
How Do Humans Sketch Objects?

Mathias Eitz∗

TU Berlin

James Hays†

Brown University

Marc Alexa ‡

TU Berlin

Figure 1: In this paper we explore how humans sketch and recognize objects from 250 categories – such as the ones shown above.

Abstract

Humans have used sketching to depict our visual world since pre-
historic times. Even today, sketching is possibly the only rendering
technique readily available to all humans. This paper is the first
large scale exploration of human sketches. We analyze the distri-
bution of non-expert sketches of everyday objects such as ‘teapot’
or ‘car’. We ask humans to sketch objects of a given category and
gather 20,000 unique sketches evenly distributed over 250 object
categories. With this dataset we perform a perceptual study and find
that humans can correctly identify the object category of a sketch
73% of the time. We compare human performance against compu-
tational recognition methods. We develop a bag-of-features sketch
representation and use multi-class support vector machines, trained
on our sketch dataset, to classify sketches. The resulting recogni-
tion method is able to identify unknown sketches with 56% accu-
racy (chance is 0.4%). Based on the computational model, we
demonstrate an interactive sketch recognition system. We release
the complete crowd-sourced dataset of sketches to the community.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques;

Keywords: sketch, recognition, learning, crowd-sourcing

Links: DL PDF

1 Introduction

Sketching is a universal form of communication. Since prehistoric
times, people have rendered the visual world in sketch-like petro-
glyphs or cave paintings. Such pictographs predate the appearance
of language by tens of thousands of years and today the ability to
draw and recognize sketched objects is ubiquitous. In fact, recent

∗e-mail: m.eitz@tu-berlin.de
†e-mail: hays@cs.brown.edu
‡e-mail: marc.alexa@tu-berlin.de

neuroscience work suggests that simple, abstracted sketches acti-
vate our brain in similar ways to real stimuli [Walther et al. 2011].
Despite decades of graphics research, sketching is the only mecha-
nism for most people to render visual content. However, there has
never been a formal study of how people sketch objects and how
well such sketches can be recognized by humans and computers.
We examine these topics for the first time and demonstrate applica-
tions of computational sketch understanding. In this paper we use
the term ‘sketch’ to mean a non-expert, abstract pictograph and not
to imply any particular medium (e.g. pencil and paper).

There exists significant prior research on retrieving images or 3d
models based on sketches. The assumption in all of these works
is that, in some well-engineered feature space, sketched objects re-
semble their real-world counterparts. But this fundamental assump-
tion is often violated – most humans are not faithful artists. Instead
people use shared, iconic representations of objects (e.g. stick fig-
ures) or they make dramatic simplifications or exaggerations (e.g.
pronounced ears on rabbits). Thus to understand and recognize
sketches an algorithm must learn from a training dataset of real
sketches, not photos or 3d models. Because people represent the
same object using differing degrees of realism and distinct draw-
ing styles (see Fig. 1), we need a large dataset of sketches which
adequately samples these variations.

There also exists prior research in sketch recognition which tries to
identify predefined glyphs in narrow domains (e.g. wire diagrams,
musical scores). We instead identify objects such as snowmen, ice
cream cones, giraffes, etc. This task is hard, because an average
human is, unfortunately, not a faithful artist. Although both shape
and proportions of a sketched object may be far from that of the
corresponding real object, and at the same time sketches are an im-
poverished visual representation, humans are amazingly accurate at
interpreting such sketches.

We first define a taxonomy of 250 object categories and acquire
a large dataset of human sketches for the categories using crowd-
sourcing (Sec. 3). Based on the dataset we estimate how humans
perform in recognizing the categories for each sketch (Sec. 4).
We design a robust visual feature descriptor for sketches (Sec. 5).
This feature permits not only unsupervised analysis of the dataset
(Sec. 6), but also the computational recognition of sketches (Sec. 7).
While we achieve a high computational recognition accuracy of
56% (chance is 0.4%), our study also reveals that humans still per-
form significantly better than computers at this task. We show sev-
eral interesting applications of the computational model (Sec. 8):
apart from the interactive recognition of sketches itself, we also
demonstrate that recognizing the category of a sketch could im-
prove image retrieval. We hope that the use of sketching as a visual
input modality opens up computing technology to a significantly
larger user base than text input alone. This paper is a first step

http://doi.acm.org/10.1145/10.1145/2185520.2185540
http://portal.acm.org/ft_gateway.cfm?id=1145/2185520.2185540&type=pdf

toward this goal and we release the dataset to encourage future re-
search in this domain.

2 Related work

Our work has been inspired by and made possible by recent
progress in several different areas, which we review below.

2.1 Sketch-based retrieval and synthesis

Instead of an example image as in content-based retrieval [Datta
et al. 2008], user input for sketch-based retrieval is a simple binary
sketch – exactly as in our setting. The huge difference compared
to our approach is that these methods do not learn from example
sketches and thus generally do not achieve semantic understanding
of a sketch. Retrieval results are purely based on geometric simi-
larity between the sketch and the image content [Chalechale et al.
2005; Eitz et al. 2011a; Shrivastava et al. 2011; Eitz et al. 2012].
This can help make retrieval efficient as it often can be cast as a
nearest-neighbor problem [Samet 2006]. However, retrieving per-
ceptually meaningful results can be difficult as users generally draw
sketches in an abstract way that is geometrically far from the real
photographs or models (though still recognizable for humans as we
demonstrate later in this paper).

Several image synthesis systems build upon the recent progress in
sketch-based retrieval and allow users to create novel, realistic im-
agery using sketch exemplars. Synthesis systems that are based on
user sketches alone have to rely on huge amounts of data to off-
set the problem of geometric dissimilarity between sketches and
image content [Eitz et al. 2011b] or require users to augment the
sketches with text labels [Chen et al. 2009]. Using template match-
ing to identify face parts, Dixon et al. [2010] propose a system that
helps users get proportions right when sketching portraits. Lee et
al. [2011] build upon this idea and generalize real-time feedback
assisted sketching to a few dozen object categories. Their approach
uses fast nearest neighbor matching to find geometrically similar
objects and blends those object edges into rough shadow guide-
lines. As with other sketch-based retrieval systems, users must draw
edges faithfully for the retrieval to work in the presence of many
object categories – poor artists see no benefit from the system.

