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Centre de Ge´nie Électrique de Lyon, E´cole Centrale de Lyon, B.P. 163, 36 avenue Guy de Collongue,
69131 Ecully Cedex, France

~Received 15 December 1999; accepted for publication 6 September 2000!

The study of dielectric heterostructures has been advancing at a rapid pace. Much of the interest in
these materials stems from the fact that their physical properties can be systematically tuned by
variation of the size and shape of the constituents. Here we report on extensive computer
simulations of the effective permittivity of dielectric periodic~deterministic! heterostructures,
having monosized hard core inclusions of anisotropic shape~rod, ellipsoid! embedded in an
otherwise homogeneous and isotropic matrix. The real and imaginary parts of the permittivity, in the
quasistatic limit, are rigorously evaluated with the use of thePHI3D field calculation package and the
resolution of boundary integral equations. In this article, we show that the effective permittivity has
critical properties near a conduction threshold. The conduction threshold concentration can be
significantly modified by the size, shape, and spatial arrangement of the constituents. More
specifically, it obeys a square law dependence as a function of the aspect ratio, i.e., the ratio of the
smaller dimension to the larger dimension in both the rodlike and ellipsoidal inclusions. The data
exhibit a scaling behavior and can all be collapsed onto a single master curve, indicative of a
remarkable universality in the conductivity property. The critical exponents which determine how
the real and imaginary parts of the effective permittivity scale with the distance from the conduction
threshold are determined. Our results are compared with the scaling prediction of the standard
percolation theory for infinite three-dimensional random lattices of insulator–normal metal
composite systems. We also observed that the conduction transition is shifted towards higher
concentrations as the angle between the symmetry axis and the direction of the applied electric field
increases. Increasing the contrast ratio, between the permittivity and the conductivity of the
background medium and the inclusions, results in dramatic changes of the complex effective
permittivity, depending on the geometry of the inclusions. The scale-dependent properties and the
mechanism which govern criticality are related to the actual area of contacts between the inclusions.
© 2000 American Institute of Physics.@S0021-8979~00!07723-9#

I. INTRODUCTION

The answer to the title question is tremendously impor-
tant for both academic research and industrial processes in a
wide range of contexts from low to very high frequencies,
e.g., electronics packaging and devices such as sensors, cur-
rent limiters, acoustic actuators, and microwave absorbers. It
has received recent attention with experimental and numeri-
cal findings that indicate that critical phenomena play a ma-
jor role in the characterization of the complex permittivity of
dielectric heterostructures.1–6 For such 1–3 composites,7

then, we have a rich picture that can be viewed from several
perspectives: theoretical, numerical, and experimental. The
objective of these studies is to provide a thorough under-
standing of the polarization mechanisms in a two-component

composite material consisting of monosized hard core inclu-

sions of constituent 1 surrounded by a background material

of constituent 2. A serious difficulty common to these studies

is the detailed understanding of the underlying mechanisms

responsible for the sharp increases in real and imaginary

parts of the permittivity as the loading increases. Theoretical

considerations do not give a unique answer to this question,

but many reasonable suggestions have been proposed in the

literature.2,3,8–10The feature of this problem that we will ad-

dress in a systematic and rigorous manner is the effect of the
shape anisotropy of the inclusions on the permittivity of the
composite material. We would like to begin reminding the
reader of some results that are important to the discussion to
follow. Although the systems considered in this study all
have an ordered, periodic structure, we first examine several
elements related to randomly disordered systems. One of the
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objectives of this work will be to put in parallel percolation
on a random structure and close packing for a regular peri-
odic structure.

A. Critical behavior

Much progress has been achieved in the study of the
dielectric behavior in heterostructures by the infusion of per-
colation ideas from statistical physics and critical phenom-
ena. The achievement of a percolation mechanism in con-
densed matter materials has focused a large research effort
within the physics community owing to its wide range of
applications.1,4 Useful references which provide an introduc-
tion to the basic principles of percolation are several articles6

and the books by Stauffer and Aharony5 and Sahimi.11

Insulator-normal metal~random! composite systems are the
classic and best studied examples. For these systems, the
conductivity exhibits generic properties as the concentration
of metallic component is increased from the pure insulator
state.5 Percolation manifests itself in the sharp increase of the
measured dc conductivity which follows a power-law depen-
dence in the close proximity to the percolation threshold
characterized by a volume fractionf c . Percolation theory
predicts that the dc electrical conductivitys obeys a scaling
relations;( f 2 f c)

