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ABSTRACT

Software bugs are inevitable in software-defined network-

ing (SDN) control planes, and troubleshooting is a tedious,

time-consuming task. In this paper we discuss how one

might improve SDN network troubleshooting by presenting a

technique, retrospective causal inference, for automatically

identifying a minimal sequence of inputs responsible for trig-

gering a given bug in the control software. Retrospective

causal inference works by iteratively pruning inputs from the

history of the execution, and coping with divergent histories

by reasoning about the functional equivalence of events.

We apply retrospective causal inference to three open

source SDN control platforms—Floodlight, POX, and

NOX—and illustrate how our technique found minimal

causal sequences for the bugs we encountered.

1. INTRODUCTION

Would World War I still have occurred if Archduke Fer-

dinand had not been shot? Would the United States have

abolished slavery if Abraham Lincoln had not been elected?

That is, were those prior events intrinsic to the precipitation

of the historical outcome, or were they extraneous? Unfor-

tunately we can never know such historical counterfactuals

for sure.

When troubleshooting computer systems, we often need

to answer similar questions, e.g. “Was this routing loop trig-

gered when the controller learned of the link failure?” And

unlike human history, it is often possible to find answers to

such causality questions. In this paper we address the prob-

lem of programmatically answering them in the context of

software-defined networking.

Based on anecdotal evidence from colleagues and ac-

quaintances in the industry, it seems clear that developers

of software-defined networks spend much of their time trou-

bleshooting bugs. This should be no surprise, since software

developers in general spend roughly half (49% according to

one study [19]) of their time troubleshooting, and spend con-

siderable time on bugs that are difficult to trigger (the same

study found that 70% of the reported concurrency bugs take

days to months to fix). More fundamentally though, modern

SDN control platforms are highly complex, distributing state

between replicated servers [15], providing isolation and re-

source arbitration between multiple tenants [6], and globally

optimizing network utilization [25]. Most of this complexity

comes from fundamentally difficult distributed systems chal-

lenges such as asynchrony and partial failure. Even Google’s

Urs Höelzle, a leading networking and distributed systems

technologist, attests that [25] “[coordination between repli-

cated controllers] is going to cause some angst, and justifi-

ably, in the industry.”

The troubleshooting process is hindered by the large num-

ber of hardware failures, policy changes, host migrations,

and other inputs to SDN control software. As one data

point, Microsoft Research reports 8.5 network error events

per minute per datacenter [20]. Troubleshooters find little

immediate use from traces containing many inputs prior to

a fault, since they are often forced to manually filter extra-

neous inputs before they can start fruitfully exploring what

might be the root cause. It is no surprise that when asked

to describe their ideal tool, most network admins said “auto-

mated troubleshooting” [51].

Before continuing, we should clarify what we mean by

‘troubleshooting’ and ‘bugs’ in the SDN context. SDN net-

works are designed to support high-level policies, such as

inter-tenant isolation. A bug, in this context, creates situa-

tions where the network violates one or more of these high-

level policies; that is, even though the control plane has been

told to implement a particular policy, the resulting configura-

tion (i.e. flow entries in the switches) does not do so properly.

We call this an invalid configuration. We presume that the

control plane functions properly in most circumstances, so

that these policy violations are rare. Bugs may be triggered

by uncommon sequences of inputs, such as a simultaneous

link failure or controller reboot. The act of troubleshooting

is identifying which set of inputs triggered the bug. Debug-

ging then involves tracking down the error in the code itself,

given a set of triggering inputs. The smaller the set of trig-

gering inputs, the easier debugging will be.

Our focus here is on troubleshooting. When we observe

an invalid configuration, which is prima facie evidence for a

bug, our goal is to automatically filter out inputs to the SDN

software (e.g. link failures) that are not relevant to triggering

the bug, leaving a small sequence of inputs that is directly

responsible. This would go a long way towards achieving



“automated troubleshooting.”

If you consider a software-defined network as a dis-

tributed state machine, with individual processes send-

ing messages between themselves, one straightforward ap-

proach is to account for potential causality: if an external

input does not induce any messages before the occurrence

of the invalid configuration, it cannot possibly have affected

the outcome [32]. Unfortunately, pruning only those inputs

without a potential causal relation to the invalid configura-

tion does not significantly reduce the number of inputs.

Our approach is to prune inputs from the original run,

replay the remaining inputs to the control software using

simulated network devices, and check whether the network

re-enters the invalid configuration. In particular, we gen-

eralize delta debugging [50]—an algorithm for minimizing

test cases that are inserted at a single point in time to a sin-

gle program—to a distributed environment, where inputs are

spread across time and involve multiple machines.

The main difficulty in pruning historical inputs is coping

with divergent histories. Traditional replay techniques [13,

18] reproduce errors reliably by precisely recording the low-

level I/O operations of software under test. Pruning inputs,

however, may cause the execution to subtly change (e.g. the

sequence numbers of packets may all differ), and some state

changes that occurred in the original run may not occur.

Without the exact same low-level I/O operations, determin-

istic replay techniques cannot proceed in a sensible manner.

Our approach is to record and replay at the application

layer, where we have access to the syntax and semantics of

messages passed throughout the distributed system. In this

way we can recognize functionally equivalent messages and

maintain causal dependencies throughout replay despite al-

tered histories.

The output of our approach, minimized input traces,

represents a noteworthy improvement over the status quo;

painstaking manual analysis of logs is the de facto method

of troubleshooting production SDN control software today.

As far as we know, our work is the first to programmat-

ically isolate fault-inducing inputs to a distributed system.

Record and replay techniques such as OFRewind [46] and

liblog [18] enable you to step through the original execu-

tion and verify whether a set of inputs triggered a bug, but

the original run is often so large that the the set of poten-

tially triggering inputs verges on unmanageable. Tracing

tools such as ndb [24] provide a historical view into data-

plane (mis)behavior. In contrast, our technique provides in-

formation about precisely what caused the network to enter

an invalid configuration in the first place.

We have applied retrospective causal inferenceto three

open source SDN control platforms: Floodlight [4],

POX [35], and NOX [21]. Of the five bugs we encountered

in a five day investigation, retrospective causal inference re-

duced the size of the input trace to 36% of its original size in

the worst case and 2% of its original size in the best case.

2. BACKGROUND

We begin by sketching the architecture of the SDN control

plane and illustrating the correctness challenges encountered

by operators and implementers of SDN control software.

SDN networks are managed by software running on a set

of network-attached servers called ‘controllers’. It is the job

of the controllers to configure the network in a way that com-

plies with the intentions of network operators. Operators

codify their intentions by configuring behavioral specifica-

tions we refer to as ‘policies’. Policy constraints include

connectivity, access control, resource allocations, traffic en-

gineering objectives, and middlebox processing.