2.2 Sketch recognition

While there is no previous work on recognizing sketched objects,
there is significant research on recognizing simpler, domain spe-
cific sketches. The very first works on sketch-recognition [Suther-
land 1964; Herot 1976] introduce sketching as a means of human-
computer interaction and provide – nowadays ubiquitous – tools
such as drawing lines and curves using mouse or pen. More re-
cent approaches try to understand human sketch input at a higher
level. They are tuned to automatically identify a small variety of
stroke types, such as lines, circles or arcs from noisy user input
and achieve near perfect recognition rates in real-time for those
tasks [Sezgin et al. 2001; Paulson and Hammond 2008]. Ham-
mond and Davis [2005] exploit these lower-level recognizers to
identify higher level symbols in hand-drawn diagrams. If the appli-
cation domain contains a lot of structure – as in the case of chemi-
cal molecules or mathematic equations and diagrams – this can be
exploited to achieve very high recognition rates [LaViola Jr. and
Zeleznik 2007; Ouyang and Davis 2011].

2.3 Object and scene classification

Our overall approach is broadly similar to recent work in the com-
puter vision community in which large, categorical databases of

context around object not allowed! not easily recognizable!

text labels not allowed! large black areas not allowed!

b
ar

n

b
at

h
tu

b

b
li

m
p

co
w

Figure 2: Instructional examples shown to workers on Mechanical
Turk. In each field: desired sketching style (left), undesired sketch-
ing style (right).

visual phenomena are used to train recognition systems. High-
profile examples of this include the Caltech-256 database of ob-
ject images [Griffin et al. 2007], the SUN database of scenes [Xiao
et al. 2010], and the LabelMe [Russell et al. 2008] and Pascal
VOC [Everingham et al. 2010] databases of spatially annotated ob-
jects in scenes. The considerable effort that goes into building these
databases has allowed algorithms to learn increasingly effective
classifiers and to compare recognition systems on common bench-
marks. Our pipeline is similar to many modern computer vision al-
gorithms although we are working in a new domain which requires
a new, carefully tailored representation. We also need to generate
our data from scratch because there are no preexisting, large repos-
itories of sketches as there are for images (e.g. Flickr). For this
reason we utilize crowd-sourcing to create a database of human ob-
ject sketches and hope that it will be as useful to the community as
existing databases in other visual domains.

3 A large dataset of human object sketches

In this section we describe the collection of a dataset of 20,000 hu-
man sketches. This categorical database is the basis for all learning,
evaluation, and applications in this paper. We define the following
set of criteria for the object categories in our database:

Exhaustive The categories exhaustively cover most objects that
we commonly encounter in everyday life. We want a broad
taxonomy of object categories in order to make the results in-
teresting and useful in practice and to avoid superficially sim-
plifying the recognition task.

Recognizable The categories are recognizable from their shape
alone and do not require context for recognition.

Specific Finally, the categories are specific enough to have rela-
tively few visual manifestations. ‘Animal’ or ‘musical instru-
ment’ would not be good object categories as they have many
subcategories.

3.1 Defining a taxonomy of 250 object categories

In order to identify common objects, we start by extracting the
1,000 most frequent labels from the LabelMe [Russell et al. 2008]
dataset. We manually remove duplicates (e.g. car side vs. car front)
as well as labels that do not follow our criteria. This gives us an
initial set of categories. We augment this with categories from the
Princeton Shape Benchmark [Shilane et al. 2004] and the Caltech
256 dataset [Griffin et al. 2007]. Finally, we add categories by ask-
ing members of our lab to suggest object categories that are not
yet in the list. Our current set of 250 categories is quite exhaus-

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000
stroke length over time

time

st
ro

k
e

le
n
g
th

median

10th - 90th percentile

Figure 3: Stroke length in sketches over drawing time: initial
strokes are significantly longer than later in the sketching process.
On the x-axis, time is normalized for each sketch.

tive as we find it increasingly difficult to come up with additional
categories that adhere to the desiderata outlined above.

3.2 Collecting 20,000 sketches

We ask participants to draw one sketch at a time given a random
category name. For each sketch, participants start with an empty
canvas and have up to 30 minutes to create the final version of the
sketch. We keep our instructions as simple as possible and ask par-
ticipants to “sketch an image [...] that is clearly recognizable to
other humans as belonging to the following category: [...]”. We
also ask users to draw outlines only and not use context around the
actual object. We provide visual examples that illustrate these re-
quirements, see Fig. 2. We provide undo, redo, clear, and delete
buttons for our stroke-based sketching canvas so that participants
can easily familiarize themselves with the tool while drawing their
first sketch. After finishing a sketch participants can move on and
draw another sketch given a new category. In addition to the spatial
parameters of the sketched strokes we store their temporal order.

Crowd-sourcing Collecting 20,000 sketches requires a huge
number of participants so we rely on crowd-sourcing to generate
our dataset. We use Amazon Mechanical Turk (AMT) which is a
web-based market where requesters can offer paid “Human Intelli-
gence Tasks” (HITs) to a pool of non-expert workers. We submit
90 × 250 = 22,500 HITs, requesting 90 sketches for each of the
250 categories. In order to ensure a diverse set of sketches within
each category, we limit the number of sketches a worker could draw
to one per category.

In total, we receive sketches from 1,350 unique participants who
spent a total of 741 hours to draw all sketches. The median drawing
time per sketch is 86 seconds with the 10th and 90th percentile at
31 and 280 seconds, respectively. The participants draw a total of
351,060 strokes with each sketch containing a median number of 13
strokes. We find that the first few strokes of a sketch are on average
considerably longer than the remaining ones, see Fig. 3. This sug-
gests that humans tend to follow a coarse-to-fine drawing strategy,
first outlining the shape using longer strokes and then adding detail
at the end of the sketching process.

Our sketching task appears to be quite popular on Mechanical Turk
– we received a great deal of positive feedback, the time to complete
all HITs was low, and very few sketches were unusable, adversar-
ial, or automated responses. Still, as with any crowd-sourced data
collection effort, steps must be taken to ensure that data collected

0 100 200 300 400 500
0.2

0.4

0.6

0.8

1

accuracy vs. #sketches

ac
cu

ra
cy

#sketches

unique worker

acc of workers with >= #sketches

Figure 4: Scatter plot of per-worker sketch recognition perfor-
mance. Solid (green) dots represent single, unique workers and
give their average classification accuracy (y-axis) at the number
of sketches they classified (x-axis). Outlined (blue) dots represent
overall average accuracy of all workers that have worked on more
than the number of sketches indicated on the x-axis.

from non-expert, untrained users is of sufficient quality.

