
 Open access Proceedings Article DOI:10.1109/RE.2012.6345838

How do software architects consider non-functional requirements: An exploratory
study — Source link

David Ameller, Claudia P. Ayala, Jordi Cabot, Xavier Franch

Institutions: Polytechnic University of Catalonia, École des mines de Nantes

Published on: 24 Sep 2012 - IEEE International Conference on Requirements Engineering

Topics: Software documentation, Social software engineering, Software requirements, Software construction and
Software development

Related papers:

 On Non-Functional Requirements

 On Non-Functional Requirements in Software Engineering

 Software Architecture in Practice

 Quality Requirements in Practice: An Interview Study in Requirements Engineering for Embedded Systems

The Bad Conscience of Requirements Engineering : An Investigation in Real-World Treatment of Non-Functional
Requirements

Share this paper:

View more about this paper here: https://typeset.io/papers/how-do-software-architects-consider-non-functional-
2n4dda8nyg

https://typeset.io/
https://www.doi.org/10.1109/RE.2012.6345838
https://typeset.io/papers/how-do-software-architects-consider-non-functional-2n4dda8nyg
https://typeset.io/authors/david-ameller-2bsk65i67m
https://typeset.io/authors/claudia-p-ayala-2v4n0xgw16
https://typeset.io/authors/jordi-cabot-21jbdgrj0z
https://typeset.io/authors/xavier-franch-2hsk73dm35
https://typeset.io/institutions/polytechnic-university-of-catalonia-2ol7espr
https://typeset.io/institutions/ecole-des-mines-de-nantes-2vzw1tuu
https://typeset.io/conferences/ieee-international-conference-on-requirements-engineering-vqsvfe3q
https://typeset.io/topics/software-documentation-3jdsus7a
https://typeset.io/topics/social-software-engineering-2cgo6t19
https://typeset.io/topics/software-requirements-346cp1uw
https://typeset.io/topics/software-construction-3b0bx0uv
https://typeset.io/topics/software-development-1vxoqmyk
https://typeset.io/papers/on-non-functional-requirements-6m70ilnsx4
https://typeset.io/papers/on-non-functional-requirements-in-software-engineering-3a6a23qlo6
https://typeset.io/papers/software-architecture-in-practice-1msttzulix
https://typeset.io/papers/quality-requirements-in-practice-an-interview-study-in-4cteszn959
https://typeset.io/papers/the-bad-conscience-of-requirements-engineering-an-3l2hxw5ezm
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/how-do-software-architects-consider-non-functional-2n4dda8nyg
https://twitter.com/intent/tweet?text=How%20do%20software%20architects%20consider%20non-functional%20requirements:%20An%20exploratory%20study&url=https://typeset.io/papers/how-do-software-architects-consider-non-functional-2n4dda8nyg
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/how-do-software-architects-consider-non-functional-2n4dda8nyg
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/how-do-software-architects-consider-non-functional-2n4dda8nyg
https://typeset.io/papers/how-do-software-architects-consider-non-functional-2n4dda8nyg

How do Software Architects Consider Non-Functional Requirements: An

Exploratory Study

David Ameller, Claudia Ayala, Xavier Franch

Software Engineering for Information Systems Group

Universitat Politècnica de Catalunya (GESSI-UPC)

Barcelona, Spain

{dameller, cayala, franch}@essi.upc.edu

Jordi Cabot

AtlanMod

INRIA - École des Mines de Nantes

Nantes, France

jordi.cabot@inria.fr

Abstract—Dealing with non-functional requirements (NFRs)
has posed a challenge onto software engineers for many
years. Over the years, many methods and techniques have
been proposed to improve their elicitation, documentation, and
validation. Knowing more about the state of the practice on
these topics may benefit both practitioners’ and researchers’
daily work. A few empirical studies have been conducted in the
past, but none under the perspective of software architects, in
spite of the great influence that NFRs have on daily architects’
practices. This paper presents some of the findings of an
empirical study based on 13 interviews with software architects.
It addresses questions such as: who decides the NFRs, what
types of NFRs matter to architects, how are NFRs documented,
and how are NFRs validated. The results are contextualized
with existing previous work.

Keywords-Non-functional Requirement; Quality Require-
ment; NFR; Software Architect; Architectural Decision; Em-
pirical Study;

I. INTRODUCTION

Non-functional requirements (NFRs) express desired

qualities of the system to be developed. They refer both to

observable qualities such as system performance, availability

and dependability, and also to internal characteristics con-

cerning, e.g., maintainability and portability. Other authors

use different names, remarkably “quality requirement”, as a

synonymous of NFR, being the diversity of terminology and

meaning well-known by the community [1].

Over the years, a common claim made by software

engineers is that it is not feasible to produce a software

system that meets stakeholders’ needs without taking NFRs

into account. As a result, software development projects

currently invest a lot into satisfying NFRs [2]. But still it

seems to be a lopsided emphasis in the functionality of the

system, even though the functionality is not useful or usable

when NFRs do not hold [3].

NFRs affect different activities and roles related to the

software development process. One of the strongest links is

with software architecture, especially architectural decision-

making: NFRs often influence the system architecture more

than functional requirements do [4]. For instance, Zhu and

Gorton state that “the rationale behind each architecture

decision is mostly about achieving certain NFRs” [5];

Chung and Leite claim that “[NFRs] play a critical role

during system development, serving as selection criteria for

choosing among myriads of alternative designs and ultimate

implementations” [3]; and Ozkaya et al. say that “business

goals and their associated quality attribute requirements

strongly influence a system’s architecture” [6].

These works provide little direct evidence from real

case studies to support the statements. Both requirements

engineers [7] and software architects [8] demand field work

to sustain or dismiss that “much of a software architect’s life

is spent designing software systems to meet a set of quality

attribute requirements” [9].

Under these circumstances, we decided to design and run

an exploratory study around the research question:

How do software architects deal with

non-functional requirements in practice?

The study was conducted over our local network of

software architects. Based on the analysis of the answers,

we were able to draw some observations about the use and

impact of NFRs in industrial practice, align them with the

results of previous empirical studies, and discuss possible

actions that could eventually help to improve the state of

practice in the field.

The rest of the paper is structured as follows. In Sec-

tion II, an overview of existing empirical studies on the

management of NFRs is provided. In Section III, the details

of our own study, based on semi-structured interviews, are

given. In Section IV, the most relevant observations gathered

from the interviewees are enumerated. In Section V, these

observations are discussed and aligned with the studies cited

in Section II. Finally, Section VI provides some conclusions

and future work.

