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Abstract
The benefits of entanglement can outlast entanglement itself. In quantum illumination, entanglement
is employed to better detect reflecting objects in environments so noisy that all entanglement is
destroyed.Here, we show that quantumdiscord—amore resilient formof quantum correlations—
explains the resilience of quantum illumination.We introduce a quantitative relation between the
performance gain in quantum illumination and the amount of discord used to encode information
about the presence or absence of a reflecting object. This highlights discords role preserving the
benefits of entanglement in entanglement breaking noise.

1. Introduction

Quantum illumination [1–6] offers a radical departure from conventional quantumprotocols [7, 8].Most
quantum technologies require fragile entangling correlations to be preserved, whereas quantum illumination
operates in extremely adverse environments with entanglement-breaking noise [9, 10]. Specifically, quantum
illumination aims to detect a low reflective target basked in bright noise by probing it with one armof an
entangled state. The protocol demonstrates significant improvement over the use of conventional probes, even
though the environmental noise destroys all initial entanglement [1, 2]. This counter-intuitive phenomenon has
been recently realized in a series of experiments [11–13].

The absence of entanglement, however, does not necessarily imply classicality. Quantumprotocols that
operate with negligible entanglement exist [14, 15], motivating the search for quantum resources beyond
entanglement. Quantumdiscord is a prominent candidate [16–18]. Initially proposed to isolate the
‘quantum’ component ofmutual information between two physical systems, discord is conjectured to be a
potential quantum resource, responsible for the advantage of certain quantum algorithms [19].While
promising advances have beenmade in understanding the operational significance of discord [20–28], this
remains a topic of significant debate. Contrary to entanglement, which is difficult to synthesize, discord is
non-zero for almost everymixed state [29] and its practicalmerit conflicts with the preconception that
‘quantum’ effects are fragile.

In this paper, we show that it is precisely the resilience of discord that explains the resilience of quantum
illumination and highlight discord’s role in preserving entanglement’s benefits in quantum illumination.We
first investigate what resources remain in illumination, after entanglement is broken by the environment.We
then show that discord survives, and the quantum illuminationmakes use of this surviving discord to preserve
information about the potential presence of a reflecting object that would otherwise be lost.Wefind that the
amount of discord associatedwith sensing the target coincides exactly with the performance gain of quantum
illumination over the best conventional technique.
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2. Framework

Illumination aims to discernwhether a weakly reflecting object is present or absent in a distant region of intense
noise (seefigure 1). This can be viewed as a task in information retrieval. A distant region of space contains a bit
of information that dictates the presence (x= 0) or the absence (x= 1) of the object. From this point of view, the
goal of illumination is to retrieve the value x of a random variable =X x p, x{ }with binary alphabet Îx 0, 1{ }.

In the conventional approach, Alice probes the distant regionwith a suitable quantum system (where
suitable implies a system that the reflectorwould potentially reflect), andmonitors for a potential reflection. Let
the probe be a d-dimensional quantum system, i.e, a qudit, in a pure state f fF = ñá∣ ∣. If the reflector is absent
(x= 1), the entirety ofΦ is lost andAlice retrieves random environmental noise described by amaximallymixed
state r = -dE

1 , where  is the identity operator. Otherwise (x= 0), the reflectormay reflect the object back at
Alice; and the noise rE Alice observes is biased by the signalΦwith some small weighting h  1. Thus, probing
the the reflector corresponds to encoding Îx 0, 1{ } into the output codewords

r h h r r r= F + - =1 and .c
0

E c
1

E( )( ) ( )

By detecting the reflected qudit, Alice has a limited ability to distinguish these states and, therefore, to infer the
value of x.

In quantum illumination, Alice improves her strategy by resorting to quantum correlations. She prepares a
maximally entangled state y yY = ñ áAB AB∣ ∣of two quditsA andB, where yñ = å ñ Ä ñ-d k kAB k A B

1∣ ∣ ∣ , with ñk{∣ }
being an orthonormal basis. Then, she probes the target with the signal systemAwhile retaining the idler system
B in a quantummemory (or just a delay line in experimental settings). Nowwe have encoded the value ofX via
two codewords

r h h r r r r r= Y + - Ä = Ä1 and ,AB AB E B AB B
0 1

E( )( )( ) ( )

where r = YTrB A AB( ) represents the reduced state of the idler if the signal is completely lost.

