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We present first-principles many-body calculations of the dielectric constant, quasiparticle band structure,

and optical absorption spectrum of monolayer MoS2 using a supercell approach. As the separation between the

periodically repeated layers is increased, the dielectric function of the layer develops a strong q dependence

around q = 0. This implies that denser k-point grids are required to converge the band gap and exciton binding

energies when large supercells are used. In the limit of infinite layer separation, here obtained using a truncated

Coulomb interaction, a 45 × 45 k-point grid is needed to converge the G0W0 band gap and exciton energy to

within 0.1 eV. We provide an extensive comparison with previous studies and explain agreement and variations

in the results. It is demonstrated that too coarse k-point sampling and the interactions between the repeated

layers have opposite effects on the band gap and exciton energy, leading to a fortuitous error cancellation in the

previously published results.

DOI: 10.1103/PhysRevB.88.245309 PACS number(s): 73.22.−f, 78.20.Bh, 71.20.Nr, 71.35.−y

I. INTRODUCTION

Atomically thin two-dimensional (2D) materials such

as graphene, hexagonal boron nitride, and transition-metal

dichalcogenides (TMDC) possess unique electronic and op-

tical properties including high intrinsic carrier mobilities,1–3

tunable band gaps,4,5 and strong light-matter interactions.6–9

These features, combined with the possibility of engineering

their electronic properties further via strain, alloying, or

stacking, make the 2D materials ideal as building blocks for

new optoelectronic structures and devices with minimal sizes

and performances surpassing present technologies.

After the intense focus on graphene, the TMDCs are

now attracting increasing interest.10 This stems mainly from

the greater variation in their electronic properties including

both semiconducting and metallic behavior. So far, the most

intensively studied single-layer TMDC is the semiconductor

MoS2. Nanostructured forms of MoS2 have previously been

explored as potential catalysts for desulferization of crude

oil and more recently for (photo-) electrochemical hydrogen

evolution.11–13 Bulk MoS2 is composed of two-dimensional

sheets held together by weak van der Waals forces, and

individual sheets can be isolated by exfoliation techniques

similar to those used to produce graphene.1 Single layers of

MoS2 therefore comprise highly interesting two-dimensional

systems with a finite band gap and have recently been proposed

for nanoelectronics applications.2

The optical properties of bulk MoS2 have been thoroughly

studied experimentally.14–19 The absorption spectrum shows

two distinct low-energy peaks at 1.88 and 2.06 eV, which are

denoted by A and B, respectively,20 and derive from direct tran-

sitions between a split valence band and the conduction band

at the K point of the Brillouin zone. Their Rydberg satellites,

Zeeman splitting, and dependence on crystal thickness have

been investigated in detail.17 Recently, the quantum yield of

luminescence from MoS2 was shown to increase dramatically

when the sample thickness was changed from a few layers to

a monolayer,7,8 indicating a transition to a direct band gap in

the single layer.
In the past couple of years a number of theoretical studies

of the electronic band structure and optical excitations in
monolayer MoS2 have been published.4,21–26 These studies
are based on many-body perturbation theory in the GW ap-
proximation (mainly the non-self-consistent G0W0 approach)
for the band structure and the Bethe-Salpeter equation (BSE)
with a statically screened electron-hole interaction for the
optical excitations. As is standard practice, the calculations
have been performed on a supercell geometry where the
MoS2 layers have been separated by 10–20 Å vacuum and
the Brillouin zone (BZ) was sampled on grids ranging from
6 × 6 to 15 × 15. With these parameters, G0W0 band gaps in
the range 2.6–3.0 eV and G0W0-BSE exciton binding energies
of 0.6–1.1 eV have been reported. Moreover, both direct21–25

and indirect4 band gaps have been found at the G0W0 level,
while only direct gaps have been obtained with self-consistent
GW 21 and GW0.4,26 When comparing these values, it should
be kept in mind that both the size and nature of the band gap of
MoS2 depend sensitively on the in-plane lattice parameter, a.4

One of the most fundamental quantities describing the
electronic structure of a material is the dielectric function. The
dielectric properties of atomically thin 2D materials are quite
different from their three-dimensional (3D) counterparts.27 For
example, plasmons in 2D metals have acoustic dispersion
relations [ωp(q) → 0 as q → 0], and screening is generally
much weaker, leading to strong exciton binding energies in
2D semiconductors. Reported static dielectric constants for
monolayer MoS2 obtained using the supercell approach lie
in the range 4.2–7.6 (for in-plane polarization).21,24,28 These
values have been used to rationalize the exciton binding energy
in MoS2 using the simple Mott-Wannier model.