II. EMPIRICAL STUDIES ON NFRS: AN OVERVIEW

In spite of their acknowledged importance, not so many

empirical studies centred on NFRs are available, see Ta-

ble I for a summary. A recent systematic literature review

Table I
SUMMARY OF EMPIRICAL STUDIES

Ref. Subject of research Type of analysis Companies Population

[7] Elicitation; dependencies; expression; cost estima-
tion; prioritization

Systematic Literature Re-
view

Not specified 1.560 candidate studies, 18 selected
studies

[10] Importance of NFR types; dependencies; expres-
sion; satisfaction

Interviews 5 companies 5 project leaders, 5 product managers

[11] Prioritization Interviews 11 companies 11 project leaders, 11 product managers

[12] NFR in general. Elicitation, documentation, test
and management in particular

Interviews 2 companies 14 (different roles)

[13] NFR importance e-survey 25 companies 6 product managers, 14 project leaders,
11 programmers

[14] NFR importance e-survey Not specified 162 users, 110 managers, 46 developers

[15] NFRs in OSS adoption Questionnaire 15 companies 15 developers or project leaders

[16] Architecture design rationale Questionnaire Not specified 81 software architects

[17] Architecture design documentation and validation Structured group discussion 10 companies 10 software architects

Ours Management of NFRs by architects Interviews 12 companies 13 software architects

conducted by Svensson et al. [7] found no more than 18 em-

pirical research studies centred on investigating the benefits

and limitations on methods around NFRs for five identified

areas: elicitation, dependencies, level of quantification, cost

estimation, and prioritization. Some findings that are relevant

to our aim were: there is no clear view on how to elicit

NFRs; quantification of NFRs depends on the market and

cost value; different stakeholders may have different views

on the importance of NFR types. The need to increase the

number and quality of studies on NFRs was pointed out as

a key finding of the review.

The authors of this systematic review themselves have

conducted several empirical studies on the topic. In [10],

[11], they focused on the analysis of practices on companies

that produce market-driven embedded systems. Svensson et

al. targeted several aspects on NFRs in [10], whilst in [11]

they focused on issues related to requirements prioritization.

The findings of this last paper suggest that there seems to be

a lack of knowledge about managing NFRs in these compa-

nies; the authors hypothesise that this could be related to the

lower importance given to them with respect to functional

requirements (this is a recurrent argument in several studies).

[10] reports a different perception of some NFR aspects

depending on the role of the interviewee (e.g., project

managers ranked performance as the most important quality

aspect, whilst project leaders ranked usability first), which

supports the idea of replicating empirical studies for different

role types. Other empirical works from the authors in more

general subjects occasionally provided further evidence for

NFRs, e.g., [18], [19].

Borg et al. studied in depth two case studies in two

Swedish companies [12]. They interviewed 7 professionals

for each case. They reported some common findings in both

companies (e.g., vagueness of NFRs and difficulty to test),

but also some differences, remarkably in the provenance

of requirements, which was different in both cases due to

contextual factors. The main conclusion of their study is that

although both organizations were aware of the importance of

NFRs, still their main focus was on functional requirements.

The authors made the hypothesis that methods and tools

supporting NFRs throughout the entire development process

would be the best way to fight against this situation.

Several works focused on the importance of NFR types.

In [13], an e-survey with 31 valid responses was conducted

with the purpose of analysing the importance of the different

types of NFRs depending on factors like type and size

of project, role of the observer and application domain.

Concerning role, they checked that the same three types

were identified by the three analysed roles, although the

importance of the types could vary. Similar research ques-

tions were explored in [14] also with an e-survey with 318

responses in this case.

In [15], Anh et al. explored several issue related to

OSS adoption projects. One of the research questions was

about the degree of satisfaction of NFRs by selected OSS

components. The authors explored different types of NFRs

and showed that performance and reliability are the two

types considered most important by interviewees, and that

this last type is the worst fulfilled by the components.

Although we have focused on studies centred on NFRs,

we can find further evidences in other studies on related

topics. For instance, Tang et al. work on architecture de-

sign rationale [16] provides evidence that our subject of

research is highly relevant for software architects. This paper

discusses the role of the architect in comparison to the

dedication to different tasks and the design of NFRs appears

third in the list (of interest for 64.2% of interviewees), right

after overall system design (86.4%) and requirements or

tender analysis (81.5%). However, the paper does not further

discuss the relationship of software architecture and NFRs.

In the same field, Ali Babar et al. [17] reported ob-

servations about documentation and validation of software

architectures. Participants declared that having a good under-

standing of the types and levels of required quality attributes

is a vital factor as the types of attributes to be evaluated

usually have significant influence on the choice of methods

Table II
RESEARCH QUESTIONS OF OUR STUDY

RQ1 What is the role of the software architect?

RQ2 Are there terminological confusions on NFRs?

RQ3 What types of NFRs are relevant to software architects?

RQ4 How are NFRs elicited?

RQ5 How are NFRs documented?

RQ6 How are NFRs validated?

RQ7 What type of tool support for NFRs is used?

and practices.

Compared to these reported empirical studies on NFRs,

the main value of ours is focusing on the relation between

NFRs and the software architect role. In none of the previous

studies this relationship was the real subject of study and

thus available evidence is anecdotal, which makes our own

study appealing, especially considering the claims that the

software architect role is one of the most affected by NFRs.

As we discuss in the next sections, we believe that our

study brings some new interesting observations to the field.

In addition, since available empirical studies are not many,

having a new one that may provide further evidence in topics

already explored may also be considered valuable.

III. THE SURVEY

A. Research Method

We carried out an exploratory study using a qualitative

research approach [20]. Qualitative research is especially

indicated when the purpose is to explore the subject of inter-

est with the aim of improving the knowledge available. The

general goal of investigating how software architects deal

with NFRs was decomposed into several research questions

shown in Table II. Although the focus is on NFR-related

issues, we added a preliminary research question about the

responsibilities that software architects have assigned in

their organizations to help understanding and interpreting the

results. The other research questions focus on the perspec-

tive of the software architect on elicitation, documentation,

validation and tool support, as well as terminology issues

and the importance of NFR types.

We used semi-structured interviews for gathering infor-

mation about the pre-established topics, but at the same

this allows to gain deeper knowledge when required. The

interview guide was carefully designed following the guide-

lines stated by Oates [21]. In general, the guide focused

on a single software development project in which the

respondents participated as architects. The interview guide

used in the study is available in www.essi.upc.edu/∼gessi/

papers/RE12-appendix.pdf.

