

Delft University of Technology

How Developers Engage with Static Analysis Tools in Different Contexts

Vassallo, Carmine; Panichella, Sebastiano; Palomba, Fabio; Proksch, S.; Zaidman, A.E.; Gall, HC

DOI
10.1007/s10664-019-09750-5
Publication date
2020
Document Version
Final published version
Published in
Empirical Software Engineering

Citation (APA)
Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Zaidman, A. E., & Gall, HC. (2020). How Developers
Engage with Static Analysis Tools in Different Contexts. Empirical Software Engineering, 25(2), 1419-1457.
https://doi.org/10.1007/s10664-019-09750-5

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1007/s10664-019-09750-5

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher

is the copyright holder of this work and the author uses the

Dutch legislation to make this work public.

https://doi.org/10.1007/s10664-019-09750-5

How developers engage with static analysis tools
in different contexts

Carmine Vassallo1 · Sebastiano Panichella2 · Fabio Palomba1 ·

Sebastian Proksch1 ·Harald C. Gall1 ·Andy Zaidman3

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Automatic static analysis tools (ASATs) are instruments that support code quality assess-

ment by automatically detecting defects and design issues. Despite their popularity, they

are characterized by (i) a high false positive rate and (ii) the low comprehensibility of the

generated warnings. However, no prior studies have investigated the usage of ASATs in

different development contexts (e.g., code reviews, regular development), nor how open

source projects integrate ASATs into their workflows. These perspectives are paramount

to improve the prioritization of the identified warnings. To shed light on the actual ASATs

usage practices, in this paper we first survey 56 developers (66% from industry and 34%

from open source projects) and interview 11 industrial experts leveraging ASATs in their

workflow with the aim of understanding how they use ASATs in different contexts. Further-

more, to investigate how ASATs are being used in the workflows of open source projects,

we manually inspect the contribution guidelines of 176 open-source systems and extract the

ASATs’ configuration and build files from their corresponding GITHUB repositories. Our

study highlights that (i) 71% of developers do pay attention to different warning categories

depending on the development context; (ii) 63% of our respondents rely on specific factors

(e.g., team policies and composition) when prioritizing warnings to fix during their pro-

gramming; and (iii) 66% of the projects define how to use specific ASATs, but only 37%

enforce their usage for new contributions. The perceived relevance of ASATs varies between

different projects and domains, which is a sign that ASATs use is still not a common prac-

tice. In conclusion, this study confirms previous findings on the unwillingness of developers

to configure ASATs and it emphasizes the necessity to improve existing strategies for the

selection and prioritization of ASATs warnings that are shown to developers.

Keywords Static analysis tools · Development context · Continuous integration ·

Code review · Empirical study

Communicated by: Massimiliano Di Penta

This article belongs to the Topical Collection: Software Analysis, Evolution and Reengineering

Guest Editors: Massimiliano Di Penta and David Shepherd

� Carmine Vassallo

vassallo@ifi.uzh.ch

Extended author information available on the last page of the article.

Empirical Software Engineering (2020) 25:1419–1457

Published online: 25 November 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09750-5&domain=pdf
http://orcid.org/0000-0003-0495-6803
mailto: vassallo@ifi.uzh.ch

1 Introduction

The increasing complexity of modern software systems has complicated both the develop-

ment of new software features and the maintenance of source code (Lehman 1980). This

is especially true when considering the difficulties of developers to find defects or design

issues in changes to the source code (Catolino et al. 2018; Palomba et al. 2017; Parnas and

Lawford 2003). Manual processes like code review (Bacchelli and Bird 2013) exist to (i)

ensure the quality of source code, (ii) verify the correctness of bug fixes (McIntosh et al.

2014; Rigby and German 2006), (iii) enforce coding conventions (Beller et al. 2014), or (iv)

improve maintainability (Balachandran 2013; Rigby 2011). However, the manual effort of

code reviews is considerable (Jørgensen 2004) and defect detection is a very error-prone

activity (Chen 2015; Khoshgoftaar and Allen 1998).

Automatic Static Analysis Tools (ASATs), i.e., tools that analyze code quality character-

istics without program execution, represent an excellent opportunity to make this activity

more efficient. Several tools exist (e.g., CHECKSTYLE 2019, PMD 2019) that can support

developers in various tasks like the detection of defects Di Penta et al. 2009; Hovemeyer and

Pugh 2004; Coverity 2009), design issues (Beller et al. 2014), code style violations (Johnson

1977), or to perform formal verification (D’silva et al. 2008). Previous research has shown

that ASATs can help in detecting software defects faster and cheaper than human inspection

or testing would (Beller et al. 2015a, b, 2017; Johnson et al. 2013). As such, ASATs are reg-

ularly integrated in contemporary open source (Beller et al. 2016) and industrial (Sadowski

et al. 2015; Vassallo et al. 2016; Emanuelsson and Nilsson 2008) projects.

The advantages of ASATs are overshadowed by (i) high false-positive rates, i.e., alerts

that are not actual issues, (ii) a low understandability of the alerts, and (iii) a lack of auto-

mated quick fixes for identified issues (Johnson et al. 2013). As a result, previous work

found that only 10% of the suggested warnings of typical ASATs are actually removed

during bug fixing activities (Kim and Ernst 2007). To improve this number, it is not only

required to improve the precision of ASATs, it is also crucial to make it easier for the

developer to spot the relevant warnings, for example, through better prioritization strate-

gies (Beller et al. 2016). However, ASATs are being used in different development contexts

and previous results suggest that developers use ASATs differently in these contexts. For

example, Panichella et al. (2015) found coding-structure related warnings to be the most fre-

quently fixed category in code reviews, while Zampetti et al. (2017) found that ASAT-related

build failures are mainly caused by coding standard violations.

In this paper, which is an extension of our previous work (Vassallo et al. 2018), we

analyze where developers use ASATs and how they use ASATs in these contexts. We address

three main research questions:

RQ1 In which development contexts do developers use ASATs?

RQ2 How do developers configure ASATs in different development contexts?

RQ3 Do developers pay attention to the same warnings in different development con-

texts?

Through a survey study involving 56 developers1 (66% working in the industry and 34%

open source contributors) and semi-structured interviews with 11 industrial developers, we

1Compared to our previous work (Vassallo et al. 2018), we collected 14 more participants

Empirical Software Engineering (2020) 25:1419–14571420

obtain two key findings. We validate that the prevalent development contexts for ASAT use

are continuous integration, code review, and local programming. In addition, our partici-

pants state that they use the same ASAT configuration in these contexts, but that, depending

on the context, they pay attention to a different set of warnings. We conclude that more

effective use of ASATs could leverage information about the development context for a

better selection and prioritization of ASAT warnings.

In this extension, we build upon the initial results on how ASATs are being used and ana-

lyze the way open-source projects define them and enforce their use. Specifically, we study

(i) whether the adoption of ASATs is relevant or considered mandatory for contributing to

a project (e.g., pull request must not introduce warnings) and (ii) if specific types of checks

(or configurations) of ASATs are enforced. We also investigate the general perception of

the ASAT’s relevance for developers. We ask three additional research questions:

RQ4 Do open-source projects define ASATs usage2 in their repository?

RQ5 Is a ASATs usage2 enforced for contributions to open-source projects?

RQ6 What is the developer’s perspective on the relevance of ASATs?

To address these questions, we conduct a mixed-methods research approach with both

quantitative and qualitative analyses (Johnson and Onwuegbuzie 2004). First, we manu-

ally analyze the contribution guidelines and ASAT configuration files of 176 open-source

projects hosted on GITHUB to understand how ASATs are defined and whether their usage

is enforced for new contributions. Then, we create posts on a discussion website (REDDIT)

to collect diverse opinions on the relevance of ASATs in practice. Our study shows that 66%

of the investigated projects define how ASATs should be used for contributions, but that

only half of them (37%) enforce their usage for new contributions, which shows that the

ASAT usage is still limited in practice. The online discussions reveal that many developers

recognize the potential of ASATs, but also that ASATs are not ready to be used regularly.

It seems that a higher precision and more advanced selection and prioritization strategies

are needed to enhance the developers’ confidence in such tools and spread their usage in

practice.

In summary, this paper provides the following contributions:

1. We explore the practical use of ASATs in a survey with 56 participants;

2. We conducted semi-structured interviews with 11 participants to validate our findings

from the survey;

3. We are the first to show the potential value of considering the development context in

ASATs;

4. We discuss insights of a manual inspection of ASAT-related contribution guidelines and

resources of 176 open-source projects;

5. We present the results of discussions triggered on five forum groups related to software

development;

6. We provide insights and potential implications for both ASAT vendors and researchers

interested in improving techniques for the automated configuration and prioritization

of warnings.

2In the rest of the paper, we omit the word “usage” while referring to the definition and enforcement of

ASATs usage for the sake of better readability.

Empirical Software Engineering (2020) 25:1419–1457 1421

2 Overview of the ResearchMethodology

Originating from the agile coding movement, it is reasonable to believe that modern soft-

ware development processes are typically structured around three well-established contexts,

i.e., local programming (LP), continuous integration (CI), and code review (CR).

Local programming takes place in the IDEs and text editors in which developers write

code. ASATs are typically added to those environments in the form of plugins and point

developers to immediate problems of the written source code, like coding style violations,

potential bugs in the data flow, or dead code. Developers change perspective in code reviews

when they inspect source code written by others to improve its quality. This task is often

supported through defect checklists, coding standards, and by analyzing warnings raised by

ASATs (Panichella et al. 2015). The typical workflow in continuous integration is different:

committed source code is automatically compiled, tested, and analyzed (Beller et al. 2017a;

Hilton et al. 2016). ASATs are typically used in the analysis stage to assess whether the new

software version follows predefined quality standards (Zampetti et al. 2017).

In this paper, we conjecture that the described development contexts play an impor-

tant role in the adoption and configuration of ASATs and in the way actionable warnings

are selected. Moreover, ASATs are very well known tools, but we conjecture that their

enforcement might be notably influenced by several factors.

Figure 1 shows an overview of our methodology that we have used to test our conjectures.

We started exploring the contexts where developers use ASATs and how they configure

ASATs in such contexts through a questionnaire . Then we extended the questionnaire

and conducted semi-structured interviews to analyze the impact of development contexts on

the ASATs configuration . Finally, we conducted a quantitative analysis of the relevance

of ASATs in open source projects that we complemented with a qualitative analysis of

this phenomenon using discussion groups .

2.1 RQ1−2: the Development Contexts Integrating ASATs

To analyze the contexts in which developers use ASATs (RQ1) and how developers con-

figure them in the various contexts (RQ2) we designed a questionnaire, implemented using

Google Forms3 and publicly available in our online appendix (Vassallo et al. 2019).

As a first step, we advertised the study on social media channels to acquire study partic-

ipants. Then, to address more participants, we also applied opportunistic sampling (Gibbs

et al. 2007) to find open source contributors (OSS) that adopt ASATs in their devel-

opment process. We have identified matching OSS projects from the TRAVISTORRENT

dataset (Beller et al. 2017b) by searching for ASAT-related configurations in their repos-

itories. To avoid sending unsolicited mass emails, we only asked a random sample of 52

developers of these projects for their participation.

The survey was available for three months —from June 2017 to August 2017— in order

to collect as many replies as possible. However, over the course of this work, we realized

that additional questions were required to answer a new research question (see Section 2.2),

so we extended the initial set of survey questions. The second survey, which kept the original

questions untouched, was originally open from September 2017 to October 2017 and then,

from August 2018 to October 2018. We announced the extended version of the survey over

the same social media channels and posted the survey on REDDIT (2019) in the Javascript

3https://gsuite.google.com/products/forms/

Empirical Software Engineering (2020) 25:1419–14571422

https://gsuite.google.com/products/forms/

Questionnaire

Extended
Questionnaire

Interviews

RQ
1-2

Github projects

Analysis
of

Build Files

Analysis of
Contribution
Guidelines

RQ
4-5

RQ
6

Reddit

Create
Subreddit

Discussions
 RQ

3

1

2

3 4

Fig. 1 The Four Steps of the Research Methodology

and Python communities. These communities have been selected as they (i) allow users to

post surveys (unlike other suitable communities, such as Java) and (ii) have a large number

of active subscribers, thus increasing our potential audience (e.g., the Javascript commu-

nity has approximatively 300 daily users). In total, we received 58 responses (19 from the

first survey and 39 from the second one), but we had to discard 2 of them because the cor-

responding respondents declared that they do not use ASATs and were, therefore, not able

to properly answer our questions.

Table 1 lists demographic information about our survey participants. We had 37 (66%)

industrial and 19 (34%) open-source developers. Our participants have a very diverse back-

ground. A dominant group does neither exist when split by team size, nor when split by

project size. Most of our participants are experienced developers. When asked for a self-

estimation of their own development experience, most of them would rate themselves as

“very good” (51%) or “excellent” (36%) developers. Furthermore, 77% of them have more

than 5 years of development experience, and 41% even more than 10.

We were also interested in profiling the tools our participants use during development.

MAVEN (2019) (33%) and GRADLE (2019) (23%) are the (CI) build tools most commonly

used by our participants. However, some participants rely on build tools like SBT (2019)

(4%), that is mostly used in Scala development, or BUNDLER (2019) (2%), the most com-

Table 1 Demographic information about our survey participants

Team Size Projects Size [LoC]

1–5 35% 1,000-300,000 80%

5–10 31% 300,000-1,000,000 16%

10–15 14% >1,000,000 4%

>15 20%

Experience (Years) Experience (Rate)

1–5 23% Poor 0%

5–10 36% Fair 0%

>10 41% Good 13%

Very Good 51%

Excellent 36%

Empirical Software Engineering (2020) 25:1419–1457 1423

mon build tool for Ruby. Only 2% of participants combine command line scripts to build

the project.