In this paper, we present an in-depth study of the dielectric
function, quasiparticle (QP) band structure, and excitonic
states in monolayer MoS2. We focus on separating the spurious
interlayer screening from the intrinsic intralayer screening in
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supercell geometries and on the consequences of the physics of
2D screening for the convergence of many-body excited-state
calculations. The 3D macroscopic dielectric constant, as used
for solids, converges to 1 for all q vectors in the limit of
infinite separation of the layers and is thus meaningless for a
2D material. We use an alternative approach to calculate the
dielectric constant by averaging the total field over the material
rather than the supercell. This 2D dielectric constant shows
strong q dependence for small wave vectors and becomes
exactly 1 for q = 0. This property has important consequences
for the k-point convergence of many-body calculations.

In general, the use of a truncated Coulomb interaction is
essential to avoid interlayer screening which decays slowly
with the layer separation, L. The interlayer screening yields
a too large dielectric constant for wave vectors q < 1/L. As
a consequence, the G0W0 band gaps and exciton energies are
0.5 eV too low on average for layer separations of around
20 Å. For larger layer separations, the strong q dependence
of the dielectric constant for small q implies that a k-point
grid of at least 45 × 45 is required to converge band gaps and
exciton energies to 0.1 eV. For k-point grids below 15 × 15
the band gap is at least 0.5 eV too large in the limit L → ∞.
Thus, the effects of interlayer screening and too coarse k-point
grids partially cancel out, leading to reasonable values for the
band gap and exciton binding energy with underconverged
parameters as applied in previous studies.

The paper is organized as follows. In Sec. II we present
G0W0 band structures and study the convergence of the gap
with respect to interlayer separation and k-point sampling. In
Sec. III we show calculations for the 2D dielectric constant and
explain the origin of the slow k-point convergence of the band
gap. In Sec. IV we present many-body calculations of the low-
est excitons and analyze their convergence with layer separa-
tion and k-point sampling. Our conclusions are given in Sec. V.

II. QUASIPARTICLE BAND STRUCTURE

In this section we demonstrate that GW band structures
for monolayer MoS2 converge extremely slowly with re-
spect to the interlayer separation. In order to obtain well-
converged results (within 0.1 eV), the use of a truncated
Coulomb interaction is inevitable, along with a k-point grid of
around 45 × 45. Previously reported calculations with the full
Coulomb interaction have employed only separation between
10 and 20 Å and used from 6 × 6 to 12 × 12 k points. The
resulting band structures are, however, somewhat saved by a
fortunate error cancellation between the two effects.

A. Computational details

All our calculations have been performed with the projector
augmented wave method code GPAW.29,30 The Kohn-Sham
wave functions and energies of monolayer MoS2 were cal-
culated in the local density approximation (LDA) using a
plane-wave basis with cutoff energy 400 eV. The 4s and
4p semicore electrons of Mo were explicitly included in all
calculations. Unless otherwise stated the calculations have
been performed for the experimental lattice constant of 3.16 Å.
One-shot G0W0 calculations were performed using the LDA
wave functions and eigenvalues to obtain the G0W0@LDA
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FIG. 1. (Color online) Band structure of monolayer MoS2 cal-

culated with LDA and G0W0@LDA using 45 × 45 k points and a

truncated Coulomb interaction to avoid interaction between periodi-

cally repeated layers. The valence-band tops have been aligned.

quasiparticle energies. A plane-wave cutoff of 50 eV and
200 bands were used for the dielectric function, screened
interaction, and GW self-energy. Convergence with respect
to these parameters has been checked very carefully. With
these values, band gaps were found to be converged within
around 10 meV. The plasmon pole approximation of Godby
and Needs31 for the dielectric function was found to yield QP
energies within 0.1 eV of those obtained from full frequency
dependence and was consequently used in all calculations.
To avoid interaction between the periodically repeated MoS2

sheets, we have applied a truncated Coulomb interaction of the
form vc(r) = (1/r)θ (Rc − z), following Refs. 32 and 33, in the
calculation of both the dielectric function, ǫ, and the screened
potential, W = ǫ−1vc. For details on the implementation of
the GW method in the GPAW code we refer to Ref. 34. We
note that we have performed a numerical integration of the
Coulomb interaction around each q point in the Brillouin
zone [see Eq. (9) in Sec. III C] when evaluating the head of
the screened potential, W00(q). This was found to be crucial for
the k-point convergence both when employing the truncated
and full Coulomb interaction.

B. Results

The band structure calculated using 45 × 45 k points and
the truncated Coulomb interaction is shown in Fig. 1. At the
LDA level, we find a direct band gap at the K point of 1.77 eV,
while the smallest indirect gap of 1.83 eV occurs from Ŵ to a
point along the Ŵ-K direction. In contrast, G0W0 predicts an
indirect gap of 2.58 eV and a direct gap at K of 2.77 eV.