B. Sampling

The target population of the study (see Table III) was

professionals that covered the role of architect in at least

one project in the organization. Under McBride’s perspec-

tive [22], a software architect is the person who makes de-

sign and technological decisions in a software development

project. It is important to remark, though, that we did not

provide this or any other definition to interviewees, on the

contrary RQ1 was precisely intended to find out the view

that they had on software architect’s responsibilities.

Participating organizations were chosen from our indus-

trial collaboration network. We sent an invitation letter to 21

software-intensive organizations located in Spain and asked

for their willingness to participate in the study. We finally

recruited 12 organizations covering a varied spectrum of

business areas and application domains. At one of these

organizations, we were able to interview two software ar-

chitects, bringing the total number of interviews to 13. The

respondents held different positions in the organizations and

were in charge of architectural tasks in at least the project

they based their answers on. Most respondents had an educa-

tion background related to computer science (with just two

cases of academic background related to telecommunications

and industrial engineering). 11 of the respondents had a

bachelor’s degree.

The selected projects themselves were also diverse in

terms of functionality, size and involvement of the project

staff. In some projects the team was involved just on the

development tasks while in other projects the team was

involved also in maintenance activities.

Although all organizations were based on Spain, some of

the projects involved clients from abroad.

C. Data Collection and Analysis

Interviews were conducted face-to-face by the two first

authors in the respondents’ mother tongue. Each interview

took about one hour and was audio-taped and prepared

for analysis through the manual transcription of the audio

records into text documents (made by an external company

and reviewed by the researchers). Data analysis was con-

ducted in a series of steps (based on [20]). First, the two first

authors coded the data independently, using the interview

transcripts and individual notes taken during the interviews.

Both researchers used the tabulation technique [20] to an-

alyze the answers of each question of the interview guide.

This made it possible to get an overview of the responses

and ease the process of categories generation. Depending

on the granularity of the questions, some of them got a

higher number of categories. NVivo Software1 was used to

support this process. Once the two researchers processed the

answers, we compared our results. Most of the categories

generated by the two researchers were semantically similar,

but some others needed further discussion. Thus, the whole

team held several meetings to analyze and discuss the cate-

gories and the evidence. Whenever we had a disagreement,

1www.qsrinternational.com

Table III
OVERVIEW OF THE ORGANIZATIONS

Business
Area*

Main Domain Respon-
dent

ID

Project Description Project
Staff

Size

Team Involvement Dura-
tion&

SCC Lottery management A Web application for managing transac-
tions over mobile phones

15 Software development 6

ITD Management of academic activities
and IT resources

B Web application for managing the ac-
tivities of organization members

3 Software development
and maintenance

48

SCC Information systems C System for the management and logis-
tics of a growing fast-food chain

5 Software development
and maintenance

120

SCC Aerospace information systems D Geographic information system to
manage aerospace launch bases

10 Software development
and maintenance

180

SCC Information systems E Application to manage the processes
and documents of a public-sector body

6 Software development 30

SCC Web information systems F E-commerce system for a company
selling motorcycle items

5 Software development
and maintenance

12

SCC Geographic information systems G Web system to support shipping logis-
tics

1 Software development 3

SCC Web information systems H Web system for personal data manage-
ment

20 Software development 36

SCC Information systems for document
digitization

I System to manage accounting activi-
ties at a bank

8 Software development 18

SH Support systems for insurance
companies

J Integral system to support insurance
company tasks

50 Software development 30

ITD Information systems for staff man-
agement and interactions

K System to manage staff research activ-
ities

8 Software development 36

ITD IT support for a university depart-
ment

L1 Web application to manage students
and teaching activities

5 Software development
and maintenance

144

ITD IT support for a university depart-
ment

L2 Web collaboration system 8 Software development
and maintenance

5

* SCC: Software Consultancy Company that performs software development tasks for different clients as its primary business; ITD: IT department
in public or tertiary organizations that usually perform or outsource some software development tasks for covering the internal demands of the
organization; SH: Software house that develops and commercializes specific proprietary solutions.

& It states the number of months required to perform the tasks in the team involvement column.

we discussed the issues until we reached an agreement. As

a result, some categories were split, modified, discarded or

added to ensure that all answers were well-represented. It

was a thorough process and some meetings lasted about 3

hours until agreement was reached. Finally, for displaying

the results shown in this paper, we used the counting

technique [23] to enable the reader to “see” the findings by

counting frequency of occurrences, or recurrent categories

of events (see Table IV). Our interpretation of the results is

tackled in section V.

D. Limitations of the Study

Like all software engineering empirical studies, ours faces

certain validity threats. This section discusses them in terms

of construct, internal and external validity as well as reli-

ability, as proposed by Yin [24] and also emphasizes the

mitigation actions used.

Construct validity. This aspect of validity reflects to what

extent the operational measures really represent what is

investigated according to the research questions [24]. This

study was supported by 2 main principles: rigorous planning

of the study according to Oates [21], and establishment of

protocols for data collection and data analysis. Our protocol

included specific mitigation actions for evaluation apprehen-

sion by ensuring the confidentiality of the interviews and

also by emphasizing the exploratory nature of the study. In

addition, the interview guide used as an instrument to gather

data, was piloted with 2 academic and 2 industrial people

in order to improve its understandability. As a result, some

changes were done to enhance the elicitation process (e.g.,

we added a glossary to homogenize key terms that could

cause some confusion).

Internal validity. It refers to the confidence that we can

place in the cause and effect relationship in a study [24].

We took relevant decisions for approaching a further un-

derstanding of the approached research questions. One of

the main relevant decisions was to focus the questions

of the interview guide on a single software development

project. Considering a single project instead of a general

perception of the architects’ rationale allows for better

interpretation and assessment of contextual information [23].