Figure 1.Apremise of illumination. In conventional illumination, a single probe is sent into a noisy region to detect the presence of a
potential object. (a) If the object is present, there is a small chance a reflected signal is detected; otherwise (b) the probe is completely
lost andAlice just sees only randomnoise. In quantum illumination (c)–(d), Alice prepares twomaximally entangled systems, one is
kept (idler) and the other sent for target detection (signal). The reflected signal and idler are finally detected by a jointmeasurement.
Surprisingly, the use of an entangled source yields better performance, even though entanglement fails to survive the return trip.
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In either approach, Alice ends up in possession of one of two potential codewords, r 0( ) or r 1( ), depending on
x. The better Alice can discriminate between these codewords, themore information she can access about x.
Quantum illumination thus outperforms its conventional counterpart when it is easier to distinguish rAB

0( ) from

rAB
1( ) , than rc

0( ) from rc
1( ), for any conventional inputΦ.

To capture this quantitymathematically, consider first the general scenariowhere information aboutX is
encodedwithin a quantum system S; such that S takes on the value r x( ) whenX=x. Let this encoding be
captured by the ensemble e r= p ,x

x{ }( ) , and I be the amount of information aboutX that Alice can access
when given ε. That is, Alice is challenged to announce an estimate of x, xest, governed by random variableXest.
Her performance is dictated by themaximum I X X, est( )Alice can achieve, when suppliedwith r x( ).

To evaluate I, observe that in order to retrieve information about x, Alicemustmeasure some general
positive operator valuemeasurement (POVM)on S, whose output defines another randomvariable K that
is used byAlice to generateXest. Alice’s optimal performance thus alignswith themutual information betweenX
and themeasured output K , whenmaximized over all possiblemeasurements



 e= =I I X K Imax , , 1acc( ) ( ) ( )

where  = -I X K H X H X K,( ) ( ) ( ∣ ) and eIacc ( ) denote’s Alice’s accessible information aboutXwith respect
to ε.WhenX is uniformly distributed, r r=I SD ,0 1( )( ) ( ) , where r rSD ,0 1( )( ) ( ) is a well studied distinguishably
measure known as the the Shannon distinguishably of r 0( ) and r 0( ).

Applying this result, the performance of quantum illumination is then given by e=I Iq acc q( ), where
e r= p ,x AB

x
q { }( ) . On the other hand, the optimal performance achievable in conventional illumination is

provided bymaximizing the accessible informationwith respect to the ensemble e r= p ,c x c
x{ }( ) over all input

statesΦ, i.e., e= FI Imaxc
max

acc c( ). The differenceD = -I I Iq c
max thus quantifies the advantage of quantum

illumination—in terms of the amount of extra information Alice can gain about x in a single trial. In the case of
uniformX, r r r rD = - FI SD , max SD ,AB AB

0 1
c
0

c
1( ) ( )( ) ( ) ( ) ( ) is reduced to the gain in Shannon distinguishingly

between codewords, when quantummethods are adopted over best conventional probes.While these quantities
are generally very difficult to compute, the commutativity of the codewordsmakes the problem tractable for the
special case of illumination (see the appendix).

We note that several othermethods to characterize the benefits of quantum illumination exist in literature.
The quantifier introduced by Lloyd [1], for example, is based on the probability of guessing x correctly. The
performancemeasures are closely related: knowledge of one bounds the other fromboth above and below, and
the scaling properties of the twomeasures coincide [30]. In using information theoretic quantifiers of
distinguishability, we have followed an approach similar to that of quantum reading [34–36], where themutual
informationwas used to better characterize the optimal readout of a classicalmemory.

Noise resilience. The distinguishing feature of quantum illumination is that it exhibits a performance
advantage even in scenarios where h  1, and rE is completelymixed. This counters conventional intuition;

the intense noise implies that rAB
0( ) and rAB

1( ) are both highly entropic and completely separable, despite the use of a
maximally entangled probe YAB. This peculiarity is highlightedwhenwe recast quantum illumination into a
functionally equivalent quantum circuit, where the action of the noise is separated from that of the reflecting
object (see figure 2). Irrespective of whether the reflector is present, the noise decoheres Alice’s input YAB into
the separable state rAB

0( ) (see figure 2(c)). Now the presence or absence of the target, i.e., the value x of the random
variableX, is encoded into the state by applying the operator x to the signal system, with  being the swap
operator between the signal and environment (see figure 2(b)).

This viewpoint suggests that theremust still exist some formof ‘quantumness’ after noise injection; that is,
we expect some formof quantum correlations to survive in the separable state rAB

0( ) and that these correlations are
related to quantum illumination’s superior performance. Here, we demonstrate a direct relation between the
discord remaining in rAB

0( ) and the performance advantage in illumination,DI .

3. The role of discord

Formally, the discord of the signal-idler system, denoted as d A B( ∣ ), quantifies the discrepancy between two
types of correlations [18]. Thefirst type is the quantummutual information I A B,( )which accounts for the total
correlations between the two systemsA andB. The second type, denoted by J A B( ∣ ), quantifies the classical
correlations and equals themaximal entropic reduction of systemA under POVMmeasurements Pb{ }on
systemB. Explicitly, this is defined by optimizing over all POVMs as = - åPJ A B S A p S A bmin bb

( ∣ ) ( ) ( ∣ ){ } ,
where S(A) is the vonNeumann entropy of systemA and S A b( ∣ ) is the entropy of systemA given the outcome b,
achievedwith probability pb. The discord d = -A B I A B J A B,( ∣ ) ( ) ( ∣ ) betweenA andB captures the
discrepancy between the twomeasures.

