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Abstract 

To get evidence for or against a theory relative to the null hypothesis, one needs to know 

what the theory predicts. The amount of evidence can then be quantified by a Bayes factor.   

Specifying what one's theory predicts may not come naturally, but I show some ways of 

thinking about the problem, some simple heuristics that are often useful when one has little 

relevant prior information. These heuristics include the room-to-move heuristic (for 

comparing mean differences), the ratio-of-scales heuristic (for regression slopes), the ratio-

of-means heuristic (for regression slopes), the basic effect heuristic (for ANOVA effects), and 

the total effect heuristic (for mediation analysis).    
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Introduction 

Researchers are often interested in the existential question of whether something exists:  

Should an effect be in a model? Is there an interaction? Are there side effects of the drug?  

One has to assume something exists in order to estimate it (and in not estimating other 

things, one presumes that they do not exist).  So it would be nice to have a measure of 

evidence for something existing versus not existing. Significance testing is a commonly used 

tool for this purpose; however, non-significance is not itself evidence for something not 

existing. On the other hand, a Bayes factor can provide a measure of evidence for a model 

of something existing versus a model of it not existing (Etz, & Vandekerckhove, 2018; 

Morey, Romeijn, & Rouder, 2016). Thus, evidence for existence versus non-existence is put 

on a symmetric footing. This paper will give practical guidance on using Bayes factors; 

readers who have no background in their use might want to first read Dienes (2014) and/or 

Dienes and McLatchie (2018) as introductions congruent with the approach taken in this 

paper. After introducing the problem of using Bayes factors when there is limited relevant 

prior information, this paper will provide a number of heuristics for this situation. 

A model, as the term is used here, is a representation of the predictions of a theory.  The 

model indicates how plausible different population values are of the parameter postulated 

to exist (a probability distribution of parameter values being the model of H1). The contrast 

model can simply state the parameter does not exist (this is the model of H0). These two 

models can then be used to calculate a Bayes factor, and hence the evidence for one model 

versus the other, and thus in this case, the evidence that something exists versus does not. 

The problem then arises of specifying the sort of effect size the theory predicts, in order to 

construct a model of H1. This is what many researchers might find difficult. But there can 

only be evidence that something does not exist given a claim of how big it could be, if it did 

exist. But how do I know what effect size my theory predicts?  

Data collected to test a theory gives information about the size of effect that exists, should 

it exist. Thus, one might be tempted to use the data for testing the theory to also specify the 

effect size predicted. But this is double counting, and forbidden by the maths of how a 

Bayes factor is derived (Lindley, 1991). Or to put another way, in order that theory and data 

can clash, the model of H1 should not be constructed on the same information that it is 

tested against. If the same data were used to generate the predictions of a theory as test 

them, the theory could not be severely tested (cf. Popper, 1963). How can one determine 

the range of effect sizes consistent with a theory? In order to motivate the problem, first I 

give an example where there is relevant past research. Then I indicate what types of model 

will be used for the examples in order to calculate a Bayes factor. Finally, I consider a case 

where there is no relevant past research, and use that example to show a general approach: 

The use of heuristics to constrain predicted effect sizes even in the absence of past studies. 

The bulk of the paper will then describe the heuristics. 

 

Relevant past research helps define the effects expected  
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Previous work has shown that a two-week mindfulness of breathing intervention increased 

mindfulness by 0.2 Likert rating points on a mindfulness questionnaire, the FFMQ 

(Cavanagh, Strauss, Cicconi, Griffiths, et al., 2013). A researcher decides that it would be 

useful to try as a conceptual replication a two-week mindfulness of walking intervention, 

given the theory that both mindfulness of breathing and of walking engage the same 

process, namely mindfulness. She finds a mean difference in her sample of 0.1 Likert units of 

FFMQ. If she uses the 0.1 mean difference obtained from the sample as the basis for 

constructing her model of H1, she has double counted the obtained mean difference: Once 

for forming the predictions, and twice for testing them. A pseudo-Bayes factor constructed 

from a model of H1 in this way, whose predicted mean effect is chosen to be the same as 

the data, puts a theory at least risk of being shown wrong. 

Instead, the researcher could use the theory that focusing on breath and focusing on 

walking promote mindfulness in same way (they are both examples of mindfulness training).  

She could then use the past study on mindfulness of breathing to predict the effect size for 

the mindfulness of walking study. Note that the theory that two things belong to the same 

class does work in making that prediction.  Hence, the theory can take credit (or blame) in 

terms of the evidence for this H1 versus H0; the theory can be tested. In general, an 

important question is when a theory takes credit when a particular model of H1 is tested. A 

common case is precisely that illustrated here: A theory can take credit (or blame) when the 

theory claims two things belong to the same class, and that claim is used to construct H1. 

But often a researcher does not know what prior studies are relevant, or thinks none are. 

How does one construct a model of H1 then? This is the problem the current paper 

addresses. Before getting to the main part of the paper we will first consider the sort of 

models of H1 we will use, and then we consider an example to motivate the main issues to 

be discussed. 

 

Models 

To simplify discussion we will mainly use a very common  model of H1 for Bayes factors, 

which consists of a distribution centred on zero, and the problem is to determine the 

approximate size of effect predicted, i.e. its scale factor; half of the distribution may also be 

removed (below 0) to represent a theory making a directional prediction. It may not be 

apparent why the mode of the distributions is set at zero. This represents in a simple way 

that smaller effect sizes are more probable than larger ones, which can be useful given a 

literature that habitually overestimates effect sizes. We will mostly use a half-normal 

distribution, and the problem is to determine its standard deviation (see e.g. Dickey, 1973; 

Dienes & McLatchie, 2018).  The standard deviation is set to the rough scale of effect 

expected. Thus, the problem of specifying the model of H1 reduces to specifying the effect 

size expected. We will notate a Bayes factor based on a half-normal distribution with a 

mode of 0 and a standard deviation of r, as BHN(0,r). The Dienes (2008) calculator can be used 

with this model of H1; one needs in addition the effect size and its standard error as a 

sufficient summary of the data.  Another commonly used distribution is the Cauchy (or half-

Cauchy) distribution (JASP: van Doorn, van den Bergh, Bohm, Dablander, et al., 2019; 
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Rouder, Speckman, Sun, Morey, et al., 2009); in the same way, the problem is to set its scale 

factor, i.e. to determine the rough scale of effect expected.  For convenience the term “scale 

factor” will be used to refer to both the scale factor of a Cauchy and the standard deviation 

of a normal. We will notate a half-Cauchy with a mode of 0 and a scale factor of r as BHC(0,r). 