In Fig. 2 we show the convergence of both the direct and the
indirect band gap with respect to the k-point grid for a fixed
interlayer separation of 23 Å (see Fig. 3 for the definition of
L). It is clear that a very dense k-point grid is needed in order
to obtain well-converged results with the truncated Coulomb
interaction. For 45 × 45 k points, band gaps are converged
within less than 0.1 eV, while this is already the case for
15 × 15 k points with the bare Coulomb interaction. However,
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FIG. 2. (Color online) Direct (full symbols) and indirect (open

symbols) G0W0 band gaps as function of the number of k points in

one of the in-plane directions for a layer separation of L = 23 Å.

the values obtained with the bare Coulomb interaction are too
low as a result of interlayer screening. The slow convergence
with respect to k points when the truncation is used will be
discussed in detail in Sec. III C.

We see that results do not converge independently with re-
spect to the number of k points and the interlayer separation.35

In Fig. 4, we plot the L dependence of the direct band gap
for different k-point samplings with the bare interaction. The
k-point dependence becomes much stronger for large L. For
L → ∞, the values are expected to converge to the results
calculated with the truncation (indicated by dotted lines). They
seem to exhibit a linear 1/L behavior only for L > 50 Å.
Figure 5 shows all results and interpolated values in a contour
plot as a function of 1/L and the number of k points. The
effects of using more k points and increasing L are of different
sign and partially cancel each other. This is the reason why
different choices of the two parameters yield the same results.
Especially, the band gaps calculated with 9 × 9 k points and
L = 23 Å and 15 × 15 k points and L = 43 Å are the same
as with 45 × 45 k points and infinite L. This seems, however,
coincidental, and we do not expect it to be the case for other
systems.

We note that all calculations have been performed with
a single k point in the direction perpendicular to the layer.
This is, however, insufficient for small interlayer distances.

FIG. 3. (Color online) Definition of the interlayer separation, L.
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FIG. 4. (Color online) Direct G0W0 band gap plotted as a function

of interlayer distance for different k-point samplings with the full 1/r

interaction. Dotted lines serve as a guide for the eye to extrapolate

for L → ∞. They were obtained by fitting all values for L > 30 Å,

including the results with the Coulomb truncation, to a quadratic

function. Dashed horizontal lines indicate the calculated values with

the truncated Coulomb interaction.

For L = 13 Å, we find an increase of the band gap of around
0.2–0.3 eV when at least 3 k points are used, for example. For
L > 20 Å or use of the truncation, this effect is negligible.

C. Comparison with previous work

In Table I we show our converged results obtained with the
truncated Coulomb interaction and 45 × 45 k points together
with previous G0W0 results from the literature. For each
reference we show the values used for the lattice constant,
the interlayer separation, and the k-point sampling. It can be
seen that all the previous calculations have used small layer
separations and no truncation method. As pointed out in the

FIG. 5. (Color online) Contour plot of the direct G0W0 band gap

as a function of the inverse interlayer distance and number of k points

in one of the in-plane directions with the full 1/r interaction. Contour

lines are separated by 0.1 eV. Interpolation from splines was used.
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TABLE I. Calculated G0W0 band gaps obtained in the present work and compared with previous results from the literature. All our

calculations have been performed using a truncated Coulomb interaction.

Egap (eV)

Reference Starting point a (Å) Number of k points Layer separation (Å) Direct Indirect

This work LDA 3.16 45 × 45 × 1 23 (truncated vc) 2.77 2.58

This work LDA 3.19 45 × 45 × 1 23 (truncated vc) 2.65 2.57

This work LDA 3.255 45 × 45 × 1 23 (truncated vc) 2.41 2.51

Ref. 25 LDA 3.15 18 × 18 × 1 24 2.41 ∼2.40

Ref. 4 PBE 3.16 12 × 12 × 1 19 ∼2.60 2.49

Ref. 4 PBE 3.19 12 × 12 × 1 19 2.50 ∼2.55

Ref. 4 PBE 3.255 12 × 12 × 1 19 2.19 2.19

Ref. 21 LDA 3.16 8 × 8 × 2 19 2.96 –

Ref. 22 PBE 3.18 12 × 12 × 1 20+1/L extrapolation 2.97 3.26

Ref. 22 PBE 3.18 12 × 12 × 1 20 ∼2.60 ∼2.85

Ref. 23 LDA 3.11 12 × 12 × 1 13 2.57 –

Ref. 24 HSE 3.18 6 × 6 × 1 15 2.82 ∼3.00

Ref. 36 PBE 3.19 15 × 15 × 1 15 2.66 –

preceding discussion, this gives a fast k-point convergence.
A properly converged calculation, however, requires larger
separations and thereby more k points, but as a consequence
of a cancellation of errors a calculation with 19 Å of layer
separation and 12 × 12 k points yields almost the same band
gaps as our converged result (within 0.15 eV). We are thus led
to conclude that the reasonable agreement between our results
and previous ones is to a large extent fortuitous.