t, asf, is approached from the conducting
side (f . f c) wheref denotes the volume fraction of the high
conductivity component, ands;( f c– f )2s, where s de-
scribes the divergent behavior of conductivity, whenf, is
approached from the insulating side (f , f c). Similarly, the
real part of the permittivity shows a critical behavior, on both
sides off c , «8;u f 2 f cu2s. Theory then dictates that the di-
electrical behavior at percolation threshold must be associ-
ated with critical exponents liket ands which depend only
on the spatial dimension, i.e., for three-dimensional systems
t>1.5– 2.0 ands>0.7, and not on the lattice or percolation
type.4,5,11 It seems reasonable to suggest that some of the
ideas developed for percolation models in insulator-normal
metal mixtures may, in fact, be useful in understanding the
threshold conduction occurring in dielectric heterostructures.
Whether or not the mechanism~s! leading to the sharp in-
crease evidenced in dielectric–dielectric mixtures under cer-
tain circumstances differ from that of insulator-normal metal
mixtures needs to be clarified. In this article, we study peri-
odic structures for which the threshold concentration corre-
sponds to the close packing of inclusions and can be derived
by simple geometrical treatment. Whether the rapid rise in
permittivity arising at, or near contact, has a critical behavior
like the percolation threshold of random composites we just
discussed, and if so whether a power-law description will be
operative are questions not yet decided.

B. Experimental studies and scaling behavior

Although a considerable number of experimental studies
have been recorded in which the electrical conductivity and
permittivity of composites with spherical inclusions have
been considered, far fewer studies have been concerned with
the dielectric behavior of anisotropic structures. Recently, a
number of authors have entertained the possibility that fiber
inclusions in polymeric matrices are of practical importance
to investigate this problem.12–19Interestingly, the importance

of a proper treatment of the aspect ratio contribution to the
dielectric behavior of carbon fiber composites, by controlling
~rheologically and magnetically! the fiber orientations and
the aggregation in the specimens, was emphasized by Stur-
man and McCullough,12 and Carmonaet al.13 These authors
emphasized the difficulty of accurately assigning the experi-
mental value of the conduction threshold. In the past, there
have been several experimental searches14–16 to see howf c

scales withr / l , wherer andl are respectively the radius and
the length of the rodlike inclusion. Experiments on fiber
composites have not yet been able to resolve the disputes
between theories and simulations.20 In particular, we shall
refer later to work by Carmonaet al.13 and Balberget al.16

Carmonaet al. have conducted an extensive study of the
electrical conductivity of composites made of carbon fibers
with various radius-to-length ratios blended with epoxies and
silicon elastomers as host polymers.13 To analyze their data,
Carmona et al. applied heuristic dimensional arguments
which amount to being able to express the dc conductivitys
in terms of the scaling forml 2s5F( l 2f ), wheref refers to
the volume fraction of fibers. However their experiments
spanned a narrow range ofl ~1 to 3 mm! and the range off
over which the scaling form holds was not explored, i.e.,r / l
small enough and/orf not too large. Additionally, Balberg
and co-workers have suggested excluded volume constraints
to explain the dependence;(r / l )2 of the percolation
threshold.16 In another study, Carmona and El Amarti re-
ported conductivity measurements on graphite fiber rein-
forced polymers.17 These experimental measurements further
suggested that the percolation transition may belong to a new
universality as the anomalously large critical exponent of the
conductivity seen in their experiments cannot be reconciled
with the universal value.17 An interesting feature of the work
by Lagarkov and collaborators14 is the observation by these
authors that the square law dependence, i.e.,f c;(r / l )2 can
be derived by a standard effective medium approximation.
Interestingly, these authors renormalized the depolarization
factor in the vicinity of the percolation threshold concentra-
tion and found ar / l dependence off c , which represents a
substantial departure from the phenomenology of effective
medium theories. However, it is not clear what is the maxi-
mal r / l ratio up to which the percolation threshold concen-
tration can be described by ar / l law.13,15,20–22Moreover, our
ability to interpret the existing and new experiments is lim-
ited by the imprecision in our knowledge of the relevant
critical exponents. It should be also noted that the variation
in the rod length distribution and the presence of small quan-
tities of impurities which can act as chemical cross links may
lead to dramatic changes in the value off c . The above stud-
ies concern real~random! composite materials. We are not
aware of similar investigations for periodic composite mate-
rials.

C. Modeling of effective permittivity

The effective permittivity of heterostructures is a rather
old problem and has a venerable history.10 A number of ana-
lytic approaches, based on mixing rules and bounds, have
been used to analyze the permittivity for a medium in which
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one of the components can be considered as a host in which
inclusions, assumed to have a convenient shape~usually
spherical or ellispoidal!, of the other components are
embedded.1 Many mixing laws have been formulated with a
specific problem in mind to describe experimental observa-
tions, often couched in terms of empirically determined pa-
rameters. The great advantage of these mixing laws stems
from the possibility of tailoring them over a wide range of
conditions. But it should be mentioned that despite their ob-
vious merits and attractive features for variety of experi-
ments and practical applications, mixing laws suffer from
different shortcomings. These shortcomings have long been
identified as originating from the missing multipole interac-
tions, but attempts to overcome these failures have been lim-
ited to relatively simple situations, such as the dilute limit, or
the quasistatic approximation. Another aspect of the diffi-
culty is that mixing laws cannot describe the substantial
changes in dielectric properties in the vicinity of the perco-
lation threshold. Phenomenological analysis based on
effective-medium approximation~EMA! have been also
studied in the literature. EMA is a self-consistent method of
determining the effective properties of a heterogeneous me-
dium, in which the medium is replaced with a hypothetical
~uniform! effective medium whose properties are determined
self-consistently.1,10