For fault-tolerance, production SDN control software is

typically distributed across multiple servers. For scalabil-

ity, the responsibility for managing the network can be par-

titioned through sharding. Onix [31], for example, partitions

a graph of the network state across either an eventually con-

sistent distributed hash table or a transactional database.

In this distributed setting, controllers must coordinate

amongst themselves when reacting to state changes in the

network or policy changes from above. Coordination in

SDN is not exempt from the well-known class of faults in-

herent to all distributed systems, such as inconsistent reads,

race conditions over message arrivals, and unintended con-

sequences of failover logic.

Several production SDN controllers support network vir-

tualization [4, 11, 38], a technology that abstracts the details

of the underlying physical network and presents a simplified

view of the network to be configured by applications. In this

model, multi-tenancy is implemented by providing each ten-

ant with their own abstract view, which are multiplexed onto

the same physical network. A common pattern is to treat

an entire network (up to 100,000 v-switches in a large data-

center) as a single logical switch for each tenant. When an

entire datacenter network is abstracted in this way, the map-

ping between the logical switch and the physical topology is

highly complex.

In conjunction, the challenges of maintaining virtualized

and distributed objects while ensuring that critical invariants

such as isolation between tenants hold at all times make SDN

control software highly complex and bug-prone.

3. RETROSPECTIVE CAUSAL INFER-

ENCE

To illustrate the mechanics of retrospective causal infer-

ence, we start by describing an example bug in the Flood-

light open source control platform [16]. Floodlight is dis-

tributed across multiple controllers for high availability, and

provides support for virtualization. Switches maintain one

hot connection to a master controller and several cold con-

nections to replica controllers. The master holds the au-

thority to modify the configuration of switches, while the

other controllers are in backup mode and do not perform any

changes to the switch configurations unless they detect that

the master has crashed.
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Figure 1: Floodlight failover bug. External inputs are

depicted as red dots, internal events are depicted as black

dots, and the dotted message line depicts a timeout.

The failover logic in Floodlight is not implemented cor-

rectly, leading to the following race condition1 depicted in

Figure 1: a link fails (E1), and the switch attempts to notify

the controllers (E2,E4) shortly after the master controller has

died (E3), but before a new master has been selected (E6).

In this case, all live controllers are in the backup role and

will not take responsibility for updating the switch flow ta-

ble (E5). At some point, a backup notices the master failure

and elevates itself to the master role (E6). The new master

will proceed to manage the switch, but without ever clearing

the routing entries for the failed link (resulting in a persistent

blackhole).

There were only two external inputs (E1,E3) shown in our

example. However, a developer or operator encountering

this bug in practice would not be given this concise version

of events. Instead, the trace would a contain wealth of extra-

neous inputs, making it difficult to reason about the under-

lying root cause. In the worst scenario, operators may need

to examine logs from a production network, which contain a

substantial number of hardware failures, topology changes,

and other potential triggering events, all of which may ap-

pear characteristic of normal operating conditions at first

glance; assuming 8.5 network error events per minute [20],

and 500 VM migrations per hour [42], there would be at least

8.5 · 60+ 500 ≈ 1000 inputs reflected in an hour-long trace.

Given a trace of the system execution similar to the Flood-

light case, our goal is to prune events that are not neces-

sary for triggering errant behavior. We define errant behav-

ior in terms of correctness violations: configurations of the

network that are inconsistent with the policy. In the exam-

ple, the correctness violation is between a reachability pol-

icy specified in the logical switch (“A can talk to B”) and the

blackhole in the physical network (“A’s packets to B enter

the blackhole and do not arrive at B”).

Specifically, our technique identifies a minimal sequence

of inputs to the controllers that is sufficient for triggering a

known correctness violation. We refer to such inputs as a

minimal causal sequence (MCS). Going back to our exam-

1Note that this issue was originally documented by the developers
of Floodlight [16].

ple, suppose the log includes many more (extraneous) inputs.

Whenever an extraneous event is pruned, the blackhole will

still persist: when the controller crash is pruned, the black-

hole will be resolved properly, and when the link failure is

pruned, no blackhole will occur. The MCS returned is there-

fore the controller crash and the link failure in conjunction.

3.1 Delta Debugging

Delta debugging [49], a technique from the software engi-

neering community, gets us part of the way to our goal: given

a single input (e.g. an HTML page) for a non-distributed pro-

gram (e.g. Firefox), it performs a divide-and-conquer search,

repeatedly running the program on subsets of the input un-

til it finds a minimal subset (e.g. a single tag) that is suf-

ficient for triggering a known bug. Specifically, it finds a

locally minimal causal sequence [49], meaning that if any

input from the sequence is pruned, no correctness violation

occurs. The delta debugging algorithm is shown in Figure 2

(with ‘test’ replaced by ‘replay’).

Our problem differs from the original formulation of delta

debugging in two dimensions. First, delta debugging as-

sumes that input is inserted at a single point in time. In

contrast, input to SDN controllers includes many messages

spread throughout time. Second, delta debugging assumes

a single program under test. Our input depends on causal

relationships across concurrently running nodes.

For the purposes of this section, we model our problem

as follows. We are given a single, globally ordered trace of

events that ends in in a correctness violation, and we return a

minimal causal subsequence of the trace. The trace includes

input events (e.g. link failures), control message sends and

receipts between switches and controllers, and internal state

changes (e.g. the backup deciding to elevate itself to master

in the Floodlight case) labeled with the control process that

made the state change. In §4.1, we describe how we obtain

the globally ordered trace in practice.

In the rest of this section we describe how we replay in-

puts to control software and cope with alterations to the

causal history of an execution.

3.2 Simulated Execution

Unlike the example applications described by the original

delta debugging paper [49], the system we are troubleshoot-

ing is not a single program–it is all the nodes and links of a

distributed system, including controllers, switches, and end-

hosts. The asynchrony of distributed systems makes it diffi-

cult to reliably replay orderings of events without great care.

We therefore simulate the control-plane behavior of network

devices (with support for minimal data-plane behavior) on a

single machine. We then run the control software on top of

this simulator and connect the software switches to the con-

trollers as if they were true network devices, such that the

controllers believe they are configuring a true network. This

setup allows the simulator to interpose on all communica-

tion channels. The simulator uses these interposition points

3



Figure 2: Automated Delta Debugging Algorithm From [49]

Input: T✘ s.t. T✘ is a trace and replay(T✘) = ✘. Output: T ′
✘
= ddmin(T✘) s.t. T ′

✘
⊆ T✘, replay(T ′

✘
) = ✘, and T ′

✘
is minimal.

ddmin(T✘) = ddmin2(T✘, ∅) where
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′
✘
, R) =




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









T ′
✘

if |T ′
✘
| = 1 (“base case”)

ddmin2
(

T1, R
)

else if replay(T1 ∪R) = ✘ (“in T1”)

ddmin2
(

T2, R
)

else if replay(T2 ∪R) = ✘ (“in T2”)

ddmin2
(

T1, T2 ∪R
)

∪ ddmin2
(

T2, T1 ∪R
)

otherwise (“interference”)

where replay(T ) denotes the state of the system after executing the trace T , ✘ denotes a correctness violation,

T1 ⊂ T ′
✘
, T2 ⊂ T ′

✘
, T1 ∪ T2 = T ′

✘
, T1 ∩ T2 = ∅, and |T1| ≈ |T2| ≈ |T ′

✘
|/2 hold.

