacturing from 1973–1988. These rates are bounded

between -2 (exit) and +2 (entry) because they are the change in employment di-

vided by the average of last year’s employment and current year’s employment.

The distribution on the vertical axis is the percent of all creation or destruction

contributed by plants in each bin.

Lastly, we use is the standard deviation of firm size in U.S. manufacturing.

4. Indirect Inference

We now compare moments from model simulations to the manufacturing mo-

ments we calculated in the previous section. Our aim is to indirectly infer the

sources of innovation. Our logic is that plant entry and exit rates, size, size

dispersion, and growth are byproducts of innovation. Entrants reflect a combi-

nation of new varieties and creative destruction of existing varieties. The better

the new varieties, the bigger the market share of entrants. When a plant ex-
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Figure 1: Empirical Exit by Size in the U.S. Census of Manufacturing
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Figure 2: Job Creation and Destruction Rates in U.S. Manufacturing
(via Davis, Haltiwanger and Schuh, 1998)
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pands, it does so because it has innovated on its own varieties, created new va-

rieties, or captured varieties previously produced by other incumbents. When a

plant contracts it is because it has failed to improve its products or add products

to keep up with aggregate growth (and hence real wage growth), or because

it lost some of its varieties to creative destruction from entrants or other in-

cumbents. Outright exit occurs, as in Klette and Kortum (2004), when a plant

loses all of its varieties to creative destruction. Because creative destruction is

independent across a plant’s varieties (by assumption), plants with more va-

rieties have much lower exit rates. Plants with more varieties also have less

dispersed growth rates. Plants with higher qualities are larger and potentially

more protected against exit, as they have a lower likelihood of being captured

by entrants, which only target the bottom of the quality distribution.

Simulation algorithm

Though each firm’s static maximization problem (specifically, its market share

in terms of revenue or labor) can be solved analytically, we have to numeri-

cally compute the firm-level quality distribution. Compared to the Klette and

Kortum (2004) environment, our additional channels of innovation, as well as

the size heterogeneity in varieties we allow (due to σ > 1), preclude us from

obtaining analytical results. Our numerical simulation algorithm consists of

the following steps:

1. Specify the distribution of quality across varieties.

2. Simulate life paths for entering plants such that the total number of plants

observed, including incumbents, is the same as in U.S. manufacturing

plants from 1992, 1997, and 2002 (321,000 on average, including admin-

istrative record plants).

3. Each entrant has one initial variety, captured or newly created. In each

year of its lifetime, it faces a probability of each type of innovation occur-
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ring per variety it owns, as in Table 1. New varieties by entrants draw a ran-

dom quality from the distribution in the population (undirected) or from

the bottom quantile (directed). For incumbents, newly created varieties

and creatively destroyed varieties are either draws at random (undirected)

or from the quality quantile of its own variety (directed). A firm’s life ends

when it loses all of its varieties or when it reaches age 100.

4. Based on an entire population of simulated firms of all ages, compute the

joint distribution of quality and variety across firms. Calculate moments

of interest (e.g. exit by size).

5. Repeat steps 1 to 4 until all moments converge. In each iteration, update

the guess for the distribution of qualities by combining elements from the

previous iteration’s guess.

6. Repeat steps 1 to 5, searching for parameter values to minimize the abso-

lute distance between the simulated and empirical moments.

Sources of growth

We present our inferred parameter values in Table 3. We will first discuss the

inferred parameter values and the implications of these values for the sources

of growth. We will then examine why the data fitting exercise yields the param-

eters it does by by shutting down each source of innovation.

We infer a 29 percent arrival rate for own-variety quality improvements by

incumbents. Conditional on no own-innovation, quality improvements through

creative destruction occur 77 percent of the time by other incumbents, and only

6.2 percent of the time by entrants. As we will explain in more detail below, the

distance minimization algorithm would drive us to the corner solution where

creative destruction takes the form of pure imitation, i. e. sδ = 1. However, we

find it unrealistic that a firm could entirely lose a variety to another firm that

has not made any improvement at all. Therefore, we impose that creative de-
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Table 3: Inferred Parameter Values

Channel Probability Step Size

Own-variety improvements by incumbents 29.0% 1.06

Creative destruction by entrants 6.2% 1.01

Creative destruction by incumbents 76.6% 1.01

New varieties from entrants 0.5% 1.00

New varieties from incumbents 0.0% 1.00

struction entails at least a one percent jump with respect to the original quality

level of a variety. The solution is then sδ = 1.01. Own-variety improvements

are associated with a larger quality jump: 6 percent. New varieties arrive at a

slow rate, boosting total variety by 0.5 percent per year, and come entirely from

entrants. They do not generate any quality jump, but since entrants are directed

to the bottom quality quantile, they are smaller on average.