There has been considerable progress in recent years to-
wards the development of high-accuracy first-principles
models for computational electromagnetics. Computational
electromagnetics, a field at the intersection of computer sci-
ence and electromagnetics, is intimately bound to diverse
subdisciplines within physical science. As the sophistication
of modern numerical techniques grows, materials scientists
have started to seek an understanding and control of permit-
tivity that extends beyond mere heuristic descriptions, e.g.,
mixing laws.Ab initio calculations have become an increas-
ingly important source of fitting data.2,3,23–29However, the
computational difficulty of properly describing the internal
~random! microstructure has so far prevented an accurate de-
termination of the local electric field distribution in realistic
~real-world! composite materials.30,31At present, exact simu-
lations are possible only for highly simplified models, i.e.,
periodic heterostructures, a situation common to studies of
many complex systems. This renders the problem determin-
istic and, therefore, amenable to a unique solution. During
the past 20 years or so, the development of efficient algo-
rithms to carry out such calculations has been an active area
of research. Motivated by these developments, some time
ago we began to numerically investigate the combined ef-
fects of finite conductivity and shape anisotropy on the cal-
culation of the complex permittivity of two-component di-
electric heterostructures.24–26 The permittivity is determined
by a number of factors, such as the volume fraction and the
permittivity of the constituents, the spatial arrangement, and
the size distribution of inclusions. The algorithm solves the
Laplace equation by converting boundary integral equations
into a sparse eigenvalue problem. An important ingredient in
our is that theseab initio calculations rely on the use of the
PHI3D field calculation package. We performed a large
number of checks on various two- and three-dimensional

simple microstructure geometries which serve also on the
applicability and utility of this modeling technique of more
complicated systems.24–26,32

D. Purpose of the present work and outline

This representative but far from exhaustive literature
survey highlights the considerable interest and importance
that has been attached to the answer to the title question. The
present study represents a natural continuation of a previous
paper3 to assess the relative importance of factors suggested
in prior experiments and models as affecting the effective
complex permittivity. But our real motivation in presenting
these results is to investigate in detail the influence of shape
anisotropy~rod and ellipsoid! and spatial orientation on the
rapid change of the real and imaginary parts of the permit-
tivity near the conduction threshold. The current work was
also undertaken in support of experimental efforts in this
body of literature.

With these considerations in mind, the outline of the
remainder of this paper is as follows: we first provide in Sec.
II the relevant background including a brief overview of the
model and the numerical calculations. Effective permittivity
calculations are presented in Sec. III in terms of shape an-
isotropy, conductivity, and spatial orientation of the inclu-
sions: the numerical results are compared with the prediction
of the percolation theory. Section IV discusses the signifi-
cance of these results. Finally, in the concluding remarks,
Sec. IV, we suggest future directions for continuing the de-
velopment of these simulations.

II. BACKGROUND AND NUMERICAL PROCEDURE

The guiding principles of the general algorithm used
here for computing the effective permittivity of dielectric
heterostructures will be given in this section along with some
necessary background. Full details have been given
elsewhere24–26,32and we recount here only the salient points.

A. Background information

In Refs. 24–26 and 32, the physics of the problem was
expressed mathematically by a boundary value problem for
the electrostatic potential in the material medium. At the out-
set, we make a number of basic ingredients in these calcula-
tions. The first is to consider that the medium consists of
homogeneous elements of two constituents, say 1 for the
inclusions and 2 for the host matrix, where the local permit-
tivity varies from constituent to constituent but has a fixed
value in a given constituent. The whole medium is placed
between the flat parallel plates of a capacitor. The second is
the quasistatic approximation: the scale of inhomogeneities
in the actual heterostructure is small compared to the rel-
evant scales within the material, e.g., wavelength and skin
depth. Thus, we treat the material medium as a homogeneous
equivalent material. The effective~relative! permittivity «

can be defined asĒ2«5(1/V)*V«̂u¹Vu2dV where «̂ is the
local permittivity value,Ē5(1/V)*VE dV denotes the aver-
age field which depends on the applied potentials,V is the
potential,E is the local electric field in the cell, andV is the
volume of the medium. Note that this definition ensures that
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if the composite medium were replaced by a homogeneous
medium, subject to the same boundary conditions, the rate of
dissipation would be the same. The third is that higher elec-
tric multipole interactions are treated exactly. This is of fun-
damental importance because higher multipole interactions
become important when the inclusions approach contact.
This method goes beyond the mean field approximation
which is at the basis of many effective medium laws.