3
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As aforementioned, quantum illumination can operate when rAB
0( ) (the state that is responsible for sensing the

target according to the equivalent quantum circuit infigure 2)—contains discord but no entanglement. In order
to convince ourselves that this ismore than just coincidental, we need to establish a quantitative relation between
the discord that persists after noise injection, and the quantumadvantageDI . To do this, we draw inspiration
from the concept of ‘discord consumption’ that was used to highlight howdiscord can be interpreted as a
resource that can be accessed via coherent interactions.

Discord expenditure.Consider first a related scenario where Alice begins with a bipartite quantum state rAB
with discord d A B( ∣ ) as a resource. Alice encodes some x, governed by randomvariableX, by applying an x-
dependent local unitary operation,UA

x( ), onA; resulting in codewords rAB
x( ) . To a third party unaware of which x is

encoded, the resulting state is r r= å pAB k k AB
x¯ ( ) . Let d A B¯ ( ∣ ) be the discord of state rAB¯ . The difference

d d d= -A B A B A Benc ( ∣ ) ( ∣ ) ¯ ( ∣ ) represents the reduction in discord from the perspective of a third party Bob,
who is unaware of which xwas selected. In prior literature, this is regarded as the amount of discord consumed
to encodeX, or alternatively, the amount of information aboutX that is encodedwithin discord
correlations [24].

In the above scenario, the transformation from initial resources to codewords used only local unitary
operators onA. The discord of every individual codeword coincidedwith the discord of the original resource.
Thus, no discordwas lost to the environment during the encoding process. In illumination, this is no longer the
case andwe need to account for this extra loss as outlined by figure 3.Wemake the following observations

(1)The amount of discord between signal and idler after noise injection is d A B( ∣ ). This can be regarded as the
amount of discorded resources we have prior to encoding.

(2)The amount of discord after sensing the object is d A B¯ ( ∣ ) (for someonewho does not know the value ofX).

(3) If a particular codeword rAB
x has discord d d<A B A Bx ( ∣ ) ( ∣ ), then the encoding of x is not discord preserving.

In this case, we lose d d d= -A B A Bx x
loss ( ∣ ) ( ∣ ) units of discord. This discord is not used to encode x.

Figure 2.Operationally equivalent circuit model of illumination. Quantum illumination can be understood in the quantum circuit
picture. Let (a) and (b) denote respectively the operationally equivalent circuits for the presence (x = 0) and absence (x = 1) of the
reflecting object. (a) ismodeled bymixing YAB with environmental noise rE, resulting in state rAB

0( ) . In (b), the complete loss of signal is
represented by a SWAPoperation  between the signal system and environment. In either scenario, the resulting quantumchannel is
entanglement-breaking. The two scenarios can combine into a single circuit (c), composed of two sequential stages. In stage (i),
environmental noise is injected into the signal armbymixing in rE, resulting in the state rAB

0( ) . In (ii), the presence or absence of the
target can bemodeled as encoding the binary variableX onto rAB by applying x , where  =0 is the identity.

4

New J. Phys. 18 (2016) 043027 CWeedbrook et al



(4)The average loss is then given by d d= å px x
x

loss loss.

In illumination d d= p A Bloss 1 ( ∣ ) as all d A B( ∣ ) units of discord are lost if the reflecting object is absent.
Factoring in this loss, we see that the amount of discord that is actually used to encode x is given by

d d d d d d= - - = -A B A B A B p A B A B . 2enc loss 0( ∣ ) ( ∣ ) ¯ ( ∣ ) ( ∣ ) ¯ ( ∣ ) ( )

This generalizes the concept of discord expended to encode the variable x to the case of illumination.We can see
that the only difference between this and the case of unitary encodings is the extra factor of p0, representing that
in illumination, only p0 of the discorded resources before encoding are useful.Meanwhile, it shares the property
that  d d d d-A B A B A Benc loss( ∣ ) ( ∣ ) ( ∣ ). The amount of discord associatedwith encoding x is always
abounded above by the amount of discord resources initially available. It is also interesting to note that
d d d= å -A B p A B A Bx

x
enc ( ∣ ) ( ∣ ) ¯ ( ∣ ). That is, d A Benc ( ∣ ), can also be interpreted the gain in discord between
signal andwhen someone learns the value of x.