Data verification We manually inspect and clean the complete
dataset using a simple interactive tool we implemented for this pur-
pose. The tool displays all sketches of a given category on a large
screen which lets us identify incorrect ones at a glance. We remove
sketches that are clearly in the wrong category (e.g. an airplane in
the teapot category), contain offensive content or otherwise do not
follow our requirements (typically excessive context). We do not
remove sketches just because they are poorly drawn. As a result of
this procedure, we remove about 6.3% of the sketches. We truncate
the dataset to contain exactly 80 sketches per category yielding our
final dataset of 20,000 sketches. We make the categories uniformly
sized to simplify training and testing (e.g. we avoid the need to cor-
rect for bias toward the larger classes when learning a classifier).

4 Human sketch recognition

In this section we analyze human sketch recognition performance
and use the dataset gathered in Sec. 3 for this task. Our basic ques-
tions are the following: given a sketch, what is the accuracy with
which humans correctly identify its category? Are there categories
that are easier/more difficult to discern for humans? To provide an-
swers to those questions, we perform a second large-scale, crowd-
sourced study (again using Amazon Mechanical Turk) in which we
ask participants to identify the category of query sketches. This
test provides us with an important human baseline which we later
compare against our computational recognition method. We invite
the reader to try this test on the sketches shown in Fig. 1: can you
correctly identify all categories and solve the riddle hidden in this
figure?

4.1 Methodology

Given a random sketch, we ask participants to select the best fitting
category from the set of 250 object categories. We give workers
unlimited time, although workers are naturally incentivized to work
quickly for greater pay. To avoid the frustration of scrolling through
a list of 250 categories for each query, we roughly follow Xiao et
al. [2010] and organize the categories in an intuitive 3-level hierar-
chy, containing 6 top-level and 27 second-level categories such as
‘animals’, ‘buildings’ and ‘musical instruments’.

t-shirt snake comb flower eyeglasses

100% 99% 99% 99% 98%

elephant

 98%

leaf

98%

sun

98%

wrist-watch pineapple trousers ladder

96% 96% 96% 96%

apple airplane butterfly umbrella chair key

96% 96% 96% 96% 95% 95%

Figure 5: Representative sketches from 18 categories with highest
human category recognition rate (bottom right corner, in percent).

We submit a total of 5,000 HITs to Mechanical Turk, each requir-
ing workers to sequentially identify four sketches from random cat-
egories. This gives us one human classification result for each of
the 20,000 sketches. We include several sketches per HIT to pre-
vent workers from skipping tasks that contain ‘difficult’ sketches
based on AMT preview functions as this would artificially inflate
the accuracy of certain workers. In order to measure performance
from many participants, we limit the maximum paid HITs to 100
per worker, i.e. 400 sketches (however, three workers did 101, 101
and 119 HITs, respectively, see Fig. 4).

4.2 Human classification results

Humans recognize on average 73.1% percent of all sketches cor-
rectly. We observe a large variance over the categories: while all
participants correctly identified all instances of ‘t-shirt’, the ‘seag-
ull’ category was only recognized 2.5% of the time. We visu-
alize the categories with highest human recognition performance
in Fig. 5 and those with lowest performance in Fig. 6 (along with the
most confusing categories). Human errors are usually confusions
between semantically similar categories (e.g. ‘panda’ and ‘bear’),
although geometric similarity accounts for some errors (e.g. ‘tire’
and ‘donut’).

If we assume that it takes participants a while to learn our taxon-
omy and hierarchy of objects, we would expect that workers who
have done more HITs are more accurate. However, this effect is
not very pronounced in our experiments – if we remove all results
from workers that have done less than 40 sketches, the accuracy of
the remaining workers rises slightly to 73.9%. This suggests that
there are no strong learning effects for this task. We visualize the
accuracy of each single worker as well as the overall accuracy when
gradually removing workers that have classified less than a certain
number of sketches in Fig. 4.

5 Sketch representation

In our setting, we consider a sketch S as a bitmap image, with
S ∈ R

m×n. While the dataset from Sec. 3 is inherently vector-
valued, a bitmap-based approach is more general: it lets us readily
analyze any existing sketches even if they are only available in a
bitmap representation.

An ideal sketch representation for our purposes is invariant to irrel-
evant features (e.g. scale, translation), discriminative between cat-
egories, and compact. More formally, we are looking for a feature
space transform that maps a sketch bitmap to a lower-dimensional
representation x ∈ R

d, i.e. a mapping f : R
m×n → R

d with
(typically) d ≪ m× n. In the remainder of this paper we call this

seagull panda armchair tire ashtray

2.5% 11% 13% 21% 24%

snowboard

 25%

flying bird

47%

bear

44%

chair wheel cigarette skateboard

89% 44% 30% 32%

standing bird teddy bear couch donut bowl knife

24% 30% 3% 16% 15% 7%

pigeon

14% 8% 1% 6% 11% 3%

dog bench fan bathtub canoe

Figure 6: Top row: six most difficult classes for human recogni-
tion. E.g., only 2.5% of all seagull sketches are correctly identified
as such by humans. Instead, humans often mistake sketches belong-
ing to the classes shown in the rows below as seagulls. Out of all
sketches confused with seagull, 47% belong to flying bird, 24% to
standing bird and 14% to pigeon. The remaining 15% (not shown
in this figure) are distributed over various other classes.

representation either a feature vector or a descriptor. Ideally, the
mapping f preserves the information necessary for x to be distin-
guished from all sketches in other categories.

Probably the most direct way to define a feature space for sketches
is to directly use its (possibly down-scaled) bitmap representation.
Such representations work poorly in our experiments. Instead we
adopt methods from computer vision and represent sketches using
local feature vectors that encode distributions of image properties.
Specifically, we encode the distribution of line orientation within
a small local region of a sketch. The binning process during con-
struction of the distribution histograms facilitates better invariance
to slight offsets in orientation compared to directly encoding pixel
values.