B. Numerical method and code

The basic computational approach that is employed in
this study is similar to that used by some of us in previous
investigations.24–26,32 It should be noted that a number of
modeling techniques have been used by other researchers,
during the last decade, to investigate the dielectric properties
of heterostructures.22–29 In the difficult task of developing
numerical codes it has been found useful to adopt the
boundary-element codePHI3D to perform the numerical
analysis. Previous work in our group has established that this
modeling procedure is a viable and versatile technique to
perform the computations.24–26,32

Since details regarding the formulating numerical proce-
dures may be found in earlier publications, only a brief over-
view is given here. The basic elements of our simulations are
carried out as follows. In these calculations, the starting point
is the Laplace equation, i.e.,¹(«¹V)50 for given geometry
and boundary conditions, i.e.,¹V•n50 at the boundaries,
where n is the local unit vector normal to the surface. A
constant electric field is imposed and is assumed to be, with-
out loss of generality, parallel to thez axis. The calculation
depends on the shape, the permittivity, and the orientation of
the inclusions in the matrix, assuming that all of the inclu-
sions have a hard core. In the first step, the necessary bound-
ary integral equations required to calculate the electrostatic
potential distribution for the material medium are formu-
lated. Then, the integral equations are converted to matrix
equations. Next, to solve these matrix equations, we use a
matrix inverse iteration approach based on the Galerkin
method of weighted residuals. One salient feature of our
method is that only the boundaries of the geometry need be
discretized, not the entire volume, which has the effect to
reduce the memory space required for manipulation of data,
but the matrix equation to solve is asymmetric and full. The
PHI3D field calculation package considers a semi-automatic
meshing system. In simple test cases, this approach has duly
led to the same results as the ones obtained from the appli-
cation of other numerical methods.24–26 The program uses a
general curvilinear grid to divide the computational domains
into discrete cells and integrate the governing equations on
the individual cells to construct algebraic equations for the
discrete unknowns. Figures 1~a!–1~c! illustrate the finite-
element mesh for each unit~cubic! cell considered in the
present work. Two things are worth observing: on the one
hand, the symmetry of the structures provides that we only
need to simulate the potential distribution over 1/8th of one
inclusion, and on the other hand, the results were found the
same if the elementary cells shown in Fig. 1 were parallepi-
peds rather than cubes.24 Note that, formally, the inclusions

are allowed to fuse each other, i.e., the region of permittivity
«1 can intercept the sides of the parallelipipedic cell.2,24,32

The computational requirements of this code are handled
easily by the random access memory and speed of large
modern workstations. The run time for a typical calculation
ranges from a few minutes to a few hours for calculating the
permittivity of a typical three-dimensional configuration on a
HP model 712/80 workstation. As was initially worked out
in detail in Refs. 24–26 and 30, this simulation method has
the advantage of having a low computational cost.

III. SIMULATION RESULTS

We present here three detailed results, to illustrate the
effects of shape anisotropy, spatial orientation, and conduc-
tivity of the inclusions on the effective permittivity, we have

FIG. 1. Finite-element mesh for the unit cells used for the numerical analy-
sis: ~a! spherical inclusion,~b! rodlike inclusion, and~c! ellipsoidal inclu-
sion.
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achieved using the numerical procedure described in Sec. II.
In the following subsections, theab initio simulations were
conducted on periodic heterostructures having a simple cubic
lattice. A detailed comparison between anisotropic and
spherical inclusions is provided. We defer to Sec. IV any
discussion of these results.

A. Effect of shape anisotropy

As an illustrative example, all the calculations presented
in this subsection were carried out with the values«1580
2 i102 and «2522 i0. We have selected as a test case this
set of values because of potential applications to biological
systems.18

1. Rodlike inclusions

The first series of calculations were performed on rod-
like inclusions. More specificaly, the rod radius is kept fixed
and the volume fraction of the inclusions changes by varying
the rod lengthl. In our calculations, we varied the rod radius
r from 0.05 to 0.45. The details of numerical results for rods
have been described elsewhere,3 so only a short summary is
given here. In Figs. 2~a! and 2~b!, the real and imaginary
parts of the relative complex permittivity are plotted versus
the volume fractionf, respectively. The most distinguishing
feature of the data is the sharp increase in permittivity for
f [ f * , which is particularly evident in the imaginary part.
This ‘‘conduction threshold’’ marks the transition from insu-
lating to conducting behavior and is identified with the
asymptotic variations of«8 and «9 near f * . We found that
the conduction threshold shifts to a greater specimen radius
as the rod fraction increases, i.e.,f * ;r 2 ~Fig. 2 of Ref. 3!.
Observe that the quadratic law corresponds to the close pack-
ing condition sincef * occurs when the cylinders touch. For
this system in which one cylinder occupies each unit cell,
with L the side length of the unit cell, the volume fraction of
inclusion has the formf 5pr 2l /L3. For cylinders arranged
on a simple cubic lattice, the close packing condition occurs
for l 5L if the radius is kept fixed. Thenf * is given by f *
5p(r / l )2. It is useful to compare the permittivity calculated
for a composite based on rodlike and spherical inclusions.
Comparing these graphs in Figs. 2~a! and 2~b!, one can ob-
serve that the volume fraction dependence of the permittivity
is strikingly different for rodlike inclusions from its behavior
for spherical inclusions. Another relevant feature of our re-
cent simulation results is that«9 is related tof through the
heretofore unobserved scaling behavior«95rF ( f / f * ): all
the data for the imaginary part of the permittivity can be
scaled onto a single master curve.3 This scaling demonstrates
that, despite the wide variation in the aspect ratio, a single
parameter controls the dielectrical behavior of these compos-
ites. As of yet, the question concerning the functional form
of F(x) is not settled. Of interest is the evolution of the
power-law fits applied to the real and imaginary parts of the
permittivity in the range 1023,u f – f * u,1021. Figures 3~a!
and 3~b! show«8 and«9 as a function of the distance from
the conduction threshold,f – f * , in a double-logarithmic
scale. Linear fits to the log–log plots of«8 and«9 give scal-
ing laws which can be characterized by two critical expo-
nents s* and t* according to «8;( f * – f )2s* , and «9