For the same scale factor, the normal and the Cauchy distributions give very similar Bayes 

factors, with the Cauchy slightly favouring H0 relative to the normal distribution (Dienes, 

2017a) (see Box 1).  None of these models may be appropriate in any given case (e.g. see 

Dienes, 2014; Gronau, Ly, & Wagenmakers, in press); however the models are good enough 

approximations sufficiently often that they will serve as good vehicles for discussing what 

this paper will focus on (see Dienes & McLatchie and Rouder et al. for justifications of these 

models). For the sake of discussion, we will treat a B > 3 as good enough evidence for H1 

over H0, a B < 1/3 as good enough evidence for H0 over H1, and a B in between those values 

as being non-evidential (cf. Jeffreys, 1939). However, there are no real cut offs, these are 

just rough guidelines adopted because in practice decisions often have to be made. Further, 

we as a community may (and I think should) decide that 3 and 1/3 are not good enough 

evidence for many scientific problems: Schönbrodt, Wagenmakers, Zehetleitner, and 

Perugini, (2017) recommended a cut-off of at least 5 (or 1/5); Cortex Registered Reports 

uses 6 (or 1/6) (Cortex, 2019); and Benjamin, Berger, Johannesson, Nosek et al. (2018) 

recommend 20 (or 1/20) for one-off studies. If the same community is also using 

significance testing, the results of the two approaches can be aligned as best as is possible 

(even though there is no monotonic transform between Bayes factors and p-values) by using 

a cut off of 3 for Bayes factors for a community also using 5% significance; of 6 for a 

community using 2% significance; and 20 for 0.5% significance. 
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Example with no relevant past research 

Now we will consider an example to motivate the bulk of the paper. Theory A claims that 

autistics will perform worse on a novel task than controls. Theory B claims that autistics and 

controls will perform the same. The task has a chance baseline of 0% and a maximum score 

of 50%.  The results are autistics score 8% above baseline (SE = 6%, N = 30) and controls 

score 10% (SE = 5%, N = 30). The difference (2%) is non-significant, t(58) = 0.25,  p = 0.80, 

Cohen’s d = 0.05. One reaction might be that the non-significance of the result means 

theory B is supported. But a non-significant result does not distinguish evidence for H0 over 

H1 from not much evidence either way. To know if there is evidence for H0 over H1, we 

need to know what size effect we could be trying to pick up. In other words, how should we 

model H1? One temptation might be to use a “default” model of H1, for example the model 

given by default in JASP for a t-test, a “JZS” Bayes factor, i.e. a Cauchy with a scale factor of 

0.7 Cohen d units.  This gives BC(0, 0.7 Cohen’s d units) = 0.27. On the face of it, we have evidence 

for Theory B, because the Bayes factor is less than a 1/3.  But there is no such thing as a 

Box 1 

 

Normal vs Cauchy distributions for Bayes factors 

 

Sometimes models of H1 employ a Cauchy distribution (e.g. Rouder et al., 2009); 

sometimes a normal (Dienes & McLatchie, 2018).  The function of the model of H1 is 

to represent the predictions of a theory simply and adequately. What about the 

normal and Cauchy distributions is important in distinguishing them for constructing 

models of H1? Consider models where the mode of these distributions is set to be 

zero. About 5% of the area of a normal (or half-normal) distribution is beyond two 

standard deviations; so two standard deviations is a rough maximum for a normal 

distribution. About 5% of the area of a Cauchy (or half-Cauchy) distribution is beyond 

seven scale factors; so about seven scale factors is a rough maximum for a Cauchy 

distribution. Turning this around, if one had a reason for setting the rough plausible 

maximum effect that could be obtained as max, then using a half-normal distribution 

set SD = max/2 (Dienes, 2014). However, if one used a Cauchy, set the scale factor to 

max/7. The difference depends on the scientific case for the relation between the 

expected value and the maximum value. In the absence of any information about this 

relation, use the half-normal distribution, because this spreads out the uncertainty to 

represent that lack of information. If one had some information that the effect size 

would be small relative to the maximum (roughly 1/10 to 1/5), use the half-Cauchy. 

We will see how this plays out in the examples that follow. Mainly the half-normal will 

be used, because this does not presume additional information restricting the 

expected size of the effect. 
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default theory. So there cannot be a default model of H1 (Etz, Haaf, Rouder, & 

Vandekerckhove, in press; Lee & Vanpaemel, 2018; Rouder, Morey, Verhagen, Province et 

al., 2016). In fact, the data themselves give information that the conclusion (that there is 

good evidence for theory B over theory A) was too rash. The control group score 10%, so on 

theory A, which says autistics will perform somewhere between the control and 0, the 

difference between the autistics and the control group cannot be more than about 10%. 

Thus, modelling H1 as a half-normal with an SD = max/2 = 5%, gives BHN(0,5%) = 0.94: No 

evidence one way or the other. This is clearly a reasonable conclusion because the standard 

error of the difference is 7.8%, about as big as the maximum possible difference. There 

cannot be evidence for whether or not there is a difference, if the standard error of the 

difference is as large as the maximum plausible difference. One can think of this as a floor 

effect on the difference score: If the sample difference cannot be higher than the standard 

error of the difference there is a floor effect. 