It would otherwise have been very difficult to interpret

certain decisions or influential factors related to the nature

of the projects. We are aware that some possible biases may

be related to this strategy, for instance the fact that some

time passed since the project was completed, so it could

be difficult for the respondents to remember some project

details. To reduce the possible side effects of this, we sent

the interview guide in advance to the respondents so they

could become familiar with the topic, and asked them to

Table IV
SUMMARY OF RESPONSES

Research Question Observations

RQ1. Architect role
• 13 interviewees performed the tasks assigned to “software architects” in the project based on their experience

or knowledge rather than their possible skills as architects
• 0 interviewees held a “software architect” position at the company
• 12 interviewees played other roles in the project in addition to the role of software architect, specifically: project

manager (3), developer (5), and project manager and developer (4)
RQ2. NFR terminology

• Confusion was reported around the terminology for designating NFR types
RQ3. NFR type ranking

• 49 references were made to technical NFRs (see Figure 1)
• 33 references were made to non-technical NFRs (see Figure 2)

RQ4. NFR elicitation
• In 10 projects, the NFRs were elicited solely by the architect
• In 3 projects, the NFRs were elicited by the client with the participation of the architect
• 13 architects considered elicitation as a gradual process

RQ5. NFR documentation
• 9 architects did not document the NFRs at all
• 4 architects documented the NFRs: 3 used templates (1 only for initial NFRs), 1 used plain text (only for initial

NFRs)
RQ6. NFR validation

• 11 architects claimed that the NFRs had been met by the end of the project
• 2 architects did not claim that all NFRs had been met by the end of the project

• 1 architect validated three types of NFRs (reliability, efficiency, and accuracy)
• 3 architects validated two types of NFRs (efficiency and accuracy; efficiency and usability; efficiency and

reliability)
• 4 architects validated one type of NFR (efficiency twice; accuracy; usability)
• 1 architect did not validate any NFRs at all
• 4 architects did not provide details on this point

RQ7. Tool support for NFRs
• Architects did not use any specific tool support for NFR management

choose the project beforehand. Thus, when performing the

study, we rarely experienced respondents having difficulty in

remembering project details. Another factor raised was that

the projects were selected by the participants. They may have

selected the most successful project to base their answers on,

although we asked them to use the most familiar one. To

mitigate this, we explained that our study was not focused

on analysing “best practices” but on learning “how things

are done.” There is always the possibility that the respondent

forgets something or does not explicitly state it when s/he is

asked about it [25]. To reduce this issue, we approached two

strategies: 1) we discussed some potential topics that might

be omitted by the respondents, and paid particular attention

to them during the interviews in order to ask for clarifications

if necessary; 2) once the interviews were transcribed, the

documents were validated by the respondents, so they had

the chance to add or modify any comment.

We tried to be rigorous with respect to the data analysis

strategy, and put forward several mitigation strategies. First,

recording all interviews (and later on transcribing them)

contributed to a better understanding and assessment of the

data gathered. Second, to reduce the potential researcher

bias, two different researchers assessed the data individually

and generated their own categories. Then, the generated

categories were analysed, discussed and reviewed by all re-

searchers of the team to ensure their accuracy, understanding

and agreement. Categories were also checked with respect

to the data gathered to confirm that none of the categories

refuted any of the conclusions.

External validity. It is concerned with to what extent it

is possible to generalize the findings, and to what extent

the findings are of interest to other people outside the

investigated case [24]. As our study was exploratory, we

do not attempt to make universal generalizations. Thus our

observations should be interpreted not as a universal view

of the field status but as a starting point for a universal

discussion and analysis [26].

Moreover, we did not randomly select the organizations

that participated in the study but got them from our industrial

collaboration network. However, we tried to strengthen the

external validity by having no control over the projects

chosen by the respondents. It is important to mention that

most of the participating companies were small or medium-

sized, in addition, most of the studied projects dealt with

non-critical domains (except for aerospace and banking). We

are aware that both factors may have an impact on how NFRs

are dealt with, and so we highlight that our findings should

be considered with caution.

Reliability. This aspect is concerned with to what extent

the data and the analysis are dependent on the specific

researchers. In order to strengthen this aspect we considered

the validity of the study from the very beginning. So, as

stated in the previous paragraphs, we put forward several

strategies. In addition, we maintained a detailed protocol,

the collected data and obtained results were reviewed by the

participants; we have spent sufficient time with the study,

and gave sufficient concern to the analysis of all responses.

IV. OBSERVATIONS

We present next the most relevant observations resulting

from the analysis of the interviewees’ responses, summa-

Figure 1. Importance of NFR types

rized in Table IV. We include quotations from the interviews

stating respondents’ ID in bold and enclosed in parenthesis.

A. RQ1: What is the role of the software architect?

The analysis of the interviewees’ responses in our study

shows that at their companies, the role of architect did not

exist as a job position as such. Given this situation, we tried

to understand more in depth how architects were nominated

for this role and how the boundaries of this role were set.

How were software architects nominated? The nomina-

tion of the respondents as software architects was made

according to the nature of the project. In other words, it

was not based on the usual architects’ skills defined in the

literature [22], but on technical knowledge (“[The architect]

is whoever knows the technologies used in the development

best” (E)) or experience (“Decisions affecting the whole

system are made by the most experienced people” (H)).

How was their role scoped? Respondents found it difficult

to define the exact nature of their work as an architect since

it overlapped with other activities they performed in the

project, primarily, project management (7 respondents) and

development (9). Some even played two other roles apart

from architect. Only one respondent said that the only role

he played in the project was that of architect.

B. RQ2: Are there terminological confusions on NFRs?

In our interviews we encountered certain communication

problems concerning the meanings of words, especially with

regard to the definition of types of NFRs. In fact, we found

two related problems: the problem of meaning itself, and the

problem of translating English terms into another language,

Spanish in our case. The main problematic situations were2:

• Inability to interpret some term, e.g., “availability”,

“accuracy”, and “sustainability”, requiring additional

explanations from the interviewers. (E, F, G, I)

• Use of a term that could lead to confusion, e.g., some

said “ergonomic”, “comfortable,” or “friendly,” when

2In this subsection, we use English terms for the discussion but the
problems appeared in their Spanish use.

Figure 2. Non-technical NFRs

they meant “usable” (in the context of “usability”). (B,

E)

• Use of a term with an incorrect definition. We found a

serious confusion in the answer, e.g., “Maintainability

is very important, because when something is working,

we cannot make changes” (D).

C. RQ3: What types of NFRs are relevant to software

architects?

We asked the respondents what were the NFR types that

they took into account when making architectural decisions.

We consolidated their answers, e.g., to reconcile different

names for the same concept (see the terminology problem

above) using the ISO/IEC 9126-1 quality standard [27] as

unifying framework. Some respondents had problems to di-

rectly answer the question. In those cases, we provided them

with a list of 15 terms that was consolidated when piloting

the survey design and clarified their meaning. Figure 1 shows

the result of this part of the interview.