;(f–f* )t* with s* 50.6660.10 andt* 51.3060.19 as pa-
rameters. Note that these values ofs* and t* do not coinci-
date either with the universal values of the standard percola-
tion model, or with the mean field exponents calculated by
several authors.33 We had earlier noted the valuess* 50.65
60.15 andt* 50.8060.05 for spherical inclusions.2

2. Ellipsoids

We now use simulation data to quantify variations of
effective permittivity for ellipsoidal inclusions. To the best
of our knowledge, we do not know of any published work on
the critical aspects of ellipsoid composite electrical behavior.
Figures 4~a! and 4~b! show the real and imaginary compo-
nents of the composite material with the long axis of the

FIG. 2. ~a! Real part of the effective permittivity«8 is shown, in a log–log
plot, as a function of the volume fractionf of the inclusion phase. Rodlike
inclusions~permittivity «15802 i102) are placed in a host matrix material
of permittivity «2522 i0. Simple-cubic lattice configuration. Inset shows
the configuration of the two-component periodic composite material inves-
tigated in this study. Symbols are: (h)r 50.05, (L)r 50.10, (n)r 50.20,
(3)r 50.30, (s)r 50.40, and (1)r 50.45. The solid lines are guides to the
eye. The case of spherical inclusions is also shown~* !. The direction of the
applied electric field is parallel to the rod axis.~b! Same as in~a! for the
imaginary part of the effective permittivity«9. Inset indicates how the vol-
ume conduction threshold concentrationf * is defined.
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inclusion parallel to the direction of the applied uniform
electric field, and wherec is the length of the principal sym-
metry axis and a is the length of each axis perpendicular to
the principal symmetry axis. Here we assumec.a5b
which describes a prolate spheroid. Figures 4~a! and 4~b!
reveal the following things. First, at very low loading of
inclusions, the composite permittivity remains at the level of
the permittivity of the unfilled matrix,«2 . As the inclusion
loading is increased, in a certain region the permittivity in-
creases rapidly by many orders of magnitude. Second, this
sharp nonlinear variation in«8 and «9 is sensitive to the
aspect ratio~short axis length/long axis length! of the inclu-
sions. However, despite their differences all the data do have
some features in common. For instance, we have analyzed
the scaling of the conduction threshold concentration with
the lengtha. Specifically, our data show a square law depen-
dence, i.e.,f * ;a2, as can be deduced from Fig. 5. One can
see that this result is consistent with the close packing con-

dition for a system in which one prolate spheroidal inclusion
occupies each unit cell of side lengthL. This is a direct
analogue of the above result for cylinders. Here, the volume
fraction of inclusion isf 54pa2c/3L3. For prolate spheroids
arranged on a simple cubic lattice, the close packing condi-
tion occurs whenc5L/2, corresponding tof * 5(p/6)
3(a/c)2. The data exhibit an unexpected scaling behavior
~see Fig. 6! that transcend the large variations: all the data
can be collapsed onto a single master curve,«9
5aF( f / f * ), indicating of a universality in the conductivity
property. To analyze the critical behavior more quantita-
tively, we find that it is convenient to use the power-law
analysis. The results are shown to scale onto single curves
like Figs. 3~a! and 3~b!. As the critical point is approached,
the numerical data and a least-square fitting provides the ex-
ponentss* 50.4160.07 and t* 50.5760.04. We observe

FIG. 3. ~a! Real part of the permittivity«8 as a function of the scaling
variable f – f * , wheref , f * . In a log–log plot the points fall on a straight
line with slopes* 50.6660.10. Same symbols as in Fig. 2~a!. ~b! Same as
in ~a! for the imaginary part of the effective permittivity«9, where f . f * .
In a log–log plot the points fall on a straight line with slopet* 51.30
60.19. Same symbols as in Fig. 2~a!.

FIG. 4. Real part of the effective permittivity«8 is shown, in a log–log plot,
as a function of the volume fractionf of the inclusion phase. Ellipsoidal
inclusions~permittivity «15802 i102! are placed in a host matrix material
of permittivity («2522 i0). Simple-cubic lattice configuration. Inset sche-
matically shows the configuration of the two-component periodic composite
material investigated in this study. Symbols are: (L)a5b50.05, (n)a
5b50.10, (3)a5b50.20, (* )a5b50.30, and (s)a5b50.40. The solid
lines are guides to the eye. The case of spherical inclusions is also shown
~* !. The direction of the applied electric field is parallel to the principal
symmetry axis.~b! Same as in~a! for the imaginary part of the effective
permittivity «9.
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that they are different from the values obtained for rodlike
inclusions ~see Table I for comparative purpose!. We will
return to a discussion of these values later.