In the remainder of this paper, we use the following notational con-
ventions: k denotes a scalar value, h a column vector, S a matrix
and V a set.

5.1 Extracting local features

First, we achieve global scale and translation invariance by isotropi-
cally rescaling each sketch such that the longest side of its bounding
box has a fixed length and each sketch is centered in a 256 × 256
image.

We build upon on a bag-of-features representation [Sivic and Zis-
serman 2003] as an intermediate step to define the mapping f . We
represent a sketch as a large number of local features that encode
local orientation estimates (but do not carry any information about
their spatial location in the sketch). We write guv = ∇S for the
gradient of S at coordinate (u, v) and ouv ∈ [0, π) for its orienta-
tion. We compute gradients using Gaussian derivatives to achieve
reliable orientation estimates. We coarsely bin ‖g‖ into r orienta-
tion bins according to o, linearly interpolating into the neighboring
bins to avoid sharp energy changes at bin borders. This gives us
r orientational response images O, each encoding the fraction of
orientational energy at a given discrete orientation value. We find
that using r = 4 orientation bins works well.

For each response image, we extract a local descriptor lj by bin-
ning the underlying orientational response values into a small, lo-

x

f(x)

histogram bin i

xi

t

Figure 7: 1d example of fast histogram construction. The total
energy in histogram bin i corresponds to (f ⋆ t)(xi) where xi is the
center of bin i.

cal histogram using 4 × 4 spatial bins, again linearly interpolating
into neighboring bins. We build our final, local patch descriptor by
stacking the orientational descriptors into a single column vector

d = [l1, . . . , lr]
T

. We normalize each local patch descriptor such
that ‖d‖

2
= 1. This results in a representation that is closely re-

lated to the one used for SIFT [Lowe 2004] but stores orientations
only [Eitz et al. 2011a].

While in computer vision applications the size of local patches used
to analyze photographs is often quite small (e.g. 16 × 16 pix-
els [Lazebnik et al. 2006]), sketches contain little information at
that scale and larger patch sizes are required for an effective rep-
resentation. In our case, we use local patches covering an area of
12.5% of the size of S. We use 28 × 28 = 784 regularly spaced
sample points in S and extract a local feature for each point. The
resulting representation is a so-called bag-of-features D = {di}.

Due to the relatively large patch size we use, the regions covered
by the local features significantly overlap and each single pixel gets
binned into about 100 distinct histograms. As this requires many
image/histogram accesses, this operation can be quite slow. We
speed up building the local descriptors by observing that the total
energy accumulated in a single spatial histogram bin (using linear
interpolation) is proportional to the convolution of the local image
area with a 2d tent function having an extent of two times bin-
width. We illustrate this property for the 1d case in Fig. 7. As a
consequence, before creating spatial histograms, we first convolve
the response images O1...r with the corresponding function (which
we in turn speed up using the FFT). Filling a histogram bin is now
reduced to a single lookup of the response at the center of each bin.
This lets us efficiently extract a large number of local histograms
which will be an important property later in this paper.

At this point, a sketch is represented as a so-called bag-of-features,
containing a large number of local, 64-dimensional feature vec-
tors (4 × 4 spatial bins and 4 orientational bins). In the following,
we build a more compact representation by quantizing each feature
against a visual vocabulary [Sivic and Zisserman 2003].

5.2 Building a visual vocabulary

Using a training set of n local descriptors d randomly sampled from
our dataset of sketches, we construct a visual vocabulary using k-
means clustering, which partitions the descriptors into k disjunct
clusters Ci. More specifically, we define our visual vocabulary V
to be the set of vectors {µi} resulting from minimizing

V = argmin
{µi}

k
∑

i=1

∑

dj∈Ci

‖dj − µi‖
2

(1)

with

µi = 1/ |Ci|
∑

dj∈Ci

dj .

5.3 Quantizing features

We represent a sketch as a frequency histogram of visual words
h – this is the final representation we use throughout the paper.
As a baseline we use a standard histogram of visual words using a
‘hard’ assignment of local features to visual words [Sivic and Zis-
serman 2003]. We compare this to using ‘soft’ kernel-codebook
coding [Philbin et al. 2008] for constructing the histograms. The
idea behind kernel codebook coding is that a feature vector may be
equally close to multiple visual words but this information cannot
be captured in the case of hard assignment. Instead we use a kernel-
ized distance between descriptors that encodes weighted distances
to all visual words – with a rapid falloff for distant visual words.
More specifically, we define our histogram h as:

h(D) =
1

|D|

∑

di∈D

q(di)/ ‖q(di)‖1 (2)

where q(d) is a vector-valued quantization function that quantizes
a local descriptor d against the visual vocabulary V:

q(d) = [K(d,µ
1
), . . . ,K(d,µk)]

T

We use a Gaussian kernel to measure distances between samples,
i.e.

K(d,µ) = exp(−‖d− µ‖2 /2σ2).

Note that in Eqn. (2) we normalize h by the number of samples
to get to our final representation. Thus our representation is not
sensitive to the total amount of local features in a sketch, but rather
to local structure and orientation of lines. We use σ = 0.1 in our
experiments.

6 Unsupervised dataset analysis

In this section we perform an automatic, unsupervised analysis of
our sketch dataset making use of the feature space we developed in
the previous section (each sketch is represented as a histogram of
visual words h). We would like to provide answers to the following
questions:

• What is the distribution of sketches in the proposed feature
space? Ideally, we would find clusters of sketches in this
space that clearly represent our categories, i.e. we would hope
to find that features within a category are close to each other
while having large distances to all other features.

• Can we identify iconic sketches that are good representatives
of a category?

• Can we visualize the distribution of sketches in our feature
space? This would help build an intuition about the represen-
tative power of the feature transform developed in Sec. 5.