Pull requests form a well-known method for collaborating and sharing opinions (Gousios

et al. 2014, 2015). The largest part of our respondents declared to be supported by dis-

tributed version control systems such as GITHUB (2019) (29%), GITLAB (2019) (18%) or

BITBUCKET (2019) (9%) during the code review process. Nevertheless, some participants

still tend to rely on a dedicated code review tool, i.e., GERRIT (2019) (18%), or to use an

informal process (15%).

2.1.1 ASAT Types

While answering RQ1 we investigated which ASATs were most often used. Later (in RQ4

and RQ5) we also analyzed which ASATs are most frequently defined and enforced. To gain

further insights useful for our analyses we have grouped all the resulting tools according

to their types in the existing taxonomy of Novak et al. (2010). This taxonomy uses sev-

eral dimensions like number of releases per year, supported languages, configurability to

categorize ASATs. Since the taxonomy dates back to 2010 and the list of categories is out-

dated in some cases (e.g., FINDBUGS 2019 is categorized as General and Style, while it is

well-known for spotting bugs Ayewah et al. 2008), we decided to adapt the original cate-

gories for our mapping. More specifically, we (i) removed the “General” category, because

its description is too vague, (ii) merged the “Buffer Overflow” and “Security” categories, as

the former represents a specific instance of the latter, and (iii) added a new category called

“Correctness”, which includes ASATs that search for misused methods and types. The final

set of categories is illustrated in Table 2.

For our analyses, we grouped ASATs according to their provided functionalities (i.e., the

rules dimension in the taxonomy). Two authors mapped the ASATs that were indicated in

our preliminary survey in Section 3 and were defined or enforced in open-source projects

as described in Section 5 to the rules categories. This mapping was performed in two iter-

ations: First, one author mapped each ASAT to one or more categories. Second, a second

author verified the adaptation of the original taxonomy, agreed that no further categories

are needed, and mapped all ASATs to the categories as well. The mappings of both authors

matched perfectly, which eliminated the need for further iterations, and are available in our

online appendix (Vassallo et al. 2019).

Table 2 Taxonomy of ASATs (derived from Novak et al. 2010)

Type Description

Style Inspect the visualization look of the source code

Naming Review if the variables are correctly named (e.g., naming standards)

Concurrency Errors with concurrency running code

Exceptions Errors by throwing or not throwing exceptions

Performance Errors with performance of the application

Security Errors which could impact security of the application

SQL Searches for “SQL injections” and other SQL errors

Maintainability Rules for better maintainability of the application

Correctness Methods and types correctly used (according to their purpose) (e.g.,

Method may return null, but is declared @Nonnull)

Empirical Software Engineering (2020) 25:1419–14571424

2.2 RQ3: The Impact of Development Contexts on the Configuration of ASATs

To investigate how development contexts influence the selection of warnings to which devel-

opers react (RQ3), we extended our previous questionnaire (as described in Section 2.1)

to include questions about the way the usage of ASATs is perceived in such contexts. We

also interviewed industrial experts that use ASATs on a daily basis. The interviews comple-

mented the extended questionnaire, as they provided another perspective on its results and

could possibly explain observations coming from it.

We defined a guideline for the interviews but decided to adopt a semi-structured inter-

view format (Runeson and Höst 2009) that allows the interviewees to guide the discussion,

which possibly leads to unexplored areas. We were prepared to conduct the interviews both

in person or remotely (using Skype) depending on the preference of the participant. While

we took notes in the personal interviews, each remote interview has been recorded and tran-

scribed. Through reaching out to personal contacts, we found 11 professional developers for

our interviews. Our interviewees work in 6 different companies and, as shown in Table 3,

they cover different domains. Specifically, 4 of them are classic software engineers, while

the other 7 lead the development team where they are working or design the overall archi-

tecture of a project. Thus we had participants from both perspectives: (i) developers that

actually use ASATs and (ii) developers that have to “negotiate” the expected product qual-

ity with the stakeholders and configure their ASATs accordingly. Moreover, all of them use

ASATs during several activities. The majority (82%) include ASATs in their CI build. A

popular choice among our interviewees is SONARQUBE (2019) (40%), a result that is in

line with previous work conducted in the industry (Vassallo et al. 2017). The other ASATs

that are most-employed in our participants’ companies are FINDBUGS (2019) (13.6%),

CHECKSTYLE (2019) (9.1%) and IDE plugins, e.g., CODEPRO (2019) (9.1%).

2.3 RQ4−5: the Relevance of ASATs in Open-Source Projects

We quantitatively studied the definition (RQ4) and enforcement (RQ5) of ASATs in

open-source projects by mining project-related information on GITHUB and by manually

Table 3 Demographic information about interviewees

Organization

Subject Years Role Domain Size

S1 20 Software Engineer IT consultancy 100,000

S2 8 Team Lead Financial Services 800

S3 35 Software Architect IT consultancy 5,000

S4 8 Product Owner Financial Services 800

S5 10 Team Lead Financial Services 800

S6 8 Solution and Technical Architect Financial Services 800

S7 26 Team Lead Content Management 100

S8 11 Technology Team Lead Financial Services 800

S9 10 Software Engineer Services and Innovation 70,000

S10 7 Software Engineer Financial Services 100

S11 12 Software Engineer Financial Services 70

Empirical Software Engineering (2020) 25:1419–1457 1425

analyzing contribution guidelines. We wanted to observe how ASATs usage is influenced

by the projects’ culture and thus, by the enforced contribution guidelines. In this way, we

could measure the relevance of ASATs in open-source projects.

We started our analysis by sampling the top-rated projects (more details in Section 5),

related to the main programming languages —Java, Javascript, Ruby, and Python— that

emerged in the first study (see Section 3). For each language, we selected the 50 most

popular projects on GITHUB (2019) (based on the number of stars) and created an initial

set of 200 projects. Through reviewing the project descriptions, we discarded 24 candidates

that were not software projects, but collection of the books or code snippets used as support

for learning courses. We ended up using a final set of 176 projects, for which we manually

analyzed (i) the ASATs’ configuration files available in the projects’ repositories, (ii) their

build configuration file, and (iii) the project’s documentation available in the repository

(e.g., README.md files, and contribution guidelines, e.g., CONTRIBUTING.md files) to

gather information about the actual relevance of ASATs in practice (more details about our

inspection procedure in Section 5).

It is important to mention that, differently from previous work by Beller et al. (2016), we

do not only measure the popularity of ASATs, but we also investigated the types of warnings

for which ASATs are usually enforced.

2.3.1 Project Types

As previously described, we analyzed open source projects available on GITHUB (2019.

Besides categorizing projects by language, we decided to further categorize them according

to their age, contribution, and popularity levels to gain more insights into the relevance of

ASATs in open-source. We used the GITHUB API (Github 2019) to request (i) the number

of performed commits (to measure the age), (ii) the number of contributors (for contribution

metric), and (iii) the numbers of stars (to measure the popularity) of a certain project. For

each considered perspective (i.e., age, contribution, and popularity) we split projects into

three different subsets, i.e., low, medium, and high. Specifically, we calculated the first (Q1)

and the third (Q3) quartile of the distribution representing the number of commits, contrib-

utors, and stars of the subject systems. Then, we classified them into the following levels:

(i) low, if they have a number of commits/contributors/stars n lower than Q1, (ii) medium,

if Q1 ≤ n < Q3, and (iii) high, if n is higher than Q3. The number of projects belonging to

each level is reported in Table 8.

2.4 RQ6: The Developers’ Perspective on the Relevance of ASATs

We created discussion groups on REDDIT (2019) to investigate the developers’ perspec-

tive on the use of ASATs and gain qualitative insights on their relevance in practice (RQ6).

Based on the results of our investigation in the open-source community (see Sections 5.2

and 5.3), we asked our participants to reflect on their ASAT use and its importance as

part of the development process. We created a post in five popular REDDIT communities

to gather as many replies as possible. We selected the learn-programming commu-

nity because the community is focused on teaching how to properly develop code. Other

communities have been selected based on the investigated programming languages (i.e.,

Java, Javascript, Python, and Ruby). We wanted to acquire feedback from devel-

opers that are used to discussing their programming and software engineering approaches.

We had first considered acquiring this feedback in a survey, but such a survey would have

attracted a more general selection of developers. We concluded that REDDIT is the bet-

Empirical Software Engineering (2020) 25:1419–14571426

ter option because it allows targeting specific communities, with developers that are more

likely to have the specific expertise required for our qualitative investigation, i.e., experience

with the ASATs described and discussed in Section 3. Links to our posts in the respective

communities are available in the replication package (Vassallo et al. 2019).

In total, we monitored the posts for one week and received 37 comments from 29 dif-

ferent subscribers. We had to discard 8 out-of-scope comments and ended up with a total

of 29 comments for analysis (45% of the comments are from java, 28% from python,

17% from javascript, and 14% from ruby communities). The discarded comments

are all from the learn-programming community. The comments that we received in

such a subreddit only refer to the relevance of ASATs usage as a topic for that community.

Finally, we performed open card sorting (Spencer 2009) of the comments to elicit the main

statements of the discussions.

3 The Development Contexts Integrating ASATs

The goal of this preliminary study (as explained in Section 2.1) is to understand (i) what the

development contexts are in which developers adopt ASATs (RQ1) and (ii) how developers

configure them in the various contexts (RQ2), by surveying people that use ASATs either in

open source or industrial projects. Hence, the context of our study includes (i) as subjects

the participants to our survey (see Table 1) and (ii) as objects, the specific ASATs used by

our respondents.

3.1 Survey Design

Our initial questionnaire (see “Questionnaire” in Fig. 1) consisted of 19 questions, which

include 8 multiple choice (MC), 4 checkboxes (C) and 7 open (O) questions. Furthermore,

we asked our participants to rate the validity of 4 statements (S) and also provided them with

an opportunity to leave further comments. In Table 4 we have grouped our various questions

into three topics: (i) Background, (ii) Adoption (of ASATs), and (iii) Configuration (of

ASATs).

The BACKGROUND questions provided us with the demographic information that we

have reported in Section 2. However, for brevity, we omit these questions in the table.

The questions in the other two sections, ADOPTION and CONFIGURATION, present the

core part of the survey and aim at understanding ASATs usage in practice. Specifically,

the ADOPTION section was aimed at assessing the degree of integration of ASATs in the

daily development. To reach this goal, we initially asked participants how frequently they

use ASATs (Q1.1), verifying whether there were some of them that never use static analy-

sis tools during their activities. Then, we surveyed our respondents about the development

activities where they usually rely on ASATs (Q1.2), specifying the mostly used types of

ASATs (e.g., PMD, Findbugs, etc.) (Q1.3). Furthermore, we wanted to understand whether

they use multiple ASATs (Q1.4) and in which development contexts (Q1.5). In the CON-

FIGURATION section (Q2.1-Q2.7) we have focused on confirming/rejecting previous results

reporting how developers usually avoid the modification of the ASATs default configura-

tion (e.g., the ones reported by Beller et al. 2016). For this reason, we asked our participants

when and which are the contexts where they change the configuration of ASATs. Then

we asked our respondents how frequently they fix warnings suggested by ASATs in the

different considered contexts.

Empirical Software Engineering (2020) 25:1419–1457 1427

Table 4 Survey Questions (MC: Multiple Choice, C: Checkboxes, O: Open answer, #: the number of

respondents answering the corresponding question)

Section Summarized Question Type #

Adoption

Q1.1 To what extent do you use ASATs during your activities? MC 56

Q1.2 During which activities do you use ASATs? O 48

Q1.3 Which ASATs do you usually work with? C 55

Q1.4 If you use more than one ASAT, why you’re adopting more

than one ASAT and in which context?

O 31

Q1.5 In which step of software development do you usually rely on

the suggestions provided by ASATs?

C 55

Configuration

Q2.1 To what extent do you change configuration of ASATs? MC 55

Q2.2 Do you use different configurations when working (i) in CI,

(ii) Code Review, (iii) locally? If so, why?

O 37

Q2.3 While configuring, do you pay attention to different warnings

(i) in CI, (ii) Code Review, (iii) locally?

O 12

Q2.4 Even if you don’t configure them, do you pay attention to

different warnings (i) in CI, (ii) Code Review, (iii) locally?

O 27

Q2.5 To what extent do you integrate warnings suggested by ASATs

during CI?

MC 54

Q2.6 To what extent do you integrate warnings suggested by ASATs

during Code Review?

MC 52

Q2.7 To what extent do you integrate warnings suggested by ASATs

locally?

MC 50

3.2 Adoption of ASATs

Most of the respondents (48%) declared to use ASATs multiple times per day, while

23% use them on average once per day. As shown in Fig. 2 the most used ASATs are

FINDBUGS (2019) (14%), CHECKSTYLE (2019) (14%) and PMD (2019) (12%). Then,

ESLINT (2019) and SONARQUBE (2019) are preferred respectively by 10% and 9% of our

A
S

A
T

FindBugs

Checkstyle

PMD

ESLint

SonarQube

Pylint

Flake8

RuboCop

JSHint

Checkmarx

% Respondents

0 3.5 7 10.5 14

1

3

3

4

5

9

10

12

14

14

Fig. 2 Top-10 ASATs used by our participants

Empirical Software Engineering (2020) 25:1419–14571428

respondents. Few participants mention other tools, e.g., PYLINT (2019), JSHINT (2019),

FLAKE8 (2019), CHECKMARX (2019), and RUBOCOP (2019).

To get a differentiated picture of the ASATs that are frequently used by our participants,

we group them by the types defined in Section 2.1.1. We decided that holistic ASATs like

SONARQUBE, which can be assigned to more than one type, are counted multiple types.

The result is shown in Fig. 3.

Most of our respondents use ASATs to review if variables or methods are correctly named

(Naming) and to identify error in the exception handling of their applications (Exceptions).

Other popular choices are to use ASATs to measure code metrics like cyclomatic complexity

to ensure Maintainability and the adherence to predefined coding standards (Style). Less

popular, but also reported by our respondent, ASATs are used to check for vulnerabilities

(Security), to verify Correctness, to find potential bottlenecks (Performance), or to find

Concurrency errors. Only 3% of our respondents mention that they use ASATs to detect

problems with their SQL queries.