Process

OpenFlow

Policies

Controller 1

Process

OpenFlow

Policies

Controller N

...

= interposition

Simulator

Figure 3: Simulation infrastructure. We simulate net-

work devices in software, and interpose on all communi-

cation channels.

to delay, drop, or reorder messages as needed for replay. The

overall simulation architecture is depicted in Figure 3.

Given a sequence of inputs (e.g. link failures, controller

crashes, host migrations, or policy changes) and an invari-

ant checking probe (provided by tools such as HSA [27, 28]

or Anteater [29,34]), delta debugging finds a minimal causal

sequence responsible for triggering the policy violation. The

simulator is responsible for replaying intermediate input

subsequences chosen by delta debugging. For example, the

simulator replays link failures by disconnecting the edge in

the simulated network, and sending a port status message

from the adjacent switches to their parent controller(s).

The input subsequences chosen by delta debugging are

not always valid. For example, it is not sensible to replay

a recovery event without a preceding failure event; nor is it

sensible to replay a host migration event without modifying

its starting position when a preceding host migration event

has been pruned. The simulator checks validity before re-

playing a given subsequence to account for this possibility.2

Currently our simulator accounts for validity of all network

state change events (shown in Table 2), but does not support

policy changes, which have more complex semantics.

3.3 Replay

The timing of the inputs injected by the simulator is

crucial for reliably reproducing the correctness violation.

Naïvely injecting inputs often fails to trigger the original cor-

rectness violation, even without having pruned any events.

In particular, we tried and failed to reproduce errors when

scheduling inputs with the following simple algorithm:

t′0 = 0

t′
i
= t′

i−1 + |ti − ti−1|

where t′
i

is the simulation’s clock value when it injects the

ith input, and ti is the timestamp of the ith input from the

original run. In other words, simply maintaining the relative

timing between inputs is not sufficient.

The problem with the simple scheduling algorithm is that

it does not take into account events that are internal to the

control software, such as message receipts, timers going off,

or internal state changes like the backup node in the Flood-

light example deciding to elevate itself to master; if the or-

dering of inputs and internal events is perturbed, the final

output may differ. Consider for example that if a controller’s

garbage collector happens to run while we replay inputs, it

may delay an internal state transition until after the simulator

injects an input that depended on it in the original run.

The challenge is to maintain causal relationships. For-

mally, to reliably reproduce the original correctness viola-

tion we need to inject an external input e at exactly the point

when all other events (both external and internal) that pre-

cede it in the happens-before relation ({i | i → e}) from the

original execution have occurred [43].

2Handling invalid inputs is crucial for ensuring that the delta de-
bugging algorithm we employ [49] is guaranteed to find a minimal
causal sequence, since it assumes that no unresolved test outcomes
occur. Zeller wrote a follow-on paper [50] that removes the need
for this assumption, but incurs an additional factor of N in com-
plexity in doing so.

4



Internal message Masked values

OpenFlow headers transaction id

OpenFlow FLOW_MODs cookie, buffer id

Log statements varargs parameters to printf

Table 1: Example internal messages and their masked

values. The masks serve to define equivalence classes.

While the input and internal events from the original

run are given to us, we become aware of internal events

throughout replay by (i) monitoring control message receipts

between controllers and switches, and (ii) interposing on

the controllers’ logging library and notifying the simula-

tor whenever the control software executes a log statement

(which serve to mark relevant state transitions). Note that

to achieve truly deterministic replay, these log statements

would need to be highly granular, capturing information

such as thread scheduling decisions; we show in §5 however

that pre-existing, course granular log statements are often

sufficient to successfully reproduce bugs.

3.4 Fingerprinting

Replay is made substantially more complicated by the fact

that the delta debugging algorithm is pruning inputs from the

history of the execution, thereby changing the resulting in-

ternal events generated by the control software. In particular,

internal events may differ syntactically (e.g. sequence num-

bers of control packets may all differ), old internal events

from the original execution may not occur after pruning, and

new internal events that were not observed at all in the orig-

inal execution may appear.

Our first observation is that many internal events are func-

tionally equivalent, in the sense that they have the same ef-

fect on the state of the system with respect to triggering the

correctness violation (despite syntactic differences). For ex-

ample, flow modification messages may cause switches to

make the same change to their forwarding behavior even if

the transaction identifier of the messages differ.

We leverage this observation by defining domain-specific

masks over semantically extraneous fields of internal

events.3 We show four examples of masked values in Ta-

ble 1.

These masks define equivalence classes of internal events.

Formally, we consider an internal event i′ observed in an al-

tered trace equivalent to an internal event i from the origi-

nal trace iff all unmasked fields have the same value and i
occurs between i′’s preceding and succeeding inputs in the

happens-before relation.

3.5 Handling Absent Internal Events

Given an equivalence relation over internal events, replay

is responsible for maintaining equivalent happens-before

3One consequence of applying masks is that bugs involving
masked fields are outside the purview of retrospective causal in-
ference.

Safe
Notify

Parents

 Link Failure

Receive Flush

Switch

Controllers

Backup Master

Master Failure

Send 

Flush

Receive Link Failure Notification

Figure 4: Simplified state machines for the switch and

controllers in the example Floodlight bug. Double out-

lined states represent presence of the blackhole.

constraints from the original execution. But syntactic differ-

ences are not the only possible change induced by pruning:

internal events from the original may also cease to appear.

The structure of the control software’s state machine

(which we do not assume to know) determines whether in-

ternal events disappear. Consider the simplified state ma-

chines for the switch and controllers from the Floodlight

case shown in Figure 4. If we prune the link failure input,

the master will never receive a link failure notification and

transition to and from ‘Send Flush’.

In the hope that absent internal events are not actually rel-

evant for triggering the correctness violation, we proceed

with replay. Specifically, our approach is to wait for ex-

pected equivalent internal events, but time out and proceed

if they do not occur within a certain time ε.

In most cases this approach successfully reproduces the

original correctness violation, assuming ε is larger than vari-

ations in execution speeds between internal events. If the

value of ε is too large, however, we may end up waiting

too long for the happens-before predecessors of an input ei
such that a successor of ei occurs before we have injected ei,
thereby violating the remaining happens-before constraints.

If the event scheduling algorithm detects that it has waited

too long, it replays the trace from the beginning up until the

immediately prior input,4 this time knowing exactly which

internal events in the current input interval are and are not

going to occur before injecting the next input. We show the

overall event scheduling algorithm in Figure 5.