Our feature space is sparsely populated (only 20,000 points in a
high-dimensional space). This makes clustering in this space a dif-
ficult problem. Efficient methods such as k-means clustering do not
give meaningful clusters as they use rigid, simple distance metrics
and require us to define the number of clusters beforehand. Instead,
we use variable-bandwidth mean-shift clustering with locality sen-
sitive hashing to speed up the underlying nearest-neighbor search
problem [Georgescu et al. 2003]. Adaptive mean-shift estimates a
density function in feature space for each histogram h as:

f(h) =
1

n

n
∑

i=1

1

bdi
K

(

‖h− hi‖
2 /b2i

)

,

where bi is the bandwidth associated with each point and K is again
a Gaussian kernel. Given this definition, we compute the modes, i.e.

b) present c) hot-dog d) lion e) potted plant

f) mouse (2 clusters)

a) motorbike

g) flying bird (2 clusters) h) radio (2 clusters)

Figure 8: A sample of the representative sketches automatically
computed for each category. Bottom row: categories that produce
multiple clusters and thus more than one representative.

the maxima of f by using an iterative gradient ascent approach. As
is standard, we assign all features h that are mean-shifted close to
the same maximum to a common cluster.

6.1 Intra-category clustering analysis

We perform a local analysis of our dataset by independently run-
ning adaptive mean-shift clustering on the descriptors of each in-
dividual category. The resulting average number of clusters within
our 250 categories is 1.39: the sketches within most categories in
our dataset are reasonably self-similar. We can, however, identify
categories with several distinct clusters in feature-space – for these
categories people seem to have more than one iconic representa-
tion. We visualize examples of such categories in the bottom row
of Fig. 8.

6.2 Iconic or representative sketches

We denote by Ci the set of all descriptors belonging to cluster i.
To identify iconic sketches that might be good representatives of
a cluster and thus the corresponding category, we propose the fol-
lowing strategy: a) compute the average feature vector ai from all
features in that cluster:

ai = 1/ |Ci|
∑

hj∈Ci

hj .

And b) given ai find the closest actual descriptor – our final repre-
sentative ri – in that cluster:

ri = argmin
hj∈Ci

‖hj − ai‖
2 .

The sketches corresponding to the resulting ri’s are often clear rep-
resentative sketches of our categories and we show several exam-
ples in Fig. 8.

6.3 Dimensionality reduction

To visualize the distribution of sketches in the feature space we ap-
ply dimensionality reduction to the feature vectors from each cat-
egory. We seek to reduce their dimensionality to two dimensions
such that we can visualize their distribution in 2d space, see Fig. 9.
Using standard techniques such as PCA or multi-dimensional scal-
ing for dimensionality reduction results in crowded plots: many
datapoints fall close together in the mapped 2d space, resulting in
unhelpful layouts. Van der Maaten and Hinton [2008] propose t-
distributed stochastic neighbor embedding (t-SNE), a dimension-
ality reduction technique that specifically addresses this crowd-
ing problem: t-SNE computes a mapping of distances in high-
dimensional space to distances in low-dimensional space such that

a) b)

c)

d)

e)

Figure 9: Automatic layout of sketches generated by applying di-
mensionality reduction to the feature vectors within a category. a)
fish; b) flower with stem; c) wrist watch; d) sheep and e) bus.

smaller pairwise distances in high-dimensional space (which would
produce the crowding problem) are mapped to larger distances in 2d
while still preserving overall global distances.

We apply t-SNE to the feature vectors from all categories sepa-
rately. The resulting layouts are an intuitive tool for quickly explor-
ing the distinct types of shapes and drawing styles used by humans
to represent a category. Some of the observed variations are contin-
uous in nature (e.g. sketch complexity), but others are surprisingly
discrete – there tend to be one or two canonical viewpoints or poses
in a given category (see Fig. 9 for several examples).

7 Computational sketch recognition

In this section, we study computational sketch recognition using
state of the art machine learning techniques. As a baseline, we em-
ploy standard nearest-neighbor classification which is fast, easy to
implement, and does not require an explicit training step. We com-
pare this to multi-class support vector machines (SVM), a popular
and effective supervised learning technique [Schölkopf and Smola
2002]. All classification algorithms operate in the feature space de-
scribed in Sec. 5 using the dataset from Sec. 3.

7.1 Models

Nearest-neighbor classification Given a histogram h we find
its k nearest neighbors (knn) in feature space using a distance func-
tion d. We classify h as belonging to the category that the majority
of k nearest neighbors belongs to.

SVM classification We train binary SVM classifiers to make the
following decision: does a sketch belong to category i or does it
rather belong to any of the remaining categories? We say cat(h) =
i to denote that the sketch corresponding to histogram h belongs
to category i. More specifically, for each category i we learn a

0 10 20 30 40 50 60 70 80
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

dataset size (per category)

ac
cu

ra
cy

classification accuracy vs. training set size

knn soft
knn hard
rbf svm soft
rbf svm hard

Figure 10: Training set size vs. computational classification ac-
curacy. All models use best parameters determined using grid-
search. ‘hard’ and ‘soft’ refer to one nearest-neighbor and kernel-
codebook quantization methods, respectively.

classifier function

ci(h) =
∑

j

αi
jK(si

j ,h) + b (3)

with support vectors sj , weights αj and bias b determined during
the SVM training phase. As before, K(·, ·) is a kernel (in our exper-
iments, Gaussian) that measures similarity between a support vec-
tor and the histogram h that we wish to classify. Given a training
dataset, we use the sketches from category i as the positive exam-
ples and all the remaining sketches as the negative examples.

SVMs are inherently binary classifiers but we wish to distinguish
250 categories from each other. We train 250 classifiers – one for
each category, each able to discern its category from the union of
the remaining categories (one-vs-all approach). To decide cat(h)
we classify a sketch as belonging to the category that yields the
largest classification response, i.e.

cat(h) = argmax
i=1,...,250

ci(h) (4)

7.2 Recognition experiments

In this section we determine the best parameters for computational
sketch recognition. In all cases, we train on a subset of the sketches
while evaluating on a disjunct testing set. We always use 3-fold
cross-validation: we partition the respective dataset into 3 parts,
use 2 parts for training and the remaining part for testing. We use
stratified sampling when creating the folds to ensure that each sub-
set contains (approximately) the same number of category instances
for a given category. We report performance of a model using its ac-
curacy, averaged over all 3 folds, i.e. the ratio of correctly classified
samples to the total number of positive samples.