Notice the control group mean was used to inform the maximum difference between the 

autistics and control group. How does this relate to the principle stated earlier, that the 

mean difference itself cannot be used to predict the same mean difference? In this case, 

information other than exactly that tested was used (albeit the information used was 

correlated with that tested). The information used constrained inference in a plausible way: 

floor effects appropriately became non-evidential (see Figure 1a). Further, if there had been 

no floor effects, using the control group to define a maximum difference still gives full scope 

for either theory to clash with data, to be shown wrong:  If there had been a small SE of 

difference, the autistic group could have been close to control group, Figure 1b, thereby 

refuting theory A; or else close to chance, Figure 1c, thereby refuting theory B.  Thus, we 

have cheated information out of the data in a useful way that does not prejudice against 

theory testing. That is, the procedure can provide what Popper (1963) called a severe test of 

relevant theories. A severe test is one where a theory is made to stick its neck out; if the 

theory is wrong, it can easily be found wrong. 
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Box 2 Raw vs standardized effect sizes effect sizes 

It may be tempting to believe it is easier to set an expected effect size for a theory using 

standardized rather than raw effect sizes. Standardized effect sizes, such as Cohen’s d, 

remove the units of measurement (seconds, Likert units, etc) and so render the units 

irrelevant.  It may seem this makes there less to think about, and so the problem is 

easier. However, standardized effect sizes are signal to noise ratios, and theories and 

practical claims are usually about signals, and not the noise through which they are 

measured. A slimming regime is effective if it produces a certain number of kg loss on 

average, regardless of the random error in the scales. In fact, focusing on standardized 

effect sizes can lead to misleading conclusions. If one is motivated to conclude an effect 

does not exist, one could measure it with few trials, as the population standardized effect 

size over participants is then small (for an example, see Dienes 2017b, 24 – 30 minutes). 

One way of seeing why the “default” Bayes factor was not reasonable in the example on 

autism is that in this case a Cohen’s d of 0.7 corresponds to a raw difference of 19%. So 

the default model of H1 is predicting an effect of around 19% and possibly as large as 

19% × 7 = 133% (see box 1). This is clearly unreasonable for the study.  

When effect sizes are considered in raw units, they are often easier to evaluate (Baguley, 

2009). The greater ease of working with raw rather than standardized units is a point 

(which many may find counter-intuitive) that this paper will build on.  For example, the 

ratio-of-scales heuristic and ratio-of-means heuristic will illustrate how thinking in terms 

of raw regression slopes can be easier than in terms of Pearson correlation coefficients.  

Most generally, if we care about the units in which we measure things (which as scientists 

we should), a corollary is we should learn to think in those units and not throw them 

away the first chance we get. As testing existential claims requires a scientific judgment 

about the sizes of effect that might obtain, such testing is at least a matter of science as 

statistics.  
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Figure 1. 

Using the control group to define the maximum difference between the experimental group and 

control group can have useful inferential properties. In (a), the procedure can show that there is an 

effective floor effect, in the sense that the standard error is as large as any difference that could be 

expected, so no sample difference can be far enough away from the floor defined by the standard 

error of the difference. Yet, if the SE were small enough, the actual difference between groups could 

strongly count against either a theory that predicted a difference (b), or a theory that predicted no 

difference (c): Theory can still clash with data. 
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This paper will generalize the above considerations and present a set of heuristics for 

obtaining a ballpark estimate for a reasonable predicted effect size. We will present for each 

Bayes factor a “Robustness Region” notated as “RR [min, max]” where min is the minimum 

scale factor that leads to the same qualitative conclusion (i.e. good evidence for H1 over H0, 

if B > 3; good evidence for H0 over H1 if B < 1/3; and not much evidence at all otherwise); 

Box 3 Robustness checking 

For all statistical analyses, including the use of Bayes factors, it is worth considering how 

robust conclusions are to reasonable changes in assumptions. With Bayes factors testing a 

theory, the model of H1 represents the predictions of the theory.  But there could be several 

equally good ways of modelling H1 to represent the same theory. Thus, the conclusion would 

only be robust if most of the models came to the same qualitative conclusion. Dienes (2015; 

Appendix 12.1) used different distributions (uniform vs normal vs half-normal) to show the 

precise shape of the distribution can make little difference to conclusions in individual cases 

when the distributions represent roughly the same scientific assumptions. Given just one 

form of distribution, such as a half-normal, the conclusion is robust if the range of scale 

factors (standard deviations) leading to the same qualitative conclusion roughly span or 

contain the range of scientifically plausible values. JASP produces a graph showing the Bayes 

factor for different scale factors. When interpreting this graph, the issue is not whether all 

Bayes factors agree in the conclusion implied, but whether the range of scientifically 

plausible scale factors is roughly contained in a range of scale factors giving the same 

conclusion. This notion is formalized in the robustness region, which is a type of mini 

multiverse (Steegen, Tuerlinckx, Gelman, Vanpaemel, 2016). There are no precise rules yet to 

say how robust is robust enough; and probably there should not be. But if the robustness 

region is always provided, any reader can determine if their preferred rough scale factor is 

contained in the region. If a conclusion is not robust enough, in principle more data can be 

collected until the conclusions are more robust. With Bayes factors, it is fine to continue 

collecting data until the evidence is good enough (Rouder, 2014, 2019). The robustness 

regions in this paper were calculated by iteratively entering different scale factors in the 

Dienes (2008) Bayes factor calculator until the limits of good enough evidence were obtained 

(cf Mclatchie, 2018).    

One way to ensure some robustness is to use a stopping rule for achieving a degree of 

evidence that clearly exceeds what is taken to be good enough. For example one may run 

participants until the Bayes factor is greater than 10 or less than 1/10, and then report the 

robustness region with respect to cut offs of 5 and 1/5.  
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and max is the maximum scale factor that leads to the same conclusion1 (see Box 3).  (Note: 

If the conclusion is not much evidence at all, min will always be 0; and if the conclusion is 

good evidence for H0 over H1, max will always be infinity, ∞. If a scale has a maximum, e.g. 

a 0-7 Likert scale so the maximum difference is 7, if the maximum exceeded 7, one could 

notate as “>7”.) None of the heuristics are guaranteed to produce sensible answers in 

context; scientific judgement is always needed for all aspects of model building, including 

this one. Nonetheless, the heuristic can do its job merely if it puts one in the right ball park; 

if the robustness region is about the width of a ball park then the conclusion is safe. (That is, 

if the range of scientifically plausible scale factors is contained with the robustness region, 

the conclusion is safe.) The heuristic will often also help us see what range of scale factors is 

scientifically plausible, as we will see below. In the example we have been using, the 

robustness region for a half-normal distribution model of H1 is RR1/3>B>3 [0, 28%]. That spans 

the whole ball park (a standard deviation of 28% corresponds to a plausible maximum 

difference of 56%), so the conclusion of insensitive evidence is safe. To remind the reader, 

the scale factor is the key aspect of the model indicating roughly how big the population 

difference is between autistics and controls; a given scale factor indicates that a plausible 

population difference lies between 0 and about twice that scale factor (for a normal or half-

normal distribution).  