3.6 Handling New Internal Events

The last possible change induced by input pruning is the

occurrence of new internal events that were not observed in

the original trace. Ultimately, new events leave open mul-

tiple possibilities for where we should inject the next input.

Consider the following case: if i2 and i3 are internal events

observed during replay that are both in the same equivalence

class as a single event i1 from the original run, we could

4An alternative would be to take a snapshot of the controllers’ state
at every injected input and start from the latest snapshot.

5



subsequence = [e1, e2, ..., ej]

// e1 is always an input

function replay(subsequence):

bootstrap the simulation

for ei in subsequence:

if ei is an internal event and

ei is not marked absent:

Δ = |ei.time - ei-1.time| + ε

wait up to Δ seconds for ei
if ei did not occur:

mark ei absent

else if ei is an input:

if a successor of ei occurred:

// waited too long

return replay(subsequence)

else:

inject ei

Figure 5: Replay Algorithm Pseudocode. In practice we

account for other vagaries not shown here.

inject the next input after i2 or after i3.

In the general case it is always possible to construct two

state machines that lead to differing outcomes: one that only

leads to the correctness violation when we inject the next in-

put before a new internal event, and one that only leads to

the correctness violation when we inject the next input af-

ter a new internal event. In other words, to be guaranteed

to traverse any existing suffix that leads to the correctness

violation, it is necessary to recursively branch, trying both

possibilities for every new internal event. This implies an ex-

ponential number of possibilities to be explored in the worst

case.

Exponential search is not a practical option. Our heuristic

when waiting for expected internal events is to proceed nor-

mally if there are intermediate new internal events, always

injecting the next input when its last expected predecessor

either occurs or times out. This ensures that we always find

suffixes that contain only a subset of the (equivalent) origi-

nal internal events, but leaves open the possibility of finding

divergent suffixes that still lead to the correctness violation.

This is reasonable because not even branching on new in-

ternal events is guaranteed to find the shortest fault-inducing

input sequence: there may be other unknown paths through

the state machine leading to the correctness violation that are

completely disjoint from the original execution.

Luckily, crucially ambiguous new internal events are not

problematic for the control software we evaluated, as we

show in §5. We conjecture that ambiguous new internal

events are rare because SDN is a control plane system, and

is designed to quiesce quickly (i.e. take a small number of

internal transitions after any input event, and stop at highly

connected vertices). Concretely, SDN programs are often

structured as (mostly independent) event handlers, meaning

that pruning input events simply triggers a subset of the orig-

inal event handlers. As an illustration, consider the state ma-

chines in Figure 4: the controllers quickly converge to a sin-

gle state (either “Master” or “Backup”), as do the switches

(“Safe”).

3.7 Complexity

The delta debugging algorithm terminates after O(log n)
invocations of replay in the best case, where n is the number

of inputs in the original trace [49]. In the worst case, delta

debugging has O(n) complexity.

If the replay algorithm never needs to back up, it replays

n inputs, for an overall runtime of O(nlog n) replayed in-

puts in the best case, and O(n2) in the worst case. Con-

versely, if the event scheduling needs to back up in every

iteration, another factor of n is added to the runtime: for

each input event ei, it replays inputs e1, . . . , ei, for a total

of n × n+1

2
∈ O(n2) replayed inputs. In terms of replayed

inputs, the overall worst case is therefore O(n3).
The runtime can be decreased by observing that delta de-

bugging is readily parallizable. Specifically, the worst case

runtime could be decreased to O(n2) by enumerating all

subsequences that delta debugging can possibly examine (of

which there are O(n)), replaying them in parallel, and join-

ing the results.

The runtime can be further decreased by taking snapshots

of the controller state at regular intervals. When the replay

algorithm detects that it has waited too long, it could then

restart from a recent snapshot rather than replaying the entire

prefix.

SDN platform developers can reduce the probability that

the replay algorithm will need to back up by placing causal

annotations on internal events [17]: with explicit causal in-

formation, the replay algorithm can know a priori whether

certain internal are dependent on pruned inputs.

3.8 Limitations

Having detailed the specifics of retrospective causal infer-

ence, we now clarify the scope of our technique’s use.

Partial Visibility. Our event scheduling algorithm assumes

that it has visibility into the occurrence of all relevant inter-

nal events. In practice many relevant internal state changes

are already marked by logging statements, but developers

may need to add additional logging statements to ensure re-

liable replay.

Non-determinism Within Individual Controllers. Our

tool is not designed to reproduce bugs involving non-

determinism within a single controller (e.g. race-conditions

between threads); we focus on coarser granularity errors

(e.g. incorrect failover logic), which we find plenty of in

§5. The upshot of this is that our technique is not able to

minimize all possible failures, such as data races between

threads. Nonetheless, the worst case for us is that the devel-

oper ends up with what they started: an unpruned log.

Troubleshooting vs. Debugging. Our technique is a trou-
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Link failure Link recovery

Switch failure Switch recovery

Control server failure Control server recovery

Dataplane packet injection Dataplane packet drop

Dataplane packet delay Dataplane packet permit

Control message delay Host migration

Table 2: Input types supported by STS

bleshooting tool, not a debugger; by this we mean that retro-

spective causal inference helps identify and localize inputs

that trigger erroneous behavior, but it does not directly iden-

tify which line(s) of code cause the error.

Bugs Outside the Control Software. Our goal is not to

find the root cause of individual component failures in the

system (e.g. misbehaving routers, link failures). Instead, we

focus on how the distributed system as a whole reacts to the

occurrence such inputs. If there is a bug in your switch, you

will need to contact your hardware vendor; if you have a bug

in your policy specification, you will need to take a closer

look at what you specified.

Globally vs. Locally Minimal Input Sequences. Our ap-

proach is not guaranteed to find the globally minimal causal

sequence from an input trace, since this requires O(2N )
computation in the worst case. The delta debugging algo-

rithm we employ does provably find a locally minimal causal

sequence [49], meaning that if any input from the sequence

is pruned, no correctness violation occurs.

Correctness vs. Performance. We are primarily focused on

correctness bugs, not performance bugs.

4. SYSTEM DESIGN AND USAGE SCE-

NARIOS

STS (the SDN Troubleshooting Simulator) is our realiza-

tion of the techniques described in §3. STS is implemented

in roughly 10,000 lines of Python in addition to the Has-

sel network invariant checking library [28]. We have made

the code for STS publicly available at http://ucb-sts.

github.com/sts/. To date, three industrial SDN com-

panies have expressed interest in adopting it.

In the rest of this section, we highlight salient points of

STS’s design, and illustrate a workflow for users of STS.

We show the input types supported by STS in Table 2. Our

software switches notify controllers about link, switch, and

host migration events by sending OpenFlow messages [39].