Dataset & features We use the complete 250 category dataset
described in Sec. 3 and rasterize each sketch into a grayscale bitmap
of size 256 × 256. We extract 28 × 28 = 784 local features
sampled on a regular grid from each sketch. To create a visual
vocabulary, we need to learn from a large number of samples.
For computational reasons, we generate the visual vocabulary V

Table 1: Best parameters for knn/SVM model using histograms
generated with soft/hard quantization.

knn SVM
k d γ C

soft 4 l1 17.8 3.2

hard 5 cosine 17.8 10

from a randomly sampled subset of all 20,000× 784 local features
(see Eqn. (1); we use n = 1,000,000 features). We set the number
of visual words in the vocabulary to 500 as a coarse evaluation in-
dicates good classification rates at a moderate cost for quantization.
After quantization of the local feature vectors according to Eqn. (2),
this results in a 500-dimensional histogram of visual words repre-
senting a sketch.

Model search Classification performance of both the knn as
well as the SVM classifier can be quite sensitive to user-chosen
model parameters. Therefore we first identify the best perform-
ing model parameters for each case. We perform a standard grid
search over the 2d space of model parameters. For knn we use
k ∈ {1, . . . , 5} (number of nearest neighbors used for classifica-
tion) and distance measures d = {l1, l2, cosine, correlation}. For
SVM we use γ ∈ {10, . . . , 100} (the Gaussian kernel parameter)
and C ∈ {1, . . . , 100} (the regularization constant), both with log-
arithmic spacing. We use a 1/4 subsample of the whole dataset to
speed-up the search for SVM, for knn we use the full dataset. We
list the resulting best model parameters in Tab. 1 and use those in
the remainder of this paper.

Influence of training set size To identify how the amount of
training data influences classification accuracy, we split the whole
dataset into increasingly larger sub-datasets (8, 16, . . . ,80 sketches
per category). For each of those sub-datasets, we measure aver-
age 3-fold cross-validation accuracy. It turns out that computational
classification accuracy highly depends on the number of training in-
stances available, see Fig. 10. This is to be expected as the sketches
in many categories are highly diverse (see e.g. the sketches in the
layouts shown in Fig. 9). The performance gain for larger train-
ing set sizes becomes smaller as we approach the full size of our
dataset: this suggests that the dataset is large enough to capture
most of the variance within each category.

Human vs. computational classification A manual inspection
of the computational as well as human classification results reveals
that the confusions humans make are often of hierarchical nature:
bear and teddy bear are often confused with e.g. panda (see Fig. 6).
We hypothesize that the participants in our experiment were sat-
isfied once they found a category that matches reasonably well,
and may not have noticed the presence of semantically similar cat-
egories in our taxonomy. And, indeed, computational classifica-
tion can perform better in such cases: for ‘armchair’ and ‘suv’ the
computational model achieves significantly higher accuracy than
humans. To visualize such cases, we show the difference between
human and computational confusion in Fig. 11 (for the set of cate-
gories with overall lowest human recognition performance).

Computational classification – in the case of a failure – sometimes
makes predictions that are far off from what a human would possi-
bly predict. It seems that despite the large dataset humans are still
much better at generalizing from a smaller number of samples.

Computational classification summary Our experiments with
computational classification clearly demonstrate that an SVM

se
ag

u
ll

p
an

d
a

ar
m

ch
ai

r
ti

re
as

h
tr

ay
sn

o
w

b
o
ar

d
fe

at
h
er

p
ig

eo
n

su
v

p
ic

k
u
p
 t

ru
ck

b
ar

n
b
u
sh

cu
p

ra
ce

 c
ar

v
an

st
re

et
li

g
h
t

te
ac

u
p

tr
o
m

b
o
n
e

p
ar

ac
h
u
te

b
o
tt

le
 o

p
en

er

seagull
panda

armchair
tire

ashtray
snowboard

feather
pigeon

suv
pickup truck

barn
bush
cup

race car
van

streetlight
teacup

trombone
parachute

bottle opener

−0.2

−0.1

0

0.1

0.2

ac
tu

al
 c

at
eg

o
ry

predicted category

Figure 11: Confusion matrix for selected categories showing dif-
ference between human and computational classification perfor-
mance. Positive (red) entries mean humans are better, we hide the
zero-level for clarity.

model with kernel codebook coding for constructing the histograms
is superior to other methods. A knn classification performs signif-
icantly worse for this task. In the next section we utilize our best
performing computational model for several applications.

8 Applications

Computational sketch recognition lets us design several interest-
ing applications. We build upon on the multi-class support vector
sketch recognition engine as developed in Sec. 7.

8.1 Interactive sketch recognition

We propose an interactive human sketch recognition engine that
recognizes sketches in real-time. After each stroke a user draws,
we run the following recognition pipeline:

1. Extract local features from the sketch and quantize them
against the visual vocabulary, this gives us a histogram of vi-
sual words h.

2. Classify h using the SVM model according to Eqn. (4).

3. Display the top-20 categories with highest scores (rather than
simply displaying the single best category).

The resulting application is highly interactive (about 100 ms for the
complete recognition pipeline on a modern computer). Users report
that the application is fun and intuitive to use. In case the classifi-
cation is not as expected or the desired classification does not come
up on rank one, we observe that users explore small modifications
of their sketch until the classification is finally correct. Users are of-
ten amazed that even their very first sketch is correctly recognized
– our system supports a large variety of sketching styles by learning
from a large real-world set of sketches. As sketching is very natural
to humans, there is basically no learning required to successfully
use our system. The interactive application works well with either
a touchscreen (as on a tablet) or with a mouse.

Recognition is also reasonably stable: as soon as a sketch is close
to completion, oversketching, additional strokes, and even a small
number of random background scribbles typically do not influence
the recognition. On the other hand, if there are only slight dif-
ferences between two categories, a single stroke can make all the
difference: adding a handle to a bowl reliably turns it into a teacup,
sketching vertical indentations on an apple turns it into a pumpkin.
We show several examples in Fig. 12a but urge the reader to expe-
rience the interactivity of our system in the accompanying video.

8.2 Semantic sketch-based retrieval

Compared to existing sketch-based retrieval ap-
proaches [Chalechale et al. 2005; Eitz et al. 2011a; Shrivastava
et al. 2011], we are now able to identify the semantic meaning
of what a user sketches – even if the sketch is geometrically
far from its corresponding real-world shape. This is a situation
where traditional sketch-based retrieval engines naturally have
problems. We propose the following extension to sketch-based
image retrieval: a) perform classification on the user sketch
and query a traditional keyword based search engine using the
determined category; b) (optionally) re-order the resulting images
according to their geometric similarity to the user sketch. For step
b) we can make use any traditional sketch-based search engine.
We demonstrate step a) of this approach on a dataset of 125,000
images downloaded from Google Images (for each category the top
500 images returned when searching for the keyword), see Fig. 12b
for an example.