If we observe the bar chart, we may see a graduation of the

mentioned types. This aligns with the information given by

the architects that considered some types as common sense

characteristics, e.g., “I consider Performance and Security

as default requirements of any project” (B), “I would never

think on a system that it is not Secure” (I). Apart from these

dominant types, we found other situations:

The types of non-technical NFRs most often mentioned

were (see Figure 2): licensing issues, 9 times (“the client’s

organization limited the type of OSS licenses to be used in

the software solution” (J)); technological constraints, 7 (“we

prefer to use technologies we have already mastered” (L1);

“we had some limitations from the client, e.g., architecture

based on OSS and Java” (H)); organizational issues, 5 (“we

needed to adapt our solution to the organization’s strategic

vision” (I)); cost, 4 (“we preferred JBoss to an IBM solution

because of cost constraints” (F)); external regulations, 4 (“as

we are a public organization, we had to comply with certain

public regulations and make our system accessible for people

with certain disabilities” (L1)); availability of support, 2

(“the choice of technology was influenced by the support

that Oracle offered” (A)); and development team policies, 2

(“we preferred to use our own human resources instead of

subcontracting someone else” (J)).

• NFRs that were considered because they represented an

explicit need of the client, e.g., “one of the contractual

requirements was that the system could interoperate

with other systems that were already deployed in the

client’s environment” (D).

• NFRs that were particularly important for the develop-

ment team, e.g., “We were the ones that would maintain

the system, so, it was important for us to ensure its

maintainability” (B).

• Last, four of the respondents mentioned that some

NFRs were not important to them because they rely

on the technologies and the underling platform, e.g.,

“We didn’t thought about the security of the documents

because it is done by the management system of

SharePoint” (E). The perception was that the maturity

level of many technological solutions was enough to

ensure the satisfaction of NFRs.

Moreover, about 40% of the NFRs considered by respon-

dents in their projects were non-technical [28], i.e., referring

to issues not directly related to the quality of the product

itself but to some contextual information. In fact, some

respondents explicitly mentioned that some types of non-

technical NFRs took precedence over all others (“Money

rules and everything has to be adapted to it” (J)).

D. RQ4: How are NFRs elicited?

Our interviews show that in 10 out of the 13 projects

considered, the software architect was the main source of

the NFRs. Clients either never mentioned NFRs (“[the client]

never mentioned that web pages could not take more than 2

seconds to load, but he complained about it afterwards” (E))

or provided only very broad indications, usually in the form

of cost or efficiency constraints (“the client mentioned a

basic [NFR], and we added others based on our experience”

(L2)). The main explanation seems to be that architects

consider themselves to be the real experts when it comes

to defining efficiency, reliability, and other similar aspects.

Respondents (D), (H), and (I) were the only three cases

with client-led NFR elicitation process. Interestingly, they

were also the only cases in the study in which the intervie-

wee was working on an outsourced project (managed by an

aerospace company (D), a software company (H), and a bank

(I)). Even in these cases, however, the architects played an

active role in completing the definition of the NFRs (“Our

client was an aerospace system department. Therefore, all

the NFRs were very well defined. We also added other NFRs

based on our experience” (D)).

All respondents agreed that deciding NFRs is a gradual

and iterative process throughout the system lifecycle. A first

set of NFRs were decided early in the project as a result

of gaining knowledge about the client organization. E.g.,

“We determined first some relevant NFRs (e.g., compati-

bility with other systems) and then developed a prototype

and analysed alternatives” (J). However, the interviewees

emphasized that the list of NFRs of the project could

never be considered complete even after the development

tasks had finished, instead, this list is under extension and

negotiation during all development and maintenance phases

of the project, e.g., “In relation to efficiency we had to

make changes because the necessary level of service was

not specified at the beginning of the project” (K).

E. RQ5: How are NFRs documented?

9 out of the 13 interviewees acknowledged that they had

not documented the NFRs at all (“[functional requirements]

came in UML, using conceptual models and use cases, but

there was no mention of NFRs” (H)). In some cases, the lack

of documentation was intentional (“I rarely appropriately

document my projects, basically because it costs money”

(C)). Some interviewees emphasized that documentation is

only necessary if the client or the critical nature of the

domain so requires.

The 4 respondents who did explicitly document their

NFRs used different methods to do so:

• Volere templates [29] (B).

• Grouping of the NFRs using the ISO/IEC 9126 quality

classification [27] (K).

• Ad-hoc formalization based on domain needs. (“Since

we work in the field of aerospace, our NFRs had

to be clearly stated and verifiable. We have special

templates, and we used different techniques from other

engineering disciplines, such as risk models, failure

trees, etc.” (D)).

• Simply drawing up a plain text document (J).

Out of these four, two ((J) and (K)) only documented the

initial NFRs (“At first, we wrote down some initial ideas

for NFRs in natural language [...], but afterwards we did

not keep track of any of them or of any other NFRs arising

during the design process” (K)).

F. RQ6: How are NFRs validated?

In our study, most of the interviewed architects (11 out

of 13) claimed that all NFRs had been satisfied by the

end of the project. However, when asked how they had

validated them, their answers were vague. The following

comment is illustrative: “compliance with some [not all]

NFRs is only informally discussed with the client, since it is

not easy to test”. The only exception was interviewee (D),

who used formal techniques based on statistical analysis and

simulation to check the system’s reliability.

Eight interviewees performed some validation, but each

one validated only one to three NFRs. Few types of NFRs

were considered: efficiency (“we ran load and stress tests

to evaluate performance” (H)); accuracy (“for each hour of

coding we spent one hour testing for bugs” (A)); usability

(“we made a prototype just to ensure client satisfaction with

the interface” (K)); and reliability (“we have forced some

errors to see what happens and control loss of data” (J)).

Notably, one highly relevant type of NFR, security, was not

mentioned by any of the respondents.

One respondent (F) was an extreme case of non-

validation, noting: “We wait for the client to complain. He

will notice when something goes wrong.”

G. RQ7: What type of tool support for NFRs is used?

All the architects declared that no specific tools were

used for NFR management. Taking the chance of the ex-

ploratory nature of semi-structured interviews, we asked

the interviewees if they would be willing to accept some

help in the form of a decision support tool to assist them

in architectural decision-making. The main motivation to

explore this issue is our vision on the use of NFRs in the

model-driven development process as presented in [30].

We found a very strong reaction (e.g., “I do not believe in

automatic things” (B), or “I would not trust” (F)) against an

automated decision-making tool from 5 of the respondents.