Although the software switches do support packet forward-

ing, we have not focused on simulating high-throughput dat-

aplane behavior.

We designed STS to be as resilient to non-determinism

as is practically feasible, while avoiding modifications to

control software whenever possible. When sending data

over multiple sockets, the operating system exhibits non-

determinism in the order it schedules the socket I/O oper-

ations. STS optionally ensures a deterministic order of mes-

sages by multiplexing all sockets in the controller process

onto a single true socket.5 STS currently overrides socket

functionality within the control software itself.6 In the fu-

ture we plan to implement deterministic message ordering

without code modifications by loading a shim layer on top

of libc (similar to liblog [18]).

STS needs visibility into the control software’s internal

state changes to reliably reproduce the system execution. We

achieve this by making a small change to the control soft-

ware’s logging library7: whenever a control process executes

a log statement, we notify STS that a new state transition is

about to occur, and optionally block the process. STS then

sends an acknowledgment to unblock the controller after

logging the state change. If blocking was enabled during

recording, we force the control software to block at internal

state transition points again during replay until STS gives

explicit acknowledgment.

Routing the gettimeofday() syscall through

STS makes replay more resilient to alterations in ex-

ecution speeds.8 As an added benefit, overriding

gettimeofday() allows us to ‘compress’ runtime

in some cases (similar to time-warped emulation [22]).

If the control software under test utilizes random number

generators, we attempt to manually replace any such func-

tionality with deterministic algorithms if possible. Our cur-

rent implementation does not account other sources of non-

determinism, such as asynchronous signals, or interruptable

instructions (e.g. x86’s block memory instructions [13]).

Developers and operators can use STS in a number of

ways. Here we illustrate a general workflow.

4.1 Bug Exploration

Use of STS begins with bug exploration. STS itself is

well-suited for finding input traces that trigger bugs: it read-

ily simulates common network input events, and ships with

a suite of invariant checking algorithms [28]. With com-

plete control over event orderings, STS is especially useful

for exploring corner cases. Along these lines, Amin Vahdat

has testified to the value of Google’s SDN network simula-

tor [10]:

“One of the key benefits we have is a very nice

emulation and simulation environment where the

exact same control software that would be run-

ning on servers might be controlling a combina-

tion of real and emulated switching devices. And

then we can inject a number of failure scenarios

under controlled circumstances to really acceler-

ate our test work.”
5Alternatively, we could employ a mutex [33].
6Only supported for POX at the moment.
7Only supported for POX and Floodlight at the moment.
8When the pruned trace differs from the original, we make a best-
effort guess at what the return values of these calls should be.
For example, if the altered execution invokes gettimeofday()
more times than we recorded in the initial run, we interpolate the
time values of neighboring events
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Developers can use STS to generate randomly chosen in-

put sequences [36], feed them to controller(s), and monitor

invariants at chosen intervals. Driving the execution of the

system in this way allows STS to record a totally-ordered log

of the events to be replayed later.

Developers can also run STS interactively to generate re-

playable integration tests, similar to Nebut et al. [37]. In in-

teractive mode developers can examine the state of any part

of the simulated network, observe and manipulate messages,

and follow their intuition to induce orderings that they be-

lieve may trigger bugs.

Generating integration tests in this fashion frees develop-

ers to be more agile and spend spend less time writing test

cases. As developers and operators encounter additional fail-

ure cases they can add them to a suite of integration tests

later used to validate the correct behavior of future versions

of the software. Since STS makes limited assumptions about

the control software under test, the overall SDN community

could potentially collect a common repository of test cases.

4.2 Replay

Having discovered a bug, developers can use STS to re-

play the inputs that triggered the bug. Repeated replay in

conjunction with print statements or source-level debuggers

is how troubleshooters can ultimately find the buggy line(s)

of code (as envisioned by [46]).

Replay with STS has the potential to change how devel-

opers elicit help from mailing lists or coworkers. The status

quo is to describe the conditions needed to reproduce the

bug as carefully as possible and hope that others are able

to replicate the issue. With STS, developers can record er-

rant executions in the simulated environment, and exchange

traces to be replayed again at other developer’s machines.

4.3 Minimizing Input Traces

Moving beyond network replay, STS’s main value is in

automatically minimizing input traces. Troubleshooting can

be highly time-consuming and challenging when the devel-

oper has no intuition as to where the problem might arise and

only a large input log to work with. For instance, stepping

through a 1000 event trace in a source level debugger can

involve taking thousands of individual steps. When inspect-

ing log files, developers are often confronted with dozens of

lines of debug output per event and hundreds of thousands of

log lines overall. With retrospective causal inference, much

of the heavy lifting can be performed automatically before

the developers begin to diagnose the root cause.

At the least, retrospective causal inference reduces the

runtime of test cases and eliminates distracting events during

replay. More importantly, minimal causal sequences give de-

velopers intuition about what code path is throwing the net-

work into an invalid configuration. In our own experience

investigating the bugs described in §5, we had little under-

standing of what the problem was at first. After identifying

the MCS, it became easier to understand what corner case

was triggered, and how the bug might be resolved.

Minimal causal sequences also serve to consolidate redun-

dant test cases: if two test failures have the same minimal

causal sequence, it is likely that the same underlying bug is

responsible [50]. This eliminates time wasted investigating

bug reports with the same root cause.

4.4 Analysis of Production Logs

Input generation, interactive execution, replay, and test

case minimization are implemented and used in STS today.

Forensic analysis of production logs, while not currently im-

plemented, may be another valuable use case of STS. Here

we present a sketch of how forensic analysis could be per-

formed with retrospective causal inference.

While retrospective causal inference takes as input a sin-

gle, totally-ordered log of the events in the distributed sys-

tem, production systems maintain a log at each node. Instru-

mentation and preprocessing steps are therefore needed.

Production systems would need to include Lamport clocks

on each message [32] or have sufficiently accurate clock syn-

chronization [12] to obtain a partial global ordering consis-

tent with the happens-before relation.9 Contrast this with

STS’s testing mode, where a global event ordering is ob-

tained by logging all events at a single location.

The distributed logs would also need to make a clear dis-

tinction between internal events and external input events.

Further, the input events would need to be logged in suffi-

cient detail for STS to reproduce a synthetic version of the

input that is indistinguishable (in terms of control plane mes-

sages) from the original input event.

Without care, a single input event may appear multiple

times in the distributed logs. A failure of the master node, for

example, could be independently detected and logged by all

other replicas. The most robust way to avoid redundant input

events is to employ perfect failure detectors [7], which log

a failure iff the failure actually occurred. Alternatively, one

could employ root cause analysis algorithms [47] or manual

inspection to consolidate redundant alarms.