Furthermore, the effect of strain can have a large impact on

the MoS2 band gap. As demonstrated in Ref. 4, using 12 × 12

k points and 19 Å of layer separation, the G0W0 band gap for

the experimental lattice constant of 3.160 Å is indirect. With

a lattice constant of 3.190 Å, corresponding to 1% strain, the

gap changes to be direct. The lowering of the direct band gap

becomes even more pronounced for larger lattice constants.

As can be seen from the table, our converged results predict

the same trend, in particular the decrease of the direct gap as

a function of strain, with our values for the direct gap being

generally 0.2 eV larger. We note that for 3.255 Å the smallest

indirect transition occurs from the Ŵ point at the valence band

to the K point at the conduction band. This is also in agreement

with Ref. 4. In the partially self-consistent GW0 calculations

of Ref. 26, the opposite trend was found, namely, a transition

from a direct to an indirect band gap for ∼5 % strain. However,

a layer separation of only 12 Å and less than 9 × 9 k points in

the in-plane directions were used in that study.

In Ref. 22, the band gap was determined by extrapolat-

ing from L = 20 Å to infinite layer separation, under the

assumption that the gap scales linearly with the inverse

distance between the layers. The obtained values for the direct

and indirect band gaps are ∼3.0 and ∼3.3 eV, respectively.

This is consistent with our findings using the truncated

Coulomb interaction, the same lattice constant of 3.18 Å,

and the same (underconverged) k-point grid of 12 × 12 as in

Ref. 22.

From our studies, we conclude that the G0W0@LDA

band gap of monolayer MoS2 is indirect with a value of

2.6 eV, while the direct gap is 2.8 eV, when the experimental

lattice constant of 3.16 Å is used. The question of how well

the one-shot G0W0@LDA approximation describes the true

electronic structure of this system remains open. Partially

self-consistent GW0
4 and fully self-consistent GW 21 calcula-

tions have been shown to consistently yield direct band gaps of

2.75–2.80 eV for a layer separation of 19 Å and a k-point

sampling of 12 × 12 × 1 and 8 × 8 × 2, respectively.

III. STATIC SCREENING

In this section we present a detailed investigation of the
(static) dielectric properties of monolayer MoS2. This serves
a dual purpose. First, it illustrates the origin of the slow
convergence of the GW results presented in the previous
section (and the BSE results presented in the next section).
Second, it shows that the usual definition of the macroscopic
dielectric constant of a periodic solid is not meaningful when
applied to a 2D system represented in a periodic supercell. We
discuss the difference between 2D and 3D screening, which
becomes particularly pronounced in the q → 0 limit with large
consequences for the calculation of optical excitations with
static screening of the electron-hole interaction (see the next
section).

A. 3D macroscopic dielectric constant

The microscopic dielectric function determines the relation
between a weak external potential and the total potential in the
material:

Vtot(r) =

∫
dr′ ǫ−1(r,r′)Vext(r

′). (1)

For a periodic system the dielectric function can be conve-
niently expressed in plane waves:

ǫ−1(r,r′) =
∑

GG′

∑

q

ei(G+q)rǫ−1
GG′(q)e−i(G′+q)r′

, (2)

where G is a reciprocal lattice vector and q is a wave vector in
the 1. BZ. Within the random-phase approximation (RPA) we
have

ǫGG′(q,ω) = δGG′ − vc(q + G)χ0
GG′(q,ω), (3)
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where χ0 is the noninteracting density response function. Here,
vc can be the Fourier representation of either the full or the
truncated Coulomb interaction. For the calculations in this
section we have used 50 eV cutoff for the reciprocal-lattice
vectors to account for local-field effects. The noninteracting
response function, χ0, was constructed from LDA wave
functions and energies including states up to 50 eV above
the Fermi level. All calculations were performed with the
projector augmented wave method code GPAW. Details on the
implementation of the dielectric function in the GPAW code can
be found in Ref. 37.