8.3 Recognizing artistic and historical sketches

A challenging evaluation for recognition systems is whether the
method can generalize to styles not seen at training time. If sketch
representations are really a universal, shared vocabulary for humans
then our algorithm should be able to recognize existing pictographs
from other domains. We present a limited example of this by run-
ning our sketch recognition pipeline on two famous sets of sketches
– animal sketches by Pablo Picasso, and ancient cave paintings from
Lascaux, France (we converted the cave paintings into sketches by
manually tracing their feature lines). Our system predicts the dove,
camel, cave horse correctly, and the antelope, which is not part of
our categories, is classified as a sheep (see Fig. 12c).

9 Discussion and Limitations

The feature space for sketches we propose in this paper builds upon
the successful bag-of-features model. However, this approach also
comes with certain limitations, which we discuss in this section.

9.1 Spatial layout of strokes

The features do not encode spatial location, although the meaning
of certain features might be dependent on context in the sketch.
We experimented with the well known spatial pyramid representa-
tion [Lazebnik et al. 2006] (an overcomplete hierarchy of bags-of-
words) but it did not significantly improve performance. We hy-
pothesize that better representations of spatial information would
significantly improve performance, but those representations might
be distinct from the features developed for the image domain. We
have not analyzed if it is advantageous to make features rotation
invariant. It appears this would serve recognition at least for some
categories, where sketches are clearly rotated/reflected versions of
each other, see for example Fig. 9.

b) semantic search

mug teacup

apple pumpkin

bowl beer-mug

a) interactive recognition c) recognizing artistic sketches

flying bird camel camel

horse sheep

prediction:

prediction:

Figure 12: Applications enabled by semantic sketch recognition: a) stable interactive recognition that reliably adapts its classification (left
column) when adding additional detail (right column). b) semantic sketch based image search, the only input is the sketch on the left and c)
recognition of artistic and ancient sketches.

a) tomato b) giraffe c) potted plant

Figure 13: Temporal order of strokes averaged for all sketches
within a category. We color-code time, blue: beginning, red: end).

9.2 Temporal information

The raw stroke-based sketch data contains information about the
temporal order in which humans have drawn those sketches. The
order of strokes seems to be quite consistent for certain types of
sketches, see Fig. 13 for several examples. Recent research shows
that a plausible order can even be automatically generated [Fu et al.
2011]. In our current representation we do not exploit temporal
order of strokes. We have performed initial experiments with de-
scriptors that additionally encode temporal order but have so far
only achieved small improvements at the cost of a much higher-
dimensional representation. Nevertheless, we believe that this is
an interesting and fruitful area for further research. Note that our
dataset can be directly exploited for such experiments as it comes
with full temporal information.

9.3 Sketch representation

We have chosen to compute the bag-of-features from rasterized
sketches. While this is general and accurate, there is no generative
process to map from our features back to a sketch. A stroke-based
model might be more natural and facilitate easier synthesis appli-
cations such as simplification, beautification, and even synthesis of
novel sketches by mixing existing strokes.

9.4 Human sketch recognition

In the experiments we ran on AMT, we did not provide direct incen-
tives for workers to achieve maximum recognition rate. Rather, the
incentive was to complete the task as quickly as possible. We thus
hypothesize that the human sketch recognition rate of 73% as deter-
mined in Sec. 4 is a lower bound to the actual maximally possible
recognition rate.

10 Conclusions and Future Work

This paper is the first large scale exploration of human object
sketches. We have collected the first dataset of sketches and used it
to evaluate human recognition. We have demonstrated that – given
such a large dataset – reasonable classification rates can be achieved
for computational sketch recognition.

We feel that sketch synthesis is an interesting, unexplored prob-
lem. How could the computer generate distinctive sketches that are
immediately recognizable by humans? If this question can be an-
swered, many new applications could benefit from the research we
have started here.

We also believe that the computational model could be useful for
supervised simplification and beautification of sketches. Simplifi-
cation has been well-studied in certain graphics domains such as 3d
geometry [Garland and Heckbert 1997]. The general strategy for
such techniques is to remove complexity (e.g. delete edges) while
staying as close as possible to the original instance according to
some geometric error metric. Such unsupervised heuristics have no
semantic understanding of each instance and therefore will often
make simplifications which are geometrically modest but perceptu-
ally jarring (e.g. smoothing away the face of a statue). We believe
that an ideal simplification algorithm would consider the semantic
meaning of each instance when deciding which simplifications to
perform.

Another open question is how universal sketching and sketch recog-
nition is among humans. Our sketches come from AMT workers all
over the world, but it is certainly not a uniform sample of different
cultures, ages, genders, artistic expertise, etc. How do these factors
and many others affect sketching? Are the stylizations different
cultures use for a certain object similar and even mutually recog-
nizable?

Finally we hope that better computational understanding of
sketches will lead to better computer accessibility. Virtually every-
body is able to sketch a face or recognize a sketched face. Writing
and reading, which today are still the standard way of communi-
cating with computers, are much less widespread. By some defi-
nitions, functional illiteracy, even in first-world countries, is up to
20% of adults. If computers were to understand sketches as we do,
sketching would give a much larger audience access to the data that
has been gathered digitally over the last decades.

Acknowledgements

We are grateful to everyone on Amazon Mechanical Turk that
helped create the large amount of sketches required for this work.
This work has been supported in part by the ERC-2010-StG 259550
XSHAPE grant. This work has also been funded by NSF CAREER
Award 1149853 to James Hays as well as gifts from Microsoft and
Google.

References

CHALECHALE, A., NAGHDY, G., AND MERTINS, A. 2005.
Sketch-based image matching using angular partitioning. IEEE
Trans. Systems, Man and Cybernetics, Part A 35, 1, 28–41.

CHEN, T., CHENG, M., TAN, P., SHAMIR, A., AND HU, S. 2009.
Sketch2Photo: internet image montage. ACM Trans. Graph.
(Proc. SIGGRAPH ASIA) 28, 5, 124:1–124:10.