Finally, some care is needed to prevent the logs from

growing so large that retrospective causal inference’s run-

time becomes intractable. Here, causally consistent snap-

shots [8] can minimize the number of inputs retrospec-

tive causal inference needs to examine. Specifically, with

causally consistent snapshots of the distributed system taken

at regular intervals, STS can bootstrap its simulation from

the last snapshot before the failure. If the MCS starting from

this snapshot is empty, it can iteratively move backwards,

starting from earlier snapshots.

5. EVALUATION

We have applied STS to three open source SDN control

9 Note that a total ordering is not needed, since it is permissible
for retrospective causal inference to reorder concurrent events from
the production run so long as the happens-before relation is main-
tained [14].
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Bug Name Topology Replay Success Rate Total Inputs MCS Size

POX list removal 2 switch mesh 20/20 76 (69) 2 (2)

POX in-flight blackhole 2 switch mesh 15/20 [20/20*] 68 (26) 25 (11)

POX migration blackhole 4 switch mesh 20/20* 117 (29) 3 (2)

NOX discovery loop 4 switch mesh 18/20 358 (150) 58 (18)

Floodlight loop 3 switch mesh 15/50 548 (284) 404 (?)

Table 3: Overview of Case Studies. Totals shown in parentheses are with dataplane permit events excluded.

*with multiplexed sockets and logging interposition enabled.

platforms: POX [35], NOX [21], and Floodlight [4]. Over

a span of roughly five days of investigation we found a total

of five bugs. We show a high-level overview of our results

in Table 3, and illustrate in detail how retrospective causal

inference found their minimal causal sequences in the rest

of this section.

5.1 POX List Removal

The first SDN control platform we examined was POX,

the successor of NOX. POX is a single-machine control plat-

form intended primarily for research prototyping and educa-

tional use (i.e. not large scale production use). Nevertheless,

POX has been deployed on real networks, and has a growing

set of users.

The POX application we ran was a layer two routing mod-

ule (‘l2_multi’) that learns host locations and installs exact

match per-flow paths between known hosts using a variant

of the Floyd-Warshall algorithm. It depends on a discov-

ery module, which sends LLDP packets to discovery links

in the network, and a spanning tree module, which config-

ures switches to only flood packets for unknown hosts along

a spanning tree.

We start with a relatively trivial bug to illustrate that

STS is useful for early stage development and testing. We

employed STS to generate random sequences of inputs, and

found after some time that POX threw an exception due to

attempting to remove an element from a list where the ele-

ment was not present.

There were 76 randomly generated inputs in the trace

leading up to the exception. We invoked retrospective causal

inference to identify a two element MCS: a failure of a con-

nected switch followed by a reboot/initialization of the same

switch. The nearly logarithmic runtime behavior of retro-

spective causal inference for this case is shown in Figure 6.

Apparently the developers of POX had not anticipated this

particular event sequence. Given the rarity of switch re-

covery events, and the tediousness of writing unit tests for

scenarios such as this (which involved multiple OpenFlow

intitialization handshakes), this is not entirely unsurprising.

STS made it straightforward to inject inputs at a high seman-

tic level, and the minimized event trace it produced made for

a simple integration test.

5.2 POX In-flight Blackhole

We discovered the next bug after roughly 20 runs of ran-
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Figure 6: Minimizing the POX list remove trace.
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Figure 7: Topology for POX in-flight blackhole. Num-

bers denote port labels.

domly generated inputs. We noticed that STS reported a per-

sistent blackhole while POX was bootstrapping its discovery

of link and host locations. We encountered this bug on a sim-

ple topology, depicted in Figure 7, consisting of two hosts A

and B and two switches S1 and S2 connected by a single

link.

There were 68 inputs in the initial trace, and retrospective

causal inference returned a 25 input MCS (runtime shown

in Figure 8). With the MCS in hand we took out paper and

pencil to decipher what had transpired.

Before the discovery module had learned of the link con-

necting the two switches, there were six traffic injection

events between hosts (A→ B and B→A). At the point when

the link was discovered, POX had previously learned of B’s

location at port 2.2, and correctly unlearned a previous lo-

cation for A at port 2.1 (which it now knew to be a switch-

switch link).

Directly after the link discovery we observed an in-flight

packet arriving from A→B at port 2.1 (without a prior flow

notification from S1). This was POX’s first error. Upon ex-

amining the code, we found that it did not account for in-

flight packets concurrent with link discovery. As a result,
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Figure 8: Minimizing the POX in-flight blackhole.

POX incorrectly learned A’s location at 2.1, even though it

knew that the link could not have hosts attached. If the first

packet had instead originated at 1.1, POX would not have

made this mistake.

The next event we observed was another in-flight packet

from B→A arriving at port 1.1. S1 notified POX of the un-

matched flow, and POX appropriately printed a log statement

indicating that a packet had arrived at an internal switch port

without a previously installed flow entry. What happened

next puzzled us though. POX proceeded to install a path

for this new B→A flow, but the path itself contained a loop:

POX installed a B→A entry going out both 1.1→2.1 and

2.2→2.1, whereas it should have installed only the latter

(given A’s current known location). The default behavior

of OpenFlow switches is to ignore matching route entries

(with wildcarded in ports) that forward out the same port the

packets arrived on. This is where we started observing the

blackhole: now whenever B sent traffic to A, it would be

dropped at S1 until the faulty routing entry would eventually

expire 30 seconds later.

We investigated the code that handled in-flight packets ar-

riving on switch-switch ports. The log statement that we

had observed earlier was inside a nested conditional, and the

code for installing the path was below and outside of the

nested conditional conditional. What struck us was that there

was a commented out return statement directly after the log

statement. The comment above it read: “Should flood in-

stead of dropping”. We tried reinserting the return statement

and replaying, and the blackhole ceased to appear.

In summary, we found that the crucial triggering events

were two in-flight packets (set in motion by prior traffic in-

jection events): POX incorrectly learned a host location as

a result of the first in-flight packet, and failed to return out

of a nested conditional as result the second in-flight packet.

We have sent the replayable trace generated by retrospective

causal inference to the lead developer of POX, and await

his response. We suspect that these fine-grained race condi-

tions had not been triggered before because message timing

in Mininet [23] or real hardware is not delayed arbitrarily as

it was in STS.
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Figure 9: Minimizing the POX migration blackhole.

5.3 POX Migration Blackhole

Having examined the POX code in some depth, we no-

ticed that there might be some interesting corner cases re-

lated to host migrations. We set up randomly generated in-

puts, included host migrations this time, and checked for

blackholes. Our initial input size was 117 inputs. Before

investigating the bug we ran retrospective causal inference,

and ended up with a 3 input MCS (shown in Figure 9): a

packet injection from a host A, followed by a packet injec-

tion by a host B towards A, followed by a host migration

of host A. This made it immediately clear what the prob-

lem was. After learning the location of A and installing a

flow from B to A, the routing entries in the path were never

removed after A migrated, causing all traffic from B to A

to blackhole until the routing entries expired. We did not

know it at the time, but this was a known problem, and this

particular routing module did not support host migrations.