The participants who regularly use ASATs (i.e., multiple times per day, or once per day)

also indicated the development activities (e.g., bug fixing, refactoring, etc.) during which

they usually adopt the tools (Q1.2). We performed a closed card sorting (Spencer 2009) of

the described development activities to identify the development contexts in which develop-

ers use ASATs. This information enables us to answer RQ1. Our sorting procedure consisted

of four steps:

– We chose two authors as sorters, while a third author organized the sorting task. The

third author illustrated the sorters (i) the goal of the sorting task, (ii) the conceptual

difference between development activity (i.e., a task performed by developers working

on a project) and development context (i.e., a step in the development workflow where

some tasks are performed), and (iii) the differences between the proposed development

contexts (as described in Section 2).

– The two sorters independently assigned each development activity provided by the

respondents (i.e., the cards) to one (or multiple) of the proposed development con-

texts or (if possible) to a new context. The sorters also had the opportunity to say

whether a provided activity was not valid (e.g., it was too general to be treated as a real

development activity).

– We computed Krippendorff’s alpha (Krippendorff 2004) to determine the interrater

reliability of the results of the first independent card sorting.

A
S

A
T

 T
y
p

e

Naming

Exceptions

Style

Maintainability

Security

Correctness

Concurrency

Performance

SQL

% Respondents

0 4.5 9 13.5 18

3

7

8

8

11

14

15

17

17

Fig. 3 ASAT types used by our participants

Empirical Software Engineering (2020) 25:1419–1457 1429

– We involved again the author that set up the sorting task to resolve the conflicts (i.e.,

the cases where the two sorters partially agree or disagree) and to avoid any bias related

to the subjectivity of the sorting.

To not interfere in the card sorting, we decided to not merge activities indicated by our

respondents at the beginning. However, in some cases, they clearly refer to the same context.

This is the case of “In-Editor typing” and “In-IDE typing”: several participants who adopt

ASATs during local development indicated that they mainly use ASATs “while implement-

ing the code in the IDE”. On the contrary, another participant stated that s/he uses ASATs

“while working in the editor”. Thus, it is likely that the latter programmer develops using an

editor rather than an IDE. Although both types of answer clearly refer to the same activity,

we preferred not to merge them to keep the card sorting as clean as possible.

The results of card sorting are shown in Table 5. Our sorters discarded (i.e., marked

as not valid) four activities they considered as too generic (e.g., “before a deadline”) or

not as real activities (e.g., “checkstyle”). Out of the reported 13 activities, the sorters fully

agreed on 9, partially agreed on 4, and they never completely disagreed. We computed

Krippendorff’s alpha coefficient to assess the reliability of the performed sorting. With a

score of 0.68, it shows an acceptable agreement (Krippendorff 2004). To summarize, the

reported activities could be completely mapped to our initial set of development contexts

and it was not necessary to add a new entry in the development contexts we considered in

Section 2. Moreover, from the results of Q1.5 we found that 37% of our participants rely on

them in CI, 29% in CR and 31% in LP.

To gain further insights into the adoption of ASATs in various contexts, we asked the

participants for the reasons of using ASATs individually or in combination (Q1.4). An

Table 5 Results of the closed card sorting applied to the development activities where ASATs are integrated

Dev. Context

Activity Name # Resp. LP CR CI Agreement

Code Maintenance 4 � � � Full

Code Reviewing 18 � Full

CI Build 10 � Full

In-Editor typing 1 � Full

Pre-commit 4 � � Partially

Pre-push 4 � Full

Build cycle 1 � Full

Refactoring 4 � � Partially

Jenkins stage 1 � Full

Debugging 2 � Partially

Documentation 1 � Partially

Quality Check 3 � � � Full

In-IDE Typing 3 � Full

Empirical Software Engineering (2020) 25:1419–14571430

important reason to combine several ASATs seems to be that they “cover different areas”,

i.e., different rulesets (Buckers et al. 2017). For instance “Checkstyle helps to detect general

coding style issues, while with PMD we can detect error-prone coding practices (includ-

ing custom rules). FindBugs helps to detect problems which are more visible at bytecode

level, like non-optimal operations & resources leaks.”. Another reason is that “ASATs are

language-specific and developers sometimes deal with multiple programming languages in

the same project”.

Interestingly, six participants reported as main motivation for using multiple ASATs the

fact that different types of ASATs are needed in different contexts. Specifically:

“[we choose an ASAT] depending on the context. For instance in CR I mainly use

Findbugs and PMD.”.

In particular, they seem to need ASATs covering different rule sets, as reported by one

of the respondents:

“[We install different ASATs] because more tools give more warnings and we can filter

these warnings based on style problems (mainly in code reviews) or bugs and other problems

possibly breaking compilability (mainly in CI)”.

Those initial results about the importance of the development context in the selection of

ASAT warnings will be further investigated in Section 4.

3.3 Configuration of ASATs

Beller et al. (2016) have shown that developers tend to adopt ASATs as-is, without evolving

or modifying their default configurations. While they have mined this result from software

repositories, our RQ2 was focused on analyzing ASATs configuration from a qualitative

point of view.

The results of this analysis are shown in Fig. 4. The general findings by Beller et al.

(2016) are confirmed: indeed, more than half of the participants (56%) report that ASATs are

configured only during the project kick-off. However, a small but not negligible percentage

declared to evolve the tools’ configurations on a monthly basis (20%).

To better investigate the motivations behind updating the configuration, we asked

whether developers tend to configure ASATs with the aim of adapting them to a specific

development context. Most of the respondents (78%) do not use different configurations

and they “forbid configuring static analysis tools as much as possible” because devel-

opers “want to work with the end-state in mind” or because it is “time-consuming to

enable/configure them”. Thus, developers do not use development context for configuring

ASATs differently.

F
re

q
u

e
n

c
y Kick-off

Monthly

Never

Weekly

% Respondents

0 15 30 45 60

8

16

20

56

Fig. 4 When ASATs are configured

Empirical Software Engineering (2020) 25:1419–1457 1431

Despite this general trend, a considerable portion (22%) of our respondents configure

ASATs differently depending on the context. Specifically, some of the reasons are:

“When reviewing I want to check the quality of code, when working on my own laptop I

want to avoid committing bugs, while style and error checks during CI”

and

“Locally I do not apply any particular configuration, while I like specialized version of

the configuration file for continuous integration and code reviews (they require more quality

assessment).”

This 22% of our participants claiming to configure ASATs were also surveyed to ask

whether they pay attention to different warnings while setting up the tools in different con-

texts. Some respondents found it hard to answer even though they provided us with some

initial insights going in the direction of monitoring different warnings (“for instance in CI

we check translations for issues, check images for being consistent et cetera.”).

On the other hand, we asked participants that do not configure ASATs to think about the

types of warnings they usually pay attention to in different contexts (Q2.4). Interestingly,

some of the participants said that “Style warnings are checked during CR, warnings about

possible bugs during CI”, they are “less worried about pure style issues when develop-

ing locally”, and “warnings might be not useful in different circumstances [or development

contexts]”. Thus, even though they do not configure ASATs, they tend to use them differ-

ently in the various contexts. From these insights we learned that, even though the practice

is not wide-spread (as indicated by 78% of our respondents), some developers might need

or want to configure ASATs differently depending on the development context. We further

analyzed the impact of development contexts on the configuration of ASATs in Section 4.

Finally, from the results of Q2.5-Q2.7 it is important to remark that in all the three

development contexts developers rarely ignore the suggestions provided by the ASATs.

4 The Impact of Development Contexts on the Configuration of ASATs

Based on some answers that we received in the context of RQ1 and RQ2 the development

context can play a role in the configuration of ASATs. As introduced in Section 2.2, the

goal of this second study is to further investigate this initial finding and analyze how devel-

opment contexts can influence the selection of warnings (RQ3). To this end, we studied the

developers’ opinions on the usage of ASATs and on relevant warnings in different develop-

ment contexts. The context of the second study consists of (i) subjects, i.e., the participants

to our extended questionnaire, as well as the industrial practitioners interviewed, and (ii)

objects, i.e., the ASATs used in the analyzed development contexts. The interviewees are

numbered S1 to S11. In this section, we describe the overall design of this second study and

the results achieved for the two investigated aspects, i.e., factors influencing ASATs usage

and relevant warnings in different contexts.

4.1 Study Design

The methodology of this experiment is split into two parts: the design of our extended

questionnaire and the design for the semi-structured interviews that we have conducted with

professional developers.

Extended Questionnaire As described in Section 2, we extended our initial survey by

including additional questions about CONTEXT-BASED USAGE (see Table 6). We focused

Empirical Software Engineering (2020) 25:1419–14571432

Table 6 Added survey questions related to the context-based usage of ASATs (O: Open Question, S:

Statement, #: the number of respondents answering the corresponding question)

Section Summarized Question Type #

Context-Based Usage

Q3.1 Which are the main factors you consider when deciding the set

of warnings to look at during Continuous Integration?

O 39

Q3.2 Which are the warning types that are more likely to be fixed

during Continuous Integration?

O 39

Q3.3 Which are the main factors you consider when deciding the set

of warnings to look at during Code Review?

S 39

Q3.4 Which are the warning types that are more likely to be fixed

during Code Review?

S 39

Q3.5 Which are the main factors you consider when deciding the set

of warnings to look while working locally?

S 38

Q3.6 Which are the warning types that are more likely to be fixed

while working locally?”

S 38

on two main types of questions: (i) what are the factors driving developers’ decisions to the

selection of the warnings in the three considered contexts (Q3.1, Q3.3, Q3.5) and (ii) what

are the warnings they pay more attention to in such contexts (Q3.2, Q3.4, Q3.6).

We have presented an initial list of likely reasons for the usage of ASATs in different

contexts to our participants to encourage them to brain-storm about the actual motivations.

Dillman et al. (2014) have shown that this methodology stimulates an active discussion and

reasoning, thus helping researchers during the investigation of a certain phenomenon. Our

proposed list consisted of five factors, i.e., (i) severity of the warnings, (ii) internal poli-

cies of the development team, (iii) application domain, (iv) team composition, and (v) tool

reputation. These factors have been selected from related literature (Kim and Ernst 2007;

Ruthruff et al. 2008) and from the popular question and answer sites STACKOVERFLOW

(e.g., StackOverflow 2017a, b) and REDDIT (e.g., Reddit 2017a, b), which are among the

top discussion forums for developers (CryptLife 2017). In the latter case, two of the authors

of this paper manually identified likely motivations that push developers into using ASATs

in different ways from the developers’ discussions.

Semi-Structured Interviews We created an interview guide for our semi-structured inter-

views to make it easy to keep track of our participants current and past experience with

ASATs and to allow them to express their opinions about context based warnings. The

guide was split into three sections. In the first section, BACKGROUND, we asked for years

of experience, study degree, programming languages used, role in the company together

with its size/domain, and in which development contexts our interviewees adopt ASATs.

The second section called CONTEXTS UNDERSTANDING investigated processes to review

and build new software and asked about the different development contexts that exist in

the organization. Furthermore, we needed to know how developers use ASATs. In the last

section, USAGE OF ASATS IN EACH CONTEXT, we asked our interviewees to state which

differences they perceive in the usage of ASATs between the different contexts. Further-

more, we intended to extract the factors (e.g., size of the change) they take into account

while deciding the warnings to look at in each context.

Empirical Software Engineering (2020) 25:1419–1457 1433

4.2 Main Factors Affecting theWarning Selection

Figure 5 shows the main factors for warning selection as answered by the interviewed

developers. The bars show how often a warning type was stated (in percentage) for each

development context. The first thing that leaps to the eye is represented by the importance

given to the Severity of the Warnings. This result confirms that developers mainly rely on

the prioritization proposed by the ASATs, and in particular to the proposed levels of severity

(e.g., crucial, major, minor) for the selection of the warnings. Developers seem to select the

warnings on the basis of their severity, for example postponing the warnings that represent

“minor issues” that can be postponed (S9). Our respondents also highlight that it is vital

for tools vendors to establish a clear strategy to assign severity because developers “need

to trust the tool in terms of severity” (S3) and “it’s important to assign the right severity

to the rules/warnings” (S4). In CI the entire build process can fail because of the severity

assigned to a warning, “If there are critical violations, the build fails” (S2).

While the severity assigned by ASATs plays the most relevant role in the decision pro-

cess, it is also important to highlight that the surveyed developers pointed out other factors

contributing to it. For instance, they highlight that the policies of the development team

notably influence the way they use ASATs. More specifically, monitoring specific warnings

might enforce the introduction of new policies in a team. Indeed, as reported by S7, using

ASATs seems to be a “social factor”. For example, when a development team decides to

adopt a strict policy regarding the naming conventions, it is better that a third party entity

reminds a team member when she is not following the established policy. Before starting

a project, it is crucial to define a policy in terms of programming standards that should be

followed by the entire development team. As pointed out by S10 and S11, ASATs support

young team members to follow them. However, as confirmed by S1 it is almost impossible

F
a
c
to

r Sev
er

ity
 o

f t
he

 W
ar

ni
ng

s

Pol
ic
ie
s
of

 th
e

D
ev

el
op

m
en

t T
ea

m

App
lic

at
io
n

Ty
pe

Te
am

 C
om

po
si
tio

n

To
ol
 R

ep
ut

at
io
n

N
on

e
of

 th
e

ab
ov

e

% Respondents

0 12.5 25 37.5 50

3.6

5.4

5.5

9.1

27.3

49.1

1.6

3.2

8.2

17.7

30.6

38.7

4.2

7

8.5

15.5

29.6

35.2

Continuous Integration Code Review Local Programming

Fig. 5 Main factors while selecting warnings in different contexts

Empirical Software Engineering (2020) 25:1419–14571434

to impose the adoption of specific warnings to developers. Rather, the warnings to monitor

have to be somehow “negotiated with developers” in the development team, even though in

some cases they are erroneously established by the stakeholders, as reported by S2 and S5.