Relation to the quantum advantage.The advantage of quantum illumination coincides exactlywith the discord
expended for encoding x, that is

dD =I A B . 3enc ( ∣ ) ( )

The key idea behind our argument is as follows: we introduce an additional constraint to the quantum
illumination protocol and show that

(i) The optimal performance of quantum illumination, subject to this constraint, ¢Ic , coincides with the best
performance using conventional illumination ¢ =I Ic c

max.

(ii) The loss in performance in enforcing this constraint over quantum illumination is d- ¢ =I I A Bq c enc ( ∣ ).

Specifically, the constraint imposes a specificmeasurement procedure Alicemust use to extract xupon
receipt of rAB

x( ) . Instead of allowing for arbitrarymeasurements, she is required tofirstmake a localmeasurement
on the idlerB, followed by a localmeasurement on the signalA. (i) Implies that this restricted procedure is
operational equivalent to classical illumination, and (ii) implies that the loss of performance due to this
restriction exactly coincides with the discord used to encode x. Together, the two statements imply themain
result, i.e., d- =I I A Bq c

max
enc ( ∣ ). Details, including proofs of (i) and and (ii) are available in the appendix.

These results reveal why quantum illumination is advantageous, and howdiscord plays a role. InGu et al
[24], it was established that information encodedwithin discorded correlations of two objects,A andB,
represents information that can only be extracted through coherent interactions betweenA andB. Here, (i)
indicates that d A Benc ( ∣ ) represents information about x that is encodedwithin discorded correlations, while (ii)

Figure 3.Discord flow in illumination. (a)Quantum illumination beginswith amaximally entangled state with a discord value of dlog .
(b)The injection of noise destroys all entanglementwithin the systemproducing a noisy state rAB

0( ) which retains d A B( ∣ ) units of
discord. This represents the resources we effectively have available for sensing the target. (c)During the encoding stage, the swap gate
 is appliedwith probability p1, which leaks an average of d d= p A Bloss 1 ( ∣ ) units of discord into the environment, leaving
d d d- =A B p A Bloss 0( ∣ ) ( ∣ ) units of discord available for encoding the value ofX. (d)The encoding protocol then splits off
d d d= -A B p A B A Benc 0( ∣ ) ( ∣ ) ( ∣ ) to store extra information about x. (e)The remaining d A B( ∣ ) units of discord are not expended
during the encoding protocol, and could be used to encode other information at some stage in the future.
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demonstrates that quantum illumination derives it advantage by using coherent interactions between idler and
probe to access this information.

As a result, quantum illumination gives an advantageD >I 0 only if the effective state rAB
0( ) generated by the

environment has non-zero discord, and the corresponding quantum advantageDI is directly provided by the
amount of discord d A Benc ( ∣ ) associatedwith storing information about the presence and absence of the target.
This identifies that discord plays a key role behind the resilience of quantum illumination, providing an extra
resource inwhich information about the target is stored.While entanglement does not survive in quantum
illumination, the survival of discord is essential for it to have any advantage over conventional illumination.

4. A simple example

We illustrate the equivalence of equation (3) in the case where signal and idler are two-level quantum systems,
i.e., qubits. The environment isfloodedwith randomqubits, such that r = 2E . For example, thismaymodel
the detection of amulti-faceted, rotating, object in noise [1].

The conventional approach probes the target with a pure state fñ∣ , returning either

r h f f h= ñá + -1 2c
0 ∣ ∣ ( )( ) or r = 2c

1( ) (any pure input state gives the same performance). In quantum
illumination, Alice instead probes the target with one of armof the Bell state yñ = ñ - ñ01 10 2∣ (∣ ∣ ) or any

othermaximally entangled state. This results in codewords, r h y y h= ñá + -1 4AB
0 ∣ ∣ ( )( ) and r = 4AB

1( ) . The
corresponding performances of conventional and quantum illumination, Ic

max and Iq, respectively, are plotted

Figure 4.Advantage and discord in qubit illumination. (a)Quantum illumination (black dashed line) outperforms the best
conventionalmethods (green solid line) for all non-zero values of η. (b)Entanglement of formation of the signal-idler system is zero
for h < 0.15 (blue dashed line). Discord, however, is present for all values of η (dashed red line), and the amount of discord expended
to encode x (blue solid line), d A Benc ( ∣ ), coincides exactly with the performance gain of quantum illumination, DI , i.e., the shaded
region in (a).
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versus the target reflectivity η infigure 3(a) for the casewhereX is distributed unformly. The difference between
these curves (shaded region) quantifies the gainDI of quantum illumination.

Aswe can see from figure 3(b), the state of the system after noise, rAB
0( ) , is always separable for sufficiently

small values of η. Nevertheless, rAB
0( ) contains discord, part of which can be harnessed to store information about

x. In comparing figure 3(a)withfigure 3(b), we see that the amount of discord expended for resolving the target
d A Benc ( ∣ ) coincides exactly with the advantageDI of quantum illumination.