Nonetheless, this case demonstrates how the MCS alone can

point to the root cause.

5.4 NOX Discovery Loop

The next SDN control platform we examined was NOX,

the original OpenFlow controller. NOX is also a single ma-

chine control platform, but unlike POX it has been used

fairly extensively in real networks.

Similar to POX we exercised NOX’s routing module

(‘sprouting’), since it draws in a large number of other com-

ponents. Routing learns link and host locations, installs all-

to-all paths between hosts on a per-flow basis, and is de-

signed to be resilient to looped topologies.

We initially tested NOX on a two node topology, but did

not find any immediate problems. We then extended the

topology to a four-node mesh, and discovered a routing loop

between two switches (involving routes for two hosts) within

roughly 20 runs of randomly generated inputs.

Our initial input size was 358 inputs, a minute’s worth

of execution. Retrospective causal inference returned a 58

input MCS. The most salient inputs in the MCS were 3 dat-

aplane packet drops mid-way through the execution, inter-

spersed with 14 traffic injections. We are in the process
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Figure 10: Minimizing the NOX discovery loop.

of pinpointing the exact root cause with NOX developers,

based on the 58 input MCS.

5.5 Floodlight discovery loop.

We subjected the current (unmodified) open source ver-

sion of Floodlight (git commit f37046a) to fuzz testing with

a three node fully meshed topology and high failure event

rates. In an hour-long experiment, the fuzzer found an event

sequence with 777 total events (548 input, 229 internal) that

results in a 3-node forwarding loop being set up.

Floodlight makes use multiple kernel level threads, and

thus can exhibit non-deterministic behavior. Thus, it is not

surprising that we do not achieve full reproducibility of this

bug during replay without further instrumentation. On aver-

age, 15/50 (30%) of replays reproduce the bug. To proceed

with MCS isolation, we replayed the execution up to 13 re-

plays for each subsequence chosen by delta debugging. Sta-

tistically, this enables STS to correctly diagnose violations

in >99% of cases.10

Retrospective causal inference was able to reduce the

number of input events from 548 to 404 in 168 iterations

(note that this is not the final result; the algorithm crashed

due to a trivial error a few hours before the deadline). Com-

paring output traces of successful and unsuccessful runs, we

noticed that the bug seems to correlate with specific thread

level race conditions between state updates in the LinkDis-

covery module and the Forwarding module. We are in the

process of investigating the actual root cause.

This experiment provides a baseline for a worst case sce-

nario of our system. STS exercised an unmodified, multi-

threaded controller that it does not have deterministic control

over. The bug appears to depend on fine-grained thread-level

races conditions that are difficult to guarantee. Still, STSwas

instrumental in pointing out a previously unknown bug, and

reducing the input size.

Overall Results. The overall results of our case studies are

shown in Table 3. For the Replay Success Rate column

we repeatedly replayed the original unpruned event trace,

and measured how often we were able to reproduce the pol-

10ln(1− 0.99)/ln(1− 0.30) ≈ 13

icy violation. There was indeed non-determinism in some

cases, especially Floodlight. For the specific case of POX in-

flight blackhole, we were able to eliminate the relevant non-

determinism by employing multiplexed sockets and wait-

ing on POX’s logging messages. We expect that we would

see similar improvements if we applied these techniques to

Floodlight.

We show the initial input size and MCS input size in the

last two columns. We also show the input sizes excluding

dataplane forwarding permit events, since these inputs are

an artefact of how we currently store and replay event traces.

We plan on making dataplane permits a default.

We measured the runtime of retrospective causal infer-

ence for these case studies in Figures 6 & 8–11. While some

instances ran in logarithmic time, the worst case was mini-

mizing NOX discovery loop, which took more than 5 and a

half hours. Nonetheless, even long iteration sizes are often

preferable to spending software developer’s time on manual

diagnosis.

5.6 Parameters

Our algorithm leaves an open question as to what value

ε should be set to. We experimentally varied ε on the POX

in-flight blackhole and the POX list removal bugs. We found

for both cases that the numbers of events we timed out on

while isolating the MCS became stable for values above 25
milliseconds. For smaller values, the number of timed out

events increased rapidly. We currently set ε to 100 millisec-

onds.

In general, larger values of ε are preferable to smaller val-

ues (disregarding runtime considerations), since we can al-

ways detect when we have waited too long (viz. when a suc-

cessor of the next input has occurred), but we cannot detect

when we have timed out early on an internal event that is in

fact going to occur. Analyzing event frequencies for partic-

ular bugs could provide more ideal εvalues.

6. DISCUSSION

Or evaluation of retrospective causal inference leaves

open several questions, which we discuss here.

Aren’t SDN controllers relatively simple and bug free? It

is true that the freely available SDN applications we inves-

tigated are relatively simple. However, they are most defi-

nitely not bug-free since, in a short period of time, we were

able to demonstrate bugs in all of them. Production SDN

platforms are far more complex than the freely available

ones, for a variety of reasons. Larger deployments cannot

be managed with reactive microflows, and thus require more

complex proactive or hybrid strategies. For fault tolerance,

controllers are replicated on multiple physical servers, and

sharded for scalability [31]. Multi-tenant virtualization crit-

ically requires tenant isolation to be preserved at all times.

SDN controller platforms interact with cloud orchestration

platforms and must correctly react to concurrent changes on

their north- and southbound interfaces. Thus, we expect that
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these production SDN platforms will continue to be under

active development, and have ongoing issues with bugs, for

years to come. From our conversations with several SDN

controller vendors, we are aware that they all invest signifi-

cant resources to troubleshooting. Several commercial play-

ers have voiced interest in our tool as a way to improve their

troubleshooting.

Aren’t the bugs described here trivial in nature? Yes, the

bugs we found were trivial, but that is evidence that with-

out better troubleshooting tools tracking down even trivial

bugs is difficult. We were particularly surprised how quickly

our tool was able to identify policy violations in the stan-

dard routing modules of all investigated platforms, because

we assumed that the routing modules would have been well-

tested through years of use. However, these bugs remained

undiagnosed because they arise from unexpected interac-

tions between different elements in the control plane (e.g.,

shortest path routing and topology discovery). We expect

more complex bugs to surface once we aim our tool at more

complex platforms, such as those used in production set-

tings.

Are simulated failures really indistinguishable from ac-

tual failures? There will always be some failure modes ob-

served in practice that are not reproducible without adding

significant complexity to the simulator. Our approach is

not particularly well-suited to model fine-grained low-level

behavior, especially on the data plane, e.g., when switches

are dropping packets due to memory or slow path con-

straints. Conversely, our approach excels at investigating

corner cases in distributed control plane interactions, which

are the source of many complex bugs. That said, as the sys-

tem is entirely built in software, it is in principle possible to

add more fine grained low-level behavior simulation at the

cost of performance (with logical clock speeds adjusted ac-

cordingly). Additional experience with production systems

will help us determine how to best trade off improved simu-

lation fidelity against degraded performance.