DATTA, R., JOSHI, D., LI, J., AND WANG, J. 2008. Image re-
trieval: ideas, influences, and trends of the new age. ACM Com-
puting Surveys 40, 2, 1–60.

DIXON, D., PRASAD, M., AND HAMMOND, T. 2010. iCanDraw?:
using sketch recognition and corrective feedback to assist a user
in drawing human faces. In Proc. Int’l. Conf. on Human Factors
in Computing Systems, 897–906.

EITZ, M., HILDEBRAND, K., BOUBEKEUR, T., AND ALEXA, M.
2011. Sketch-based image retrieval: benchmark and bag-of-
features descriptors. IEEE Trans. Visualization and Computer
Graphics 17, 11, 1624–1636.

EITZ, M., RICHTER, R., HILDEBRAND, K., BOUBEKEUR, T.,
AND ALEXA, M. 2011. Photosketcher: interactive sketch-based
image synthesis. IEEE Computer Graphics and Applications 31,
6, 56–66.

EITZ, M., RICHTER, R., BOUBEKEUR, T., HILDEBRAND, K.,
AND ALEXA, M. 2012. Sketch-based shape retrieval. ACM
Trans. Graph. (Proc. SIGGRAPH) 31, 4. to appear.

EVERINGHAM, M., VAN GOOL, L., WILLIAMS, C. K. I., WINN,
J., AND ZISSERMAN, A. 2010. The PASCAL visual object
classes (VOC) challenge. Int’l. Journal of Computer Vision 88,
2, 303–338.

FU, H., ZHOU, S., LIU, L., AND MITRA, N. 2011. Animated
construction of line drawings. ACM Trans. Graph. (Proc. SIG-
GRAPH ASIA) 30, 6, 133:1–133:10.

GARLAND, M., AND HECKBERT, P. 1997. Surface simplification
using quadric error metrics. In Proc. SIGGRAPH, 209–216.

GEORGESCU, B., SHIMSHONI, I., AND MEER, P. 2003. Mean
shift based clustering in high dimensions: a texture classification
example. In IEEE Int’l. Conf. Computer Vision, 456–463.

GRIFFIN, G., HOLUB, A., AND PERONA, P. 2007. Caltech-256
object category dataset. Tech. rep., California Institute of Tech-
nology.

HAMMOND, T., AND DAVIS, R. 2005. LADDER, a sketching
language for user interface developers. Computers & Graphics
29, 4, 518–532.

HEROT, C. F. 1976. Graphical input through machine recognition
of sketches. Computer Graphics (Proc. SIGGRAPH) 10, 2, 97–
102.

LAVIOLA JR., J. J., AND ZELEZNIK, R. 2007. MathPad: a system
for the creation and exploration of mathematical sketches. ACM
Trans. Graph. (Proc. SIGGRAPH) 23, 3, 432–440.

LAZEBNIK, S., SCHMID, C., AND PONCE, J. 2006. Beyond bags
of features: spatial pyramid matching for recognizing natural
scene categories. In IEEE Conf. Computer Vision and Pattern
Recognition, 2169–2178.

LEE, Y., ZITNICK, C., AND COHEN, M. 2011. ShadowDraw:
real-time user guidance for freehand drawing. ACM Trans.
Graph. (Proc. SIGGRAPH) 30, 4, 27:1–27:10.

LOWE, D. G. 2004. Distinctive image features from scale-invariant
keypoints. Int’l. Journal of Computer Vision 60, 2, 91–110.

OUYANG, T., AND DAVIS, R. 2011. ChemInk: a natural real-time
recognition system for chemical drawings. In Proc. Int’l. Conf.
Intelligent User Interfaces, 267–276.

PAULSON, B., AND HAMMOND, T. 2008. PaleoSketch: accurate
primitive sketch recognition and beautification. In Proc. Int’l.
Conf. Intelligent User Interfaces, 1–10.

PHILBIN, J., CHUM, O., ISARD, M., SIVIC, J., AND ZISSER-
MAN, A. 2008. Lost in quantization: improving particular object
retrieval in large scale image databases. In IEEE Conf. Computer
Vision and Pattern Recognition, 1–8.

RUSSELL, B., TORRALBA, A., MURPHY, K., AND FREEMAN,
W. 2008. LabelMe: a database and web-based tool for image
annotation. Int’l Journal of Computer Vision 77, 1, 157–173.

SAMET, H. 2006. Foundations of multidimensional and metric
data structures. Morgan Kaufmann.

SCHÖLKOPF, B., AND SMOLA, A. 2002. Learning with kernels.
MIT Press.

SEZGIN, T. M., STAHOVICH, T., AND DAVIS, R. 2001. Sketch
based interfaces: early processing for sketch understanding. In
Workshop on Perceptive User Interfaces, 1–8.

SHILANE, P., MIN, P., KAZHDAN, M., AND FUNKHOUSER, T.
2004. The Princeton Shape Benchmark. In Shape Modeling
International, 167–178.

SHRIVASTAVA, A., MALISIEWICZ, T., GUPTA, A., AND EFROS,
A. A. 2011. Data-driven visual similarity for cross-domain im-
age matching. ACM Trans. Graph. (Proc. SIGGRAPH ASIA) 30,
6, 154:1–154:10.

SIVIC, J., AND ZISSERMAN, A. 2003. Video Google: a text re-
trieval approach to object matching in videos. In IEEE Int’l.
Conf. Computer Vision, 1470–1477.

SUTHERLAND, I. 1964. SketchPad: a man-machine graphical
communication system. In Proc. AFIPS, 323–328.

VAN DER MAATEN, L., AND HINTON, G. 2008. Visualizing data
using t-SNE. Journal of Machine Learning Research 9, 2579–
2605.

WALTHER, D., CHAI, B., CADDIGAN, E., BECK, D., AND FEI-
FEI, L. 2011. Simple line drawings suffice for functional MRI
decoding of natural scene categories. Proc. National Academy
of Sciences 108, 23, 9661–9666.

XIAO, J., HAYS, J., EHINGER, K. A., OLIVA, A., AND TOR-
RALBA, A. 2010. SUN database: large-scale scene recognition
from abbey to zoo. In Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 3485–3492.