The others were not so reluctant but expressed several

concerns. 4 of them expressed their opinion that such a

decision-making tool is simply too difficult to build (“it is

hard for me to imagine that this can be done” (I)). A way to

fight against this effect mentioned by 2 of the respondents

was that the tool suggested alternatives instead of making

final decisions (“the tool could show you possibilities that

you have not envisaged” (C)). Also some worried about the

amount of information that the architect should provide to

such a tool for getting informed decisions (“all the time that

I would need for thinking and introducing all the necessary

information, would not pay” (F)). If such a tool would exist,

architects would require a clear justification of decisions

(“the critical point is the accuracy of the tool and the answer

that it could give” (C)).

V. DISCUSSION

In this section we discuss the possible answers to the

proposed research questions based on the observations sum-

marized in the previous section, and establish whenever

possible links to the findings of previous studies.

A. RQ1: What is the role of the software architect?

Software architects did not exist as a differentiated role

and performed other duties in the projects.

Most software engineering literature concurs that soft-

ware companies have a specific position, known as the

“software architect,” whose mission is to design an ar-

chitectural solution in a software development project by

making architectural decisions that are compliant with the

elicited requirements. Some authors as McBride [22] and

Clements [31] support this statement. However, our results

show that the role of architect did not exist as a job

position in the organizations and that their tasks were very

diverse. This also concurs with other studies not specifically

reporting on the software architect role but related to RE,

e.g., Sadraei et al. reporting on project managers to take on

RE activities [32].

On the one hand, the respondents were nominated as

architects of the assessed projects mainly based on their

technical knowledge. This finding aligns with the stated

opinions of other professionals, e.g., “an architect should

only be responsible for a single project/application and

not the architect for all projects within a software com-

pany” [33].

On the other hand, it was difficult to enumerate the

architect’ tasks as these overlapped other roles’ tasks. This

fact aligns with the observation made by Tang et al. [16]

who state that architects work on a variety of tasks (such as

requirements analysis, tender analysis, architecture design

and software design) and management responsibilities.

B. RQ2: Are there terminological confusions on NFRs?

Architects did not share a common vocabulary for types of

NFRs and showed some misunderstandings.

The problem of gathering data from interviewees was

challenging due to the terminological discrepancies and mis-

understandings about concepts related to NFRs. It is not the

practitioners the (only) ones to blame, their confusion just

reflected the lack of consensus that exist in the community,

e.g., in the use of “performance” and “efficiency”.

This problem has been also highlighted by other re-

searchers. E.g., Anh et al. [15] reported confusion among

maintainability and reliability (“OSS components are more

reliable because the code is available and then it is easier

to fix the bug”). Also, Svensson et al. reported that the

concept of “compliance” as used by some interviewees was

fairly different from the ISO/IEC 9126 standard’s, e.g., some

respondent said that compliance is important because “we

must be compliant with the requirement document” [10].

Last, the problem of using English terminology by non-

English professionals was reported also in [12] where the

majority of practitioners was native Swedish speakers and

had troubles when documenting the requirements in English.

C. RQ3: What types of NFRs are relevant to software

architects?

The two most important types of technical NFRs for

architects were performance and usability. On the other

hand, architects considered non-technical NFRs to be as

relevant as technical NFRs.

If there is a topic that has been documented in existing

empirical studies with respect our research questions, is the

perception of the importance of NFR types. However, since

these studies did not focus on the software architect role

(we are just aware of [34]), it was a good opportunity to

complement these findings with our observations.

The higher importance of performance and usability was

also reported in two previous studies, [10] and [13], in the

last case together with maintainability. In [15] performance

was important, but usability was not among the most impor-

tant quality attributes. It is worth to mention that it is not

easy to align the results of these studies since often they use

different classification for NFRs, therefore we have not tried

to make an exhaustive alignment of the results.

In spite of these similarities, we have observed too that

the results are still dependent on the domain (e.g., aerospace

domain (D), gave much importance to safety of people,

whilst this type of NFR was not mentioned by the other

participants). We also mentioned other differences in Sec-

tion IV (e.g., the expertise of the development team and the

technologies used). These facts could be a factor influencing

the partially divergent results with previous studies. Similar

opinions appear in other empirical works (e.g., “[NFRs]

importance can vary depending on stakeholders’ roles, types

of project, orders of magnitude of requirements and ap-

plication domains” [13]; “NFR types that are typical for

traditional telecommunication systems gain more attention

than others” [12]). Also, in [7] and [13] it is mentioned that

the role of the stakeholders may influence on the perception

of importance for the NFRs, but this difference could not be

observed in this study because all our participants played the

architect role. On the contrary, we found one work stating

that there are NFR types that are always important, e.g.,

“some quality requirements (security) are always important

for everyone” [11]. Similar statements were made by the

architects interviewed in our study (see Section IV), but it

is worth to mention that security was also mentioned as

example of NFR type whose satisfaction is delegated onto

the technologies used (from the architects perspective), and

in consequence not considered important.

In our study we found out that non-technical NFRs are

considered by the architects as important as technical NFRs.

As far as we know, no other empirical study made this

differentiation, even though that some of the non-technical

NFRs are recurrently mentioned (e.g., cost [16]).

D. RQ4: How are NFRs elicited?

NFRs were mainly elicited by the architects themselves

following an iterative process.

Numerous techniques (interviews, role playing, etc.) have

been developed for requirements elicitation. They usually as-

sume that the client, as the domain expert, is the main source

of requirements. In fact, some respondent acknowledged that

when referring to functional requirements: “[Business ana-

lyst] writes a detailed document reflecting all the [functional]

requirements specified by the customer” (A).

However, we couldn’t corroborate this assumption in our

work. The finding that NFRs were elicited by architects is

one of our most relevant observations. The only empirical

work covering this aspect is reported by Borg et al. [12], but

with a non-conclusive result: from the two cases reported,

in one it is said that requirements elicited directly from

end users are very rare, whilst in the other, most of the

requirements are elicited directly from customers and end

users.

The iterative nature of NFR elicitation has not been

explicitly stated by other studies. Some weakly related

statement may be found by Doerr et al., who argue that

the elicitation of NFRs, functional requirements and the

architecture must be intertwined [35], which seems to imply

that NFRs cannot be elicited upfront. Also the finding stated

by Svensson et al. in [10] about NFR dismissal is somehow

related: a total average mean 22.5% of NFRs were reported

to be dismissed whilst the projects evolved.

E. RQ5: How are NFRs documented?

NFRs were not often documented, and even when

documented, the documentation was not always precise

and usually become desynchronized.

In spite of the plethora of proposals made by academics on

requirements documentation, we finally may conclude that

the participants of this study did not produce high-quality

documentation or even no documentation at all.