Now we consider the heuristics. First the room-to-move heuristic. Second, the ratio-of-scales 

heuristic. Third, the ratio-of-means heuristic. Fourth, the basic effect heuristic. Finally, the 

total effect heuristic for mediation. 

The room-to-move heuristic 

The example used previously with the autistics versus the controls motivates the heuristic of 

using one condition to define the rough maximum difference that could be obtained 

between conditions: The one condition informs us of how much room there is left to move 

for the other condition in order to satisfy the constraints of the theory. We now consider a 

real example. Consider the theory that people pursue relationships for a mix of eroticism 

and nurturance. In a polyamorous relation one can have different partners for different 

needs; thus, each partner might satisfy the particular need they are assigned to better than 

in a monogamous relationship, where one partner has to satisfy all needs.   Balzarini, 

Dharma, Muise, and Kohut (2019) investigated the quality of polyamorous versus 

monogamous relationships. On a 1-7 scale of how nurturing their primary partner was, 

people in monogamous relationships rated their partner’s nurturance as 5.85. For 

polyamorous people I first will pick a subgroup to make the example interesting. Taking 

polyamorous people without a self-defined primary partner, when relationship length was 

controlled for, the mean nurturance rating for the partner they mainly lived with was 5.80, 

SE of difference was 0.11, t(≈2500) = 0.42 (see Table 5 of Balzarini et al).  This is non-

significant. But non-significance does not mean there is evidence for no difference. To 

define the evidence, the scale of effect predicted by H1 needs to be determined. How 

should H1 be modelled? Given the monogamous group score, how different could the 

                                                            
1 Thanks to Balazs Aczel for suggesting this concept of a robustness region. 
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polyamorous group be? Given the monogamous group scored 5.85, and the top of the scale 

is 7 units, the maximum increase is about 1.15 units (see Figure 2), that’s the room to move 

for the polyamorous group.  So to model H1 using the room-to-move heuristic, use a half-

normal distribution with SD = max/2 = 0.58 rating units.  This gives BHN(0,.58) = 0.13,  RRB < 1/3 

[0.22, >6], evidence for H0 over H1. We can assess the robustness of the conclusion by 

taking into account information from the other polyamorous couples, i.e. with defined 

primary and secondary partners. In this case, the polyamorous couples rated their partner 

they mostly lived with as being more nurturing than monogamous couples did by 0.57 units 

(SE = 0.10).  0.57 is thus a more informed estimate of the sort of difference that could be 

expected. 0.57 is very similar to the result given by the room-to-move heuristic (a similarity 

that cannot in general be guaranteed) and, importantly, well within the robustness region. 

 

 

Figure 2 

The polyamorous group has 1.15 units room to move in partner’s nurturance, given the 

monogamous group’s mean, and given that 7 is top of the scale. Thus, one group can provide 

constraints on what difference can be found between groups, defining the room-to-move heuristic. 

One might ask: Why not take the polyamorous group’s mean as given and see how much 

room there was for the monogamous group to be lower than that? In that case, the room to 

move would be about 4.85 (from 5.85 to the bottom of the scale, 1), and that could in 

principle make a difference to conclusions (though in fact not in this case). Choose the way 
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round that gives the smallest room to move, because that will show up any floor or ceiling 

effects. So in this case, it was justified to go with the monogamous group as setting the 

room to move. 

The room-to-move heuristic is based on a point estimate from one group. For example, we 

have assumed that the estimate of nurturance of 5.85 for the monogamous group is a 

reasonably precise estimate. This has the advantage of simplicity. But it also disregards the 

uncertainty in that estimate. In this case, the standard error of the estimate is 0.03 

nurturance units, so the estimate is precise enough.  The function of the heuristic is to put 

us in the right ball park; the question then is the width of the robustness region.  The 

robustness region in this case includes all reasonable rooms-to-move. 

In order to analyse interactions, Gallistel (2009) suggested taking a key simple effect as the 

maximum size the difference in simple effects could be, i.e. as the maximum size of the 

interaction (a strategy later recommended by Dienes, 2014). For example, highly 

hypnotisable people are tested on the Stroop test either with no suggestion, or a word 

blindness suggestion that the words on the screen are written in a meaningless foreign 

script (Raz, Shapiro, Fan, & Posner, 2002).  The suggestion has been found to reduce the 

Stroop interference effect. Consider the first time the study is run so there is no prior 

information about how effective the suggestion should be.  In the no suggestion condition 

Raz et al. found that RTs for incongruent and neutral words were 860 ms and 748 ms 

respectively. In the suggestion condition they were 669 and 671 ms respectively. In the no 

suggestion condition the interference effect therefore was (860 ms  - 748 ms) = 112 ms. 

That is the simple effect of word type for no suggestion. In the suggestion condition the 

interference effect was (669 – 671) = -2 ms. That is the simple effect of word type for the 

suggestion condition.  Given that the interference effect with no suggestion is 112 ms, the 

most suggestion could plausibly reduce interference is therefore about 112 ms. That is the 

only room in which it has to move. Therefore we could model the H1 for the interaction 

word type X suggestion as a half-normal distribution (directional: suggestion should reduce 

not increase the interference effect) with a standard deviation of max/2 = 112/2 = 56 ms.  