5.Discussion

In this paper, we have shown that discord underlies the resilience of quantum illumination in entanglement-
breaking noise. In such situations, discord can survive when entanglement does not. Quantum illumination
exploits these surviving quantum correlations to encode extra information regarding the potential presence of a
reflective object. The amount of discord used to encode this information is shown to coincide exactlywith the
enhanced performance of quantum illumination, the equivalence holding for systems of arbitrary dimensions.
This connection explains why the benefits of entanglementmay survive entanglement-breaking noise, and helps
establish discord’s role in noise resilient quantum technology. The results in thismanuscript are valid for general
distributions ofX. Thus our arguments apply to cases where one repeats the protocolmultiple times to gain
progressivelymore information aboutX. This can bemodeled through Bayesian update, where the prior forX is
updatedwith each successive trial.

In deriving our results, we quantified both the discord between signal and idler, and the performance
advantage of quantum illumination via entropicmeasures. There are, of course,many otherways tomeasure
either quantify (e.g. geometricmeasures of discord, increased success probabilities tomeasure performance
advantage) and onemaywell be able to obtain similar relations between suitable alternativemeasures. Indeed,
considerations of other performancemeasures for illuminationmaywellmotivate newoperationalmeasures of
discord,much as consideration of phase estimationmotivated interferometric power [27].

The techniques featuredmay also be generalized to related situations, such as encoding and communicating
informationwhen applyingmore general quantumoperations in intense entanglement-breaking noise. This
could lend insight to discord’s role in cryptographic variants of illumination [12, 32, 33]. Our analysis also have
potential to generalize to the continuous variable regime, though the non-commutativity of the resulting
codewordsmaymake direct analytical approaches. If so though, it will complement concurrent approaches to
understand continuous quantum illumination’s operational advantage usingmutual information [38].

More generally, illumination belongs to a broader collection of protocols aimed to determine certain
properties of unknown quantum channels, including quantum channel discrimination, quantum loss detection,
and quantummetrology. In each of these protocols, numerical links between discord and performance have
been proposed [19, 37, 39]. A similar approach to understanding howdiscord’s role in preserving information in
more general bipartite encodings could further formalize discord’s influence in such scenarios, and lead to a
unified, information theoretic understanding of how the benefits of entanglement survive when
entanglement dies.
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Appendix. Proof of supporting statements

This section provides detailed proof of the two supporting statements. Recall that we introduced a variant of
quantum illumination; where Alice’s choice how to estimate xwhen given rAB

x( ) is constrained: Alice is required to

firstmake a localmeasurement on the idlerB, followed by a localmeasurement on the signalA. Let ¢Ic be the the
optimal performance of this strategy. That is, Alice uses the above strategy to obtainXest, an estimate ofX. Let ¢IC

be be themaximum I X X,est( ) that can be achieved using the above strategy.
Here we prove the two supporting statements
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(i) The optimal performance of quantum illumination, subject to the restriction of measure the idler first,
followed bymeasurement of the signal, coincides with the best performance using conventional
illumination ¢ =I Ic c

max.

(ii) The loss in performance in using this third approach over quantum illumination is d- ¢ =I I A Bq c enc ( ∣ ).

The detailed proofs of (i) and (ii) are below. Together, they imply that themain result, i.e.,
d- =I Iq c

max
enc A B( ∣ ).

Proof of Statement (i).Recall that in the conventional approach, Alice probes for the reflecting object with a
pure qudit state f fF = ñá∣ ∣. The target-variableX is thenmapped into the output codewords

r h h r r r= F + - =1 , , A1c
0

E c
1

E( ) ( )( ) ( )

with associated ensemble e r= p ,x
x

c c{ }( ) . Alice’s optimal performance Ic is then given by, eIacc c( ), the accessible
information aboutXwith respect to the ensemble eC . Since the two codewords commute, this is equal to the
Holevo information of communicating x using r x

c
( ) as codewords. That is, Alice’s performance for a particular

probeΦ is

åe r rF = = -I I S p S , A2
x

x
x

c acc c c c( ) ( ) ( ¯ ) [ ] ( )( )

where r r= å px x
x

c c¯ ( ) is the output state averaged over codewords, and S (·) the vonNeumann entropy. The
optimal conventional performance is given by the optimization = FFI Imaxc

max
c ( ) over all possible pure

statesΦ.
Note that we are restricting such an optimization to pure states, sincemixed states surely provide worse

performance. This can be explicitly proven by reductio ad absurdum. Assume that there exists somemixed state
r l f f= å ñáj j j j∣ ∣ such that r > FI Ic c( ) ( ) for all pureΦ. Then, let l få ñ ñjj j j c r∣ ∣ be a purification of ρ, where r

denotes a reference system. If we had access to r, we canmeasure it in the ñj∣ basis. This would collapse the probe
state to f ñj∣ with probability lj , resulting in an average performance of l f få ñáIj j jc (∣ ∣). In comparison, if the
measurement result was lost, our performancewould reduce to rIc ( ). Clearly, since performance can only
degrade upon loss of information

 år l f f f fñá ñáI I Imax . A3j j j
j

j jc c c( ) (∣ ∣) (∣ ∣) ( )

Therefore, there is a pure state f fñáj j∣ ∣ for some j such that r f f< ñáI I j jc c( ) (∣ ∣), which contradicts our initial
assumption.Hence Icmust attain itsmaximumon a pure state.