It is not easy to compare our results with others, since

most of existing reports on NFR documentation focus on

their degree of quantification. NFRs are often described

in non-measurable terms and with vague wordings [12].

Sabaliauskaite et al. reported that NFRs tend to be badly

structured or vague [19]. Svensson et al. reported different

situations in their case studies [10]. Remarkably, 60% of the

interviewees stated that NFRs are never, or just sometimes,

specified in a measurable manner. Interestingly enough,

discrepancies between the two types of roles involved in

the interviews arose (even if each project manager and

project leader pair worked in the same project). Olsson et

al. reported that about half of NFRs considered in a case

study were quantified [36]. At this respect, our study reports

just 2 out of 13 respondents ((B) and (D)) providing some

quantification level, which is far from the 60% mentioned

above.

F. RQ6: How are NFRs validated?

NFRs were claimed to be mostly satisfied at the end of the

project although just a few types were validated.

The 85% (11 out of 13) of interviewees that claimed

satisfaction of all NFRs is a high percentage, much higher

than the 60% reported in [10]. One could argue that this

observation we got in our study contradicts the statement

by Borg et al. saying that most NFR types are difficult to

test due to their nature [12] but in fact it is not the case.

On the contrary, it indicates the need to distinguish between

the perception of NFR satisfactibility (85%) and the real

validation (8 out of 13, i.e., 61%, and not for all types of

NFRs).

Three of the four types of NFRs mentioned by intervie-

wees as validated, belong to what Borg et al. name “system

characteristic types”, which means NFRs directly related to

the characteristics of the systems per se; they report that

in their study, these system characteristics are considered

properly tested most of the cases, whilst others like usability

are often poorly tested [12].

One of the findings of our study that may align with previ-

ous results is the link between documentation and validation.

Borg et al. that said: “when expressed in non-measurable

terms testing is time-consuming or even impossible” [12].

Since we had just 2 respondents expressing the NFRs in a

measurable form, this may be one of the reasons behind the

low level of validation performed.

Last, Ali Babar et al. reported that participants in their sur-

vey suggested that the approach to evaluation also depends

on the evaluation goals [17]. The evidence we can provide

in this direction is the respondent that reported rigorous

validation was (D), whose project was in a critical domain.

G. RQ7: What type of tool support for NFRs is used?

Software architects did not use any specific tool for NFR

management.

This was one of the most extreme results of the survey.

Even tool support as reported in [7] about dependency

management (one important issue when it comes to NFRs),

was missing. For sure the answer to this research question

uncovers an important challenge to be addressed jointly by

researchers and practitioners.

Concerning tool support for decision-making, this issue

was mentioned by Ali Babar et al. in relation to some

industrial cases that use tool support for generation of design

option by exploiting some architectural knowledge [37]. Our

observation about the type of tool practitioners may adopt

aligns with the position reported by Hoorn et al. [38]: archi-

tects do not fancy proactive or automated support; instead,

we share the view by Borg et al. [12] that methods and tools

supporting NFRs throughout the entire development process

are needed.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an empirical study about

how software architects deal with NFRs in practice. We have

focused our research questions on three activities: elicitation,

documentation and validation; and on three other issues:

terminology, ranking of types and tool support.

In conclusion, the presented results of this study enhance

previous industrial surveys on the topic by:

• Finding previously unreported observations. We men-

tion: NFRs were mostly elicited by architects; software

architects considered non-technical NFRs as relevant as

technical NFRs; software architects were happy with

NFR fulfilment (independently of the poor validation

performed); software architects did not use any specific

tool for NFR management.

• Corroborating (totally or partially) previously found

empirical evidence, even if for different technical

roles: software architects performed other duties in the

projects; interviewed software architects did not share

a common vocabulary and had some terminological

misunderstandings; NFR elicitation is iterative; NFRs

were not often documented; just a few types of NFRs

were validated; the two most important types of tech-

nical NFRs were performance and usability; software

architects didn’t want automatic NFR-based decision-

making tools but accepted architect-driven tools.

• Finding results that do not align with other studies, or

are related to contradictory results from former studies:

software architects did not exist as a differentiated role;

quantification of NFRs was poor.

As happens with all qualitative research, we have not

aimed at obtaining generalizable results, as the qualitative

research approach is intended to characterise and to find

variation rather than similarity.

About future work, we concur with different authors

(e.g., [7], [8]) about the need of conducting more empirical

studies on this topic. Consolidation of results coming from

qualitative studies is far more difficult than in the case of

quantitative ones, but the knowledge gathered is very rich

and a good input for both researchers and practices.

Another future work is the connection of the topic of this

study with others. Remarkably we can mention the influence

that the existence of a starting architecture may have on

requirements in general, and NFRs in particular (e.g., [39]).

One outcome of this study is an indication of how the

methods and techniques coming from the research com-

munity have not been adopted by practitioners. From this

perspective, the study has shown that a gap exists between

both communities. Therefore, other possible, more visionary

stream of future work has to do with bridging this gap. Some

possible actions are enumerated below.

First, dealing with NFRs in software design demands

for return on investment (ROI) analysis. In our study, an

observation was the lack of proper documentation of NFRs

in most projects. This is one of the many situations that

arise because practitioners live in a high-pressure world that

prevents to adopt tools that do not provide a short-term ROI.

Second, the different profile of organizations calls for

highly customizable NFR management. For instance, the

companies in our study do not have a software architect

position, while other companies acknowledge the importance

of such a position. It is thus unrealistic to expect methods

and techniques to be one-size-fits-all.

Third, professional software architects and academics

should start to share communication channels. The use

of blogs, twitters and e-zines by practitioners is still not

commonplace in the academy, probably because the advan-

tages for researchers are not evident. On the other hand,

practitioners are usually reluctant to participate in empirical

studies so that researchers in the end need to work with their

local network which limits the number of such studies.

ACKNOWLEDGMENTS

We would like to thank all the participants of this study

for their time and valuable contributions. This work has been

supported by the Spanish project TIN2010-19130-C02-01.

REFERENCES

[1] M. Glinz, “On Non-Functional Requirements,” in RE, 2007.

[2] F. Buschmann, “Value-Focused System Quality,” IEEE Soft-
ware, vol. 27, no. 6, pp. 84–86, 2010.

[3] L. Chung and J. C. S. do Prado Leite, “On Non-Functional
Requirements in Software Engineering,” in Conceptual Mod-
eling: Foundations and Applications, 2009.

[4] K. Pohl and C. Rupp, Requirements Engineering Fundamen-
tals. Rocky Nook, 2011.