So we have predicted the size of effect. In fact, the raw interaction effect was 112 – (-2) ms 

= 114 ms. Now to find the standard error of the effect: The interaction test reported in the 

paper was F(1, 30) = 29.35, which corresponds to t(30) = √29.35 = 5.42. Therefore, the SE for 

the interaction =  (raw effect size)/(obtained t) = 114 ms/5.42 = 21 ms.  The Dienes (2008) 

calculator can be used with this information, BHN(0,56) = 2.86 × 105, RRB>3 [4.3, 4 × 104], 

evidence for suggestion reducing Stroop interference, with the robustness region containing 

all remotely plausible scale factors. (In fact, a meta-analysis by Parris, Dienes & Hodgson, 

2013, indicated that the suggestion roughly halves the interference effect, so the model of 

H1 for the interaction we now pre-register based on past data is precisely also that which 

would be given by the room-to-move heuristic, Palfi, Parris, McLatchie, Kekecs, et al., 2018). 

Note here the advantage of using raw units, milliseconds. If fewer trials of the Stroop test 

were run, the expected standardized effect size would change. But the fact that the effect of 

suggestion is approximately to halve the raw interference effect would remain invariant. 
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Ratio-of-scales heuristic 

The ratio-of-scales heuristic may be useful when correlating or regressing one variable on 

another. The task is to determine if a simple version of the theory tested could make a 

correspondence between two low points on the scales and two high points. Notice the task 

is not to determine the spread of the data for each variable, but to determine what a simple 

theory would predict given the meaning of the scale points. The principle can often be 

applied to regressions. Lush et al (2019) asked people to estimate the time that a tone 

occurred. The tone happened 250 ms after a button press. According to a theory we 

developed (Bayesian cue combination theory applied to time estimation), the experienced 

time of the tone should be pulled towards that of the button press according to a “relative 

precision” which varied from 0% to 100%. One way to test the theory would be to 

determine if the shift in the estimated time of the tone correlated with the relative 

precision: The theory predicts that the higher precision, the greater the shift. What size 

correlation could we expect? r= 0.2? 0.6? 0.8? Who knows. If we think in terms of raw units, 

prediction becomes easier.  The maximum the shift in timing could be is if the tone was 

shifted all the way over to the button press, i.e. a shift of 250 ms. In the simplest version of 

the theory this is what would happen with a relative precision of 100%.  According to the 

theory, there would be no shift with a relative precision of 0%. So the raw slope of shift 

against precision in this case is the length of the scale for shift (250 – 0 ms) divided by the 

length of scale for precision (100 – 0%), i.e. 2.5 ms per percent, the ratio of the scales (see 

Figure 3). This is the maximum slope that would occur if the only mechanism was the one 

postulated and it operated with complete effectiveness. Thus, the ratio-of-scales heuristic 

gives the maximum slope that could be expected.  Hence we can model H1 of the raw 

regression slope with a half-normal distribution with SD = 2.5/2 = 1.25 ms per percent2. In 

fact, Lush et al obtained a raw regression slope b = .59ms (SE= .26), t(68) = 2.23, p= .029, 

BHN(0,1.25) = 4.74,  RRB>3 [0.16, 2.1]. The robustness region goes from very small to almost the 

maximum slope plausible, so the evidence for there being a slope is robust to the value of 

the scale factor in this case. 

 

 

                                                            
2 In fact, a more realistic theory predicts a much smaller shift even for maximum precision. One could deal with 

this simply by using a half-Cauchy distribution with scale factor 2.5/7 = 0.36 ms per percent. As it turns out 

either scale factor is in the same robustness region, so it makes no difference. 
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Figure 3 

Illustration of the ratio-of-scales heuristic for regression (or correlation). The maximum slope the 

theory in Lush et al (2019) predicts is the ratio of the lengths of the two scales, i.e. 250 ms / 100% = 

2.5 ms per percent. 

Monin et al. (2017), using construal theory, predicted that “that women who were high in 

marital satisfaction would experience the greatest distress on days when they perceived 

more than average levels of partner suffering. This is compared with men and women low in 

marital satisfaction and men high in marital satisfaction.” The DV was marital distress 

measured on a 1-4 scale (‘not at all stressed’ to ‘very stressed’). The IV was perceived 

physical suffering of partner on a 1 (‘did not suffer’) to 10 (‘suffered terribly’) scale. If 

distress increased with suffering in a simple way, and subjects used most of the scale points 

a fair amount of the time, ‘no suffering’ would be the response to ‘no distress’, i.e. the 

relationship would  start with (1,1) and finish with ‘terrible suffering’ going with the most  

distress, i.e. the line would go through (10,4). To a first approximation, the slope would be 

expected to be (4-1)/(10-1) = 0.33 distress units per suffering units. But any variable that 

affected distress independently of suffering would reduce the relationship. The ratio of 

scales heuristic is to treat the ratio of the scale ranges as a rough maximum. That is we 

would model the H1 for the relation of distress to suffering as a half-normal with an SD of 

0.17 (half the maximum). The authors believe that the relationship between marital distress 

and partner suffering will hold well for partners with high marital satisfaction but not for 

those with low satisfaction3.  For high satisfaction males, b = .03 distress units per suffering 

                                                            
3 They obtain a significant distress vs suffering slope for high satisfaction females, estimated from the graph as 

0.22 distress rating units per suffering rating unit. (Notice the ratio of scales heuristic provides a scale – 0.17 

distress units per suffering unit - in the right ball park in this example.) As the authors do not give an exact p, 
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unit (estimated from graph), SE = .02. BHN(0,0.17) = 0.66, non-evidential, RR1/3>B>3 [0, 0.35]. The 

maximum scale factor in the robustness region is high given our arguments that a plausible 

maximum is around 0.33; so the conclusion is robust. Therefore the conclusion in the 

abstract that “men who were high in marital satisfaction  experienced heightened daily 

distress irrespective of their perceptions of level of spousal suffering,” is not supported if 

“irrespective” is read as meaning ‘no relation with suffering’. 