B. Effect of spatial orientation

The next important step is to determine how spatial ori-
entation of the inclusions affect the permittivity of the mate-
rial. All the calculations presented in this section are based
on the values«15802 i102 and«2522 i0.

1. Rodlike inclusions

We made extensive calculations of the angular depen-
dence of the permittivity. In Figs. 7~a! and 7~b!, we present a
plot of «8 and «9, as a function of the volume loading for
several values of the angle of the symmetry axis of the rod
(r 50.10) relative to the direction of the applied electric
field, a. A more revealing way to present these results is to
plot these quantities as a function ofa for two values off,
e.g.,f 50.05 andf 50.113. The inset of Fig. 7~b! shows such
representation for«9. The same trend~not represented! is
observed for«8. As the value ofa approaches 90°, i.e., the

condition most defavorable for a large area of contact,«8 and
«9 decrease significantly. Note that we were not able to de-
terminef * (a.0°), andconsequently, thes* andt* values,
because of computational limitation: what we can say is that
the values off * (a.0°) are higher thanf * (a50°). This
result is very similar to what Agariet al. had recently re-
ported in a study of polyethylene composites filled with ori-
ented carbon fibers.34

FIG. 5. Conduction volume threshold concentrationf * as a function of the
length of the semi-minor axis of the ellipsoid,a.

FIG. 6. Imaginary part of the effective permittivity«9 as a function of the
normalized volume concentrationf / f * . Same symbols as in Fig. 4~a!.

FIG. 7. ~a! Same as in Fig. 2~a! for the real part of the effective permittivity
when the rod axis is oriented at an anglea with respect to the electric field
vector direction, i.e., thez direction, see the inset for notations. Symbols are:
(h)a50°, (L)a530°, (n)a545°, (x)a560°, and (1)a590°. Here
r 50.10. ~b! Same as in~a! for the imaginary part of the effective permit-
tivity. The inset shows the angular dependency of«9 when f 50.05(n) and
f 50.113(h).

TABLE I. Results of fitting the real and imaginary parts of the effective
permittivity of two-component composite materials to a simple power law
giving the critical exponentss* and t* . Inclusions of permittivity«1580
2 i102 are placed in a host matrix of permittivity«252-i0. Simple-cubic
lattice configuration.

Inclusion s* t*

Sphere 0.6560.15 0.8060.05
Rod 0.6660.10 1.3060.19
Ellipsoid 0.4160.07 0.5760.04
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2. Ellipsoids

Similar to the angular dependencies shown in Figs. 7~a!
and 7~b! the same trend for ellipsoidal inclusions is found
@the figures are omitted because of space limitations#: this is
a clear manifestation of a strong shape anisotropy effect on
the dielectric characteristics of heterostructures. In like fash-
ion, with increasinga, we observe that«8 and«9 decrease.

C. Effect of conductivity

It is now time to determine to what extent large values of
«18 and«19 affect the permittivity of the composite material.
All the calculations presented in this section are based on a
wide selection of the real and imaginary parts of«15«18
2 i«19 , i.e., «18 ranges from 5.5 to 30, and«19 ranges from
1022 to 0.5, and«252.22 i1024. We have selected as test
cases these sets of values because of potential applications to
high-energy density capacitors, particularly for space-power
technology.35 For example, composites which have large real
part of permittivity and low imaginary part of permittivity
with low volume concentration of inclusions would be desir-
able for their lower weight and lower cost.

1. Rodlike inclusions

For comparative purpose, we have first plotted in Figs.
8~a! and 8~b! the real and imaginary parts of the effective
permittivity for spherical inclusions and different values of
«18 and «19 . It may be seen that the major effect of shape
anisotropy is a strong increase of«9. This is demonstrated by
a comparison of Figs. 8~c! and 8~d!. From Figs. 8~c! and
8~d!, one can see that pronounced changes~up to a factor of
10! in the imaginary part of the effective permittivity when
the inclusions have complex permittivity extremely different
from the host medium.

2. Ellipsoids

In a similar way, we carried out additional calculations
with ellipsoidal inclusions. The results are shown in Figs.
8~e! and 8~f!. The earlier conclusion that we drew for rodlike
inclusions is valid here as well.