Application Type is the third factor used by our survey participants to select warnings

along the different contexts. In particular, an application could be categorized according

to its destination, e.g., web service, mobile app, or its lifetime expectation, e.g., long/short

term project. According to S1 and S2, the choice of the monitored warnings depends on the

application type, which is definitely a key factor to consider. Moreover, S3 also said that

“a short-term application does not need to follow strict rules as the ones related to code

structure because they do not need to be maintained for a long time”.

Still, Team Composition represents another factor to take into account. As explained

by S3 it “affects the selection of the warnings because a certain degree of knowledge is

needed to understand specific warnings such as SQL injection flaw”. In other words, some

respondents find such warnings hard to integrate in case they do not have teammates having

enough expertise for fixing them. However, those warnings can be easily understood if the

ASATs provide exhaustive descriptions (Johnson et al. 2013) and possibly propose quick

fixes. Thus, Team Composition is not so popular among our participants because if the

chosen ASAT provides enough support in terms of understandability, every kind of warning

can be selected independently from the expertise of the team.

Only a minority of our respondents see the Tool Reputation as a crucial factor for warn-

ing selection. It is important to remark that, given the nature of our survey study, tools

reputation still refers to what developers’ perceive as relevant, i.e., we did not quantitatively

compute the reputation of tools but relied on the developers’ opinions explaining their deci-

sions. However, one of our interviewees (S3) considered it very important since “developers

sometimes do not trust ASATs, because there are no other people that sponsored them”. It

seems that developers need to build up trust and confidence in specific ASATs, but it is not

perceived as a key factor for the warning selection.

Finally, one of our respondents highlights the presence of a factor different from the

proposed ones. Specifically, he pointed out that “cost of fixing” is a key factor for the

warning selecting. Indeed, the expected time/effort is important because, when a deadline

is approaching, developers might want to postpone issues that do not have a strong impact

in the short-term (e.g., style conventions).

4.3 Different Warnings in Different Contexts

With the aim of comparing the importance developers give to warnings in the different

development contexts, our respondents were asked (Q3.2, Q3.4, Q3.6) to indicate which

warnings types they usually focus on. To make our results as independent as possible from

specific ASATs, we adopted the General Defect Classification (GDC) proposed by Beller

et al. (2016) as the list of warnings types.

Figure 6 illustrates the warning types that our respondents selected from the GDC in the

different contexts. Note that we normalized the data according to the min-max algorithm (Al

Shalabi et al. 2006) in order to better explain to what extent each warning type is monitored

Empirical Software Engineering (2020) 25:1419–1457 1435

Fig. 6 Normalized actionability of different warning types

in each context by our participants. Moreover, to point out the warning types that are mostly

checked in each development context we factor out the top 5 warnings for CI (Fig. 7a), Code

Review (Fig. 7b) and Local Programming (Fig. 7c). In the following, we describe the most

relevant categories our participants reported us.

Style Convention is the category concerning typical code style defects such as bad code

indentation, missing spaces or tabs. Generally, it is an important category of warnings both

in CI (second most selected in Fig. 7a) and locally (second in Fig. 7c), but specifically

during code review: it is the warning type selected by the majority of our respondents,

as shown in Fig. 7b. This result confirms findings of previous work (Beller et al. 2014;

Panichella et al. 2015) that showed that modern code reviews mainly fix design-related

issues rather than functional problems. Indeed, S7 reported that the first goal of code review

is to verify the adherence to code standards improving sthe code understandability. S9 and

W
a

rn
in

g
 T

y
p

e

Error Handling

Style Convention

Code Structure

Redundancies

Logic

% Respondents

0 3.75 7.5 11.25 15

10.3

11.2

11.2

11.2

14.7 Style Convention

Redundancies

Naming Conventions

Error Handling

Logic

% Respondents

0 3.5 7 10.5 14

8.8

8.8

11

13.2

14 Code Structure

Style Convention

Redundancies

Logic

Error Handling

% Respondents

0 3.25 6.5 9.75 13

9.9

10.7

11.6

11.6

12.4

Fig. 7 Top-5 warnings to be fixed in different development contexts

Empirical Software Engineering (2020) 25:1419–14571436

S10 confirm during the interviews that style-related issues are crucial points to address

during code review. Furthermore, S9 considered it also very valuable while working locally.

Redundancies concern redundant pieces of code or artifacts that can be safely removed.

These issues are perceived as very important during code review (the second most important

among the most selected warnings) and locally, but also in CI to a lower extent. In particular,

S1 confirms the importance of monitoring this category of warnings in CI.

Our respondents also pointed out that they mainly look at Naming Conventions during

code reviews (third most selected warnings in Fig. 7b), while we have no evidence of this

category neither in CI or locally.

Error Handling is the most selected warning in CI, i.e., it occupies the first position among

the chosen warnings. It is less important in code review (the fourth most voted in Fig. 7b)

and locally (the fifth most voted in Fig. 7c). Indeed only S1 and S3 monitor this category

type during code reviews, while most of the interviewees rely on the CI server to spot such

issues.

Code Structure reaches the first position in the warnings that are likely to be fixed locally

(Fig. 7c). This category concerns rules aiming at checking the structure, in terms of the file

system or the coupling, for violations of common conventions. Usually, developers organize

the structure of a project locally, so the code structure category is not surprisingly also

important for our respondents while working locally. However, our participants tend to not

monitor Code Structure warnings in code review.

Finally, the Logic warnings that are concerned with comparisons, control flow, and algo-

rithms are mostly checked during local programming while they are not considered crucial

in CI and code review.

5 The Relevance of ASATs in Open-Source Projects

The goal of our third study is to investigate the relevance of ASATs in open-source projects

(RQ4 and RQ5). Differently to previous work of Beller et al. (2016), we do not simply

approximate the popularity of ASATs by looking at the presence of ASAT-related files

among the projects’ resources or surveying projects’ contributors, but we review the con-

tribution guidelines of the projects instead and compare them to the configuration that we

find in the repository. We compare the definition of ASATs with the projects’ contribution

guidelines.

Such contribution guidelines form the foundation for shared work on an open-source

project. The community defines in a collective effort how ASATs are used to achieve for

example certain quality goals or strategies for risk mitigation, by using ASATs. These guide-

lines should then be considered not only by new contributions to a project (e.g., ASATs

can prevent new contributors from making common mistakes resulting in rejected pull

Empirical Software Engineering (2020) 25:1419–1457 1437

requests Gousios et al. 2015) but also for contributions of existing project members. One

part of our investigation has focused on the question of whether the usage of said ASATs

are actually enforced in the workflow.

The context of our study includes (i) as subjects the developers contributing to the

inspected open-source projects and (ii) as objects, the ASATs used in the 176 open source

projects that we manually inspected. In the following sections, we describe the design of

the study and the results we obtained.

5.1 Study Design

Our study design consists of the procedure that we adopted to inspect the 176 open source

projects (selected as described in Section 2.3). We were interested in investigating to what

extent ASATs are defined in open source projects and how their use is enforced while

contributing to a project.

To measure the definition of ASATs in open source projects, we examined the projects’

repositories. Similarly to previous work (Beller et al. 2016), we searched for ASATs’ con-

figuration files (e.g., google checks.xml in case of Google coding conventions for

CHECKSTYLE 2019) in the repository or for the explicit declaration of ASATs dependen-

cies in the build configuration file. Considering the most popular ASATs listed in Section 3,

we referred to the official ASAT documentation in order to understand how such tools are

typically defined and which configuration files are needed. Thus, for each ASAT, we com-

piled a list of corresponding configuration files (the full list is available in our replication

package Vassallo et al. 2019) and we automatically looked them up in the repositories.

Developers can define ASATs in arbitrary ways (e.g., they can use a non-default name for

the configuration file), so we manually inspected the projects for which the ASATs detection

had a negative result. In particular, we searched for files containing the definition of rules

and we read the build configuration files in order to reveal the definition of ASATs (e.g.,

among the build steps or goals in Maven 2019). In addition to that, we used the GITHUB

find function to search for ASATs related terms like “lint”, “style”, “sonar”.

The second part of our inspection procedure regards the ASATs enforcement. To conduct

such an investigation, one author inspected the available documentation in the repositories

in order to retrieve the contribution guidelines, i.e., the rules that all potential contributors

have to live by. Apart from pointing developers to important resources like the issue tracker

system and discussion channels (e.g., forum, mailing list, etc.), contribution guidelines

include templates for reporting bugs or enhancements, a code of conduct, and requirements

for submitting a change. For example in the case of the pull-based software development

encouraged by GITHUB (Gousios et al. 2014), a pull-request gets accepted if specific

requirements for submitting a change (such as all tests have to pass) are met. If we focus

on ASATs, contribution guidelines can enforce the usage of a particular ASAT to perform

specific code checks (e.g., code complexity must be below a given threshold) that a change

(e.g., submitted as a pull request) must pass in order to have the contribution accepted. Let

us consider the contribution guidelines of the stympy/faker project4. The project main-

tainers specify that the ASAT called RUBOCOP (2019) has to be used while submitting a

pull request. In particular, it is required to invoke a command like ‘bundle exec rak’

to “run the test suite and after that [run] the Ruby static code analyzer”. Only after passing

all the defined RUBOCOP checks, a pull request can be submitted by a contributor. Typically

4https://github.com/stympy/faker/blob/master/CONTRIBUTING.md

Empirical Software Engineering (2020) 25:1419–14571438

https://github.com/stympy/faker/blob/master/CONTRIBUTING.md

the contribution guidelines are illustrated in a dedicated file called CONTRIBUTING.md.

However, during the inspection of a few projects, we found cases where this file did not

exist or simply did not describe the guidelines properly. Because of that, we decided to also

include other sources in our inspection: the README.md, which typically contains instruc-

tions on how to install and use the software, and the project (Wikis 2019), which is often

used to host further documentation about a project. We carefully studied the contribution

guidelines to understand whether ASATs usage is enforced and –if yes– for which types

of ASATs. To validate the results of our inspection, an external validator inspected again

randomly-selected and statistically-significant sample (with a confidence level of 95% and

a confidence interval of ± 10) of projects for each language. Then, we computed the agree-

ment on both enforced ASATs and code checks in the resulting 122 projects. In case of

enforced ASATs, the two inspectors agreed on 104 projects reaching a strong level of inter-

rater agreement (Cohen’s Kappa (k) (Cohen 1960) of 0.74 that reveals strong agreement5).

In case of suggested code checks, they agreed on 104 cases with again a strong inter-rater

reliability (Cohen’s Kappa (k) (Cohen 1960) of 0.71 that means strong agreement5). These

results make us confident that our inspection results are reliable.

5.2 Definition of ASATs in Open-Source Projects

We evaluated the definition of ASATs by performing an automatic and manual analysis of

the projects’ repositories. By searching for the presence of configuration files of the most

popular ASATs, we were already able to automatically identify the definition of ASATs in

94 projects. After manually inspecting the build configuration files and the projects’ repos-

itories, we were able to classify another 23 projects as ASATs-defining projects. As shown

in Table 7, open-source projects very frequently define ASATs. 117 systems, correspond-

ing to 66% of the total set of projects, define at least one ASAT in their repository. This

percentage is even higher than the one found by Beller et al. (2016) and reveals how the pop-

ularity of ASATs has significantly increased over the last 2 years since their study. Grouping

projects by language, the percentage of ASAT-defining projects is even higher in the case

of Javascript and Python (respectively 81% and 77%). The projects written in Ruby are in

line with the average percentage (64%), while Java projects exhibit a lower number (23 cor-

responding to 47%), but still higher when compared to the results obtained by Beller et al.

(2016).

If we further group projects by age, contribution, and popularity (as described in

Section 2.3.1) we obtain the results shown in Table 8. The definition of ASATs becomes

more important or evident with higher levels of maturity of a project. Indeed, projects in the

early stage of their development (i.e., with a low number of commits, stars, and contributors)

are less likely to define ASATs (in all three categories the percentage of ASATs-defining

projects is below 66%). Vice versa, projects belonging to medium and high age categories

exhibit higher percentages than the average in Table 7. This seems to suggest that the need

for defining ASATs emerges as soon as the project increases in size (both in terms of

commits and contributors experience) and importance.

Among the defined ASATs, we did not find any new ASAT compared to the list

obtained surveying developers in Section 3.2. Figure 8a shows a graph of the most defined

50.2 < k ≤ 0.4 is considered fair, 0.4 < k ≤ 0.6 moderate, 0.6 < k ≤ 0.8 strong, and k > 0.8 almost

perfect (Cohen 1960)

Empirical Software Engineering (2020) 25:1419–1457 1439

Table 7 The relevance of ASATs in the analyzed open-source projects

Language # Projects # ASATs-defining Projects # ASATs-enforcing Projects

Java 49 23 (47%) 17 (35%)

Javascript 47 38 (81%) 22 (47%)

Ruby 45 29 (64%) 13 (29%)

Python 35 27 (77%) 14 (40%)

Total 176 117 (66%) 66 (37%)

ASATs. Despite the presence of the same ASATs in Fig. 2, the ranking is quite different.

ESLINT (2019), RUBOCOP (2019) and FLAKE8 (2019) are frequently defined, while FIND-

BUGS (2019) and PMD (2019) only in few projects. At the same time, CHECKSTYLE (2019)

also seems a popular choice in practice, while SONARQUBE (2019) is not widespread yet.

Thus, our results confirm the perceived popularity of certain ASATs, but also that, based on

our sample of projects, some ASATs considered less popular than others are instead more

frequently defined.

If we group ASATs according to their types (see Section 2.1.1), Naming and Exceptions

are the most defined ASATs (see Fig 9a). At the same ASATs measuring Maintainability

and spotting Style issues are also among the types that are more frequently available in

the repositories of our selected projects. It is worth noticing that, in the case of ASATs

types, their perceived popularity (see Fig. 3) is in line with their definition. Thus, while

the popularity of certain ASAT is not reflected in the reality of open-source projects, the

popularity of ASAT types directly matches with their definition in practice.