 

Ratio-of-means heuristic 

Some scales, for example reaction times or d’ (discrimination), have no obvious high point 

on the scale to relate to a high point of another variable. It may then be difficult 

theoretically to a priori fix a plausible correspondence between the two scales. Salvador, 

Berkovitchd, Vinckiera, Cohen, et al. (2018) regressed a measure of thought suppression (in 

units percentage correct) against ability to discriminate whether a no- think cue was present 

(in units of d’), with the latter measure taken to be a measure of conscious perception.  The 

raw slope was -5.7 percent per d’ unit4 t(42) = 0.77, p = .45, “indicating that people's ability 

to discriminate masked cues did not predict their memory effect” (pp 194-195), thus 

indicating the thought suppression (memory effect) was triggered unconsciously. The non-

significant result does not justify the conclusion of no relation between thought suppression 

and conscious perception. (There are arguments against first order d’ being a valid measure 

of conscious perception, Dienes & Seth, 2018; but the authors assumptions can be accepted 

for the sake of determining what tests would be relevant for those assumptions.) What 

strength of relation could be predicted if both measures depended on conscious perception 

of the cue?  d’ goes from 0 to infinity. What high level of d’ should correspond to a high 

degree of thought suppression? The ratio-of-scales heuristic is hard to apply in this case. But 

we may use a ratio-of-means heuristic. The ratio-of-means heuristic is akin to the room-to-

move heuristic being applied to each variable.  Given that the mean suppression was 6% and 

the mean d’ was 0.35, on the theory that both depend on a single knowledge base (e.g. 

conscious perception), then they should go to zero together (see Figure 4). Thus, on the 

theory, the slope should be the ratio of the means, 6%/0.35  = 17 percent per d’ unit. This is 

a maximum because it assumes that all systematic variance is due to conscious knowledge. 

Thus, we can model H1 as a half-normal distribution with SD = 17/2 = 8.5% per d’ unit. With 

these assumptions, BH(0, 8.5) = 0.43, RR1/3<B<3 [0, 12], indicating the data are non-evidential. 

The robustness region reaches a moderately high value of the slope (given an estimated 

maximum of 17), indicating that the conclusion (that there is not enough evidence) is 

                                                            

we cannot get an exact SE, but there is no doubt a Bayes factor would give good evidence. For the sake of 

argument take p < .001 as p = .001; this gives t(40) = 3.06 (df = 40 is a very rough guess based on the smallest 

df in their table – but the issue is what could be done in principle, and the answer will be roughly right). So SE = 

parameter/t = 0.22/3.06 = .07 distress units per suffering units. BHN(0, 0.17) = 51.86, RRB>3 [0.027, 6.50]. Given the 

arguments for a plausible maximum of 0.33, and no grounds for thinking the effect below .05, the conclusion is 

robust that there is evidence for H1. 
4 The authors report mean suppression as 6%, and mean d’ as 0.35, and the intercept as 8%. Thus, the slope is 

(6- 8)%/0.35 = -5.7 % per d’ unit. It has a standard error of slope/t = 5.7/0.77 = 7.4 percent per d’ unit. 
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somewhat robust to scale factor5.

 

Figure 4 

The ratio of means heuristic. For these imaginary data points, let the rectangle mark the mean level 

of thought suppression and mean level of d’. Based on the theory that both variables depend on a 

single knowledge base and should thus go to zero together, the expected slope is the ratio of the 

means.  The Y-axis is a difference in percent correct between two conditions so has a true zero; d’ 

has a true zero, namely when discrimination is at chance. 

 

The basic effect heuristic 

One can often take the size of a basic effect as a rough scale for how much that effect could 

be manipulated.  Martin and Dienes (in press) used this principle to test whether different 

types of hypnotic induction were differentially effective in changing response to suggestion. 

If people were given 10 hypnotic suggestions, and coded as having passed or failed the 

suggestion (i.e. whether or not they sufficiently experienced the suggested effects), what 

effect do different inductions have on pass rate (number of suggestions passed out of 10)? 

The scale factor for the model of H1 for the difference between different inductions was set 

as the difference between no induction and the standard induction. That is, the bigger an 

effect any induction has on response, the more inductions may differ between themselves, 

in the same way as adult shoe sizes differ more between themselves than baby shoe sizes. If 

people are given 10 hypnotic suggestions, each of which could be passed or failed, a 

standard hypnotic induction versus no induction increases pass rate by 1.46 suggestions. 

Thus, the scale factor for the difference between different inductions was set at 1.46 

                                                            
5 A problem with this regression is the error in measurement of d’. Simone Malejka is working with me (and 

Miguel Vadillo and David Shanks) to come up with a simple Bayesian solution to this problem (cf Matzke, Ly, 

Selker, Weeda, et al., 2017). 
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suggestions out of 10. An “indirect” induction had been argued to be especially powerful; 

past research showed a difference between standard and indirect inductions of 0.01 passes 

(SE = .25). This gives BH(0, 1.46) = 0.20, RRB<1/3 [0.9, >10], evidence that the indirect induction is 

no different than a standard induction on average. Ziori and Dienes (2015) investigated how 

gender and attractiveness of facial stimuli may affect implicit learning of sequences of those 

stimuli. The average level of implicit learning above baseline (6%) was taken as a rough scale 

by which that effect could be modulated by the manipulations, and used as the scaling 

factor for all effects in the three-way 2X2X2 ANOVA used (every 1-degree of freedom effect, 

whether main effect, interaction or simple effect, can be expressed as a contrast in raw 

units). Casper, Desantis, Dienes, Cleeremans et al. (2016) used the height of an ERP 

component as the maximum that the component could be modulated (based on past 

experience with how much such components are typically modulated). 

One could broaden the heuristic further to a reference effect heuristic, whereby the size of 

one effect on a study is used as a basis for expecting the size of another effect (perhaps 

multiplied by a constant, cf.Palfi et al., 2018, discussed above). For example, in fMRI, one 

could use a standard contrast to define the effect expected for a contrast of interest. The 

amount of conscious perception in a conscious condition provides the expected effect in the 

(potentially) subliminal condition, if it were actually based on conscious perception (Dienes, 

2015). If a previous experiment used RTs and the current study is using d’, there may be a 

standard effect you could use to convert RTs to d’ (cf. Dienes, 2014, supplemental materials, 

section 2). 