Table 4 presents the implied sources of growth. About 22 percent of growth

comes from creative destruction. Own-variety improvements by incumbents

seem more important, at 68 percent. New varieties a la Romer (1990) are the

remainder at about 10 percent. All three sources matter, but own-variety im-

provements tend to dominate under the Table 3 parameter values. Incumbents

contribute more to growth (88 percent) than do entrants (12 percent). Aghion et

al. (2014) provide complementary evidence for the importance of incumbents

based on their share of R&D spending.

At this point, a few key questions arise: What empirical moments suggest the

presence of own-variety improvements? And how well does a model with only

creative destruction fit the data? To help answer these questions, we examine

a sequence of models as listed in Table 5. We start with the baseline Klette-

Kortum model, which features σ = 1 and only creative destruction. Then we

generalize the Klette-Kortum model to σ > 1, which allows high quality varieties
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Table 4: Inferred Sources of Growth

Entrants Incumbents

Creative destruction of existing varieties 0.6% 21.6% 22.2%

Creation of new varieties 9.9% 0.0% 9.9%

Own-variety improvements - 67.9% 67.9%

12.1% 87.9%

Table 5: Simulated Models

Klette-
Kortum

KK1

Klette-
Kortum

KK3

directed new var. general

σ 1 3 3 3 3

creative destruction by entr., inc.
√ √ √ √ √

(partially) directed innovation
√ √ √

new varieties from entr., inc.
√ √

own-variety improvements by inc.
√

to have higher market shares. We next allow for partially directed innovation.

Then, we add the creation of brand new varieties by entrants and incumbents.

Finally, we add own-variety improvements by incumbents.

Table 6 reports the parameter values we infer for each model. It is informa-

tive to see how adding layers of generality to the Klette-Kortum model helps

us progressively achieve a better fit with the data. Let us start with the baseline

Klette-Kortum model. The average exit level, together with the exit by age slope,

pin down the arrival rate of creative destruction by entrants and incumbents.

Intuitively, the exit rate of the smallest firm in the baseline Klette-Kortum model

is simply the probability that the single variety owned by the smallest firm is
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Table 6: Parameter Values in the Simulated Models

Parameters Klette-Kortum Klette-Kortum 3 directed innov. new vars. general

δe sδ 4.3% 1.05 4.3% 1.05 3.2% 1.07 3.6% 1.06 6.2% 1.01

δi sδ 47.9% 1.05 47.9% 1.05 37.0% 1.07 35.0% 1.06 76.6% 1.01

κe sκ - - - - - - 0.5% 0.84 0.5% 1.00

κi sκ - - - - - - 0.0% 0.84 0.0% 1.00

λi sλ - - - - - - - - 29.0% 1.06

ρi - - 1% 1% 1%

ρe - - 27% 34% 35%

improved upon by another firm. In this model, the exit rate of a one-variety

firm is given by the following expression:

(δe + δi) (1− δi)

This is simply the sum of the probability of creative destruction by an entrant

and by an incumbent firm, times the probability that the firm does not cre-

atively destroy a variety from another incumbent. Around half of the varieties

are subject to creative destruction. Therefore, the step size associated to this

channel has to be roughly twice the aggregate growth rate in order for the model

to be consistent with that moment.

Figure 3 plots the exit rate of plants by age in each model vs. that in the

data. The fit is visibly accurate for all models (although the models without

own innovation understate the exit rate of firms 30 years and older). However,

the baseline model is not so successful regarding the other moments that we

analyze. Figure 4 plots the empirical size of plants by age against the size of

plants by age in each model. In this case, only models with new varieties are

able to replicate the amount of growth in size by age seen in the data.

Figures 5, 6, 7, 8 and 9 contrast the exit rates by size in each model with the
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Figure 3: Model Fit, Exit by Age
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Figure 4: Model Fit, Size by Age
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data counterpart. In the original Klette-Kortum model, bigger firms are firms

with more varieties. Firms with many varieties are unlikely to lose them all

at once, as creative destruction is independent across varieties. Thus exit falls

too sharply with size. On top of that, the original Klette-Kortum model cannot

generate the empirical dispersion in firm log employment, which is equal to

2.1 percent. These two failures of the Klette-Kortum model lead us to allow

for σ > 1, so that big firms are also firms with higher quality rather than more

varieties. Indeed, allowing for a higher elasticity of substitution in model Klette-

Kortum 3 improves the fit of exit by size, shown in Figure 6. In this particular

model configuration, it is necessary to assume a non-trivial amount of overhead

costs per variety in order to obtain a stationary quality (and size) distribution.