It is now important to note that, since rE is completelymixed, symmetry considerations imply that FIc ( ) is
the same for any pure stateΦ, i.e., all pure probes deliver equal performance, and this performance coincides
with the best possible performance of conventional illumination Ic

max. This is a simple consequence of the
invariance of theHolevo information under unitaries. In fact, let us apply an arbitrary unitaryU to the
codewords r x

c
( ) just before detection. Since rE is proportional to the identity, we have

r r h h r= F + -U U U U 1 A4c
0

c
0

E˜ ≔ ( ) ( )( ) ( ) † †

and r r r=U Uc
1

c
1

E˜ ≔( ) ( ) † . These two codewords can equivalently be generated if we had started from the input
state FU U †, which spans all theHilbert space by varyingU. At the same time, we note that theHolevo
information does not change, i.e., for anyUwe have

c r r c r rF = = = FI U U I, , . A5c c
0

c
1

c
0

c
1

c( ) ( ˜ ˜ ) ( ) ( ) ( )† ( ) ( ) ( ) ( )

Thus,find that = FI Ic
max

c ( ) for an arbitrary pure stateΦ.
To demonstrate that the optimal conventional performance Ic

max coincides with ¢Ic , we observe that all
operations in the quantum illumination circuit commutes with a localmeasurement on the idler systemB. Thus,
there is no functional difference betweenmeasuring the idler beam after receipt of the reflected signal and
measuring the same idler beamprior to sending out the signal.

Then, suppose that Alice detects the idler systembefore transmission, by applying a rank-1 POVM Pb{ }on
theB-part of themaximally entangled state YAB. Given an outcome b, with probability qb, the signal systemA is
collapsed into a conditional pure state Y = Y P-q TrA b b B AB b

1 ( ) (this because rank-1 POVMsproject pure states
into pure states). Sending any pure probe YA b attains themaximumconventional performance = YI I A bc

max
c ( ).

On average, the performance of Alice is therefore given by

å¢ = Y =I q I I . A6
b

b A bc c c
max( ) ( )∣

Proof of Statement (ii). Suppose that Alice performs the quantum illumination protocol by probing the
target with theA-part of amaximally entangled state YAB. The target-variable =X x p, x{ } is thenmapped into
the codewords
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r h h r r r r r= Y + - Ä = Ä1 , . A7AB AB B AB B
0

E
1

E( )( ) ( )( ) ( )

with associated emsemble e r= p ,q x AB
x{ }( ) . Let be themaximumamount of information that Alice retrieves

about the target-variableX using arbitrary quantummeasurements, then e=I Iq qacc ( ), the accessible
information aboutXwith respect to eq. It is easy to check that, for YAB maximally entangled and rE maximally

mixed, r r =, 0AB AB
0 1[ ]( ) ( ) . Thus, eI qacc ( ) is equal to theHolevo information, i.e.,

år r

r r r r

= -

= - - +

I S p S

S p S p S S , A8

q AB
x

x AB
x

AB AB E B0 1

( ¯ ) ( )

( ¯ ) ( ) [ ( ) ( )] ( )

( )

where r r=AB AB
0( ) and r r r r= + Äp pAB AB B0 1 E¯ ( ).

As before, let us consider ¢Ic , defined as themaximumaccessible information onXwhenAlice is constrained
tomeasure the idler before sending the signal. Herewe prove that

d= ¢ +I I A B . A9q c enc ( ∣ ) ( )

In order to explicitly evaluate ¢Ic , we apply equation (A6), which can equivalently bewritten as

å¢ = Y
P

I q Isup , A10
b

b A bc c
b

( ) ( )
{ }

∣

since any local rank-1 POVM Pb{ } is optimal. Here, we have

r rY =I SD , , A11A b A b A bc
0 1( ) ( ) ( )∣ ∣

( )
∣

( )

where

r r= P-q Tr . A12A b
x

b B AB
x

b
1 ( ) ( )∣

( ) ( )

Since the two conditional codewords

r r h h r= Y + -1 , A13A b A b A b
0

E≔ ( ) ( )∣
( )