 

The total effect heuristic for mediation 

 

 

 

Figure 5 
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A model of X causing Y to some degree through M, the mediator.  The equations defining the 

paths are: M = a
1 
+ b

1 
× X; Y = a

2
 + b

2 
× X + b

3
 × M; and Y = a

3
 + b

4
 × X. The ai terms  

indícate that the regresión slopes are in raw units. Given these equations the meaning of the 

effects are: b1 = first indirect effect, b3 = second indirect effect, indirect effect  = b1 × b3; b4 = 

total effect, b2 = direct effect 

 

 

In a mediation analysis one might want to know whether the effect of X on Y is mediated 

completely, partially, or not at all by M (see Figure 5). By frequentist methods, evidence for 

some mediation can be provided by the first and second indirect effects each being 

significant (the method of joint significance, e.g. Woody, 2011). Recently, Yzerbyt, Muller, 

Batailler, and Judd (2018) argued that this method should be preferred to the currently 

more common use of a single index of the indirect effect. Whatever the method, the main 

problem for frequentist methods comes when trying to get evidence for full mediation or no 

mediation, because each of those claims depends on evidence for an H0.  We can rephrase 

the method of joint significance in terms of Bayes factors (cf. Nuijten, Wetzels, Matzke, 

Dolan et al., 2015, for a different approach). Thus we have for the indirect effects: (i) if B < 

1/3 for either indirect effect, then there is evidence for no mediation;  (ii) if B > 3 for both 

then there is at least partial mediation; and (iii)  if either are insensitive AND the other B > 

1/3, then there is no evidence either way.  These tests are regressions and therefore the 

ratio-of-scales or ratio-of-means heuristics may provide models of H1.  

Now take the case of testing for full mediation. Assume there is evidence for an indirect 

effect. Then, for the direct effect  (i) if  B > 3 then there is not full mediation; (ii) if B < 1/3, 

then there is full mediation; and (iii) if 1/3 > B > 3, then there is no evidence either way 

about full mediation. In testing the direct effect, there is a simple heuristic that can be used. 

Mathematically, total effect = direct effect + indirect effect. Thus, one may have a theory in 

which the total effect is the maximum that could be expected for the direct effect6. To test 

this theory, model H1 for the direct effect using the uniform [0, total effect]. This is the total 

effect heuristic. (We use a uniform in this case because there is typically no reason to expect 

that the direct effect will be closer to either 0 or the total effect.) 

Consider a study in which openness to experience (X) is used to predict relationship 

satisfaction (Y), with the mediator richness of fantasies (M), all rated on Likert scales. The 

total effect is 0.10 Likert unit of Y per Likert unit of X (SE = 0.02), t(450) = 5.00, p < .001 (that 

is, X predicts Y), and the direct effect is 0.04 (SE = 0.03), t(450) = 1.33, p = .18 (that is, how 

well X predicts Y when M is partialed out). A typical but incorrect temptation may be to 

conclude from a significant total effect and a non-significant direct effect that there is 

complete mediation: openness to experience only increases relationship satisfaction via 

increasing the richness of fantasies. Indeed, the direct effect is not just non-significant, the 

JZS default Bayes factor for the direct effect is BC(0,r= 0.35) =  0.11, i.e. evidence for H0, 

seeming to confirm the claim of complete mediation. But the maximum that the direct 

                                                            
6 This is a theory and not a mathematical inevitability because the indirect effect may be negative (cf. Pearl,  

Glymour, & Jewell, 2016). 
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effect could be (on the theory that openness increases fantasy richness which increases 

relationship satisfaction) is the total effect, i.e. .10 Likert units per Likert unit. Using the total 

effect heuristic, for the direct effect BU[0,0.10] = 1.62, RR1/3<B<3 [0, 0.5]7. Thus, the data are 

non-evidential, and robustly so over any plausible upper limit for the uniform.  

 

 

Discussion 

A scientist tries to explain the world. The explanations can be tested via their predictions. 

For this, we need a model of the predictions, minimally the sort of effect size, ideally in raw 

units, that is expected to occur. Even without prior work in the field, there are heuristics 

that enable minimal constraints on what can be expected. So long as these constraints put 

one in the right ball park, and help define what the ball park is, evidential conclusions follow 

if they are robust to about the width of a ballpark. Notice that the Bayes factors this paper 

have used do not involve H1s with point predictions; they respect the vagueness of real 

psychological theory in representing a range of possible effect sizes. In considering 

robustness, we are making sure that the plausible range of the width of that plausible range 

leads to similar conclusions. 

There are no strict default effect sizes in theory testing, hence no objective or default Bayes 

factors (see Box 4). A proposed default Bayes factor is not an invitation to stop thinking; it is 

an invitation to think whether the suggested scale is relevant to the problem in context. In 

many cases suggested default values (e.g. Cohen’s d = 0.7) may fall in the same robustness 

region as a Bayes factor informed by scientific context. But there is only one way to find out; 

one has to consider what scientific constraints there are and see what they imply. 

This paper has focused on what to do if there is not prior relevant information. This in no 

way stops pre-registering how the model of H1 will be constructed. One can pre-register for 

example “To model H1 for condition A, the SD of the half-normal will be half the effect for 

condition B.”  Pre-registering stops cherry picking the models of H1 one becomes fond of in 

the light of data. Bayes factors can be B-hacked just as p-values can be p-hacked (e.g. for 

both cases, how outliers are removed, whether a variable is in or out of the model, etc.), so 

pre-registering analytic protocols is just as valuable for Bayesians as frequentists.  

The heuristics presented have partly been justified with the notion of severe testing: 

Although the heuristics sometimes use information from the very data used for testing a 

theory, they do so in a way that means strong evidence can still be produced against that 

theory. This claim seems to contradict Mayo (2018), who uses the notion of severe testing 

as an argument against Bayesian statistics (contrast Vanpaemel, in press).  Mayo (2018) uses 

a notion of severe testing as a basis for understanding why cherry picking (i.e. selection 

effects in general) degrades evidence. She claims Bayesians struggle with explaining why 

selection effects degrade evidence. This is not so; in fact Bayesians are especially well placed 

                                                            
7 For a uniform distribution, measure robustness by changing the upper limit of the uniform. 
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to explain when selection effects are bad and when they do not matter. Further, the Bayes 

factor also reveals why Popper’s requirement of severity is related to evidence. 