We adjust the level of overhead costs to match the empirical size distribution.7

Figures 10, 11, 12, 13 and 14 show the job creation and destruction distribu-

tion for each model compared to the data. As mentioned above, models with

undirected innovation generate thick tails of job creation and destruction. We

illustrate this in Figure 11 for the Klette-Kortum model with σ = 3. The models

with directed innovation do much better in terms of matching the empirical

distribution of job creation and destruction – see Figures 12 to 14.8

A logical next step is to allow for directed innovation by entrants and in-

cumbents. We can set the degree of incumbent directedness to approximately

match the shape of the job creation and destruction histogram. Moreover, we

can set the level of entrant directedness to generate the empirical growth in

plant employment by age, as seen in Figure 4. There are two reasons why a

higher degree of entrant directedness increases growth in size by age. First,

entrants come in with lower quality compared to the average firm. Second

and most important, targeting of low qualities by entrants generates a natural

selection effect by which only high quality varieties survive over time. This

7Still, the necessary level of overhead costs is too small to generate any visible contribution
to growth, i.e. higher than 0.05 percent of the aggregate growth rate.

8The reliance of the new varieties model on creative destruction can be seen in the job
creation spike around 2/3, which corresponds to a firm going from 1 to 2 varieties.
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model converges to a size dispersion lower than half the one in the data. Adding

overhead costs, which would reduce the size dispersion, would not be helpful.

Next, we add a new channel for growth: new varieties. The arrival rate of

new varieties is pinned down by the growth in the number of entrants over time,

because the average amount of varieties per firm does not trend. The step size

of this channel is pinned down by the size dispersion. In fact, the role of this

channel in keeping the equilibrium size dispersion large enough is the reason

why all new varieties are produced by entrants. If new varieties were assigned to

incumbents, we would not see enough small firms to match the empirical size

dispersion. Yet, the problem with this model is that it generates a very steep fall

in exit by size, as we see in Figure 8.

Hence, our final generalization is to add own-variety improvements. We can

use the extra parameters associated with this new channel to decrease the exit-

by-size slope. This takes us to the corner solution where we attribute a growth

contribution as high as possible to own-variety improvements (conditional on

the assumption discussed above that creative destruction cannot have an ex-

cessively small step size). With own-variety improvements, firms do not need to

rely on grabbing more and more varieties in order to grow in size. By decoupling

innovation from creative destruction and exit, we can sustain a higher exit rate

for large firms. The fact that we hit a corner solution explains why the fit in

Figure 9 is still not perfect in the general case.

5. Conclusion

How much of innovation takes the form of creative destruction? Versus firms

improving their own products? New varieties? How much of innovation occurs

through entrants vs. incumbents? We try to infer the sources of innovation by

matching up models with manufacturing plant dynamics in the U.S. We ten-

tatively conclude that creative destruction is important but not the sole source

of innovation. Own-product quality improvements by incumbents seem twice
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as important. Of lesser but nontrivial importance are new varieties and the

contribution of entrants overall.

Our findings could be relevant for innovation policy. The sources of growth

we identify have implications for business stealing effects vs. knowledge spillovers,

and hence the social vs. private return to innovation. The importance of cre-

ative destruction ties into political economy theories in which incumbents block

entry and hinder growth and development, such as Krusell and Rios-Rull (1996),

Parente and Prescott (2002), and Acemoglu and Robinson (2012).

It would be interesting to extend our analysis to other sectors, time periods,

and countries. Retail trade experienced a big-box revolution in the U.S. led

by Wal-Mart’s expansion. Online retailing has made inroads at the expense of

brick-and-mortar stores. Chinese manufacturing has seen entry and expan-

sion of private enterprises at the expense of state-owned enterprises (Hsieh and

Klenow (2009)). In India, manufacturing incumbents may be less important for

innovation and growth given that surviving incumbents do not expand as much

in India as in the U.S. (Hsieh and Klenow (2014)).

Our conclusions are tentative in part because they are model-dependent.

We followed the literature in several ways that might not be innocuous for our

inference. For example, we assumed that creative destruction was independent

across varieties, even within a firm. We plan to explore the possibility that

creative destruction is correlated across a family of products (e.g. Apple vs.

Samsung smartphones and tablets).

We assumed that spillovers are just as strong for incumbent innovation as

for entrant innovation. Young firms might instead generate more knowledge

spillovers than old firms do – Akcigit and Kerr (2013) provide evidence for this

hypothesis in terms of patent citations by other firms.

We assumed no frictions in employment growth or misallocation of labor

across firms. In reality, the market share of young plants could be suppressed

by adjustment costs, financing frictions, and uncertainty. In addition to ad-

justment costs for capital and labor, it may take plants awhile to build up a cus-
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tomer base, as in work by Foster et al. (2013) and Gourio and Rudanko (2014). Ir-

reversibilities could combine with uncertainty about the plant’s quality to keep

young plants small, foas in Jovanovic (1982) model. Markups could vary across

varieties and firms. All of these would create a more complicated mapping from

plant employment growth to plant innovation.
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Figure 5: Model Fit, Exit by Size, Klette-Kortum
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