∣ ∣

and r r=A b
1

E
( ) commute, we can resort to theHolevo information andwrite

r r rY = - -I S p S p S , A14A b A b A bc 0 1 E( ) ( ¯ ) ( ) ( ) ( )∣ ∣ ∣

where

r r r h h r= + = Y + -p p p p1 A15A b A b A b0 1 E 0 0 E¯ ( ) ( )∣ ∣ ∣

is the conditional output state averaged on the presence or not of the target. By using equation (A14) into
equation (A10), we get

å r r r¢ = - -
P

⎧⎨⎩
⎫⎬⎭I q S p S p Ssup . A16

b
b A b A bc 0 1 E

b

[ ( ¯ ) ( )] ( ) ( )
{ }

∣ ∣

Now it is important to note that, in the previous equation, the vonNeumann entropies rS A b( ¯ ) and rS A b( )
do not depend on the pure state YA b. In fact, for any pure YA b, we can expand the environmental state rE as

 år = = Y + ñá- -

=

-⎛
⎝⎜

⎞
⎠⎟d d i i , A17A b

i

d

E
1 1

1

1

∣ ∣ ( )∣

where á Y ñ =i i 0A b∣ ∣ for any i. By replacing this expansion in equation (A15), we find the spectral
decomposition

år l l= Y + ñá^
=

-

i i , A18A b A b
i

d

1

1

¯ ∣ ∣ ( )∣ ∣

with probabilities

l h
h

l
h l

+
- -

=
-
-

^p
p

d

p

d d

1
,

1 1

1
, A190

0 0≔ ≔ ( )

where l̂ is -d 1( ) degenerate. The vonNeumann entropy rS A b( ¯ ) is equal to the Shannon entropy associated
with the previous probability distribution, i.e.,

r l l l
l

= - - -
-
-

S
d

log 1 log
1

1
. A20A b 2 2( ¯ ) ( ) ( )∣

It is clear that the spectral decomposition of equation (A18) is exactly the samewhatever the pure state YA b is.
Thus, its entropy rS A b( ¯ ) is independent from the specific pure state YA b selected by themeasurement operator
of the rank-1 POVM.The reasoning can be repeated for the other state rA b, which has the same spectral
decomposition of rA b¯ proviso that we set =p 10 in equation (A19).
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Therefore we have that rS A b( ¯ ) and rS A b( ), and also their difference r rD -S p Sb A b A b0≔ (¯ ) ( ), do not
depend on the pure state YA b: these quantities are the same for any choice of themeasurement operator Pb of

any rank-1 POVM Pb{ }. As a result of thismeasurement-independence, we can pick an arbitrary outcome b̃ of
an arbitrarily chosen rank-1 POVMandwrite the following

å D = D
P

qsup . A21
b

b b b
b

( )
{ }

˜

Because of themeasurement-independence, we can alsowrite

år r=
P

S q S S A Binf , A22A b
b

b A b min
b

( ¯ ) ( ¯ ) ≔ ¯ ( ∣ ) ( )∣ ˜
{ }

∣

år r=
P

S q S S A Binf , A23A b
b

b A b min
b

( ) ( ) ≔ ( ∣ ) ( )∣ ˜
{ }

∣

so thatwe find

D = -S A B p S A B . A24b min 0 min¯ ( ∣ ) ( ∣ ) ( )˜

By using equations (A21) and(A24) in equation (A16)we thenwrite

r¢ = - -I S A B p S A B p S . A25c min 0 min 1 E
¯ ( ∣ ) ( ∣ ) ( ) ( )

Nowwe are ready compute the difference - ¢I Iq c , which is given by

d r r- ¢ = - - +I I p A B S S S A B , A26B ABq c 0 min( ∣ ) [ ( ) ( ¯ ) ¯ ( ∣ )] ( )

where

d r r= - +A B S S S A B A27B AB min( ∣ ) ( ) ( ) ( ∣ ) ( )
can be recognized to be the discord of rAB. Note that r r= TrB

x
A AB

x[ ]( ) ( ) is equal to r = YTrB A AB( ) for any x, so that

r r r r+ =p p . A28B B B B0
0

1
1¯ ≔ ( )( ) ( )

Thismeans thatwe can use the equality r r=S SB B( ) ( ¯ ) in equation (A26), which gives

d r r

d d

- ¢ = - - +

= -

I I p A B S S S A B

p A B A B , A29
B ABq c 0 min

0

( ∣ ) [ ( ¯ ) ( ¯ ) ¯ ( ∣ )]
( ∣ ) ¯ ( ∣ ) ( )

where d A B¯ ( ∣ ) is the discord of the average state rAB¯ . Thus, wefinally get d- ¢ =I I A Bq c enc ( ∣ ) proving our
statement (ii). Combining this with statement (i) proves themain result of ourmanuscript, i.e., dD =I A Benc ( ∣ ).