IV. DISCUSSION

Collectively, the data reported here demonstrate that the
shape anisotropy of inclusions in dielectric heterostructures
dramatically affect the effective complex permittivity. Re-
markably, we found that the square law dependence of the
conduction threshold versus the aspect ratio applies for both
rodlike and ellipsoidal inclusions, over a wide range of as-
pect ratios. Based on the preceding observations it is impor-
tant to make a number of qualifying remarks. First, the ef-
fective permittivity of dielectric heterostructures composed
of inclusions having shape anisotropy can be an extremely
sharp function of volume fraction of inclusions, depending
on the aspect ratio, and the orientation and the conductivity
of the inclusions. The results we have obtained are consistent
with previous observations made by several groups.13–16,20

Second, one of the most interesting conclusions which arises
from the results of Sec. III is that the transition from insulat-
ing to conducting behavior is critical, exhibiting scaling

laws. There are indications of unconventional critical expo-
nents from power-law volume fraction dependences of the
permittivity. A study of the scaling laws reveals lessons for
how to make dielectric heterostructures having a low con-
duction threshold. Third, our results illustrate the importance
of properly describing the alignment and contact of inclu-
sions in the matrix, a result that opens up interesting possi-
bilities for the future analysis of experimental data.

Shape anisotropy and spatial orientation in the dielectric
properties of heterostructures are of considerable interest, es-
pecially in the light of the suggestion that the conduction
threshold is related to the actual area of contacts between the
inclusions.3 The essential point is that the different behavior
between isotropic and anisotropic inclusions must reflect the
surface area of the inclusions. What general statements can
we now make about the connection between conduction
threshold and contact? The answer can be guessed on sym-
metry grounds. To explain, we may state matters as follows:
Spherical shape provides a minimum of surface area for a
given volume fraction and a fixed number of inclusions.
Similarly, elongated shapes, which deviate from spherical,
provide less surface area for a given number and volume
fraction of inclusions. Consequently, spherical inclusions
must occupy a higher volume fraction before guaranteeing
contact for the existence of a continuous path that crosses the
sample. We may observe that, for inclusions having aniso-
tropic shapes, the full rotational symmetry of the problem is
broken at the critical point, a unique preferred direction is
picked with different critical exponents than the isotropic
problem: this is apparent from a comparison ofs* andt* in
Table I. As this work indicates, the sharp increase in the
permittivity when plotted as a function of volume filling
fraction characterizes higher electric multipole interactions
because all of the inclusions contact at once.9 We note also
that the values off * are consistent with analytical results
from theoretical predictions based on the concept of ex-
cluded volume associated with three-dimensional objects.16

The excluded volume is much larger than the actual volume
for extended shapes, such as rods and ellipsoids. Then, the
resulting f * may be lower than for an array of spheres. For
spheres, the actual and excluded volumes are the same.
Equally significant, we observed a strong orientational effect
on the permittivity. This again indicates that the more ex-
tended shape which deviates from spherical provides what is
needed for contact: they are characterized by more favorable
depolarization factors.

Many authors, based on both experimental and theoreti-
cal work, have discussed the deviation from universality of
the s and t exponents.17,19,20,36For example, Chen and John-
son obtained a lowerf c ~0.075! and a highert ~3.1! for
filamentary nickel than for nodular nickel (f c50.265 andt
52.2) both in polypropylene.19 Lee et al. argued that one
can only expect universal exponents if the local microstruc-
ture is isotropic and contains only short-range correlations.37

It is equally true, however, that physical mechanisms other
than contact are also involved if we are not dealing with an
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idealized computer model but with real engineering materi-
als. Many questions still remain as to what factors dominate,

particularly when the interfacial contact is mediated by ad-

sorption zones that introduce parameters such as adhesive

interactions at contact, tunneling phenomena, and partial

wetting. This lack of knowledge about structures has limited

an understanding of the physical properties of these materi-
als.

V. CONCLUDING REMARKS

We now summarize our findings and suggest some av-
enues for future research. We have performedab initio cal-
culations of the effects of shape anisotropy and orientation of
inclusions in periodic~deterministic! arrangements on the
complex permittivity of 1–3 composites, in the quasistatic
limit. In the work reported here, we focused on two specific
examples: rodlike and ellipsoidal inclusions. Besides being