Table 8 The relevance of ASATs in the analyzed open-source projects grouped by age, contribution, and

popularity

Projects Set ASATs Relevance

Feature Level # Projects # ASATs-defining # ASATs-enforcing

Age Low 44 17 (38.6%) 10 (22.7%)

Medium 88 62 (70.4%) 29 (32.9%)

High 44 38 (86.4%) 27 (61.4%)

Contribution Low 44 13 (29.5%) 10 (22.7%)

Medium 88 67 (76.1%) 31 (35.2%)

High 44 37 (84.1%) 25 (56.8%)

Popularity Low 44 25 (56.8%) 8 (18.1%)

Medium 88 53 (60.2%) 29 (32.9%)

High 44 39 (88.6%) 29 (65.9%)

Empirical Software Engineering (2020) 25:1419–14571440

A
S

A
T

ESlint

RuboCop

Flake8

Checkstyle

JShint

FindBugs

PMD

SonarQube

Projects

0 9 18 27 36

2

2

4

5

18

27

28

35 IDE settings

ESLint

RuboCop

Checkstyle

Flake8

Pep8

Pylint

SonarQube

Projects

0 2 4 6 8 10 12 14

1

2

2

6

7

10

12

12

Fig. 8 The most relevant ASATs in the analyzed open-source projects

5.3 Enforcement of ASATs in Open-Source Projects

Open-source projects very often provide guidelines for potential new contributors. Only 27

out of 176 projects (corresponding to 15%) do not include any contribution guideline. If we

A
S

A
T

 T
y
p

e

Naming

Exceptions

Style

Maintainability

Security

Correctness

Concurrency

Performance

SQL

% Projects

0 7 14 21 28

1

1

1

2

3

19

21

26

26

A
S

A
T

 T
y
p

e

Style

Maintainability

Exceptions

Naming

Correctness

Performance

Security

Concurrency

% Projects

0 7 14 21 28

1

1

6

7

17

20

21

27

Fig. 9 The most relevant ASAT types in the analyzed open-source projects

Empirical Software Engineering (2020) 25:1419–1457 1441

consider the remaining 149 projects, only 66 (corresponding to 37% of the size of our sam-

ple) enforce the use of ASATs while contributing to a project. Looking at Table 7, Python

and Java projects exhibit percentages very close to the average (respectively 40% and 35%),

while Javascript projects are more inclined to suggest ASATs (47%). Only 29% of the ana-

lyzed Ruby projects enforce ASAT adoption. If we group projects by age, contribution, and

popularity (see Section 2.3.1) the pattern that we found in ASATs-defining projects (see

Section 5.2) is even more evident. As shown in Table 8 open-source projects enforce more

ASATs usage as long as the project evolves. In particular, the percentage of high-popular

projects that enforce ASATs is more than double of the corresponding percentage in the

case of low-popular projects. If we look at the age and contribution levels, the same pattern

holds. If we restrict our attention only to ASAT-defining projects, the overall number of

projects that enforce ASATs is slightly smaller (61 compared to 66 in Table 7) and reveals

how 52% of those projects that define ASATs enforce their usage. Note that 5 projects are

enforcing ASATs, but they are not defining them; these projects encourage new contrib-

utors to use the ASAT-capabilities provided by the IDE, or to use an online checker like

PEP8 ONLINE CHECK (PEP8 online check 2019). If we further group projects by language,

slightly more than half of Java and Javascript projects (∼60%) enforce ASATs usage. For

Python, 48% of projects both define and enforce ASATs, while only 41% of ASAT-defining

projects written in Ruby enforce them.

To complete our analysis, we wanted to investigate which ASATs are more enforced

and for which checks. Figure 8b shows the enforced ASATs in our sample of projects. The

most interesting result is about the IDE SETTINGS. We know that the IDE provides typ-

ical static analysis features. And looking at the figure, checking code in the IDE is also

particularly encouraged by open-source projects suggesting which rules or settings enable.

Comparing Figs. 8a and b , ESLINT (2019) and RUBOCOP (2019) are not only frequently

defined but also enforced. Obviously, IDE settings are not defined in the projects’ reposito-

ries. If we distinguish the different ASATs types that have been described in Section 2.1.1,

Style, Maintainability, Exceptions and Naming are not only the most defined ASATs types

but also the ones that are most frequently enforced (see Fig. 9b). However, compared to

the results in Fig. 9a Correctness and Performance types are enforced in more than double

of the projects. This might indicate that for some categories open-source projects enforce

particular ASATs without defining them in the repository, thus relying on tools that must

be configured by contributors on their machine (e.g., use certain plugins in the IDE). With

regard to the types of checks, only 58 projects specify which warnings are enabled in the

ASATs. Style Conventions are by far the most enforced category of warnings across dif-

ferent languages and ASATs. This is in line with our previous results in Section 4, where

style conventions are also important across the different development contexts. In 88% of

the projects, style conventions are the only reason why the use of ASATs is mandatory.

This result confirms that code style is a crucial factor for contributors who want to get a

pull request accepted (Gousios et al. 2015). In 10% of the cases coding conventions are fol-

lowed by licensing (i.e., verify whether the right license header is included in the source

code) and in only one case developers are invited to use ASATs to check for bugs and

vulnerabilities.

Empirical Software Engineering (2020) 25:1419–14571442

6 The Developers’ Perspective on the Relevance of ASATs

The goal of our last study is to complement the quantitative investigation of the relevance of

ASATs in open-source development with a qualitative analysis of this phenomenon to under-

stand the developers’ perception of the matter (RQ6). The context of this study includes (i)

the participants to our forum discussion as subjects, and (ii) the specific ASATs used by

people commenting to our REDDIT post as objects. In the following sections, we describe

the design of the study and the results we obtained.

6.1 Study Design

To understand the developers’ perspective on the relevance of ASATs in their development

process, we posted in the same five popular REDDIT (2019) communities that we have used

before (i.e., java, python, javascript, ruby, and learn-programming). We

started a discussion in each community, in which we asked for a reflection on the results of

our previous analysis in the context of open-source projects and, in general, on the relevance

of ASATs in their development process, we include links to our posts in our replication

package (Vassallo et al. 2019).

As discussed in Section 2.4, we gathered a total of 37 comments coming from 29 dif-

ferent subscribers. Our post had the goal of triggering the discussion on the general use of

ASATs with a focus on their relevance. Specifically, the post starts with illustrating its goal

and presenting the results of our quantitative analysis on the definition and enforcement of

ASATs in open source projects. We include two links to the results of our analysis, which

refer to the CSV and PDF report of our findings, as available in our replication package.

The main results of our investigation are also summarized directly in the post to stimu-

late readers to reflect on them and provide additional insights. Then, we ask the readers

whether and how they use ASATs in their development contexts. One of the authors acted

as moderator of the discussion. In particular, this task consisted of (i) answering ques-

tions about the study conducted on open source projects (see Section 2.3), e.g., clarify the

methodology adopted to perform the inspection, and (ii) replying to comments when some

details were ambiguous (e.g., the expression “bunch of metrics” does not clarify which are

the actually considered metrics) or when the respondents were too concise (to stimulate

them to tell us more). The moderator never judged answers in the discussion and was only

responsible for clarifying details or to ask for additional information in case of surprising

statements.

After one week of discussion, we perform a card sorting (Spencer 2009) to analyze the

received comments. We discarded 8 comments that were lacking any informative content.

For instance, we exclude a comment where a subscriber questioned the ability of the sub-

scribers to answer our question, i.e., “It’s a topic that’s generally over the heads of the

normal audience here”.

Because of their nature, comments to our post sometimes covered different and contro-

versial aspects of the ASATs usage, e.g., pros and cons of using ASATs. Thus, as first step

we decompose the received (and valid) comments in 38 cohesive paragraphs (or cards).

Then, we group common cards, and finally organize them hierarchically. The sorting of

such cards leads to the 8 main arguments shown in Table 9. In the following we discuss the

main findings quoting, when it is needed, extracts from the comments.

Empirical Software Engineering (2020) 25:1419–1457 1443

Table 9 Main topics resulting

from the sorting of REDDIT

comments

Topic # Cards

ASATs ease manual activities 5

I select specific rules to enable 4

I combine different ASATs 4

I do not need ASATs 4

ASATs are buggy 4

ASATs are difficult to configure 7

I use ASATs because my colleagues use them 6

ASATs violations should break the build 4

6.2 ASATs Ease Manual Tasks and Encourage Good Practices within Teams

When our participants refer to their general use, ASATs are mainly perceived as tools that

replace humans in performing tedious tasks. Our participants confirm the results of previous

work (Panichella et al. 2015) on the potential of using ASATs to increase the automation

of tasks that are typically performed manually like code review. ASATs are also important

to ease refactoring activities. Our results partially confirm findings of previous work (Vas-

sallo et al. 2018) where ASATs are perceived as tools that both suggest refactoring tasks

and provide support for performing them. Several participants pointed out the importance

of “setting up [ASATs] to break the build when quality thresholds are not met” (Beller

et al. 2017a). This indicates that the involved developers seem to perceive the conceptual

violations provided by ASATs at a similar level of severity as other typical reasons for

build failures, like compilation errors and testing failures (Vassallo et al. 2017). Further-

more, ASATs have the ability to “encourage good practices” in a development team, thus

confirming their importance in spreading the adoption of agreed policies (see Section 4).

Some participants remarked that in their team developers use the same tools and this helps

in avoiding any possible issues related to the consistency of the changes made to a shared

code base.

6.3 Enabling Different Warnings and Combining Different Tools

Developers also see the importance of using ASATs for checking violations different from

code style conventions, that might also be mitigated by using code formatter like PRET-

TIER (2019). Although some of our participants still consider code style violations the

most interesting features provided by ASATs (somehow providing a practical motivation

behind our findings on the enforcement presented in Section 5.3), their adoption is moti-

vated by other types of checks. They use ASATs to spot memory leaks and avoid possible

null pointer exceptions or to perform more advance checks like spotting “possible synchro-

nization bugs and race conditions”. Finally, our participants find useful the combination of

several ASATs because each of them is specialized in certain types of issues. For example,

in Java, they rely on CHECKSTYLE (2019) to enforce code conventions and on FIND-

BUGS (2019) to spot bugs. This goes pretty much in the direction of one of the emerging

(although not widespread yet) ASATs, namely SONARQUBE (2019). It aims at support-

ing multiple languages and types of checks by aggregating rules from several established

ASATs as CHECKSTYLE and FINDBUGS.

Empirical Software Engineering (2020) 25:1419–14571444

6.4 Low Reliability

Some of our participants do not trust the results coming from ASATs. Previous work (John-

son et al. 2013) reveals how developers tend to not use ASATs because of the high rate

of false positives. On the one hand, our participants confirm that ASATs generate “a lot

of noise” with many warnings that most of the time are irrelevant for the actual contexts

where developers are operating. Developers want to be notified regarding their mistakes

and not about violations related to code written by others. As a result, especially when they

start maintaining a pre-existing system, they disable warnings that affect such “old” code.

On the other hand, they report the poor effectiveness of some ASATs in catching issues.

For example, some participants complain about FLOW (2019), a static type checker for

Javascript code, that sometimes “misses obvious bugs” in the first place. Only after several

other changes, FLOW starts finding these latent bugs. Some developers even find the rules

quite subjective and difficult to generalize.

6.5 Configuration-Related Difficulties

The configuration of ASATs is perceived as a serious difficulty by our participants. Assum-

ing that team members converge on a set of rules, it is all but trivial to configure ASATs.

It is very time-consuming to go through the list of warnings and decide which are close to

the team’s rules. Thus, our participants tend to rely on the standard configuration confirm-

ing the results of previous work (Beller et al. 2016) and the ones presented in Section 3.

Despite developers finding it useful to combine different ASATs, some tools are not com-

patible. One participant has mentioned the example of PYLINT (2019) and FLAKE8 (2019)

in Python code. She would like to have both installed and run them at every new change.

However, in the case of unused variables, PYLINT suggests developers write “unused in

front of [them]”, while FLAKE8 recognizes that action as a code style violation. At the same

time, it is not so easy to propose enhancements or receive support while using ASATs. The

ASATs communities are not very open and in most of the cases not responsive to change

requests.

7 Discussion

In this section, we discuss the main findings of our study and their implications for

researchers and practitioners.

For RQ1 we found that developers adopt ASATs while working in the IDE, reviewing

code made by other developers or simply building new software releases. All those tasks

flow into three main development contexts, i.e., local programming (LP), code review (CR),

and continuous integration (CI). The usage of ASATs is almost equally distributed among

the contexts: 37% of our survey participants rely on ASATs while integrating code changes

in an existing project, 29% while reviewing code and 31% while working locally.

Empirical Software Engineering (2020) 25:1419–1457 1445

In RQ2, we discovered that 56% of the respondents to our survey configure ASATs at

least once before starting a new project. This result generally confirms previous findings

reported by Beller et al. (2016), who showed that developers did not change ASAT config-

urations often. Despite its usage in these three different contexts, the majority of developers

(78% of our participants) declared to not make a distinction while using ASATs in CI, CR,

or LP. The main motivation for which ASATs users do not enable different warnings when

switching from one context to another is that they perceive not working “with the end-state

in mind” as harmful.

When analyzing the factors taken into account by developers to select the enabled warn-

ings, we found that severity is highly relevant. However, it represents only a part of the

whole story and other factors also play a role. For instance, internal policies of the develop-

ment team (e.g., the enforcement of specific programming standards or style conventions)

or the life expectation of an application.

In RQ3, we observed that developers usually pay attention to different categories of

defects while working locally, in code review or rather in CI. Specifically, they mainly look

at Error Handling in CI, at Style Convention in Code Review, and at Code Structure locally.

These warnings are not mutually exclusive though and some categories appear in different

contexts with different weights.