It follows from Eq. (2) that the total potential resulting from
a plane-wave external potential V0e

iq·r has the form

Vtot(r) = Ṽq(r)eiq·r, (4)

where Ṽq(r) is a lattice periodic function. We thus define the
macroscopic dielectric constant as

1

ǫM (q)
≡

〈Ṽq〉�

V0

= ǫ−1
00 (q), (5)

where 〈. . .〉� denotes a spatial average over a unit cell. Note
that in general ǫM (q,ω) 	= ǫ00(q,ω) because of local-field
effects.38,39

To explicitly demonstrate that Eq. (5) does not apply to low-
dimensional materials, we have calculated the macroscopic
dielectric constant as a function of the layer separation, L. The
results are shown in Fig. 6 for different values of the in-plane
momentum transfer q. We also show the dielectric constant
corresponding to polarization orthogonal to the layer. Clearly,
the macroscopic dielectric constant approaches unity for all q

vectors in the limit of large interlayer separation. This occurs
because the total field is averaged over an increasingly larger
vacuum region.

Previously reported values for the macroscopic dielectric
constant of monolayer MoS2 lie in the range 4–8.21,24,28

In these calculations the MoS2 layers were separated by a
10–20-Å vacuum. As can be seen from ǫ‖(q = 0) in Fig. 6,

FIG. 6. (Color online) The 3D static macroscopic dielectric

constant 1/ǫ−1
00 (q) of monolayer MoS2 as a function of the interlayer

separation, L. ǫ‖ is the dielectric constant with polarization parallel

to the monolayer, and ǫ⊥ is the dielectric constant for polarization

orthogonal to the layer.

this is consistent with our results. However, it should also be
clear that numbers depend on the distance between layers and
in fact are not meaningful.

B. 2D macroscopic dielectric constant

For a 2D material, the average of the total potential in
the definition of the macroscopic dielectric constant must be
confined to the region of the material. Since Eq. (4) still
holds for a 2D material when q is confined to the plane
of the material, we average the in-plane coordinates (r‖)
over the unit-cell area A and the out-of-plane coordinate (z)
from z0 − d/2 to z0 + d/2, where z0 denotes the center of
the material and d denotes its width. The 2D macroscopic
dielectric constant then becomes

1

ǫ2D
M (q‖)

≡
〈Ṽq〉A,d

V0

=
2

d

∑

G⊥

eiG⊥z0
sin(G⊥d/2)

G⊥

ǫ−1
G0 (q‖), (6)

where the sum is over all G with G‖ = 0. In this work we have
taken d = 6.15 Å corresponding to the interlayer separation
in bulk MoS2. We shall return to the problem of choosing d

below.
The results for the static dielectric constant evaluated from

Eq. (6) using the bare Coulomb interaction are shown in
Fig. 7 for four different layer separations. The result for
L = d = 6.15 Å coincides with the 3D dielectric constant of
bulk MoS2 given by Eq. (5). The result obtained with the
truncated Coulomb interaction is shown in black; it represents
the case of infinite layer separation. Before discussing the
results, it is instructive to consider the potential arising from a

FIG. 7. (Color online) Static macroscopic dielectric constant for

a single layer of MoS2 calculated along the Ŵ-K line. The calculations

are performed using Eq. (6) with the microscopic dielectric constant,

ǫ−1
GG′ (q), evaluated from Eq. (3) with either the bare Coulomb

interaction (dotted and dashed lines) or truncated Coulomb interaction

(full black line). The gray area represents the result obtained when

the averaging region perpendicular to the layer, d , is varied by ±10%.

The dotted line corresponds to a layer separation of 6.15 Å and thus

coincides with the dielectric constant of bulk MoS2. The curves have

been interpolated from a 32 × 32 q-point mesh.
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2D charge-density fluctuation of the form

n(r) = n0e
iq‖·r‖δ(z). (7)

The corresponding potential follows from Poisson’s
equation:40

φ(r) =
n0

q‖

e−iq‖·r‖e−q‖|z|. (8)

It follows that the potential perpendicular to the layer falls
off exponentially over a characteristic distance of 1/q‖. This
explains why in general ǫ2D

M (q‖) coincides with the isolated
layer result for q‖ � 1/L.

The variation of ǫ2D
M when the parameter d is changed by

±10% is indicated by the shaded region in Fig. 7. To the left
of the maximum, ǫ2D

M (q‖) is insensitive to d since the induced
potential is more or less constant over the averaging region. To
the right of the maximum, the variation in ǫ2D

M (q‖) follows the
±10% variation in d. This is because for these wave vectors
the induced potential has essentially vanished at the borders
of the averaging region. In general, increasing (decreasing)
d will decrease (increase) ǫ2D

M (q‖) in the large wave-vector
region.