[5] L. Zhu and I. Gorton, “UML Profiles for Design Decisions
and Non-Functional Requirements,” in SHARK-ADI, 2007.

[6] I. Ozkaya, L. Bass, R. Nord, and R. Sangwan, “Making Prac-
tical Use of Quality Attribute Information,” IEEE Software,
vol. 25, no. 2, pp. 25–33, 2008.

[7] R. Berntsson-Svensson, M. Höst, and B. Regnell, “Managing
Quality Requirements: A Systematic Review,” in EUROMI-
CRO SEAA, 2010.

[8] D. Falessi, P. Kruchten, and G. Cantone, “Issues in Applying
Empirical Software Engineering to Software Architecture,” in
Software Architecture, ser. LNCS, F. Oquendo, Ed. Springer
Berlin / Heidelberg, 2007, vol. 4758, pp. 257–262.

[9] I. Gorton, Essential Software Architecture (2nd ed.).
Springer, 2011.

[10] R. Berntsson-Svensson, T. Gorschek, and B. Regnell, “Qual-
ity Requirements in Practice: An Interview Study in Require-
ments Engineering for Embedded Systems,” in REFSQ, 2009.

[11] R. Berntsson-Svensson, T. Gorschek, B. Regnell, R. Torkar,
A. Shahrokni, R. Feldt, and A. Aurum, “Prioritization of
quality requirements: State of practice in eleven companies,”
in RE, 2011.

[12] A. Borg, A. Yong, P. Carlshamre, and K. Sandahl, “The Bad
Conscience of Requirements Engineering: An Investigation
in Real-world Treatment of Non-Functional Requirements,”
in SERPS, 2003.

[13] J. L. de la Vara, K. Wnuk, R. Berntsson-Svensson, J. Sánchez,
and B. Regnell, “An Empirical Study on the Importance of
Quality Requirements in Industry,” in SEKE, 2011.

[14] M. Haigh, “Software quality, non-functional software require-
ments and IT-business alignment,” Software Quality Control,
vol. 18, no. 3, pp. 361–385, 2010.

[15] N. D. Anh, D. S. Cruzes, R. Conradi, M. Höst, X. Franch,
and C. P. Ayala, “Collaborative Resolution of Requirements
Mismatches When Adopting Open Source Components,” in
REFSQ, 2012.

[16] A. Tang, M. Babar, I. Gorton, and J. Han, “A survey of
architecture design rationale,” JSS, vol. 79, no. 12, pp. 1792–
1804, 2006.

[17] M. A. Babar, L. Bass, and I. Gorton, “Factors influencing
industrial practices of software architecture evaluation: an
empirical investigation,” in QoSA, 2007, pp. 90–107.

[18] L. Karlsson, s. G. Dahlstedt, B. Regnell, J. Natt och Dag,
and A. Persson, “Requirements engineering challenges in
market-driven software development - An interview study
with practitioners,” Inf. Softw. Technol., vol. 49, no. 6, pp.
588–604, 2007.

[19] G. Sabaliauskaite, A. Loconsole, E. Engström, M. Unterkalm-
steiner, B. Regnell, P. Runeson, T. Gorschek, and R. Feldt,
“Challenges in Aligning Requirements Engineering and Veri-
fication in a Large-Scale Industrial Context,” in REFSQ, 2010,
pp. 128–142.

[20] M. Miles and A. Huberman, Qualitative data analysis: an
expanded sourcebook. Sage Publications, 1994.

[21] B. Oates, Researching information systems and computing.
SAGE, 2006.

[22] M. R. McBride, “The software architect,” Commun. ACM,
vol. 50, no. 5, pp. 75–81, 2007.

[23] C. Robson, Real World Research: A Resource for Social
Scientists and Practitioner-Researchers (2nd ed.). Blackwell
Pub., 2002.

[24] R. Yin, Case Study Research: Design and Methods (4th ed.).
Sage Publications, 2009.

[25] C. B. Seaman, “Qualitative Methods in Empirical Studies
of Software Engineering,” IEEE Trans. Softw. Eng., vol. 25,
no. 4, pp. 557–572, 1999.

[26] P. Runeson, “A Survey of Unit Testing Practices,” IEEE
Software, vol. 23, no. 4, pp. 22–29, 2006.

[27] ISO/IEC 9126, “Product quality – Part 1: Quality model,”
2001.

[28] J. Pablo Carvallo, X. Franch, and C. Quer, “Managing Non-
Technical Requirements in COTS Components Selection,” in
RE, 2006.

[29] S. Robertson and J. Robertson, Mastering the Requirements
Process (2nd ed.). Addison-Wesley Professional, 2006.

[30] D. Ameller, X. Franch, and J. Cabot, “Dealing with Non-
Functional Requirements in Model-Driven Development,” in
RE, 2010.

[31] P. Clements, “Certified Software Architects,” Software, IEEE,
vol. 27, no. 6, pp. 6–8, 2010.

[32] E. Sadraei, A. Aurum, G. Beydoun, and B. Paech, “A field
study of the requirements engineering practice in Australian
software industry,” Requir. Eng., vol. 12, no. 3, pp. 145–162,
2007.

[33] J. Cahill, “The Role of a Software Architect,”
2009. [Online]. Available: joncahill.zero41.com/2009/04/
role-of-software-architect.html

[34] D. Ameller and X. Franch, “How do software architects
consider Non-Functional Requirements: a survey,” in REFSQ,
2010.

[35] J. Doerr, D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki,
“Non-Functional Requirements in Industry - Three Case
Studies Adopting an Experience-based NFR Method,” in RE,
2005.

[36] T. Olsson, R. Berntsson-Svensson, and B. Regnell, “Non-
functional requirements metrics in practice - an empirical
document analysis,” in MeReP, 2007.

[37] M. A. Babar, A. Northway, I. Gorton, P. Heuer, and
T. Nguyen, “Introducing Tool Support for Managing Archi-
tectural Knowledge: An Experience Report,” in ECBS, 2008.

[38] J. F. Hoorn, R. Farenhorst, P. Lago, and H. van Vliet, “The
lonesome architect,” J. Syst. Softw., vol. 84, no. 9, pp. 1424–
1435, 2011.

[39] R. Ferrari, J. A. Miller, and N. H. Madhavji, “A controlled
experiment to assess the impact of system architectures on
new system requirements,” Requir. Eng., vol. 15, no. 2, pp.
215–233, 2010.

View publication statsView publication stats

https://www.researchgate.net/publication/231362787