In RQ4, we strengthened previous findings (Beller et al. 2016) on the popularity of

ASATs in open-source projects. We found that the definition of ASATs in projects’

repositories has increased during the last years (66% of our sample of projects integrate

ASATs),

However, in RQ5 we discovered that only half of the projects (corresponding to 37% of

our sample) enforce their adoption. Those results mean that developers do not consider the

usage of ASATs as mandatory for getting a submitted pull request accepted and more in

general for contributing to a project. Furthermore, Style Conventions are the only type of

warnings for which ASATs are suggested to be used.

Empirical Software Engineering (2020) 25:1419–14571446

In RQ6, we reinforced our investigation for RQ4 and RQ5 by inviting developers to

reflect on the obtained results on the ASATs’ relevance in open-source projects. We found

an agreement on the potential of using ASAT warnings also for non-code style related viola-

tions to avoid (tedious) manual tasks, and on the team culture as a factor for suggesting their

use. However, the low enforcement can be motivated by looking at the lack of reliability of

those tools and the difficulty to configure them according to the developers’ needs. ASATs

sometimes do not reveal the presence of obvious defects, or simply have an unexpected

behavior when integrated with other tools.

Our findings have important implications for both researchers and ASATs vendors:

Biased Perception We have seen a contrast between what developers think about ASAT

configurations and what they pay attention to in practice. This suggests the need for future

research into novel techniques that can estimate the actual factors that influence the selection

of warnings, e.g., metrics that quantify developers’ team composition and experience, while

ASATs vendors need to provide or integrate additional information besides the severity of

warnings to developers.

Holistic Analysis of the Developers’ Behavior Our study revealed that there is not a mutu-

ally exclusive set of warnings developers focused on in different contexts, even though such

warnings have a different relative “weight”. Moreover, we found that it is almost impossible

to enforce the adoption of specific warnings to developers. These results suggest the need

for future research devoted to the implementation of novel tools that are able to estimate

good weights for the context-specific warning-selection of ASATs. To this end, telemetry

data about developer activities (e.g., Proksch et al. 2017, Dias et al. 2013) might provide

useful input for personalized ASAT suggestions and, thus, improve the usability of these

tools in practice.

Towards Context-Awareness A clear implication of our results is the need for a new gen-

eration of ASATs that are able to improve the user experience of developers using them,

by selecting the warnings to fix in a more context-dependent manner. This includes (i) the

adoption of novel methodologies able to automatically understand the context in which a

developer is working in at a certain moment; (ii) the definition of smart filters/prioritization

mechanisms able to learn from context-based historical information how to properly support

the adoption of ASATs in each context.

Understanding Factors Making ASATs Underused ASATs provide early identification

of defects, vulnerabilities, and typical maintainability warnings as code complexity. The

majority of developers consider ASATs as a non-essential tool while contributing to a

project. An initial investigation of the possible reasons reveals that ASATs are not only

affected by a high rate of false positives (Johnson et al. 2013) but also that they are

unable to uncover sometimes obvious bugs and are difficult to be configured. Furthermore,

when adopted, the use of ASATs is enforced only for spotting code style violations. Thus,

apart from an investigation into the factors leading to the little enforcement in open-source

Empirical Software Engineering (2020) 25:1419–1457 1447

projects, there is the need to analyze the reasons why some categories of warnings are not

enabled. Specifically, the research community needs to figure out whether this is due to

poor knowledge of ASATs’ capabilities or to a higher rate of false positives generated by

specific categories where ASAT vendors need to focus their attention.

Feedback-driven ASAT Rules Several participants mentioned the difficulty to communi-

cate new feature requests or just reporting bugs to ASAT vendors. While this finding needs

to be further studied and verified by the research community, this might potentially be one

of the reasons for typical issues connected to the use of ASATs like the high false positives

rate. ASATs vendors could provide users with the possibility to report live issues, e.g., false

positives, while using their tool. Collecting such reports can help ASAT vendors in under-

standing the circumstances leading a particular warning to be perceived as not relevant by

the users. Thus, novel software analytics mechanisms helping ASAT vendors in understand-

ing how their tools are actually used in practice can potentially be the means in which the

gap between envisioned and actual usage is brought closer together.

8 Threats to Validity

Threats to construct validity concern the way in which we set up our study. Most of the

participants performed the two surveys in a remote setting: thus, we could not avoid the

lack of conscientious responses or oversee their actual behavior in the various development

contexts. Furthermore, the metadata sent to us from study participants could be affected

by imprecisions: in some cases, not all questions have been answered or some of them

were answered superficially. To mitigate these threats we first shared the surveys using

an online survey platform and forced participants to fill in the main questions. Secondly,

we complemented the questionnaires by involving 11 industrial experts that use ASATs

on a daily basis. Moreover, to complement the results achieved when surveying and inter-

viewing developers, we have analyzed projects on GITHUB and manually investigated

their contribution guidelines and/or examined the actual incorporation of ASATs as well

as the types of warnings for which ASAT controls are usually enforced. All these analy-

ses complement each other and are useful to ensure the reliability of the obtained results,

providing a unified view on the usage, relevance and perceived usefulness of ASATs for

developers.

By advertising the survey on social media channels such as FACEBOOK and TWITTER

using our personal accounts we could have introduced some form of selection bias. How-

ever, it is important to note that we mitigated this threat in two different manners. On the

one hand, we extended the invitations to 52 randomly selected developers coming from

OSS projects adopting ASATs and available on TRAVISTORRENT (Beller et al. 2017a), thus

using an opportunistic sample approach able to complement the initial selection process.

On the other hand, we advertised the survey on REDDIT (2019), which is an indepen-

dent forum where it was possible to focus on experts opinions about the topics of our

research. Of course, we cannot still exclude self-selection or voluntary response bias, i.e.,

who volunteered to respond may be more involved with ASATs than the average developer.

A further threat relates to the relationship between theory and experimentation. These

are mainly due to imprecision in our measurements. As for the survey, we used a 5-level

Likert scale (Oppenheim 1992) to collect the perceived relevance of some ASAT practices.

To limit random answers, we have provided the participants with the opportunity to explain

the answers with free comment fields.

Empirical Software Engineering (2020) 25:1419–14571448

Threats to internal validity are related to confounding factors that might have affected

our results. In the context of RQ1, the card sorting (Spencer 2009) matching ASAT usage

to the correct development contexts was firstly performed by two authors independently,

and then a discussion to solve conflicts took place. A third evaluator participated in the

discussion to mitigate threats due to the subjectivity of the classification.

Threats to external validity concern the generalizability of our findings. In our surveys,

we involved both industrial and open-source developers: they also had a very diverse back-

ground and come from projects pretty different in terms of domain and size. As for the

developers involved in the semi-structured interviews, they had solid development experi-

ence. Clearly, it is possible that some of our results partially generalize to other organizations

and open source companies. To limit this threat, as mentioned before, we complement

the results achieved when surveying and interviewing developers by mining projects on

GITHUB, thus sampling the top-rated projects (more details in Section 5), related to the

main program languages—Java, Javascript, Ruby, and Python—that emerged in the first

study (see Section 3). However, it is important to note that the results achieved on the

incorporation/enforcement of ASATs might be due to the context selection process we have

performed. Hence, further studies are needed to verify our findings: this is especially true

when it turns to the incorporation/enforcement of ASATs in the context of industrial envi-

ronments. Finally, we observe the developers’ perception of the adoption of ASATs by

creating REDDIT discussions (see Section 5). Also, in this case, our findings concern a lim-

ited set of participants, i.e., the ones that answered our questions on specific subreddits, and

further studies are needed to verify the generalizability of these findings.

9 RelatedWork

The use of static analysis tools for software defect detection is a common practice for devel-

opers during software development and has been studied by several researchers (Flanagan

et al. 2002; Wagner et al. 2005; Nagappan and Ball 2005; Zheng et al. 2006; Nanda et al.

2010; Butler et al. 2010). This section discusses the related literature on empirical studies

investigating the warnings and the problems detected by static analysis tools in the soft-

ware evolution (Flanagan et al. 2002; Wagner et al. 2005; Zheng et al. 2006; Heckman and

Williams 2011; Beller et al. 2016), code review (Panichella et al. 2015) and continuous

integration (Zampetti et al. 2017) development contexts.

In past and recent years, ASATs have captured the attention of researchers under dif-

ferent perspectives. Flanagan et al. (2002) investigated the usefulness of two ASATs, i.e.,

ESC-Java and CodeSonar, discovering that they have reliable performance. Wagner et al.

(2005) evaluated the usefulness of FindBugs, PMD and QJ Pro by analyzing four small Java

projects. They found that the tools results varied across different projects and their effective-

ness strictly depends on the developers programming style. At the same time, Ayewah et al.

(2007) showed that the defects reported by FindBugs are issues that developers are actually

interested in to fix. Zheng et al. (2006) evaluated the types of errors that are detected by bug

finder tools and their effectiveness in an industrial setting. Results of their study show that

the detected defects can be effective for identifying problematic modules. Rahman et al.

(2014) statistically compared defect prediction tools with bug finder tools and demonstrated

that the former achieve better results than PMD, but worse than FindBugs. Instead, Nagap-

pan and Ball (2005) found that the warning density of static analysis tools is correlated with

pre-release defect density. Moreover, Butler et al. (2010) found that, in general, poor qual-

ity identifier names are associated with a higher density of warnings reported by FindBugs.

Empirical Software Engineering (2020) 25:1419–1457 1449

D’silva et al. (2008) and Heckman and Williams (2011) did a survey on the algorithms that

perform automatic static analysis of software to detect programming errors or prove their

absence in industrial contexts.

Kim and Ernst (2007) studied how warnings detected by JLint, FindBugs, and PMD tools

are removed during the project evolution history. Their results show that warning prioritiza-

tion done by such tools tends to be ineffective. Indeed, only 10% of them are removed during

bug fixing, whereas the others are removed in other circumstances or are false positives.

They suggested prioritizing warnings using historical information, improving warning pre-

cision in a range between 17% and 67%. A related analysis, focusing on vulnerability, was

also performed by Di Penta et al. (2009) who studied what kinds of vulnerabilities develop-

ers tend to remove from software projects. In addition, Thung et al. (2012) and Nanda et al.

(2010) evaluated the precision and recall of static analysis tools by manually examining the

source code of open source and industrial projects. Their results highlight that static analy-

sis tools are able to detect many defects even though a substantial proportion of them is still

not captured. These findings were later confirmed by Nanda et al. (2010).

Beller et al. (2016) analyzed nine ASATs, finding that their default configurations are

almost never changed and that developers tend to not add new custom analyses. Our

work acts as triangulation of these findings: indeed, we could qualitatively confirm that

developers tend to modify the default configurations only at the beginning of the project.

The work by Zampetti et al. (2017) and Panichella et al. (2015) were conducted in the

context of continuous integration and code review, respectively. The former showed that a

small percentage of the broken builds are caused by problems caught by ASATs and that

missing adherence to coding standards is the main cause behind those failures. The latter

showed that during code review the most frequently fixed warnings are related to imports,

regular expression, and type resolution. We share with the study by Panichella et al. the find-

ing that ASATs tools can be useful when properly configured, as developers pay attention to

specific warnings during code reviews. However, we substantially highlight how the selec-

tion of static analysis tools and warnings vary from different development contexts and this

depends on the project culture and developers’ ASATs perceived usefulness. Nurolahzade

et al. (2009) confirmed the findings by Panichella et al. and showed that reviewers not only

try to improve the code quality, but they also try to identify and eliminate immature patches.

Our study can be considered complementary to these papers: while Panichella et al. (2015)

and Zampetti et al. (2017) focused on single contexts, we propose a more holistic analysis

of the developers’ behavior over different development stages in order to understand which

are the warning types that are most relevant in the different contexts.

Using static analysis tools for automating code inspections can be beneficial for soft-

ware engineers and the study by Johnson et al. (2013) investigated why developers are not

widely using static analysis tools and how current tools could potentially be improved. This

study involved interviews with 20 developers and, consistent with our work, highlights that

although all of our participants felt that use is beneficial, false positives and the way in

which the warnings are presented, among other things, are barriers to use. Compared to the

work by Johnson et al. (2013), our paper involves more developers and investigates more

development contexts. Furthermore, our paper involves a mix of quantitative and qualita-

tive analysis, thus providing insights into how to properly improve prioritization strategies

characterizing current ASAT usage contexts.

Recent work investigated the limits of ASAT tools in industrial (e.g., Google Sadowski

et al. 2018) and open source context (Vassallo et al. 2018), and proposed solutions to reduce

the number of alarms they generate (Muske et al. 2018; Bodden 2018) or summarize the

ASAT-related information contained in build logs (Vassallo et al. 2018). Moreover, Mah-

Empirical Software Engineering (2020) 25:1419–14571450

mood and Mahmoud (2018) compare static analysis tools for Java and C/C++ source code

and explore their pros and cons. However, none of these works have investigated the usage

of these tools in different contexts or examined their enforcement in open source projects.

10 Conclusion

In this paper, we have investigated the usage of ASATs in practice from two different per-

spectives. On the one hand, we studied whether developers use ASATs distinctly in different

development contexts, i.e., IDE, code review, and continuous integration. On the other hand,

we have conducted a study aimed at understanding whether ASATs are defined and enforced

in open source projects. As an additional contribution, we also provide qualitative insights

on the relevance of ASATs by creating REDDIT (2019) discussions and gathering comments

directly from developers that use those tools on a daily basis.

Our study highlighted a number of major findings that may lead to further research on

warning prioritization as well as a better organization of warning by ASAT vendors. Specifi-

cally, we first observed that (i) developers mainly use ASATs in three different development

contexts, i.e., local environment, code review, and continuous integration, (ii) developers

configure ASATs at least once during a project, and (iii) although developers do not change

the ASAT configuration when working in different contexts, they assign different priorities

to different warnings along the contexts. Moreover, we showed a clear limitation of the cur-

rent state of the practice: while developers of open-source systems generally have ASATs

defined, only a few projects enforce their usage and, when they do, this is just for check-

ing coding style conventions. In other words, the potential of ASATs is not fully embraced.