Another characteristic feature of the potential in Eq. (8) is
the 1/q‖ scaling, which should be compared with the 1/q2

form of the Coulomb potential from a 3D charge oscillation.
Since the noninteracting response function, χ0

00(q), scales as
∼q2 for q → 0 for both 2D and 3D systems, it follows
from Eq. (3) that ǫ2D

M (0) = 1, while this is in general not
the case in three dimensions. In our calculations, the effect
of interlayer interactions is eliminated by using a truncated
Coulomb interaction of the form vc(r) = (1/r)θ (Rc − z). For
qz = 0 and in the limit of small q‖, the Fourier representation

of the truncated Coulomb interaction becomes v2D(q) = 4πRc

|q|
;

i.e., it scales as 1/q as the potential from the 2D charge-density
wave, ensuring the correct limit ǫ2D

M (0) = 1.
Finally, we note that previous studies41,42 have employed a

strict 2D model for the dielectric function in the small q limit of
the form ǫ(q‖) = 1 + αq‖. This form is convenient, as it leads
to an analytical expression for the 2D screened interaction.27

Our definition differs by being a 3D (or quasi-2D) quantity
valid for general q‖.

C. Screened interaction

In Fig. 8 we show ǫ−1
00 as a function of q‖ evaluated with and

without the truncated Coulomb interaction. For small q, the
two curves differ significantly due to the long-range nature of
the induced potential Eq. (8). At large q (∼K/2), the induced
potential decays within the cutoff range for the truncated
Coulomb interaction, and therefore no difference can be seen
between the two methods. We emphasize that neither of the
dielectric constants shown in the figure can be interpreted as
a dielectric constant of monolayer MoS2, since they give the
average potential over the supercell and not over the MoS2

layer. In particular, their value will be highly dependent on the
size of the unit cell (in the limit of infinite layer separation,
both will equal 1 for all q). Nevertheless, this quantity is a
crucial ingredient of both the GW self-energy and the BSE
kernel, as it provides the screening of the divergent term of the
Coulomb interaction.
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FIG. 8. (Color online) The 3D static inverse dielectric constant

ǫ−1
00 (q) of monolayer MoS2 calculated in the RPA for different

values of in-plane momentum transfer q along the Ŵ-K direction.

The separation between layers is L = 20 Å. Note that neither of the

quantities can be interpreted as the macroscopic dielectric constant

of the monolayer (this quantity is the black curve in Fig. 7).

For q = 0 the Coulomb kernel diverges and we approximate
W (q = 0) by the integral

W00(q = 0) =
1

�Ŵ

∫

�Ŵ

dq vc(q)ǫ−1
00 (q)

≈
1

�Ŵ

ǫ−1
00 (q = 0)

∫

�Ŵ

dq vc(q), (9)

where �BZ is the Brillouin-zone volume and �Ŵ is a small
volume containing q = 0. In isotropic systems, ǫ−1

00 (q) is
usually constant in the vicinity of q = 0 and the approximation
works well. However, when ǫ−1 is evaluated with the truncated
Coulomb interaction, ǫ−1

00 acquires much more structure for
small q as can be seen from Fig. 8. Thus, for coarse k-point
samplings we will underestimate the Ŵ-point screening since
we simply use ǫ−1

00 (q = 0) = 1.
The linear behavior of the screened interaction for small q

suggests that a better approximation for W00(q = 0) would be

W00(q = 0) =
1

�Ŵ

∫

�Ŵ

dq vc(q)
[
1 + q · ∇qǫ

−1
00 (q)

∣∣
q=0

]
. (10)

Since the dielectric matrix in RPA is ǫGG′(q) = 1 −

vc(q)χ0
GG′(q), we can derive an analytic expression for the first-

order Taylor expansion in q and its inverse. These quantities
can be evaluated with vanishing additional cost, but we will
leave the assessment of this approximation to future work.

IV. OPTICAL ABSORPTION SPECTRUM

In this section we present many-body calculations of the
optical absorption spectrum of monolayer MoS2 by solving the
Bethe-Salpeter equation (BSE) under the standard assumption
of static screening of the electron-hole interaction. As for the
GW band gap, we find that the use of a truncated Coulomb
interaction is essential to avoid interlayer screening and obtain
well-converged exciton binding energies. Furthermore, the
very strong q dependence of the 2D static dielectric function
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around q = 0 leads to very slow k-point convergence for the
exciton binding energy.