Will this approach work on all control platforms? We

make limited assumptions about the controller platform in

use. Two of the three investigated controller platforms were

exercised with retrospective causal inference without any

modifications. Limited changes to the controller platforms

(e.g., the possibility to override gettimeofday()) can

increase replay accuracy further. In general, we expect retro-

spective causal inference to support controllers conforming

to OpenFlow 1.0 out of the box.

Why do you focus on SDN networks? SDN represents

both an opportunity and a challenge. In terms of a challenge,

SDN control platforms are in their infancy, which means that

they have bugs that need to be found and corrected. Based on

our conversations with commercial SDN developers, we are

confident there is a real need for improved troubleshooting

in this sector.

In terms of an opportunity, SDN control platforms have

two properties that make them particularly amenable to an

automated troubleshooting approach such as ours. First,

and most importantly, SDN control software is designed to

quickly converge to quiescence—that is, SDN controllers

become idle when no policy or topology changes occur for

a period of time.11 This means that most inputs are not rel-

evant to triggering a given bug, since the system repeatedly

returns to a valid quiescent state; often there is only one crit-

ical transition from the last quiescent valid configuration to

the first invalid configuration. If this were not the case, it

is not clear that the minimal causal subsequences found by

our technique would be small, in which case our approach

would not yield significant advantages.

Second, SDN’s architecture facilitates the implementa-

tion of STS. The syntax and semantics of interfaces be-

tween components of the system (e.g. OpenFlow between

controllers and switches [39], or OpenStack Quantum’s API

between the control application and the network hypervi-

sor [2]), are open and well-defined–a property that is crucial

for fingerprinting. Moreover, controllers are small in num-

ber compared to the size of overall network, which makes it

much easier to superimpose on messages.

In future work we hope to measure the effectiveness of

our technique on other control plane systems such as NAS

controllers that share the same properties.

7. RELATED WORK

Our work spans three fields: software engineering, sys-

tems and networking, and programming languages.

Software Engineering The software engineering commu-

nity has developed a long line of tools for automating aspects

of the troubleshooting process.

Sherlog [48] takes on-site logs from a single program that

ended in a failure as input, and applies static analysis to in-

fer the program execution (both code paths and data values)

that lead up to the failure. The authors of delta debugging

applied their technique to multi-threaded (single-core) pro-

grams to identify the minimum set of thread switches from

a thread schedule (a single input file) that reproduces a race

condition [9]. Chronus presents a simpler search algorithm

than delta debugging that is specific to configuration debug-

ging [45]. All of these techniques focus on troubleshooting

single, non-distributed systems.

Rx [40] is a technique for improving availability: upon

encountering a crash, it starts from a previous check-

point, fuzzes the environment (e.g. random number gener-

ator seeds) to avoid triggering the same bug, and restarts the

program. Our approach perturbs the inputs rather than the

environment prior to a failure.

Systems and Networking The systems and networking

community has also developed a substantial literature on

tools for testing and troubleshooting.

We share the common goal of improving troubleshooting

of software-defined networks with OFRewind [46] and re-

cent project ndb [24]. OFRewind provides record and replay

11Complex bugs may occur when several such processes overlay.
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of OpenFlow control channels, and allows humans to man-

ually step through and filter input traces. We focus on test-

ing corner cases and automatically isolating minimal input

traces.

ndb provides a trace view into the OpenFlow forwarding

tables encountered by historical and current packets in the

network. This approach is well suited for troubleshooting

hardware problems, where the network configuration is cor-

rect but the forwarding behavior is not. In contrast, we fo-

cus on bugs in control software; our technique automatically

identifies the control plane decisions that installed erroneous

routing entries.

Neither ndb nor OFRewind address the problem of diag-

nostic information overload: with millions of packets on the

wire, it can be challenging to pick just the right subset to in-

teractively debug. To the best of our knowledge, retrospec-

tive causal inference is the first system that programmati-

cally provides information about precisely what caused the

network to enter an invalid configuration in the first place.

Trace analysis frameworks such as Pip [41] allow devel-

opers to programmatically check whether their expectations

about the structure of recorded causal traces hold. Mag-

Pie [3] automatically identify anomalous traces, as well as

unlikely transitions within anomalous traces by constructing

a probabilistic state machine from a large collection of traces

and identifying low probability paths. Our approach identi-

fies the exact minimal causal set of inputs without depending

on probabilistic models.

Network simulators such as Mininet [23], ns-3 [1], and

ModelNet [44] are used to prototype and test network soft-

ware. Our focus on comparing diverged histories requires

us to provide precise replay of event sequences, which is in

tension with the performance fidelity goals of pre-existing

simulators.

Root cause analysis [47] and dependency inference [26]

techniques seek to identify the minimum set of failed com-

ponents (e.g. link failures) needed to explain a collection of

alarms. Rather than focusing on individual component fail-

ures, we seek to minimize inputs that affect the behavior of

the overall distributed system.

Programming Languages Finally, the programming lan-

guages community has developed numerous verification and

static analysis techniques.

Model checkers such as Mace [30] and NICE [5] enumer-

ate all possible code paths taken by control software (NOX)

and identify concrete inputs that cause the system to enter in-

valid configurations. Model checking works well for small

control programs and a small number of machines, but suf-

fers from exponential state explosion when run on large sys-

tems. For example, NICE took 30 hours to model check

a network with two switches, two hosts, the MAC-learning

control program (98 LoC), and five concurrent messages be-

tween the hosts [5]. Rather than exploring all possibilities,

we take as input a particular event trace that is known to

trigger a bug, and systematically enumerate subsequences of

that event trace in polynomial time.

8. CONCLUSION

SDN is widely heralded as the “future of networking”, be-

cause it makes it much easier for operators to manage their

networks. SDN does this, however, by pushing the complex-

ity into SDN control software itself. Just as sophisticated

compilers are hard to write, but make programming easy,

SDN platforms make network management easier for oper-

ators, but only by forcing the developers of SDN platforms

to confront the challenges of asynchrony, partial failure, and

other notoriously hard problems that are inherent to all dis-

tributed systems. Thus, people will be troubleshooting and

debugging SDN control software for many years to come,

until they become as stable as compilers are now.

Current techniques for troubleshooting SDN networks are

quite primitive; they essentially involve manual inspection

of logs in the hope of identifying the relevant inputs. In this

paper we developed a technique for automatically identify-

ing a minimal sequence of inputs responsible for triggering a

given bug. We have applied this system to three open source

SDN platforms. Of the five bugs we encountered in a five

day investigation, our technique reduced the size of the in-

put trace to 36% of its original size in the worst case and 2%

of its original size in the best case.
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