This problem represents the core of our future research agenda, which is focused on the def-

inition of novel automated strategies able to help developers in paying attention toward the

right warnings depending on the context they are in. Moreover, we aim at further investigat-

ing possible strategies to increase the developers’ awareness and actual adoption of ASATs

in practice. Finally, based on the results of our RQ3, we also hypothesize the need for dif-

ferent tool types in different contexts (covering different rule sets): thus, as future work, we

plan to analyze whether particular categories of ASATs are used in each context.

Acknowledgements The authors would like to thank all the open-source and industrial developers who

responded to our survey, as well as the 11 industrial experts that participated to the semi-structured interviews.

We also thank Diego Martin, which acted as external validator of the enforced ASATs and types of code

checks. This research was partially supported by the Swiss National Science Foundation through the SNF

Projects Nos. 200021-166275 and PP00P2 170529, and the Dutch Science Foundation NWO through the

TestRoots project (project number 639.022.314).

References

Hovemeyer D, Pugh W (2004) Finding Bugs is Easy. In: OOPSLA 2004, ACM, pp 132–136. http://doi.acm.

org/10.1145/1028664.1028717

Al Shalabi L, Shaaban Z, Kasasbeh B (2006) Data mining: a preprocessing engine. J Comput Sci 2(9):735–

739

Ayewah N, Pugh W, Hovemeyer D, Morgenthaler JD, Penix J (2008) Using static analysis to find bugs. IEEE

Softw 25(5):22–29. https://doi.org/10.1109/MS.2008.130

Ayewah N, Pugh W, Morgenthaler JD, Penix J, Zhou Y (2007) Evaluating static analysis defect warnings on

production software. In: Das M, Grossman D (eds) Proceedings of the 7th ACM SIGPLAN-SIGSOFT

Empirical Software Engineering (2020) 25:1419–1457 1451

http://doi.acm.org/10.1145/1028664.1028717
http://doi.acm.org/10.1145/1028664.1028717
https://doi.org/10.1109/MS.2008.130

workshop on program analysis for software tools and engineering, PASTE’07, San Diego, California,

USA, June 13-14, 2007. ACM, pp 1–8. https://doi.org/10.1145/1251535.1251536

Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of modern code review. In: Proceedings

of the 2013 international conference on software engineering. IEEE Press, pp 712–721

Balachandran V (2013) Reducing human effort and improving quality in peer code reviews using automatic

static analysis and reviewer recommendation. In: Proceedings of the international conference on software

engineering (ICSE). IEEE, pp 931–940. https://doi.org/10.1109/ICSE.2013.6606642

Beller M, Bacchelli A, Zaidman A, Juergens E (2014) Modern code reviews in open-source projects: which

problems do they fix? In: Proceedings of the 11th working conference on mining software repositories.

ACM, pp 202–211

Beller M, Bholanath R, McIntosh S, Zaidman A (2016) Analyzing the state of static analysis: a large-scale

evaluation in open source software. In: IEEE 23rd international conference on software analysis, evolu-

tion, and reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18, 2016, vol 1. IEEE Computer

Society, pp 470–481. https://doi.org/10.1109/SANER.2016.105

Beller M, Gousios G, Panichella A, Proksch S, Amann S, Zaidman A (2017) Developer testing in the IDE:

patterns, beliefs, and behavior. IEEE Trans Softw Eng (TSE)

Beller M, Gousios G, Panichella A, Zaidman A (2015a) When, how and why developers (do not) test in their

IDEs. In: Proceedings of the joint meeting of the European software engineering conference and the

ACM SIGSOFT symposium on the foundations of software engineering (ESEC/FSE). ACM, pp 179–

190

Beller M, Gousios G, Zaidman A (2015b) How (much) do developers test? In: 37th IEEE/ACM international

conference on software engineering (ICSE 2015). IEEE Computer Society, pp 559–562

Beller M, Gousios G, Zaidman A (2017) Oops, my tests broke the build: an explorative analysis of travis ci

with github. In: International conference on mining software repositories. IEEE Press, pp 356–367

Beller M, Gousios G, Zaidman A (2017) TravisTorrent: synthesizing Travis CI and GitHub for full-stack

research on continuous integration. In: Proceedings of the 14th working conference on mining software

repositories. IEEE, pp 447–450

Bitbucket (2019) https://bitbucket.org/. Accessed: 2019-03-10

Bodden E (2018) Self-adaptive static analysis. In: Proceedings of the 40th international conference on

software engineering: new ideas and emerging results, ICSE-NIER ’18. ACM, New York, pp 45–48.

https://doi.org/10.1145/3183399.3183401

Buckers T, Cao C, Doesburg M, Gong B, Wang S, Beller M, Zaidman A (2017) UAV: warnings from multiple

automated static analysis tools at a glance. In: IEEE 24th international conference on software analysis,

evolution and reengineering (SANER). IEEE Computer Society, pp 472–476

Bundler (2019) https://bundler.io/. Accessed: 2019-03-10

Butler S, Wermelinger M, Yu Y, Sharp H (2010) Exploring the influence of identifier names on code

quality: an empirical study. In: Proceedings of the European conference on software maintenance and

reengineering (CSMR), pp 156–165

Catolino G, Palomba F, De Lucia A, Ferrucci F, Zaidman A (2018) Enhancing change prediction models

using developer-related factors. J Syst Softw 143:14–28

Checkmarx (2019) https://www.checkmarx.com/. Accessed: 2019-03-10

CheckStyle (2019) http://checkstyle.sourceforge.net. Accessed: 2019-03-10

Chen L (2015) Continuous delivery: huge benefits, but challenges too. IEEE Softw 32(2):50–54

Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46

CodePro (2019) https://www.roseindia.net/eclipse/plugins/tool/CodePro-AnalytiX.shtml. Accessed: 2019-

03-10

CryptLife (2017) Top ten forums for programmers, https://www.cryptlife.com/designing/programming/

10-best-active-forums-for-programmers

Di Penta M, Cerulo L, Aversano L (2009) The life and death of statically detected vulnerabilities: an empirical

study. Inf Softw Technol 51(10):1469–1484

Dias M, Cassou D, Ducasse S (2013) Representing code history with development environment events. In:

International workshop on smalltalk technologies

Dillman DA, Smyth JD, Christian LM (2014) Internet, phone, mail, and mixed-mode surveys: the tailored

design method. Wiley, New York

D’silva V, Kroening D, Weissenbacher G (2008) A survey of automated techniques for formal software

verification. IEEE Trans Comput Aided Des Integr Circuits Syst 27(7):1165–1178

Emanuelsson P, Nilsson U (2008) A comparative study of industrial static analysis tools. Electron Notes

Theor Comput Sci 217:5–21

ESLint (2019) https://eslint.org/. Accessed: 2019-03-10

Empirical Software Engineering (2020) 25:1419–14571452

https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1109/ICSE.2013.6606642
https://doi.org/10.1109/SANER.2016.105
https://bitbucket.org/
https://doi.org/10.1145/3183399.3183401
https://bundler.io/
https://www.checkmarx.com/
http://checkstyle.sourceforge.net
https://www.roseindia.net/eclipse/plugins/tool/CodePro-AnalytiX.shtml
https://www.cryptlife.com/designing/programming/10-best-active-forums-for-programmers
https://www.cryptlife.com/designing/programming/10-best-active-forums-for-programmers
https://eslint.org/

Findbugs (2019) http://findbugs.sourceforge.net/index.html. Accessed: 2019-03-10

flake8 (2019) http://flake8.pycqa.org/en/latest/. Accessed: 2019-03-10

Flanagan C, Leino KRM, Lillibridge M, Nelson G, Saxe JB, Stata R (2002) Extended static checking

for java. In: Proceedings of the ACM SIGPLAN conference on programming language design and

implementation (PLDI), pp 234–245

Flow (2019) https://flow.org/ Accessed: 2019-03-10

Gibbs L, Kealy M, Willis K, Green J, Welch N, Daly J (2007) What have sampling and data collection got to

do with good qualitative research? Aust N Z J Public Health 31(6):540–544

Gerrit (2019) https://code.google.com/p/gerrit/. Accessed: 2019-03-10

Github (2019) https://github.com/. Accessed: 2019-03-10

Gitlab (2019) https://about.gitlab.com/. Accessed: 2019-03-10

Gousios G, Pinzger M, van Deursen A (2014) An exploratory study of the pull-based software development

model. In: Proceedings of the 36th international conference on software engineering, ICSE 2014. ACM,

New York, pp 345–355. https://doi.org/10.1145/2568225.2568260

Gousios G, Zaidman A, Storey MA, van Deursen A (2015) Work practices and challenges in pull-based

development: the integrator’s perspective. In: 37th IEEE/ACM international conference on software

engineering (ICSE 2015). IEEE computer society, pp 358–368

Gradle (2019) https://gradle.org/. Accessed: 2019-03-10

Heckman SS, Williams LA (2011) A systematic literature review of actionable alert identification techniques

for automated static code analysis. Inf Softw Technol 53(4):363–387. https://doi.org/10.1016/j.infsof.

2010.12.007

Hilton M, Tunnell T, Huang K, Marinov D, Dig D (2016) Usage, costs, and benefits of continuous integration

in open-source projects. In: Proceedings of the 31st IEEE/ACM international conference on automated

software engineering (ASE 2016). ACM, pp 426–437

Coverity (2009) Effective management of static analysis vulnerabilities and defects. https://pdfs.

semanticscholar.org/1970/a4d1746734577a6eb4fdd783668f6b4202ef.pdf. Accessed 20 Aug 2019

Johnson B, Song Y, Murphy-Hill ER, Bowdidge RW (2013) Why don’t software developers use static

analysis tools to find bugs? In: Notkin D, Cheng BHC, Pohl K (eds) 35th international conference on

software engineering, ICSE’13, San Francisco, CA, USA, May 18-26, 2013. IEEE Computer Society,

pp 672–681. https://doi.org/10.1109/ICSE.2013.6606613

Johnson RB, Onwuegbuzie AJ (2004) Mixed methods research: a research paradigm whose time has come.

Educ Res 33(7):14–26

Johnson SC (1977) Lint, a C program checker. Bell Telephone Laboratories Murray Hill

Jørgensen M (2004) A review of studies on expert estimation of software development effort. J Syst Softw

70(1-2):37–60

JSHint (2019) https://jshint.com/. Accessed: 2019-03-10

Khoshgoftaar TM, Allen EB (1998) Classification of fault-prone software modules: prior probabilities, costs,

and model evaluation. Empir Softw Eng 3(3):275–298

Kim S, Ernst MD (2007) Which warnings should I fix first? In: Proceedings of the the 6th joint meeting of

the european software engineering conference and the ACM SIGSOFT symposium on the foundations

of software engineering, ESEC-FSE ’07. ACM, pp 45–54. https://doi.org/10.1145/1287624.1287633

Krippendorff K (2004) Content analysis: an introduction to its methodology, 2nd edn. Sage, London

Lehman MM (1980) On understanding laws, evolution, and conservation in the large-program life cycle. J

Syst Softw 1:213–221. https://doi.org/10.1016/0164-1212(79)90022-0

Mahmood R, Mahmoud QH (2018) Evaluation of static analysis tools for finding vulnerabilities in java and

C/C++ source code. arXiv:1805.09040

Maven (2019) http://maven.apache.org/plugins/index.html Accessed: 2019-03-10

McIntosh S, Kamei Y, Adams B, Hassan AE (2014) The impact of code review coverage and code review

participation on software quality: a case study of the qt, vtk, and ITK projects. In: Proceedings of the

working conference on mining software repositories (MSR), pp 192–201

Muske T, Talluri R, Serebrenik A (2018) Repositioning of static analysis alarms. In: Proceedings of the 27th

ACM SIGSOFT international symposium on software testing and analysis, ISSTA 2018. ACM, New

York, pp 187–197. https://doi.org/10.1145/3213846.3213850

Nagappan N, Ball T (2005) Static analysis tools as early indicators of pre-release defect density. In:

Proceedings of the international conference on software engineering (ICSE), pp 580–586

Nanda MG, Gupta M, Sinha S, Chandra S, Schmidt D, Balachandran P (2010) Making defect-finding tools

work for you. In: Proceedings of the international conference on software engineering (ASE), vol 2,

pp 99–108

Novak J, Krajnc A, Žontar R (2010) Taxonomy of static code analysis tools. In: The 33rd international

convention MIPRO, pp 418–422

Empirical Software Engineering (2020) 25:1419–1457 1453

http://findbugs.sourceforge.net/index.html
http://flake8.pycqa.org/en/latest/
https://flow.org/
https://code.google.com/p/gerrit/
https://github.com/
https://about.gitlab.com/
https://doi.org/10.1145/2568225.2568260
https://gradle.org/
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://pdfs.semanticscholar.org/1970/a4d1746734577a6eb4fdd783668f6b4202ef.pdf
https://pdfs.semanticscholar.org/1970/a4d1746734577a6eb4fdd783668f6b4202ef.pdf
https://doi.org/10.1109/ICSE.2013.6606613
https://jshint.com/
https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1016/0164-1212(79)90022-0
http://arXiv.org/abs/1805.09040
http://maven.apache.org/plugins/index.html
https://doi.org/10.1145/3213846.3213850

Nurolahzade M, Nasehi SM, Khandkar SH, Rawal S (2009) The role of patch review in software evolution: an

analysis of the mozilla firefox. In: Proceedings of the joint international and annual ERCIM workshops

on principles of software evolution (IWPSE) and software evolution (Evol) workshops, pp 9–18

Oppenheim B (1992) Questionnaire design, interviewing and attitude measurement. Pinter Publishers,

London

Palomba F, Zanoni M, Fontana FA, De Lucia A, Oliveto R (2017) Toward a smell-aware bug prediction

model. IEEE Trans Softw Eng 45(2):194–218

Panichella S, Arnaoudova V, Di Penta M, Antoniol G (2015) Would static analysis tools help devel-

opers with code reviews? In: 22nd IEEE international conference on software analysis, evolu-

tion, and reengineering, SANER 2015, Montreal, QC, Canada, March 2-6, 2015, pp 161–170.

https://doi.org/10.1109/SANER.2015.7081826

Parnas DL, Lawford M (2003) The role of inspection in software quality assurance. IEEE Trans Softw Eng

29(8):674–676

PEP8 online check (2019) http://pep8online.com/ Accessed: 2019-03-10

PMD (2019) http://pmd.sourceforge.net. Accessed: 2019-03-10

Prettier (2019) https://prettier.io/ Accessed: 2019-03-10

Proksch S, Nadi S, Amann S, Mezini M (2017) Enriching in-ide process information with fine-grained source

code history. In: International conference on software analysis, evolution, and reengineering

Pylint (2019) https://www.pylint.org/. Accessed: 2019-03-10

Rahman F, Khatri S, Barr ET, Devanbu PT (2014) Comparing static bug finders and statistical prediction. In:

Proceedings of the international conference on software engineering (ICSE), pp 424–434

Reddit (2017a) Php static analysis tools, https://www.reddit.com/r/PHP/comments/5d4ptt/static code

analysis tools veracode/

Reddit (2017b) Static analysis tools, https://www.reddit.com/r/programming/comments/3087rz/static code

analysis/

Reddit (2019) https://www.reddit.com/. Accessed: 2019-03-10

Rigby PC (2011) Understanding open source software peer review: review processes, parameters and sta-

tistical models, and underlying behaviours and mechanisms. Ph.D. thesis, University of Victoria, BC

Canada

Rigby PC, German DM (2006) A preliminary examination of code review processes in open source projects.