In order to obtain an accurate absorption spectrum including
excitonic effects we calculate the response function from the
BSE. Using the standard assumption of a static dielectric
screening of the electron-hole (e-h) interaction, the BSE43 can
be recast as an effective two-particle Hamiltonian,44 which is
diagonalized in a basis of electron-hole pairs. In this way the
excitonic eigenstates can be expressed as a linear combination
of single-particle transitions:

|λ〉 =
∑

vck

Aλ
vck|vck〉, (11)

where v, c, and k denote valence bands, conduction bands,
and Brillouin-zone wave vectors, respectively. The absorp-
tion spectrum is proportional to the imaginary part of the
macroscopic dielectric function, which in the Tamm-Dancoff
approximation can be written

ǫ2(ω) = 2π lim
q→0

vc(q)
∑

λ

δ(ω − Eλ)

×

∣∣∣∣
∑

vck

Aλ
vck〈vk − q|e−iq·r|ck〉

∣∣∣∣
2

, (12)

where Eλ are the eigenvalues associated with |λ〉.
In all calculations we have included a single valence band

and a single conduction band in the BSE Hamiltonian. We have
tested that the first excitonic peak is completely unaffected if
we instead include six valence bands and four conduction
bands. This is also expected since the highest (lowest) valence
(conduction) band is well isolated from the remaining bands at
K where the exciton is centered (see Fig. 1). For the screening
we have included 65 bands in the evaluation of the response
function, which is sufficient for converged results. Increasing
the number of bands to 300 affects the position of the first
exciton by less than 10 meV. The plane-wave cutoff for the
response function (local-field effects) was set to 50 eV, and we
checked that the excitonic binding energy changed by less than
10 meV when increasing the cutoff to 200 eV. The dependence
on k-point sampling and interlayer separation will be examined
below. Details on the implementation of the BSE method in
the GPAW code can be found in Ref. 5.

A. Convergence tests

In the lower panel of Fig. 9, we show the exciton binding
energy as a function of interlayer separation calculated for
different k-point samplings using the bare Coulomb interaction
and the truncated Coulomb interaction. With the bare Coulomb
interaction, the obtained results are far from convergence, even
for L = 50 Å. The dependencies on the layer separation and
number of k points are very similar as for the quasiparticle gap
discussed in Sec. II B, even on a quantitative level. Therefore,
the optical gap, which is given by the difference of the QP
gap and the exciton binding energy, is almost independent of
L and whether or not the truncation method is used, as shown
in the upper panel. This is consistent with the observations in
Ref. 22.

The convergence of the binding energy with respect to
the k-point sampling is plotted in Fig. 10 for an interlayer
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FIG. 9. (Color online) Optical gap and binding energy of the

lowest exciton in monolayer MoS2 as a function of interlayer

separation calculated from the BSE and the G0W0 quasiparticle gap.

Results with the full 1/r Coulomb interaction (full lines) and the

truncated interaction (dashed lines) are shown. Dotted lines give an

estimation for extrapolation to infinite L.

separation of 20 Å. The truncated Coulomb kernel gives a
much slower convergence with respect to the number of k

points than the bare Coulomb interaction. However, it should
be clear from Fig. 9 that the binding energy obtained with the
bare Coulomb interaction converges to a value which is highly
dependent on the interlayer separation. In Ref. 25, convergence
was found with 18 × 18 k points, but for a layer separation of
only 24 Å. The obtained exciton binding energy was around
0.2 eV. According to our results, this is much too weak due to
interlayer screening.

The slow k-point convergence observed when using the
truncated Coulomb interaction is related to the q dependence
of the screening in two-dimensional systems. As demonstrated
by Eq. (9) and Fig. 8 (purple curve), a too low k-point sampling
leads to an underestimation of the screening in the vicinity
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FIG. 10. (Color online) Binding energy of the lowest exciton in

monolayer MoS2 as a function of k-point sampling for a supercell

with a layer separation of L = 20 Å.
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FIG. 11. (Color online) Absorption spectrum of single layer

MoS2 calculated with the RPA and BSE using the G0W0 quasiparticle

band structure. The calculation has been performed with a truncated

Coulomb interaction to avoid interactions between repeated layers

and with a 45 × 45 k-point grid.

of q = 0 and thus an overestimation of the exciton binding
energy.

We note that the slight increase in the binding energy with
k points obtained when using the full Coulomb interaction
is not a result of decreased screening. Indeed the dielectric
constant for this case is well converged already for a k-point
sampling of 15 × 15 (see the slow wave vector dependence of
the blue curve in Fig. 8). Instead, it is simply a result of the
increased number of electron-hole basis states used to describe
the exciton which lowers the BSE eigenvalue slightly (and
thus increases the exciton binding energy). This effect is also
present when using the truncated Coulomb interaction, but in
this case the k-point variation in binding energy is dominated
by the effect of increasing screening as discussed above (note
that the screening effect is missed if W is calculated on a coarse
grid and extrapolated to a fine k-point grid before solving the
BSE).