FIG. 8. ~a! Real part of the effective permittivity«8 is shown as a function of the volume fractionf of the inclusion phase. Spherical inclusions~permittivity
«15«182 i«19) are placed in a host matrix material of permittivity«252.22 i1024. Simple-cubic lattice configuration. Symbols are: (h)«155.52 i1022,
(L)«1592 i51022, (n)«15202 i1021, and (s)«15302 i0.5. The solid lines are guides to the eye.~b! Same as in~a! for the imaginary part of the
effective permittivity«9. ~c! Same as in~a! for the rodlike inclusions.r 50.10. The direction of the applied electric field is parallel to the rod axis.~d! Same
as in ~c! for the imaginary part of the effective permittivity«9. ~e! Same as in~a! for the ellipsoidal inclusions.a5b50.10. The direction of the applied
electric field is parallel to the principal symmetry axis.~f! Same as in~e! for the imaginary part of the effective permittivity«9.
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important in their own right, these effects have considerable
interest and play a key role in a diverse range of problems in
engineering areas, as well as in biological processes. The
ability to systematically control the properties of dielectric
heterostructures by variation of size and shape is an impor-
tant development with many implications for how these ma-
terials should be processed and assembled. The conduction
threshold of a two-component heterostructure is an important
quantity which can give useful information on the shape an-
isotropy of the materials. It seems reasonable to conclude
that a low threshold for the onset of conduction can be
achieved in practice by tuning the geometrical parameters of
the inclusions. From these results, we find that the close
packing condition accounts well for the aspect ratio depen-
dence of conduction threshold. Returning to the title ques-
tion, we emphasize that the effective permittivity of systems
containing isotropic and anisotropic shapes of inclusions dif-
fer markedly, reflecting the geometrical connectivity of this
spatial arrangement. This point is made more clear by appeal
to Figs. 2~a! and 2~b!, Figs. 4~a! and 4~b!, and Fig. 8. Using
numerical evidence we have argued for the appropriateness
of a critical behavior to describe the sharp increase of the
permittivity when the filler concentrationf becomes higher
than a valuef * . In fact, one can sweep across broad ranges
of permittivity and conductivity with only modest changes in
the aspect ratio by working ‘‘close’’ to the conduction
threshold concentration. We have mentioned that this scale-
dependent behavior has been rationalized by arguing that
inclusions having higher surface area per volume favor easy
formation of conductive networks at lower concentration of
inclusions and exhibit a lower conduction threshold. Addi-
tionally, this work has shown that the two static exponents
s* and t* are different from the presumably universality
valuess and t derived from the standard~geometrical! per-
colation model. It should also be noted that the electrical
response of the composites is affected by the manner in
which the field is applied: the transverse conductivity is
smaller than the axial conductivity.

The continued miniaturization of electronic devices is
leading us into a realm of nanostructures, which exhibit elec-
tronic and optical properties. The technological utility of ul-
trasmall cylinders is a strong function of their mechanical
robustness and electromagnetic properties. Metallized tu-
bules offer an attractive geometry for microwave
applications.34 Moreover, because of this large aspect ratio,
fiber-filled composites at low volume fractions can have
elastic moduli orders of magnitude larger than that of com-
posites containing carbon black aggregates at the same vol-
ume fraction. The controlled assembly of materials with pat-
terned structural features on a given length scale is a rapidly
expanding area in materials science, e.g., Ajayanet al. de-
scribed a technique that produces aligned arrays of carbon
nanotubes.38 One of the greatest challenges involved in the
development of advanced dielectric heterostructures is accu-
rate characterization of the size, shape, and orientation of
individual inclusions. This challenge must be met in order to
optimize electromagnetic shielding properties. As was
pointed out by Sauet al., short carbon fibers filled compos-

ites are more effective than particulate filled composites in
providing good shielding from electromagnetic
interference.39

A systematic test with experiments has not yet been car-
ried out, although such a comparison is necessary for ad-
vancing our understanding of these fascinating materials. In
large part, the present work was motivated by our interest in
composite materials, in particular those involving carbon fi-
ber and carbon black aggregates inclusions.40–43 Such mate-
rials are predicted to be rich in physics exhibiting properties
such as diverse as magnetoresistance, hopping, and tunneling
phenomena.43,44 Several important aspects of the dielectric
properties of heterostructures were not addressed in this
study. Some of these issues can be addressed numerically,
and we plan to continue these studies to explore this issue
when the mixture geometry is precisely specified. Hopefully,
experiment can also play a role. Already, important experi-
mental contributions have been made concerning different
materials by a number of groups. A test of these numerical
results requires a highly purified sample with careful rod
length distribution. A number of important issues remain to
be addressed as far as this simulation work is concerned.
First, while the numerical calculations presented here were
derived for regularly shaped, sized, and periodically distrib-
uted inclusions in a simple cubic lattice, the formalism on
which they are based is quite versatile and can be extended
to other situations, e.g., the more general problem of the
anisotropic and tensorial conductive behavior of dielectric
heterostructures. Yet, another dimension of complexity is
added by the fundamental question of randomness. The ef-
fective permittivity of random heterostructures may be cal-
culated only approximately, even for monodisperse
spheres.26 For random systems, we expect that two factors
govern the contact between inclusions: geometrical and sta-
tistical. Geometrically, the number of contact points per in-
clusion is related to the surface area of the inclusion; statis-
tically the contacts involving a given component increase
with the increase in the amount of that component. Even
though an acceptable description of the complex three-
dimensional structure with the interface surfaces oriented in
random directions with respect to the applied electric field
has been reported, it does not provide a satisfactory descrip-
tion of the dielectric properties of real heterostructures for
which specific interactions between the inclusions and the
host matrix need be taken into account. Moreover, in~ran-
dom! composites containing complex-shaped constituents,
an exact calculation of higher multipole interactions is in-
tractable. Evidently, the richness of the polarization phenom-
ena for heterostructures with inclusions having irregular ge-
ometries poses a severe challenge to any complete theoretical
understanding. Work is in progress in that direction but is
computationally very demanding. A more detailed knowl-
edge of the scattering phenomena could also be helpful in the
design of periodic dielectric systems in the context of pho-
tonic bang gap structures.45
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