References

[1] Lloyd S 2008 Science 321 1463
[2] Tan S-H, ErkmenB I, Giovannetti V, Guha S, Lloyd S,Maccone L, Pirandola S and Shapiro JH 2008 Phys. Rev. Lett. 101 253601
[3] WeedbrookC, Pirandola S, García-PatrónR, CerfN J, RalphTC, Shapiro JH and Lloyd S 2012Rev.Mod. Phys. 84 621
[4] Shapiro JH and Lloyd S 2009New J. Phys. 11 063045
[5] Guha S and ErkmenB I 2009Phys. Rev.A 80 052310
[6] Barzanjeh S, Guha S,WeedbrookC, Vitali C, Shapiro JH andPirandola S 2015Phys. Rev. Lett. 114 080503
[7] NielsenMAandChuang I L 2010QuantumComputation andQuantum Information (Cambridge: CambridgeUniversity Press)
[8] WildeMM2013Quantum Information Theory (Cambridge: CambridgeUniversity Press)
[9] SacchiMF 2005Phys. Rev.A 72 014305
[10] PianiM andWatrous J 2009Phys. Rev. Lett. 102 250501
[11] Lopaeva ED, Ruo Berchera I, Degiovanni I P,Olivares S, BridaG andGenoveseM2013Phys. Rev. Lett. 110 153603
[12] Zhang Z, TengnerM, ZhongT,Wong FNC and Shapiro JH 2013Phys. Rev. Lett. 111 010501
[13] Zhang Z,Mouradian S,Wong FNC and Shapiro JH 2015Phys. Rev. Lett. 114 110506
[14] LanyonBP, BarbieriM, AlmeidaMP andWhite AG 2008Phys. Rev. Lett. 101 200501
[15] Knill E and LaflammeR 1998Phys. Rev. Lett. 81 5672
[16] Henderson L andVedral V 2001 J. Phys. A:Math. Gen. 34 6899
[17] OllivierH andZurekWH2001Phys. Rev. Lett. 88 017901
[18] ModiK, BrodutchA,CableH, Paterek T andVedral V 2012Rev.Mod. Phys. 84 1655
[19] Datta A, Shaji A andCaves CM2008Phys. Rev. Lett. 100 050502
[20] ZurekWH2003Phys. Rev.A 67 012320
[21] Cavalcanti D, Aolita L, Boixo S,ModiK, PianiM andWinter A 2011Phys. Rev.A 83 032324
[22] Boixo S, Aolita L, Cavalcanti D,ModiK andWinter A 2011 Int. J. Quantum Inf. 9 1643
[23] MadhokV andDatta A 2011Phys. Rev.A 83 032323
[24] GuM,ChrzanowskiHM,Assad SM, Symul T,Modi K, RalphTC,Vedral V and LamPK2012Nat. Phys. 8 671–5
[25] DakićB et al 2012Nat. Phys. 8 666
[26] GirolamiD, Tufarelli T andAdessoG2013Phys. Rev. Lett. 110 240402
[27] GirolamiD, Souza AM,Giovannetti V, Tufarelli T, Filgueiras J G, Sarthour R S, Soares-PintoDO,Oliveira I S andAdessoG2014 Phys.

Rev. Lett. 112 221
[28] Pirandola S 2014 Sci. Rep. 5 6956
[29] FerraroA, Aolita L, Cavalcanti D, Cucchietti FM andAcinA 2010Phys. Rev.A 81 052318

10

New J. Phys. 18 (2016) 043027 CWeedbrook et al



[30] FuchsCA andVanDeGraaf J 1999 IEEETrans. Inf. Theory 45 1216
[31] deAlmeidaM,GuM, Fedrizzi A, BroomeMA, RalphTC andWhite AG 2014Phys. Rev.A 89 042323
[32] Shapiro JH 2009Phys. Rev.A 80 022320
[33] Pirandola S,Mancini S, Lloyd S andBraunstein S L 2008Nat. Phys. 4 726
[34] Pirandola S 2011Phys. Rev. Lett. 106 090504
[35] Pirandola S, LupoC,Giovannetti V,Mancini S andBraunstein S L 2011New J. Phys. 13 113012
[36] Dall’arnoM,Bisio A andD’arianoG 2012 Int. J. Quant. Inf. 10 1241010
[37] ModiK, CableH,WilliamsonMandVedral V 2011Phys. Rev.X 1 021022
[38] Ragy S, Berchera I, Degiovanni I, Olivares S, ParisM,AdessoG andGenoveseM2014 J. Opt. Soc. Am.B 31 2045–50
[39] Invernizzi C, ParisMGA and Pirandola S 2011Phys. Rev.A 84 022334

11

New J. Phys. 18 (2016) 043027 CWeedbrook et al