B. Results

From the convergence tests described above we conclude
that the BSE calculations are (nearly) converged if we use
a truncated Coulomb interaction and a 45 × 45 k-point sam-
pling. With these settings we have calculated the BSE spectrum
on top of a G0W0 quasiparticle band structure obtained with the
same parameters. The resulting absorption spectrum is shown
in Fig. 11. We also show an RPA calculation, i.e., neglecting
electron-hole interactions in the BSE, performed on top of the
same G0W0 band structure for comparison. With electron-hole
interaction included, we obtain an exciton binding energy of
∼0.6 eV, whereas RPA does not show an exciton peak and
simply gives an absorption edge at the band gap.

Experimentally, the absorption spectrum of single layer
MoS2 exhibits a spin-orbit split peak around 1.9 eV.7 Since
we have not included spin-orbit coupling in our calculations,
the spectrum in Fig. 11 only shows a single peak at low
energies. However, it has previously been shown4,24 that the

spin-orbit coupling does not have a large effect on the exciton
binding energy and only results in a split excitonic peak. The
main peak in the BSE@G0W0 spectrum is situated at 2.2 eV,
which is 0.3 eV higher than the experimental value. At present
we cannot say if this is due to an insufficient description
of the quasiparticle gap within G0W0 or underestimation of
the exciton binding energy in BSE with a static electron-hole
interaction.

From the above discussion it should be clear that it is
extremely challenging to converge the exciton binding energy
with respect to interlayer separation and k points. In general,
the optical gap is much easier to converge with respect to
interlayer separation than either the quasiparticle gap or the
exciton binding energy.22,45 Nevertheless, for many physical
applications it is of importance to obtain accurate values for
both the quasiparticle gap and the exciton binding energy
separately. In Ref. 22 the exciton binding energy was obtained
by 1/L extrapolation of the quasiparticle gap calculated in
a range of interlayer separations between 10 and 20 Å and
assuming the same dependence for the exciton binding energy.
Our results indicate that one should be cautious with such
extrapolations. This is because the screening at different q

points has a very different dependence on interlayer separation,
which results in different convergence behavior at different
k-point samplings (see Fig. 9, full lines). The extrapolation
procedure may therefore not give reliable results, since higher
k-point samplings are required at larger interlayer separation.
We are aware that the convergence issues may depend a lot
on the implementation of the BSE method. However, we
have previously performed the same calculations with the
YAMBO46 code, which produced very similar convergence
behavior for quasiparticle gap and exciton binding energy
(also using the truncated Coulomb cutoff and 45 × 45 k-point
sampling).

V. CONCLUSIONS

We have presented a careful investigation of the dielectric
properties, band gap, and excitonic states in a two-dimensional
semiconductor exemplified by monolayer MoS2. We have
demonstrated that the “standard” macroscopic dielectric con-
stant used for solids is not applicable (meaningless) to
supercells describing the 2D material as an infinite array of
parallel sheets and therefore replaced it by a 2D version in
which the induced field is averaged over the extent of the
material rather than over the entire supercell. We showed that
the effect of interlayer screening leads to underestimation of
the band gap and exciton binding energy by up to more than
0.5 eV for layer separations <30 Å. The reason for this is
that interlayer screening affects ǫ(q) for q < 1/L, where L

is the distance between layers in the supercell. Since it is the
small q limit of ǫ(q) that is most important for the screened
interaction W (q) = ǫ−1(q)/q2, the effect cannot be neglected.
Here we have circumvented the problem by using a truncated
Coulomb interaction that explicitly cuts off the interaction
between neighboring layers.

The properly defined 2D dielectric function ǫ2D
M (q) has a

very sharp wave-vector dependence for small q and satisfies
ǫ2D
M (0) = 1 in general. This has the consequence that quasi-

particle and optical excitations obtained from the GW and

245309-8



HOW DIELECTRIC SCREENING IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 88, 245309 (2013)

Bethe-Salpeter equation, respectively, require much denser
k-point grids than experience from 3D systems would suggest.
For MoS2 we find that a precision of 0.2 eV requires k-point
grids of at least 30 × 30. Interestingly, the effects of interlayer
screening and too small k-point grids have opposite effects on
the band gap and exciton energies, leading to fortuitous error
cancellation. Our calculations applying the truncated Coulomb
interaction and 45 × 45 k points give G0W0@LDA gaps of
2.77 eV (direct) and 2.58 eV (indirect) and a binding energy
of the lowest exciton of 0.55 eV. This places the lowest exciton
at ∼2.2 eV, which is 0.3 eV higher than the experimental result.

This difference may be due to the G0W0@LDA approximation
or the use of static screening in the BSE.
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