Tech. Rep. DCS-305-IR, University of Victoria

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software

engineering. Empirical Softw Engg 14(2):131–164. https://doi.org/10.1007/s10664-008-9102-8

Rubocop (2019) https://github.com/rubocop-hq/rubocop Accessed: 2019-03-10

Ruthruff JR, Penix J, Morgenthaler JD, Elbaum S, Rothermel G (2008) Predicting accurate and actionable

static analysis warnings: an experimental approach. In: Proceedings of the 30th international conference

on software engineering. ACM, pp 341–350

Sadowski C, Aftandilian E, Eagle A, Miller-Cushon L, Jaspan C (2018) Lessons from building static analysis

tools at Google. Commun ACM 61(4):58–66. https://doi.org/10.1145/3188720

Sadowski C, van Gogh J, Jaspan C, Söderberg E, Winter C (2015) Tricorder: building a program analysis

ecosystem. In: Bertolino A, Canfora G, Elbaum SG (eds) 37th IEEE/ACM international conference on

software engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, vol 1. IEEE Computer Society,

pp 598–608. https://doi.org/10.1109/ICSE.2015.76

SBT (2019) https://www.scala-sbt.org/. Accessed: 2019-03-10

SonarQube (2019) http://www.sonarqube.org Accessed: 2019-03-10

Spencer D (2009) Card sorting: designing usable categories. Rosenfeld Media

StackOverflow (2017a) Static analysis tool customatization, https://stackoverflow.com/questions/2825261/

static-analysis-tool-customization-for-any-language

StackOverflow (2017b) Static analysis tools, https://stackoverflow.com/questions/22617713/

whats-the-current-state-of-static-analysis-tools-for-scala

Thung F, Lucia L, Lo D, Jiang L, Rahman F, Devanbu PT (2012) To what extent could we detect field defects?

an empirical study of false negatives in static bug finding tools. In: Proceedings of the international

conference on automated software engineering (ASE), pp 50–59

Vassallo C, Palomba F, Bacchelli A, Gall HC (2018) Continuous code quality: are we (really) doing that? In:

ASE. ACM, pp 790–795

Vassallo C, Palomba F, Gall HC (2018) Continuous refactoring in ci: a preliminary study on the perceived

advantages and barriers. In: 34th IEEE international conference on software maintenance and evolution

(ICSME)

Empirical Software Engineering (2020) 25:1419–14571454

https://doi.org/10.1109/SANER.2015.7081826
http://pep8online.com/
http://pmd.sourceforge.net
https://prettier.io/
https://www.pylint.org/
https://www.reddit.com/r/PHP/comments/5d4ptt/static_code_analysis_tools_veracode/
https://www.reddit.com/r/programming/comments/3087rz/static_code_analysis/
https://www.reddit.com/
https://doi.org/10.1007/s10664-008-9102-8
https://github.com/rubocop-hq/rubocop
https://doi.org/10.1145/3188720
https://doi.org/10.1109/ICSE.2015.76
https://www.scala-sbt.org/
http://www.sonarqube.org
https://stackoverflow.com/questions/2825261/static-analysis-tool-customization-for-any-language
https://stackoverflow.com/questions/2825261/static-analysis-tool-customization-for-any-language
https://stackoverflow.com/questions/22617713/whats-the-current-state-of-static-analysis-tools-for-scala
https://stackoverflow.com/questions/22617713/whats-the-current-state-of-static-analysis-tools-for-scala

Vassallo C, Panichella S, Palomba F, Proksch S, Gall HC, Zaidman A (2019) Replication package for

“How developers engage with static analysis tools in different contexts”. https://doi.org/10.5281/zenodo.

3253223

Vassallo C, Panichella S, Palomba F, Proksch S, Zaidman A, Gall HC (2018) Context is king: the developer

perspective on the usage of static analysis tools. In: SANER. IEEE Computer Society, pp 38–49

Vassallo C, Proksch S, Zemp T, Gall HC (2018) Un-break my build: assisting developers with build repair

hints. In: International conference on program comprehension (ICPC). IEEE

Vassallo C, Schermann G, Zampetti F, Romano D, Leitner P, Zaidman A, Di Penta M, Panichella S (2017)

A tale of CI build failures: an open source and a financial organization perspective. In: 2017 IEEE inter-

national conference on software maintenance and evolution, ICSME 2017, Shanghai, China, September

17-22, 2017. IEEE Computer Society, pp 183–193. https://doi.org/10.1109/ICSME.2017.67

Vassallo C, Zampetti F, Romano D, Beller M, Panichella A, Di Penta M, Zaidman A (2016) Continuous

delivery practices in a large financial organization. In: 32nd IEEE international conference on software

maintenance and evolution (ICSME), pp 41–50

Wagner S, Jürjens J, Koller C, Trischberger P (2005) Comparing bug finding tools with reviews and tests.

In: Proceedings of the 17th IFIP TC6/WG 6.1 international conference on testing of communicating

systems, pp 40–55

Wikis (2019) https://help.github.com/en/articles/about-wikis Accessed: 2019-03-10

Zampetti F, Scalabrino S, Oliveto R, Canfora G, Di Penta M (2017) How open source projects use static code

analysis tools in continuous integration pipelines. In: Proceedings of the 14th international conference

on mining software repositories. IEEE Press, pp 334–344

Zheng J, Williams L, Nagappan N, Snipes W, Hudepohl J, Vouk M (2006) On the value of static analysis for

fault detection in software. IEEE Trans Softw Eng (TSE) 32(4):240–253

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Carmine Vassallo is a PhD student in Software Engineering and

Research Assistant at the University of Zurich (UZH), Switzerland.

He received his BSc and MSc in Computer Engineering from the Uni-

versity of Sannio, Italy. Before joining the Software Evolution and

Architecture Lab led by Prof. Harald Gall at UZH, he interned at ING

Nederland where he investigated the Continuous Delivery practices

adopted by DevOps teams. His work focuses on easing the adoption

of Continuous Integration and its continuous improvement.

Empirical Software Engineering (2020) 25:1419–1457 1455

https://doi.org/10.5281/zenodo.3253223
https://doi.org/10.5281/zenodo.3253223
https://doi.org/10.1109/ICSME.2017.67
https://help.github.com/en/articles/about-wikis

Sebastiano Panichella is a Computer Science Researcher at Zurich

University of Applied Science (ZHAW). His main research goal is

to conduct industrial research, involving both industrial and aca-

demic collaborations, to sustain the Internet of Things (IoT) vision,

where future ”smart cities” will be characterized by millions of smart

systems connected over the internet, controlled by complex embed-

ded software implemented for the cloud. His research is funded by

one SNF Grant and one Innosuisse Project. He is authored (or co-

authored) around fifty papers appeared in International Conferences

and Journals. These research work involved studies with industrial

companies and open source projects and received best paper awards.

He serves and has served as program committee member of vari-

ous international conference and as reviewer for various international

journals in the fields of software engineering. He is Editorial Board

Member of Journal of Software: Evolution and Process, Review

Board member of the EMSE and TOSEM, and Lead Guest Editor of

special issues at EMSE and IST Journals. He was selected as one of

the top-20 Most Active Early Stage Researchers Worldwide in SE. Website: https://spanichella.github.io

Fabio Palomba is a Senior Research Associate at the University

of Zurich, Switzerland. He received the European PhD degree in

Management and Information Technology from the University of

Salerno, Italy, in 2017. His PhD Thesis was the recipient of the 2017

IEEE Computer Society Best PhD Thesis Award (Italy section). His

research interests include software maintenance and evolution, empir-

ical software engineering, source code quality, and mining software

repositories. He was the recipient of two ACM/SIGSOFT and one

IEEE/TCSE Distinguished Paper Awards at ASE’13, ICSE’15, and

ICSME’17, respectively, and Best Paper Awards at CSCW’18 and

SANER’18. He serves and has served as a program committee mem-

ber of various international conferences (e.g., MSR, ICPC, ICSME),

and as referee for various international journals (e.g., TSE, EMSE,

JSS) in the field of software engineering. Since 2016 he is Review

Board Member of EMSE and, since 2019, Editorial Board Member

of JSS and Social Media Director of TOSEM. He was the recipient

of six Distinguished/Outstanding Reviewer Awards for his reviewing

activities conducted for EMSE, IST, JSS, and ICPC between 2015 and 2019.

Sebastian Proksch is a post-doctoral researcher at the University of

Zurich, Switzerland, in the group of Prof. Harald Gall. His current

research is focused on studying collaborative software engineering

processes like Continuous Integration and includes work on static

analyses, mining software repositories, and human factors in software

engineering. The work is driven by the idea to identify challenges and

information needs that developers face in their daily work and to build

tailored tools that help developers with overcoming these obstacles.

He completed his PhD at Technische Universitt Darmstadt, Germany,

under the supervision of Prof. Mira Mezini.

Empirical Software Engineering (2020) 25:1419–14571456

https://spanichella.github.io

Harald C. Gall is professor of Software Engineering in the Depart-

ment of Informatics at the University of Zurich, Switzerland. His

research interests are in evidence-based software engineering with a

focus on quality in software products and processes. This includes

long-term software evolution, software architectures, software quality

analysis, data mining of software repositories, cloud-based software

development, and empirical software engineering. https://www.ifi.

uzh.ch/en/seal/people/gall.html

Andy Zaidman is an associate professor at the Delft University of

Technology, The Netherlands. He obtained his MSc (2002) and PhD

(2006) in Computer Science from the University of Antwerp, Bel-

gium. His main research interests are software evolution, program

comprehension, mining software repositories and software testing.

He is an active member of the research community and involved in the

organization of numerous conferences (WCRE08, WCRE09, VIS-

SOFT14 and MSR18). He is on the editorial board of JSS and EMSE.

In 2013 he was the laureate of a Vidi career grant from the Dutch sci-

ence foundation NWO, while in 2019 he won the Vici career grant,

the most prestigious career grant from the Dutch science foundation

NWO.

Affiliations

Carmine Vassallo1 · Sebastiano Panichella2 · Fabio Palomba1 · Sebastian Proksch1 ·

Harald C. Gall1 ·Andy Zaidman3

Sebastiano Panichella

panc@zhaw.ch

Fabio Palomba

palomba@ifi.uzh.ch

Sebastian Proksch

proksch@ifi.uzh.ch

Harald C. Gall

gall@ifi.uzh.ch

Andy Zaidman

a.e.zaidman@tudelft.nl

1 University of Zurich, Zurich, Switzerland

2 Zurich University of Applied Science, Zurich, Switzerland

3 Delft University of Technology, Delft, The Netherlands

Empirical Software Engineering (2020) 25:1419–1457 1457

https://www.ifi.uzh.ch/en/seal/people/gall.html
https://www.ifi.uzh.ch/en/seal/people/gall.html
http://orcid.org/0000-0003-0495-6803
mailto: panc@zhaw.ch
mailto: palomba@ifi.uzh.ch
mailto: proksch@ifi.uzh.ch
mailto: gall@ifi.uzh.ch
mailto: a.e.zaidman@tudelft.nl

	How developers engage with static analysis tools in different contexts
	Abstract
	Introduction
	Overview of the Research Methodology
	RQ1-2: the Development Contexts Integrating ASATs
	ASAT Types

	RQ3: The Impact of Development Contexts on the Configuration of ASATs
	RQ4-5: the Relevance of ASATs in Open-Source Projects
	Project Types

	RQ6: The Developers' Perspective on the Relevance of ASATs

	The Development Contexts Integrating ASATs
	Survey Design
	Adoption of ASATs
	Configuration of ASATs

	The Impact of Development Contexts on the Configuration of ASATs
	Study Design
	Extended Questionnaire
	Semi-Structured Interviews

	Main Factors Affecting the Warning Selection
	Application Type

	Different Warnings in Different Contexts
	Style Convention
	Redundancies
	Error Handling
	Code Structure

	The Relevance of ASATs in Open-Source Projects
	Study Design
	Definition of ASATs in Open-Source Projects
	Enforcement of ASATs in Open-Source Projects

	The Developers' Perspective on the Relevance of ASATs
	Study Design
	ASATs Ease Manual Tasks and Encourage Good Practices within Teams
	Enabling Different Warnings and Combining Different Tools
	Low Reliability
	Configuration-Related Difficulties

	Discussion
	Biased Perception
	Holistic Analysis of the Developers' Behavior
	Towards Context-Awareness
	Understanding Factors Making ASATs Underused
	Feedback-driven ASAT Rules

	Threats to Validity
	Related Work
	Conclusion
	References
	Affiliations