Popper (1963) defined a severe test as one where a predicted outcome was probable on the 

theory tested and improbable if the theory were false. Correspondingly, a Bayes factor is 

how much more probable the outcome is on the theory (or a model of it) versus H0 (for the 

examples we have considered). Thus, a test was severe if the Bayes factor departed 

considerably from 1. A Bayes factor measures strength of evidence defined as the amount 

by which one should change one’s strength of belief. Thus, evidence goes hand in hand with 

severe testing. Take the outcome to be an obtained mean difference and its standard error.  

With researcher’s degrees of freedom being used to cherry pick specific analytic decisions, 

there may be a similar probability of obtaining a given outcome on H0 as on H1; thus, the 

Bayes factor which took into account such selection effects as part of the data generating 

model would indicate there was little evidence (and that the test was not severe).  Further, 

a Bayes factor indicates that selection effects caused by selecting what the precise model of 

the data is (what covariates are in the model etc.) in the light of what mean difference and 

standard error they produce, is different from selection in the form of optional stopping 

(see e.g. Rouder, 2014, Dienes, 2016, for discussion). The former degrades evidence and the 

latter does not. 

This paper has discussed modelling of H1 and has not commented on the validity of the 

model of H0. Meehl (1967) argued that all point H0’s are false (at least for correlational 

studies, but one could generalize his claim, cf. Greenland, 2017). So why would one want to 

test against a point H0? There is always a theoretically minimally interesting value, defining 

not a point null but a null interval (H0 specified say as a uniform, or a normal with small SD). 

This null interval can be hard to pin down exactly, but whenever the SE of the parameter is 

large compared to whatever the interval could be, the point null will be a good enough 

approximation to the interval.   (And when the predicted scale of effect is in addition large 

compared to the SE, the Bayes factor will be informative.) So the point null is useful as it 

obviates the need to specify the null interval – and specifying the null interval, when done, 

should be done for objective reasons, which are often hard to come across. When a null 

interval can be approximately justified, it is easy to use in Bayes factors (e.g. Dienes, 2014, 

supplemental, section 6 for further discussion). 

Greenland (2017) urged considering statistical models as thought experiments to guide 

intuitions and inference. Every assumption in a model of a psychological phenomenon will 

be an approximation, and we could have modelled the same phenomenon or theory in 

other ways. We can treat our models as conjectural, as things to be tested from any angle, 

with complete openness to revise in any direction, foreseen or not. We can test whether it 

is useful to have a parameter in the model by considering the scale of effects the parameter 

predicts or rules out. Without fixing that scale for some objective reason, there are no 

empirical grounds for removing a parameter. As Bayes factors take into account scale, they 

will often be relevant to testing models. This paper has provided some ways of thinking 

about what scale is relevant that may be helpful. 
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 Box 4  Different philosophies for modelling H1 

The way one approaches modelling H1 in a Bayes factor depends on one's philosophy of science. 

1.Subjective Bayes factors (inspired by de Finetti, 1970). Probabilities are subjective and personal. 

Hence in representing a theory (e.g. the claim that a phenomenon exists) by a probability distribution 

for the different effect sizes predicted (the model of H1), one should consider the personal 

probabilities of a given individual (e.g. oneself, to make the outcome relevant to oneself). One can 

also carefully interview a range of experts, to obtain models that span from those skeptical of any but 

the smallest effects to those finding quite large effects plausible. The reader's predictions will 

hopefully roughly match up with one such model of H1. On this approach, one of the rock bottom 

processes of science is the rational persuasion of scientists until as a group they more or less agree 

about the support for a theory - even though each scientist has in effect their own personal model of 

the predictions made by a theory (models that should eventually converge). 

2. Objective Bayes factors (inspired by Jeffreys, 1939). The claim that the precise predictions of a 

theory are a personal and individually varying matter will not fit everyone's philosophy of science. To 

escape having in principle a different model of H1 for every person, the most reassuring alternative 

may be having one model of H1 for almost all occasions - a default Bayes factor. Consider a two-

group t-test. The within-group standard deviation defines an effect size regardless of original units yet 

an effect size that plausibly is the scale of effect that would obtain for many phenomena, to within a 

factor of 10. By having a default model of H1, post hoc cherry picking of one's model of H1 is avoided. 

Further, the stronger the evidence, the more robust the conclusion over different scale factors. That 

is, one need not fuss too much about the exact scale factor; just settle for a default. The problem is 

that scientists will always try to extract as many conclusions from data as they can, so they will reach 

down to the lowest degrees of evidence that inference will bear. Thus, inevitably we will deal with 

situations where the evidence is not overwhelming. In that case, default Bayes factors can be 

misleading, as we have seen in the paper. 

3. Informed Bayes factors. Assume science is about testing theories by considering the objective 

relations between theory, assumptions and data (Popper, 1963). Each theory and set of assumptions 

is a conjecture (Popper, 1963); in that conjectural world, certain things follow, including the relative 

probability of different hypotheses, which we can assess by Bayes factors. The function of the model 

of H1 is to represent the predictions of a theory for reasons that are public and hence can be 

criticized. Thus, a theory should specify its predictions via well-justified and otherwise simple 

assumptions. Having constructed a draft model of H1, one still needs to make a plausibility judgment 

that the model adequately represents the predictions of the theory.  On the one hand, in relying on a 

plausibility judgment, the informed Bayes factor is similar to a subjective Bayes factor. But that 

judgment should be treated not as an end in itself but as an indication of whether or not one can 

discover more constraints on predictions. For example, in using the room-to-move heuristic one 

might judge that the heuristic gives too large a scale factor. That judgment is an indication that, if you 

thought further, you may find objective reasons for why the effect should be smaller - and your job is 

to determine what those reasons are. On the other hand, the informed Bayes factor is similar to an 

objective Bayes factor in that scale factors are set for publicly available reasons. But in using an 

informed Bayes factor, unlike an objective Bayes factor, one must ensure that the model of H1 

represents one's specific theory so that the measure of evidence given by the Bayes factor is relevant 

to one's theory.  Thus, one cannot simply use default models of H1 without further thought about the 

relevance of the scale factor to the precise theory tested. 
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